Skip to main content

Evolving U-Nets Using Genetic Programming for Tree Crown Segmentation

  • Conference paper
  • First Online:
  • 778 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13836))

Abstract

The U-Net deep learning algorithm and its variants have been developed for biomedical image segmentation, and due to their success gained popularity in other science domains including remote sensing. So far no U-Net structure has been specifically designed to segment complex tree canopies from aerial imagery. In this paper, a handcrafted convolutional block is introduced to replace the raw convolutional block used in the standard U-Net structure. Furthermore, we proposed a Genetic Programming (GP) approach to evolving convolutional blocks used in the U-Net structure. The experimental results on a tree crown dataset show that both the handcrafted block and the GP evolved blocks have better segmentation results than the standard U-Net. Additionally, the U-Net using the proposed handcrafted blocks has fewer numbers of the learning parameters than the standard U-Net. Also, the proposed GP approach can evolve convolutional blocks used in U-Nets that perform better than the handcrafted U-Net and the standard U-Net, and can also achieve automation.

Funded by the New Zealand Ministry of Business, Innovation and Employment under contract C09X1923 (Catalyst: Strategic Fund).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarap, A.F.: Deep learning using rectified linear units (ReLU). CoRR abs/1803.08375 (2018). http://arxiv.org/abs/1803.08375

  2. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8 (2021). Article number: 53. https://doi.org/10.1186/s40537-021-00444-8

  3. Deng, S., Sun, Y., Galván, E.: Neural architecture search using genetic algorithm for facial expression recognition. In: GECCO 2022: Genetic and Evolutionary Computation Conference, Companion Volume, Boston, Massachusetts, USA, 9–13 July 2022, pp. 423–426 (2022)

    Google Scholar 

  4. Fernández, J.G., Mehrkanoon, S.: Broad-UNet: multi-scale feature learning for nowcasting tasks. Neural Netw. 144, 419–427 (2021)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  6. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015)

    Google Scholar 

  7. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105 (2012)

    Google Scholar 

  9. Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33(12), 6999–7019 (2022)

    Article  MathSciNet  Google Scholar 

  10. Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G., Tan, K.: A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3100554

  11. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3523–3542 (2022)

    Google Scholar 

  12. Mo, Y., Wu, Y., Yang, X., Liu, F., Liao, Y.: Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing 493, 626–646 (2022)

    Article  Google Scholar 

  13. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. In: Medical Imaging with Deep Learning (2018). https://openreview.net/forum?id=Skft7cijM

  14. Ren, P., et al.: A comprehensive survey of neural architecture search: challenges and solutions. ACM Comput. Surv. 54(4), 1–34 (2021)

    Article  Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing convolutional neural network architectures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 497–504 (2017)

    Google Scholar 

  17. Wang, B., Xue, B., Zhang, M.: Particle swarm optimisation for evolving deep neural networks for image classification by evolving and stacking transferable blocks. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2020). https://doi.org/10.1109/CEC48606.2020.9185541

  18. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2403–2412 (2018). https://doi.org/10.1109/CVPR.2018.00255

  19. Zhan, Z.H., Li, J.Y., Zhang, J.: Evolutionary deep learning: a survey. Neurocomputing 483, 42–58 (2022)

    Article  Google Scholar 

  20. Zhou, X., Qin, A.K., Gong, M., Tan, K.C.: A survey on evolutionary construction of deep neural networks. IEEE Trans. Evol. Comput. 25(5), 894–912 (2021)

    Article  Google Scholar 

  21. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, W., Xue, B., Zhang, M., Schindler, J. (2023). Evolving U-Nets Using Genetic Programming for Tree Crown Segmentation. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics