
Program Synthesis with Grammars and
Semantics in Genetic Programming

Stefan Forstenlechner

UCD student number: 14204817

The thesis is submitted to University College Dublin
in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

School of Business

Head of School:
Prof. Anthony Brabazon

Research Supervisors:
Prof. Michael O’Neill
Dr. Miguel Nicolau

External Examiner:
Dr. John R. Woodward

January 2019

Contents

Contents i

Abstract vii

Statement of Original Authorship viii

Acknowledgements ix

List of Figures xi

List of Tables xiv

List of Algorithms xvii

List of Abbreviations xviii

Publications Arising xx

I Introduction and Literature Review 1

1 Introduction 2
1.1 Aim of Thesis . 3
1.2 Research Questions . 4
1.3 Contributions . 7

1.3.1 Technical contributions . 8
1.4 Limitations . 8
1.5 Thesis Outline . 9

i

CONTENTS

2 Related Work 12
2.1 Evolutionary Computation . 12
2.2 Genetic Programming . 14

2.2.1 Representation . 15
2.2.2 Initialization . 16
2.2.3 Fitness . 17
2.2.4 Selection . 17
2.2.5 Crossover . 19
2.2.6 Mutation . 19
2.2.7 GP Summary . 20
2.2.8 Grammars . 20

2.3 Program Synthesis . 23
2.3.1 Program Synthesis in Genetic Programming 26
2.3.2 General Program Synthesis Benchmark Suite 30

2.4 Semantics . 32
2.4.1 Semantic operators . 34
2.4.2 Geometric Semantic GP 37

2.5 Conclusion . 38

II Experimental Research 40

3 General Grammar Design 41
3.1 Grammars for G3P . 41
3.2 Sorting Network . 42
3.3 Structure in Grammars . 43
3.4 Sorting Network Grammar Design 45

3.4.1 Derivation tree sizes . 49
3.4.2 Grammar Design Details 50

3.5 Experimental Setup . 51
3.5.1 Experiment 1 . 51
3.5.2 Experiment 2 . 51
3.5.3 General Settings . 52

3.6 Results . 53
3.6.1 Experiment 1 . 53
3.6.2 Experiment 2 . 54

ii

CONTENTS

3.7 Summary . 58

4 Program Synthesis Grammar Design Pattern 60
4.1 Previous Approaches to Program Synthesis 60

4.1.1 Grammar-Guided Genetic Programming 61
4.1.2 Strongly Formed Genetic Programming 61
4.1.3 PushGP . 62
4.1.4 Summary . 63

4.2 System Description . 63
4.2.1 Grammar Design Pattern 64
4.2.2 Skeleton . 67
4.2.3 Comparison of Program Synthesis Approaches 68
4.2.4 Python Specific Differences 70
4.2.5 Invalid Individuals . 71

4.3 Experimental Setup . 72
4.3.1 PushGP Differences . 73
4.3.2 Derivation Tree Structures 74

4.4 Results . 75
4.4.1 Tournament Selection . 75
4.4.2 Lexicase Selection . 76
4.4.3 Generational Progress and Invalids 79
4.4.4 Derivation Tree Structures 81

4.5 Summary . 81

III Extended Experimental Research 84

5 Refining Computational Effort 85
5.1 General Program Synthesis Benchmark Suite Remarks 86
5.2 Experimental Setup . 87

5.2.1 Parameters and Computational Effort 87
5.2.2 Larger Training Set . 89

5.3 Results . 90
5.3.1 Success Rates . 90
5.3.2 Accumulated Successful Solutions Over Generations 92
5.3.3 Problems with the Training Data 94

iii

CONTENTS

5.3.4 Larger Training Set . 95
5.4 Computational Effort Discussion 97
5.5 Benchmark Suite Discussion . 98
5.6 Summary . 99

6 Extending Program Synthesis Grammars 101
6.1 Grammar Design Approach Remarks 101
6.2 Extending Program Synthesis Grammars 103

6.2.1 Data Type Char . 103
6.2.2 Recursion . 104
6.2.3 List Operations . 105
6.2.4 Additional Methods . 106

6.3 Experimental Setup . 106
6.4 Results . 107

6.4.1 Successful Solutions . 107
6.4.2 Char Analysis . 108
6.4.3 Recursion Analysis . 111

6.5 Summary . 111

7 Semantic Operators in Program Synthesis 114
7.1 Semantics . 115

7.1.1 Semantic Operators . 115
7.2 Semantics in Program Synthesis 116
7.3 Semantic Crossover for Program Synthesis 120

7.3.1 Semantic Measure . 120
7.3.2 Operator . 121
7.3.3 Experimental Setup . 124
7.3.4 Results . 125
7.3.5 Summary of SCPS . 132

7.4 Effective Semantic Operators for Program Synthesis 134
7.4.1 Effective Semantic Crossover for Program Synthesis 134
7.4.2 Effective Semantic Mutation for Program Synthesis 136
7.4.3 Experimental Setup . 137
7.4.4 Results . 137

iv

CONTENTS

7.4.5 Summary of Effective Semantic Operators for Program Syn-
thesis . 146

7.5 Summary . 146

IV Fin. 148

8 Conclusion & Future Work 149
8.1 Thesis Summary . 149
8.2 Contributions . 151

8.2.1 Technical contributions . 152
8.3 Limitations . 153
8.4 Future Work . 154

A Program Synthesis Problem Description 156
A.1 Problem Description . 156
A.2 Fitness Functions . 159

B Program Synthesis Grammars 162
B.1 Automatic Grammar Combination 162
B.2 structure.bnf . 164
B.3 bool.bnf . 165
B.4 float.bnf . 165
B.5 int.bnf . 166
B.6 string.bnf . 167
B.7 list_bool.bnf . 168
B.8 list_float.bnf . 169
B.9 list_int.bnf . 170
B.10 list_string.bnf . 171
B.11 Protected methods . 173

C Extended Program Synthesis Grammars 176
C.1 structure.bnf . 176
C.2 bool.bnf . 177
C.3 float.bnf . 178
C.4 int.bnf . 179
C.5 char.bnf . 180

v

CONTENTS

C.6 string.bnf . 181
C.7 list_bool.bnf . 183
C.8 list_float.bnf . 184
C.9 list_int.bnf . 186
C.10 list_string.bnf . 187

D Plots for ESMPS 189
D.1 Semantic Measure Used with ESMPS 190
D.2 Number of Tries for ESMPS . 191
D.3 Percentage of Semantically Different with ESMPS 192
D.4 Percentage of Fitter Children with ESMPS 193

E Grammar Design Pattern Solutions 194
E.1 Compare String Lengths . 195
E.2 Count Odds . 195
E.3 Even Squares . 196
E.4 For Loop Index . 196
E.5 Grade . 197
E.6 Last Index of Zero . 198
E.7 Median . 199
E.8 Mirror Image . 199
E.9 Negative To Zero . 200
E.10 Number IO . 201
E.11 Pig Latin . 201
E.12 Replace Space with Newline . 202
E.13 Scrabble Score . 203
E.14 Small Or Large . 203
E.15 Smallest . 204
E.16 String Lengths Backwards . 205
E.17 Sum of Squares . 205
E.18 Syllables . 205
E.19 Vector Average . 207
E.20 Vectors Summed . 208
E.21 X-Word Lines . 208

Bibliography 209

vi

Abstract

Program synthesis is an important field that has many use cases like bug fixing,
automating repetitive tasks and discovering new algorithms. One way to approach
program synthesis tasks is to specify a grammar that defines all possible programs
that can be created and using a search algorithm like genetic programming to
create a program. Although using grammars has the advantage that created
programs are syntactically correct, the grammar has to be defined for each problem
tackled.

The focus of this thesis is to introduce a grammar design approach that pro-
vides the ability to tackle arbitrary program synthesis problems from input/output
examples. The grammars will not be required to be tailored to a specific problem,
and in contrast to many existing approaches, the code of the produced programs
will be in a programming language used by practitioners. The grammar design
approach is studied on a range of program synthesis problems throughout the
thesis and shows results that are competitive to state of the art systems.

As the search for programs with genetic programming is often done on the syn-
tactic representation without considering the behaviour or semantics of a program,
the introduction of semantic operators for program synthesis will be investigated.
While in other problem domains, semantic operators have improved search per-
formance, no such operators are available for the program synthesis domain. A
definition of semantics in program synthesis will be provided, and multiple se-
mantic measures and operators will be studied on the basis of this definition. The
results show that novel semantic crossover and mutation operators for genetic
programming can outperform traditional operators that do not consider semantic
information.

vii

Statement of Original Authorship

I hereby certify that the submitted work is my own work, was completed while
registered as a candidate for the degree stated on the Title Page, and I have
not obtained a degree elsewhere on the basis of the research presented in this
submitted work

viii

Acknowledgements

First I would like to thank all the members of the NCRA group that have sup-
ported me in so many ways. In particular, thank you to my supervisors Michael
O’Neill and Miguel Nicolau for giving me the opportunity to complete a PhD and
for all their guidance during this time. I also want to say thank you to David
Fagan with whom I have discussed most of my ideas and who has given me great
feedback. Thank you, David Lynch, Roisin Loughran and James McDermott and
everybody who made these past four years in Ireland such an enjoyable time. It
was a pleasure to meet and work with you, and I hope to see you in the future.

I would also like to thank my family, who have always been there for me. In
particular thank you mum: “Vielen Dank für alles was du für mich getan hast.
Ich hätte es nie so weit geschafft, wenn du mich nicht immer bei allem, was ich
getan habe, unterstützt hättest. Es war nicht immer leicht, aber du hast immer
gewusst das ich es schaffen werde, auch wenn ich gezweifelt habe.”

Thank you to all my friends who probably do not even realise how much they
have helped and supported me over the years. I hope I can do the same for them.

A special thank you to my fiancée Carina who moved with me to Ireland
despite the weather, who kept me going when I had enough but most importantly
distracted me from all the stress just by being her joyful self. I could not have
done it without you.

Finally, I would like to thank Science Foundation Ireland who supported this
research under grant 13/IA/1850.

ix

To my mother Rosemarie Forstenlechner

In memory of my father Kurt Forstenlechner (1960–2009)

List of Figures

2.1 General EA cycle . 13
2.2 Representation of three GP individuals and the effect of crossover. 15
2.3 Context free grammar . 21
2.4 Example derivation tree of the grammar from Figure 2.3. 22
2.5 Variable length GA like representation for binary vector in BNF. . 22
2.6 Fixed length GA representation for binary vector in BNF. 22
2.7 General standard GP grammar in BNF. 23
2.8 The internal GP representation genetic operators manipulate . . . 33

3.1 Sorting network with four inputs and five comparators 43
3.2 Possible derivation tree of a direct left recursion. 44
3.3 G1 derivation tree for the optimal sorting network with four inputs

shown in Figure 3.1. 47
3.4 G3 derivation tree for the optimal sorting network with four inputs

shown in Figure 3.1. 47
3.5 G5 derivation tree for the optimal sorting network with four inputs

shown in Figure 3.1. 48
3.6 All possible comparisons in a sorting network with four inputs. . . 50
3.7 Genetic material added and removed when using crossover and mu-

tation . 55

4.1 Grammars per data type. 66
4.2 Boolean grammar (bool.bnf) . 66
4.3 Example skeleton in Python . 68

5.1 Comparison of accumulated successful solutions over generations
over 100 runs . 93

xi

LIST OF FIGURES

5.2 Number of runs which successfully solve the training and test set
per problem . 94

5.3 Number of runs which produce successful solutions that solve train-
ing and test with the larger training set 96

5.4 Accumulated successful solutions over generations over 100 runs
with default settings . 99

6.1 Rules required for recursion. 105
6.2 Percentage of <char> nodes in individuals averaged over 100 runs

over generations. 110
6.3 Percentage of recursion nodes in individuals averaged over 100 runs

over generations. 112

7.1 Program synthesis semantics example 117
7.2 Program synthesis semantics example including a loop and an if

condition . 119
7.3 Semantic Crossover for Program Synthesis example 123
7.4 Average best training fitness over generations for SCPS and stan-

dard crossover . 128
7.5 Percentage of children semantically different from their rooted par-

ent. SCPS on top and standard crossover below. 130
7.6 Percentage of children that are better than rooted or better than

both parents for SCPS and standard crossover 131
7.7 Percentage of crossover of a specific type with SCPS. 133
7.8 Notched box plots of the test ftness of the best individual during

training comparing the semantic operators to the syntactical sub-
tree operators . 140

7.9 Percentage of semantic measure used during crossover over gener-
ations . 141

7.10 Average number of tries subtrees were selected for semantic com-
parisons until a subtree pair was used for crossover. 142

7.11 Percentage of children semantically different from their rooted par-
ent with ESCPS and standard crossover 144

7.12 Percentage of children that are better than their rooted parent and
both parents over generations created with crossover 145

xii

LIST OF FIGURES

D.1 Percentage of semantic measure used during mutation over gener-
ations . 190

D.2 Average number of tries for creating a subtree that has a “Partial
Change” compared to the selected subtree with mutation. 191

D.3 Percentage of children semantically different from their rooted par-
ent with ESMPS and standard mutation 192

D.4 Percentage of children that are better than their rooted parent over
generations created with ESMPS and standard mutation 193

xiii

List of Tables

2.1 Push instruction set used per problem as well as the number of
training and test cases. 31

3.1 Five different grammars for sorting networks 46
3.2 Minimum number of nodes and minimum depth for each grammar

given a certain number of comparisons (𝑐) 49
3.3 Experimental parameter settings for sorting networks. 52
3.4 Results for sorting networks with 12 inputs with the average best

fitness, standard deviation, best individual and success ratio over
50 runs as well as the p-value of a Wilcoxon rank sum test of the
best fitness between two grammars. 56

3.5 Results for sorting networks with 14 inputs with the average best
fitness, standard deviation and best individual over 50 runs as well
as the p-value of a Wilcoxon rank sum test of the best fitness be-
tween two grammars. 57

3.6 Results for sorting network with 12 inputs with subtree crossover
that chooses from all nodes in the tree with equal probability. The
Table shows the average best fitness, standard deviation and best
individual over 50 runs as well as the p-value of a Wilcoxon rank
sum test of the best fitness between two grammars. 57

4.1 Experimental parameter settings for program synthesis. 73
4.2 Three different recursive rules for creating different derivation tree

structures. 75
4.3 Number of times a correct individual was found that solves all test

cases for all 29 Problems with tournament and lexicase selection. . 77
4.4 Statistical comparison of G3P and PushGP. 78

xiv

LIST OF TABLES

4.5 Average generation a solution was found with G3P with lexicase
selection and the percentage of invalids including (incl.) and ex-
cluding (excl.) individuals that timed out during evaluation. . . . 80

4.6 The Table shows the number of successful solutions found over 100
runs with different derivation tree structures as well as the p-values
when comparing the test fitness of two structures calculated with
the Wilcoxon Rank sum test. p-values lower than 0.05 are marked
in bold (L = List, B = Binary, T = Tree). 82

5.1 Number of solutions found that correctly solve the test data with
100 runs on the general program synthesis benchmark suite with
G3P. The table also shows if a problem is used in this thesis and
the number of training and test cases. 88

5.2 Experimental Parameter Settings. Increased effort settings are
marked in bold. 89

5.3 Results on benchmark problems running G3P 100 times on each
problem with increased effort. The table contains the number of
successful runs on test and training data, the average test fitness
and the average percentage of solved training and test cases of the
best solution found during training with the improvement over the
default settings and the p-value from Wilcoxon rank-sum test on
the average test fitness. The result is compared to the default
setting. The differences are shown in brackets. 91

5.4 Results of using an increased training data. The table shows the
number of successful solutions for training and test. The difference
to the increased effort setting with the original dataset is shown in
brackets. 96

6.1 Results of G3P on the general program synthesis benchmark suite
sorted by successfully found solutions. String and Char row indi-
cate if these data types have to be used when solving the problem
according to [1]. 103

6.2 Experimental parameter settings 107

xv

LIST OF TABLES

6.3 Successful solutions found with G3P with extended grammars on
training and test with 100 runs as well as increase and decrease
to the previously used grammars in brackets. The p-value shows if
there is a significant difference in the best test performance between
the two different grammars with 0.05 as level of significance. A
significant difference is highlighted in bold. Finally, the results of
PushGP on the benchmark suite and the difference to G3P with
extended grammars in brackets are compared. 109

7.1 Similarity measures per variable 120
7.2 Experimental parameter settings 125
7.3 Results on benchmark problems running G3P 100 times on each

problem with SCPS. The table contains the number of successful
runs on test and training data, the average test fitness and the aver-
age percentage of solved training and test cases of the best solution
found during training with the improvement over standard cross-
over and the p-value from Wilcoxon rank-sum test on the average
test fitness. The result is compared to standard crossover with the
differences shown in brackets. 127

7.4 Results on benchmark problems running G3P 100 times on each
problem with ESCPS and ESMPS. The table contains the number
of successful runs on test and training data, the average test fitness
and the average percentage of solved training and test cases of
the best solution found during training with the improvement over
standard crossover and the p-value from Wilcoxon rank-sum test
on the average test fitness. The result is compared to standard
genetic operators with the differences shown in brackets. 138

A.1 Fitness functions for the problems of the general program synthesis
benchmark suite used in this theses. 160

xvi

List of Algorithms

2.1 A single selection event with lexicase selection 18
7.1 Semantic Crossover for Program Synthesis (SCPS) 122
7.2 Semantic similarity calculation for two subtrees 122
7.3 Effective Semantic Crossover for Program Synthesis (ESCPS) . . 135
7.4 Calculate semantics for a subtree from the second parent 135

xvii

List of Abbreviations

AST Abstract Syntax Tree
BNF Backus–Naur Form
CFG Context-Free Grammar
CFG-GP Context-Free Grammar Genetic Programming
CRISP-DM CRoss-Industry Standard Process for Data Mining
CSG Context-Sensitive Grammar
EA Evolutionary Algorithm
EC Evolutionary Computation
EP Evolutionary Programming
ES Evolutionary Strategy
ESCPS Effective Semantic Crossover for Program Synthesis
ESMPS Effective Semantic Mutation for Program Synthesis
G3P Grammar-Guided Genetic Programming
GA Genetic Algorithm
GE Grammatical Evolution
GI Genetic Improvement
GP Genetic Programming
GPPS Genetic Programming Problem Solver
GSGP Geometric Semantic Genetic Programming
MSSC Most Semantically Similar Crossover
PTC2 Probabilistic Tree-Creation 2
ROBDD Reduced Ordered Binary Decision Diagram
SAM Semantic Aware Mutation
SASE Self-Adaptive Successful Execution
SBSE Search Based Software Engineering
SCPS Semantic Crossover for Program Synthesis
SCS Semantic-Clustering Selection

xviii

LIST OF ABBREVIATIONS

SDC Semantically Driven Crossover
SDM Semantically Driven Mutation
SFGP Strongly Formed Genetic Programming
SiS Semantics in Selection
SMT Satisfiability Modulo Theory
SPOT Sequential Parameter Optimization Toolbox
SSC Semantic Similarity-based Crossover
SSM Semantic Similarity-based Mutation
STGP Strongly Typed Genetic Programming
STS Semantic Tournament Selection

xix

Publications Arising

1. S. Forstenlechner, M. Nicolau, D. Fagan, and M. O’Neill, “Introducing
Semantic-Clustering Selection in Grammatical Evolution,” in GECCO 2015
Semantic Methods in Genetic Programming (SMGP’15) Workshop (C. John-
son, K. Krawiec, A. Moraglio, and M. O’Neill, eds.), (Madrid, Spain), pp.
1277–1284, ACM, 11-15 July 2015.

2. S. Forstenlechner, M. Nicolau, D. Fagan, and M. O’Neill, “Grammar Design
for Derivation Tree Based Genetic Programming Systems,” in EuroGP 2016:
Proceedings of the 19th European Conference on Genetic Programming (M.
I. Heywood, J. McDermott, M. Castelli, and E. Costa, eds.), vol. 9594 of
LNCS, (Porto, Portugal), pp. 192–207, Springer Verlag, 30 Mar.–1 Apr.
2016.

3. S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “A Grammar De-
sign Pattern for Arbitrary Program Synthesis Problems in Genetic Program-
ming,” in EuroGP 2017: Proceedings of the 20th European Conference on
Genetic Programming (M. Castelli, J. McDermott, and L. Sekanina, eds.),
vol. 10196 of LNCS, (Amsterdam, Netherlands), pp. 262–277, Springer
Verlag, 19-21 Apr. 2017.

4. M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg, and
M. O’Neill, “PonyGE2: Grammatical Evolution in Python,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion,
GECCO ’17, (Berlin, Germany), pp. 1194–1201, ACM, 2017.

5. S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Semantics-Based
Crossover for Program Synthesis in Genetic Programming,” in Artifcial Evo-
lution (E. Lutton, P. Legrand, P. Parrend, N. Monmarché, and M. Schoe-
nauer, eds.), (Paris, France), pp. 58-71, Springer Verlag, 25-27 Oct. 2017.

xx

PUBLICATIONS ARISING

6. S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Towards Un-
derstanding and Refining the General Program Synthesis Benchmark Suite
with Genetic Programming,” in CEC 2018: IEEE Congress on Evolutionary
Computation, (Rio de Janeiro, Brasil), IEEE, 8–13 July 2018.

7. S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Towards Effec-
tive Semantic Operators for Program Synthesis in Genetic Programming,” in
GECCO ’18: Genetic and Evolutionary Computation Conference, (Kyoto,
Japan), pp. 1119–1126, ACM, 15–19 July 2018.

8. S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Extending Pro-
gram Synthesis Grammars for Grammar-Guided Genetic Programming,” in
Parallel Problem Solving from Nature – PPSN XV, (Coimbra, Portugal),
pp. 197–208, Springer Verlag, 8–12 Sep. 2018.

xxi

Part I

Introduction and Literature
Review

1

Chapter 1

Introduction

Automatically discovering executable programs (Program Synthesis) has many
real-world applications for a wide range of users. Program synthesis can help
experienced programmers discover new algorithms [2] or new ways to approach
a problem, as well as support them in everyday work by synthesising code for
mundane tasks. Even automatic bug fixing is within the applications of program
synthesise [3, 4, 5]. Program synthesis can also help users with little or no pro-
gramming experience carry out repetitive tasks [6].

For example, business analysts face many challenges when it comes to man-
aging, processing and modeling data as well as using data to make predictions.
Many tasks after being defined by a business analyst could be automated to free
up time for more important work that computers cannot yet handle automatically.
A step in the CRoss-Industry Standard Process for Data Mining (CRISP-DM) [7]
that can take up much time is data preparation. Data preparation is the phase
of converting initial raw data into a final dataset. A solution for users with little
or no programming experience could be to prepare a few data points themselves
and show a computer the examples. A machine learning technique could syn-
thesize a program that executes the data transformations itself by learning from
the samples provided by the user. Even machine learning itself becomes auto-
mated (AutoML), to create predictive models automatically, without the need of
an expert in the area [8].

As program synthesis is an interesting but also difficult task, research on
program synthesis is conducted in many research areas, like Inductive Program-
ming [9, 10], Version Space Learning [11, 6] or Evolutionary Algorithms [12, 13].

2

CHAPTER 1. INTRODUCTION

Genetic Programming (GP), a form of evolutionary algorithms, is widely used
to tackle a variety of problems due to being a very general concept. GP searches for
a correct program by using a set of possible solutions and incrementally improving
them. While one of GP’s goals always was and still is to evolve programs, in most
research the programs are restricted to particular forms to keep the search space
small, like in symbolic regression. These restrictions often exclude programs in
the most general sense, e.g. control flow like conditionals and iterations as well
as memory to read and write data. GP has been applied to a range of program
synthesis tasks [12, 13, 14], but it and evolution as a paradigm have also been
criticised as not being a good paradigm for program induction and that “GP in
its current form is fundamentally flawed”[15]. The criticism is mainly focused on
the way GP operates, as it makes random changes to the syntax “hoping that
improvements in the semantics will result”.

Semantics can be defined as “the behavior of a program, once it is executed
on a set of data” [16]. Semantic information has been applied in GP in prob-
lem domains such as regression and boolean. Different approaches to directly or
indirectly influence the behaviour of solutions have been researched [16], but se-
mantics has barely been used in the program synthesis domain. Using semantics
in program synthesis is more complex than in the regression and boolean domain.
While the semantics in the regression and boolean domain is merely a vector of
either numeric or boolean values, in program synthesis this is not the case. Pro-
gram synthesis uses a range of different data types as well as data structures,
which already makes the definition of semantics more complicated let alone the
usage. As semantics is problem specific, it has to be defined in each problem
domain, and operators used for searching have to be adapted.

1.1 Aim of Thesis

This thesis propose a grammar design approach that is capable of generating gen-
eral purpose programs from input/output examples with the help of a Grammar-
Guided Genetic Programming (G3P) system. The purpose of the grammar is to
produce code in a programming language used by practitioners, instead of some
self-defined language or pseudocode, so that the evolved code can directly be used
in a real-world system. The benefit of grammars is that they can be used with
any G3P system, therefore be exchanged between researchers, and tested with

3

CHAPTER 1. INTRODUCTION

different types of G3P systems. The idea is to have reusable grammars that can
tackle arbitrary program synthesis problems without the need to be tailored to a
specific problem. An analysis of the capabilities of the grammar design approach
compared to a state of the art method is conducted, and the goal is to achieve
better or at least competitive results. The proposed approach will be analysed
on a set of benchmark problems and limitations will be pointed out as well as
suggestions for improvements.

While previous G3P systems focused on bias [17] by, e.g. adding expert knowl-
edge in grammars or having a biologically inspired approach to evolve solutions
in arbitrary languages [18], the grammar design approach aims to tackle arbitrary
problems in arbitrary languages. The grammar design approach describes how to
produce grammars to tackle arbitrary program synthesis problems. At the same
time, the approach should be applicable to a number of programming languages.

A proposal for semantics in program synthesis will be made to introduce novel
operators that make changes based on the behaviour of a program rather than
random syntactic ones to improve solutions. The semantic operators will be com-
pared to ones operating on syntax to prove their advantages.

1.2 Research Questions

The research questions focus on two topics. The first topic is the use of grammars
in GP to tackle program synthesis and how grammars that produce different
derivation tree structures influence performance. The second topic addresses the
lack of utilization of semantics in program synthesis to date. Therefore, a goal of
this thesis will be focusing on the improvement of GP in solving program synthesis
problems by integrating semantic information in the search process. The research
questions going to be addressed are listed below.

Question 1: How can Grammar-Guided Genetic Programming (G3P) be utilized
to tackle program synthesis?

Program synthesis is a problem domain to which G3P seems especially well
suited for the following reasons. 1) Programming languages are already de-
fined in grammars as grammars are used to check syntactical correctness.
2) The same or similar problems have to be solved in many programming

4

CHAPTER 1. INTRODUCTION

languages. As many programming language have similar syntactical struc-
ture, it should be easy to adapt grammars from one language to another. 3)
Grammars can be exchanged between researchers and used in all kinds of
GP systems without reimplementing code. Therefore, experiments can be
reproduced in an easy way.

The major drawback of previously used grammars to tackle program synthe-
sis so far is that they have been written for a specific problem instance [13,
19]. Therefore they cannot be reused for another problem instance with-
out adaptation, as they only use certain data types or data structures and
just use a small subset of the available functionality of a programming lan-
guage. These grammars limit the search space but are not applicable to
a wide variety of problems. In Chapter 4, a grammar design approach for
the creation of grammars for programming languages is presented so that
arbitrary program synthesis problems can be tackled, that the grammars
can be extended to use any libraries already existing in a language, and
that invalid individuals, due to runtime errors etc., are kept to a minimum
to avoid wasting resources. The grammars can be used in any G3P system
with minimal implementation overhead. Although using grammars is not
the only way to tackle program synthesis, other approaches, especially in
GP, will be reviewed and in a comparison the advantages and disadvantages
will be discussed.

Further studies on the limitations and possible improvements on the gram-
mar design approach are undertaken in Chapter 5, which analyses the com-
putational effort required to solve program synthesis problems, and Chap-
ter 6, which investigates limitations of the approach and how to counteract
them as well as shows an example of how to further extend the proposed
grammars.

Question 2: Do different derivation tree structures defined with grammars influ-
ence the search performance?

While grammars are widely used nowadays in the GP community [20, 21,
22, 23, 24, 25] and a range of studies involving grammars have been pub-
lished [17, 26, 27, 28, 29], limited work is available on how to design gram-
mars for a problem. In many cases, when grammars are used in tree-based
GP systems, the default genetic operators are used as well. The design of

5

CHAPTER 1. INTRODUCTION

grammars influences the structure of derivation trees and in turn influences
which parts and how big the subtrees are that can be manipulated by the
genetic operators. In common GP setups, the trees that are going to be
manipulated are binary or n-ary trees. Due to grammars the derivation
trees in a G3P system, have all kinds of shapes. In Chapter 3, a study on
grammars producing different derivation trees is conducted to analyse the
search performance on sorting networks. This work is extended to program
synthesis in Chapter 4.

Question 3: How to define semantics and semantic measures in GP for program
synthesis?

Semantic information is the key to many improvements that have been made
in GP over the last few years. Semantics has been defined in a few prob-
lem domains which all are restricted to certain types, like real numbers or
boolean values. In contrast, program synthesis uses a variety of data types
in combination, like integers, floats, booleans and strings. Additionally, pro-
grams can make use of control flow as well as data structures like lists, which
can contain one or more different data types. No definition for semantics
and semantic similarity measure exists for this problem domain. Therefore,
a definition of semantics in program synthesis and appropriate similarity
measures are necessary to answer this research question and will prove use-
ful to other researchers as well. Chapter 7 is dedicated to defining semantics
in program synthesis and testing different semantic measures and operators
in this problem domain.

Question 4: How can semantic information be exploited in operators to improve
performance?

Semantic information is already used in other problem domains in connec-
tion with GP and has achieved better performance than traditional ap-
proaches. For example, semantic crossover [30, 31, 32, 33, 34] and mu-
tation [35, 36] operators have been introduced in GP which improve the
performance for regression and boolean problems. As semantic information
has been used successfully in other problem domains, the assumption is that
similar behaviour will be observed in program synthesis as well. Chapter 7
introduces novel semantic operators based on a definition of semantics in

6

CHAPTER 1. INTRODUCTION

program synthesis given in this thesis. The new operators will be thor-
oughly analysed and compared to default GP operators.

1.3 Contributions

All chapters in this thesis are based on published work. The publications produced
during the completion of the thesis are listed on page xx. A summary of the main
contributions made to research are outlined below:

Literature review
An overview of the most relevant topics is given in Chapter 2. Section 2.1
and Section 2.2 outline the field evolutionary computation and genetic pro-
gramming respectively. Section 2.3 reviews work from the program synthesis
domain and relevant methods to tackle program synthesis with, especially in
the area of GP. Finally, Section 2.4 surveys work on the topic of semantics.

Grammar design approach
A new approach to program synthesis is presented which uses reusable gram-
mars that do not require to be tailored to specific problems and is compet-
itive with the state of the art.

Grammars for general purpose programs in Python
The grammars produced for the grammar design approach to evolve general
purpose programs in Python have been made available in Appendix B and
extended grammars in Appendix C, as well as online for public use [37].

Insights into the general program synthesis benchmark suite
Experiments conducted in the area of program synthesis use the prob-
lems available in the general program synthesis benchmark suite, see Sec-
tion 2.3.2. All experiments carried out on this set of problems have given
further insight in the benchmark suite, especially because the grammar de-
sign approach was the second method tested on these problems. A discussion
about specific attributes concerning the benchmark suite can be found in
Chapter 5.

Definition of semantics in program synthesis
A definition and detailed description of semantics in program synthesis has

7

CHAPTER 1. INTRODUCTION

been given in Chapter 7. Based on the definition further research can be
conducted, even independently of the grammar design approach.

Novel semantic operators for program synthesis
Novel semantic operators for program synthesis have been introduced and
improved in Chapter 7 based on the definition of semantics in program
synthesis.

Publications
Numerous publications have been produced during the completion of this
thesis which are listed on page xx. All chapters in this thesis are based on
published work. Each chapter states in the introduction the papers it is
based upon.

1.3.1 Technical contributions

All the implementation done during the completion of this thesis has been made
available online on GitHub [37], which includes plugins for a heuristic and evolu-
tionary algorithms framework called HeuristicLab [38], which are publicly avail-
able and open source. These plugins include all the code necessary to rerun any
experiment conducted for this thesis, provide support for grammar-based prob-
lems to HeuristicLab, include the grammars and an automatic grammar combiner,
lexicase selection as well as all the problems from the general program synthesis
benchmark suite, discussed in detail in Section 2.3.2.

Parts of the implementation have also been integrated into PonyGE2 [39] as a
showcase that other systems can adopt the grammar design approach with little
overhead.

1.4 Limitations

Program synthesis is a very broad field, and genetic programming offers many
ways to tackle it. To this end, certain limitations had to be chosen.

Program synthesis has been tackled in this thesis with a derivation tree G3P
system, similar to CFG-GP [17]. See Section 2.3.1 for more detail. The same
behaviour that was achieved with the G3P system used cannot be guaranteed
with linear systems as well. Parameter settings were mainly chosen from common

8

CHAPTER 1. INTRODUCTION

settings used in the literature or by following the guidelines for the benchmark
problems used. No exhaustive parameter optimization took place.

As genetic programming will be used throughout the thesis, the literature
review will focus on this technique also when reviewing program synthesis. Other
approaches have been considered as well, but only a brief overview will be given.

Experiments conducted on program synthesis only use problems from the gen-
eral program synthesis benchmark suite [1] due to the lack of better benchmark
problems in GP [40, 41, 42].

1.5 Thesis Outline

The goal of this thesis is to provide a flexible grammar-based approach to tackle
arbitrary program synthesis problems in arbitrary languages with a single reusable
grammar design. The approach needs to be general enough to solve a variety of
program synthesis problems without the need of tailoring the grammars to spe-
cific problems but offer the potential to be either extended for a broader range of
problems or customized to particular tasks. To further enhance the approaches
capabilities, semantic information will be studied in the domain of program syn-
thesis and utilized in the form of novel semantic operators. The rest of the thesis
is structured into four parts.

Part I includes two chapters covering the introduction and the related work.
Chapter 1 contains the introduction and states the aim of the thesis as well as
the research question. The contributions made by the thesis are outlined, and
possible limitations are summarized. Finally, an outline of the rest of the thesis
is given.

Chapter 2 reviews relevant work in the areas of genetic programming, program
synthesis and semantics. Section 2.1 outlines the field of evolutionary computa-
tion and Section 2.2 explains Genetic Programming (GP) and its search process
in more detail as well as grammars, which are used in Grammar-Guided Genetic
Programming (G3P). Section 2.3 reviews the domain of program synthesis in gen-
eral, how program synthesis has and can be applied as well as approaches also
outside of GP that have tackled this specific problem domain. A focus is put
upon GP approaches that were explicitly designed for program synthesis. Sec-
tion 2.3 also introduces the general program synthesis benchmark suite that has
been introduced in 2015 at the Genetic and Evolutionary Computation Confer-

9

CHAPTER 1. INTRODUCTION

ence (GECCO) [1]. The chapter continues with Section 2.4 which will give an
overview of the research that has been conducted in the area of semantics in GP.
Semantics has helped improve performance in other problem domains but has
been underutilized in program synthesis. Chapter 7 will introduce semantics in
the field of program synthesis.

Part II begins the experimental research. Chapter 3 is a novel study on gram-
mars that produce the same language but produce different derivation tree struc-
tures. This study is conducted on sorting networks which provides concise gram-
mars that can easily be analysed. The question answered with the study is, if
the derivation tree structure influences the search performance. The conclusions
drawn from this chapter will be of use when designing grammars for program
synthesis.

Chapter 4 introduces a grammar design approach that can be used by any
G3P system to tackle general program synthesis problems. The grammar de-
sign approach is tested on the general program synthesis benchmark suite and
compared to the state of the art system PushGP. The grammar design approach
achieves competitive results compared to PushGP while producing programs in a
programming language used by practitioners.

Part III consists of three independent expansions to the grammar design ap-
proach. Chapter 5 investigates the computational effort required to solve program
synthesis problems and uncovers underlying problems that prevent G3P from per-
forming better. Suggestions on improving the success rates on problems are given,
and issues with the general program synthesis benchmark suite are discussed.

Chapter 6 showcases the benefits of grammars by extending the original gram-
mars created with the grammar design approach. Functionality that is already
in PushGP and a new grammar for an additional data type are added. These
changes counteract previous shortcomings in tackling certain kinds of problems.

The third expansion, in Chapter 7, introduces semantics in the program syn-
thesis domain. A definition of semantics in program synthesis is provided, and a
detailed explanation of how it can be used is given. A new semantic crossover oper-
ator based on the previous definition of semantics is created and tested. Extensive
analysis of the behaviour of this operator is conducted, and improvements are sug-
gested. Based on these suggestions novel effective semantic operators, crossover
and mutation, are introduced that outperform the default genetic operators in
GP as well as the previously created operator.

10

CHAPTER 1. INTRODUCTION

The last part, Part IV contains the final Chapter 8 the conclusions of the
thesis, including a summary, limitations and suggestions for possible future work,
as well as the appendix and bibliography.

11

Chapter 2

Related Work

Three topics are discussed being the main related work to this thesis. Section 2.1
outlines the field of evolutionary computation and Section 2.2 explains Genetic
Programming (GP) in detail. The main application tackled, program synthesis, is
reviewed in Section 2.3 along with a variety of synthesizers and a general program
synthesis benchmark suite used for experiments. Finally, Section 2.4 discusses
semantics and different approaches using it within GP.

2.1 Evolutionary Computation

Evolutionary Algorithms (EAs) are a set of search and optimization algorithms
inspired by, but only very loosely based on, biology and the mechanism of natural
selection from Darwinian evolutionary theory [43]. All EAs use a set of candidate
solutions, with exceptions like (1+1) ES, which is improved iteratively. The set of
candidate solutions is usually named a population and a single solution is called
individual. Each iteration of improvement is called a generation. A general EA
algorithm is depicted in Figure 2.1. First, the initial set of candidate solutions to
a problem are initialised, followed by an evaluation step to determine how well a
candidate solution solves a problem. Usually, the evaluation step assigns a value,
named fitness value as it describes how fit a solution is, to each solution. How the
fitness is evaluated depends on the problem tackled. Often input/output pairs or
simulations are used. Afterwards, the stopping criterion is checked, which defines
when to stop the search algorithm. Commonly used stopping criteria are if a
solution is found that solves the problem correctly or well enough or a maximum

12

CHAPTER 2. RELATED WORK

Initialize population

Evaluate individuals

Checking
stopping
criterion?

Selection

Apply genetic operators

Stop Replacement
Yes

No

Figure 2.1: General EA cycle

number of iterations. Multiple stopping criteria can be used. If the iteration
continues, selection takes place. In the selection step, fit solutions are selected
that are going to be manipulated for the next cycle. Many EAs include a so-called
elitism mechanism which copies the 𝑛 best candidate solutions and makes them
part of the subsequent iteration without changes. Genetic operators are applied
to the other selected solutions. The operators are called genetic as they change
the structure of the solutions and again because EAs are inspired by biology. The
most common operators are a binary operator, named crossover, that takes two
solutions and replaces parts of each of them with pieces from the other and a
unary operator, named mutation, that takes and changes a single solution. Some
EAs also include another step called replacement that decides which and how
many of the of the previous generation and how many newly created individuals
are part of the next generation. Finally, the newly generated candidate solutions
are evaluated, and the stopping criterion is rechecked. This cycle is repeated until
a stopping criterion is fulfilled.

13

CHAPTER 2. RELATED WORK

EAs are a very general concept without a specified representation or set of op-
erators that can be used. They only describe a rough search process and therefore
allow to tackle any problem if an adequate representation is given.

The following four paradigms of EAs are probably the most famous and influ-
ential ones, and EAs nowadays are still often categorised in those.

Evolutionary Programming (EP) is one of the earliest works on evolution-
ary algorithms by Fogel [44] in the 1960s. Initially, EP used finite state
machines as representation and as predictors and offsprings were created
with mutation.

Evolutionary Strategy (ES) is a search technique that has been proposed and
developed by Rechenberg [45] and Schwefel [46] in the 1960s and 1970s. ES
usually uses a fixed length numerical vector as representation and mutation
as its primary search operator. Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [47] is one well-known instance of ES.

Genetic Algorithm (GA) is a famous EA invented by Holland [48] in the 1970s
that evolved a population of fixed length binary vectors. The main search
operators were crossover and mutation.

Genetic Programming (GP) is an EA that has become popular through work
by Koza [49, 50, 51, 52]. Traditionally, a tree representation is used, where
internal nodes represent functions that are executed and leaf nodes are vari-
ables and constants.

While different approaches of EAs have been invented and even been developed
independently of each other in the early years, many similarities are apparent. In
the early 1990s, through the emergence of conferences on EAs, the term “Evo-
lutionary Computation” (EC) was created as a name for the field [53]. Each
approach extended its repertoire of representations and operators over the years.
De Jong [53] gives a unified view of evolutionary computation.

2.2 Genetic Programming

The following section focuses on Genetic Programming and describes GP in more
detail as the system used throughout this thesis has most in common with GP.

14

CHAPTER 2. RELATED WORK

*

+

*

𝑥1 𝑥2

2

*

𝑥1 +

𝑥2 1

(a) GP tree, parent 1

−

+

𝑥2 𝑥1

+

5 𝑥2

(b) GP tree, parent 2

*

+

5 𝑥2

*

𝑥1 +

𝑥2 1

(c) GP tree, offspring

Figure 2.2: Representation of three GP individuals and the effect of crossover. (a)
represents the first parent and (b) the second parent selected for crossover. The
bold red node represents the subtree selected for the crossover event. The subtree
from the first parent (a) is replaced with the subtree from the second parent (b),
which creates a new individual (c).

Trees will be used to represent individuals and crossover, as well as mutation, are
used as search operators. Also, most of the related research is executed with GP
systems as well. As most EAs, GP can be described with Figure 2.1, its main
search operators are crossover and mutation and trees to represent candidate
solutions are most commonly used [49, 54].

2.2.1 Representation

An example of GP trees is given in Figure 2.2. The trees consist of internal
and leaf nodes. Internal nodes are functions that can be executed. All avail-
able functions to a GP system are called function set 𝐹 . Leaf nodes are usually
variables or constants. All available variables and constants are called terminal
set 𝑇 . The combination of function and terminal set is also called primitive set.
The primitive set for the trees in Figure 2.2 could consist of 𝐹 = {+,−, *} and
𝑇 = {𝑥1, 𝑥2, 1, 2, 5}, but could contain more functions and terminals. Nodes in
the tree have a property called arity, which defines how many subtrees it requires
as inputs. + is a binary operator and has 2-arity, although it could be defined
to have any arity between 2 and infinity, by just summing up all inputs. The
function 𝑐𝑜𝑠 has an arity of one, and terminal nodes have an arity of zero.

Two important properties in GP are closure [49] and sufficiency [54]. Closure
again consists of two properties, type consistency and evaluation safety. Type con-

15

CHAPTER 2. RELATED WORK

sistency means that any function can handle input of any type it might get. Type
consistency is important as crossover and mutation change subtrees arbitrarily.
Therefore, any function from the function set can get any terminal or the output
of any other function as input. Evaluation safety is the second part of closure,
which means that no function is allowed to fail whatever the input. An example is
division by zero. Although 0 is a numeric value and division can handle numeric
values, hence type consistency is given, division is not defined for having zero as
divisor. But for GP to work efficiently, evaluation safety has to be given [54]. In
many cases, this is avoided by defining a protected version of division that returns
the dividend if the divisor is too small.

Sufficiency is a property that is difficult to achieve. It demands that it is
possible to construct a solution for the problem at hand with a given function and
terminal set. Even if sufficiency cannot be guaranteed, GP can still provide an
approximation based on the available primitive set.

2.2.2 Initialization

After selecting the primitive set required for the problem being tackled, a set
of candidate solutions, the populations, has to be initialized. The general idea
behind how initialization works is straightforward. A random function or terminal
is selected from the primitive set, which will become the root node of the new
tree. Then, the same number of nodes have to be created with randomly selected
functions and terminals as the arity of the previously created node. Afterwards,
this step is repeated for every newly created node. This guarantees that functions
get as many inputs as required. Theoretically, this process might never stop, if
too few terminal symbols are selected. For that reason, either a tree depth or tree
length limit is set, after which only terminal nodes are created. Tree depth is the
maximum number of edges, connections between two nodes, it takes to reach a
leaf node. Tree length is the number of nodes a tree consists of. Traditionally,
tree depth is used in GP as the three main initialization methods, grow, full and
ramped half-and-half [49] used a tree depth to restrict the tree sizes.

Daida et al. [55] showed that standard GP with binary trees searches rather
sparse than dense trees, which is one of the reasons why a maximum tree length
instead of a depth limit is used throughout this thesis. Therefore, Probabilistic
Tree-Creation 2 (PTC2) [56] is used, which allows setting a tree length limit. The

16

CHAPTER 2. RELATED WORK

other reason for a tree length limit is that grammars are used as a representation
which often do not produce trees were a tree depth limit might be adequate, but
that will be discussed in Section 2.2.8.

2.2.3 Fitness

During the evaluation step, each individual gets assigned a value, called fitness,
that determines how well an individual solves the problem. In many GP applica-
tions, the problem is defined by a list of input and output cases. Every individual
is executed on the input cases and its result is compared to the output. While in
some cases it is adequate to capture how many cases have been solved correctly,
in other scenarios it can be useful to use the information of the difference of the
result the individual produces and what the correct output was. The function
used for the evaluation is also called fitness function. Other forms of evaluation
include for example simulations or even humans judging the output of a candidate
solution.

After the fitness evaluation, usually, the stopping criteria are checked, which
in most cases consist of if a maximum number of iterations (generations) has been
used up, and if a solution has been found that solves all cases correctly. If one of
these criteria is fulfilled, the GP cycle, also called run, is stopped. Other stopping
criteria can be used as well.

2.2.4 Selection

Selection is the process of deciding which individuals are going to be part of the
next generation after undergoing changes through the search operators. Individ-
uals can be selected multiple times during this process. Most selection operators
used in GP are stochastic, but favour individuals with a higher fitness value. The
most popular [57] selection operator is tournament selection [58]. Tournament
selection uses tournaments to decide which individuals are going to be selected. 𝑛

individuals, which is the tournament size and can be set by the practitioner, are
randomly selected from the whole population to be part of a tournament. The
best individual from a tournament is selected to be part of the next generation.
Many other selection operators exist which are also used in GAs, like fitness pro-
portionate selection or rank selection [59]. Another selection operator that should

17

CHAPTER 2. RELATED WORK

Algorithm 2.1 A single selection event with lexicase selection
set candidates to be the whole population
randomize training cases
repeat

candidates← candidates that are most successful on the first training case
remove first training case

until candidates only contains a single candidate or no more cases
if candidates only contains a single candidate then

return candidate
end if
return a random candidate from candidates

be mentioned, apart from tournament selection, which is going to be used in two
of the experimental chapters, is lexicase selection.

Lexicase selection

Lexicase selection [60, 61] is a recent selection operator compared to the other
ones named above. The reason for describing it in more detail is for one that it is
rather new, and that it was shown to be more successful than any other selection
operator in the program synthesis domain, which is why it is used in almost all
chapters of this thesis.

In contrary to many other selection operators, lexicase selection does not oper-
ate on a single aggregated fitness value given to an individual. Lexicase selection
uses all fitness cases achieved on the input/output cases tested during evaluation.
A single selection event executed by lexicase selection is described in pseudocode
in Algorithm 2.1. Training cases are the input/output cases an individual is eval-
uated on.

First, the whole population is set to be candidates to be selected, and the
training cases are randomized. Then, an iteration starts, where the first step is to
check how well the current candidates did on the first training case. The current
candidates get replaced with only those who achieved the best result on the first
training case. Afterwards, the training case is removed for this selection event. If
only one candidate is left, it is the one that has been selected during this selection
event. Otherwise, the iteration continues and the next training case is checked. If
all training cases have been checked and there are still more than one candidates
left, then a random one is selected.

18

CHAPTER 2. RELATED WORK

The name lexicase selection originates from “lexicographic ordering” as is done
with strings as the first training case selected has the largest effect and the next one
only matters for ordering within the smaller set [60]. Lexicase selection has been
proven to perform well on multimodal [60] and “uncompromising” [61] problems.
Uncompromising problems are ones that require the candidate solution to perform
optimally on all cases. La Cava et al. [62] introduced 𝜖-lexicase an adaption of
lexicase selection for the continuous space, which uses a threshold for choosing if
an individual solved a training case better than another.

2.2.5 Crossover

Crossover is one of the search operators applied by GP to create individuals for
the next generation. Crossover is a binary operator which takes two individuals
to combine them in some way to create the offspring. Figure 2.2 shows three GP
trees. Lets assume that the first two, Figure 2.2a and Figure 2.2b, have been
selected for crossover. Then a random crossover point is selected in both of them,
which is represented by the bold red node in both trees. The subtree in red from
the first parent, Figure 2.2a, gets replaced with the subtree in red from the second
parent, Figure 2.2b. This process creates a new individual shown in Figure 2.2c.
Many different approaches for selecting crossover points and different crossover
operators exist [54].

Koza [49] used an adapted version of the explained procedure that favours
internal nodes as crossover points, choosing internal nodes with a 90% probability
and leaf nodes with 10%. The reason is that due to the arity of function nodes,
which often is two or higher, more leaf nodes than internal nodes are created. This
leads to many crossover events only exchanging single nodes or small subtrees, if
choosing uniform randomly from all nodes. This crossover operator is often called
Koza-style crossover and is used in the experiments in this thesis unless otherwise
specified.

2.2.6 Mutation

Mutation is the second search operator used in GP. In contrary to crossover,
mutation is a unary operator. Mutation takes a single individual and changes
some part of the tree, for example by replacing a subtree with a randomly created
one. Let’s assume the tree in Figure 2.2a has been selected for mutation and the

19

CHAPTER 2. RELATED WORK

bold red node has been selected for the mutation event. Then, its subtree marked
in red is a randomly created tree that has been added.

It is often argued about if mutation is necessary [54] and Koza et al. [63]
suggest to only mutate a small number of individuals. Luke et al. [64] showed
that it might depend on the problem and the details of the GP system how well
crossover and mutation perform.

2.2.7 GP Summary

So far, this section gave an overview of a traditional GP system. Many advance-
ments have been made since GP has been introduced. A summary of the field can
be found in “A field guide to genetic programming” [54], but also many open issues
still have to be addressed [65]. Nowadays many different variants and implemen-
tations of GP exist. Some of which will be discussed in Section 2.3.1. As many of
them also use different representations, Section 2.2.8 is going to explain grammars
with a focus on Context-Free Grammars. Knowledge about grammars is crucial
when talking about Grammar-Guided Genetic Programming (G3P), which is the
GP variant used for the experiments. Due to grammars, the property of closure is
not as important anymore, as the structure of the output is defined in the gram-
mars and can restrict the input of functions. Additionally, bias can be added in
grammars, e.g. in the form of expert knowledge. G3P will be discussed in the
context of program synthesis in Section 2.3.1.

2.2.8 Grammars

Although there is much theory on grammars, only the essentials for GP will be
covered here. A grammar 𝐺 can be defined with a 4-tuple 𝐺 = (𝑁, Σ, 𝑃, 𝑆).

𝑁 is the set of non-terminal symbols. A non-terminal symbol is a symbol that
can be replaced with other symbols.

Σ is the set of terminal symbols, which are symbols that appear in the final output
string or sentence. 𝑁 and Σ are disjoint. 𝑁 ∩ Σ = {}

𝑃 is the set of production rules that define which symbols can be used to replace
other symbols.

𝑆 defines the start symbol 𝑆 ∈ 𝑁 .

20

CHAPTER 2. RELATED WORK

<expr> ::= <expr> <op> <expr>
| (<expr>)
| <pre_op> (<expr>)
| <var>

<op> ::= + | - | *
<pre_op> ::= sin | cos | exp | log
<var> ::= x1 | x2 | 0 | 1 | 2

Figure 2.3: Context free grammar

Figure 2.3 shows an example of a grammar in Backus–Naur Form (BNF) that
can be used for regression problems. The 4-tuple (𝑁, Σ, 𝑃, 𝑆) is often given im-
plicitly in BNF. The start symbol 𝑆 is usually the first symbol in the grammar.
In case of Figure 2.3, 𝑆 = <expr>. Non-terminal symbols are all the symbols that
start and end with angle brackets. 𝑁 = {<expr>, <op>, <pre_op>, <var>}.
All other symbols are terminal symbols. Σ = { (,), +, -, *, sin, cos,
exp, log, x1, x2, 0, 1, 2}. Finally, 𝑃 are all the rules shown in Figure 2.3.
Every rule has a left-hand and right-hand side, which is separated by “::=” sym-
bol. This grammar is actually a Context-Free Grammar (CFG), which is most
commonly used in GP [17, 18, 66]. Therefore, the left-hand side is always a single
non-terminal symbol. The right-hand side represent the possible productions the
left-hand side can be replaced with. The productions are separated by the “|”
symbol.

Replacing a symbol with its productions is called a derivation. Representing
the whole tree of derivations is called a derivation tree as shown in Figure 2.4,
which is often used in GP variants that use grammars [17]. Figure 2.4 shows an
example of a derivation tree of the grammar from Figure 2.3. The root node of
the derivation tree is the start symbol 𝑆, which is the replaced with a production
<expr> <op> <expr>. The derivations continue until all non-terminal symbols
are replaced. The resulting string is called a sentence, which one gets by con-
catenating all leaf nodes from the derivation tree. The sentence represented by
Figure 2.4 is x2 + sin(x1). All possible sentences that can be derived from 𝐺

are called a language, which is denoted 𝐿(𝐺).
The grammar in Figure 2.3 has one more property that should be noted,

which is that it is a recursive grammar. A recursive grammar has productions
that replace a symbol, and after a number of derivation steps create a previously

21

CHAPTER 2. RELATED WORK

<expr>

<expr>

<var>

x2

<op>

+

<expr>

<pre_op>

sin

(<expr>

<var>

x1

)

Figure 2.4: Example derivation tree of the grammar from Figure 2.3.

<string> ::= <string><bit> | <bit>
<bit> ::= 0 | 1

Figure 2.5: Variable length GA like representation for binary vector in BNF.

replaced symbol again. The grammar used as example here can replace <expr>
with <expr> <op> <expr>, which leads to a recursion which only stops if replaced
with <var>. Recursive grammars are usually more interesting in the context of GP,
as non-recursive grammars may be enumerated and therefore require no search.

GA and GP Grammars

Whigam [17] showed in his PhD Thesis that grammars can also be used to rep-
resent GA and GP representations. Figure 2.5 shows a grammar for a variable
length binary vector representation often used in a GA. Fixed length vector rep-
resentations are not more complicated but require more rules. Figure 2.6 depicts
a grammar for a fixed length binary vector.

<stringpart0> ::= <stringpart1><bit>
<stringpart1> ::= <stringpart2><bit>
...
<stringpartN> ::= <bit>
<bit> ::= 0 | 1

Figure 2.6: Fixed length GA representation for binary vector in BNF.

22

CHAPTER 2. RELATED WORK

<tree> ::= f1 <tree> ... <tree> | f2 <tree> ... <tree> | ...
| f𝑥 <tree> ... <tree>
| t1 | t2 | ... | t𝑦

Figure 2.7: General standard GP grammar in BNF.

GP trees can be represented with the grammar shown in Figure 2.7. f1 to f𝑥

can be replaced with the function set used for a problem in GP and the arity of
each function specifies the number of <tree> non-terminal symbols following. t1

to t𝑦 can be replaced with the required terminal set from GP. These examples
show that grammars are a fairly flexible method to represent problems.

In contrary to GP trees, whose trees can be well balanced, although that is
often not the case [55], grammars can describe derivation trees that produce other
shapes. For example, a derivation tree for Figure 2.5 will be more similar to a list
than a tree. This is a reason why instead of a maximum tree depth limit, which
is often used in GP, a maximum tree length limit will be used, as also stated
in Section 2.2.2. Chapter 3 will investigate derivation tree shapes produced by
different grammars that produce the same language.

The next section will introduce program synthesis and several GP systems
which can be used to tackle this problem. Afterwards, Section 2.3.1 will further
discuss Grammar-Guided Genetic Programming (G3P) systems in the context of
program synthesis.

2.3 Program Synthesis

Program synthesis is a research area that due to its importance is pursued by
many different fields. The original idea of program synthesis already existed in
the 1950s [67, 68]. One of the earliest works considered program synthesis was done
by Church [67] although on circuits rather than programs. Even when GP was
popularized by Koza [49] to create programs, evolving circuits was a problem often
tackled. A lot of work in GP was inspired by the idea of: “How can computers be
made to do what needs to be done, without being told exactly how to do it?” by
Koza [69] paraphrasing Samuel Arthur [68] which describes the field of machine
learning. Gulwani [70] gives a modern definition of program synthesis:

23

CHAPTER 2. RELATED WORK

“Program Synthesis is the task of discovering an executable pro-
gram from user intent expressed in the form of some constraints.”

In some fields, like GP, all outputs created by a system are called programs.
Although technically correct, many outputs are merely boolean expressions or
arithmetic formulas. The focus in this thesis lies in synthesizing general purpose
programs from scratch that can include memory and control flow, like iterations
and recursion.

Program synthesis is a type of automatic programming, a term that has often
been used in the GP community [71, 18]. Automatic programming is a very broad
and unspecified term that includes e.g. the generation of a program by compilers
and has been called “a euphemism for programming in a higher-level language than
was then available to the programmer” [72]. While compilers are translators that
take a program written in a structured language and do syntactical translations
usually to a lower level language, synthesizers can take all kinds of different inputs
to search for an executable program. Three dimensions can typically describe
synthesizers: user intent, search space and search technique [70].

The user intent describes the task the program should be executing. Using
natural language to describe a task would be most beneficial, but has the dis-
advantage of ambiguity [73]. Another form is logical expressions [74], but those
require knowledge of logic, and it might be difficult to describe the task correctly
with them. If the task at hand is to optimize a program or discover new algo-
rithms, a complete program can be used to describe the user intent. Instead of
a whole program, even a trace can be used [75]. A trace is a step-by-step in-
struction of how to transform a given input to a corresponding output. Lastly,
input/output examples can represent the user intent, which provides users with
a simple form of demonstrating a task. Input/output examples will be used in
the experiments throughout the thesis. It should be mentioned that when using
input/output examples, that a correct program has only be proven to be correct
on the examples given, which is why a test set of input/output examples is used
after learning to confirm a programs ability to generalize.

The search space defines all programs the synthesizer is searching over. Similar
to GP, the search space should be sufficient, which means that the search space
contains the correct program, but at the same time should not be too large, so
that the search is probably inefficient. The search space can be restricted by the

24

CHAPTER 2. RELATED WORK

operators used and the control structures allowed to search only for specific types
of programs. The GP equivalent is the restriction of the function and terminal
set. Common ways to set the search space are logic representations [76, 77] or
various kinds of grammars [78, 79, 13].

Lastly, synthesizers vary in the search technique that is applied. Search tech-
niques include but are not limited to exhaustive search [9, 80], version space
algebra [11, 6, 81], logical reasoning based techniques [82, 74] as well as evolution-
ary algorithms. A range of different genetic programming systems are discussed
in Section 2.3.1.

MagicHaskeller [9, 80] is a synthesizer that creates functional Haskell programs
relying on exhaustive search and can learn from a few examples. It uses a Monte-
Carlo search to remove semantically equivalent programs [83] to speed up the
search.

Version space strategy was described by Mitchell [84] to constrain a set of,
initially, all hypotheses and restricts it by removing a hypothesis if it is inconsistent
with a new example. Based on version spaces, Lau et al. [11, 6] introduced version
space algebra. A version space contains a set of simple functions, which can be
combined to form complex functions. Lau et al. [6] have used that approach to
create Python programs by learning from traces. Flash Fill [81] is a synthesizer for
string manipulation that is based on version space algebra, learns from examples,
and its functionality is available in Microsoft Excel.

Logical reasoning based techniques [82, 74] reduce the program synthesis task
to logical constraints that can be solved by off-the-shelf Satisfiability (SAT) and
Satisfiability Modulo Theory (SMT) solvers. SKETCH [82] uses partial complete
programs, so that some control flow structure might already be given, and lets a
SAT solver fill in the details. SKETCH’s own syntax can be used to restrict what
can be filled in a “hole” left to be filled by a SAT solver.

The following section gives an overview of relevant genetic programming sys-
tems in the domain of program synthesis, followed by Section 2.3.2 which intro-
duces a benchmark suite consisting of program synthesis problems that are going
to be tackled in this thesis.

25

CHAPTER 2. RELATED WORK

2.3.1 Program Synthesis in Genetic Programming

This section reviews a variety of GP systems that have been used to tackle program
synthesis tasks. Many more exist, but the ones discussed have been selected due
to their capabilities of tackling general purpose program synthesis problems.

Grammar-Guided Genetic Programming

Many different representations have been used with GP. While the most com-
mon one is still trees, grammars are widely used as well. Especially, Context-
Free Grammar Genetic Programming (CFG-GP) [17] and Grammatical Evolution
(GE) [18, 66], two versions of so-called Grammar-Guided Genetic Programming
(G3P), which are responsible for the success of grammars in GP.

G3P systems, like Grammatical Evolution [18] or CFG-GP [17], have been used
to evolve code for program synthesis in arbitrary languages. Grammars are very
flexible and can be used to represent the search space of a wide range of problems,
evolving music [20], creating truss design [21], optimising pylon structures [22],
evolving aircraft models [23], controlling femtocell network coverage [24] and pro-
gram synthesis [13]. A G3P system does not require any additional code to evolve
a solution, except a grammar and a fitness function that can evaluate individuals
created by the grammar. The code that is evolved in G3P can be in an arbitrary
programming language, which is defined by the grammar.

CFG-GP is a variant of tree-based G3P as individuals are represented as
derivation trees generated from the grammar. Genetic operators in CFG-GP
adhere to the rules a grammar describes and only exchange subtrees of an indi-
vidual, with a subtree of the same non-terminal symbol as the root node to always
create a valid individual.

Grammatical Evolution is a linearised G3P variant. Instead of using a deriva-
tion tree, GE uses a variable length list of integers, originally a binary vector [85].
GE has a mapping process that takes one integer after another from the individual,
to replace a non-terminal symbol with a production depending on that integer.
The mapping process starts with the start symbol and ends when all non-terminal
symbols have been mapped or when no more integers are available. Therefore,
it is possible that an individual is invalid, as the output produced by the map-
ping contains non-terminal symbols. The mapping process implicitly produces a
derivation tree. GE is one of the most widely applied GP methods [86].

26

CHAPTER 2. RELATED WORK

Many different variants of G3P systems have emerged using different types
of grammars, context-sensitive grammars [87], attribute grammars [88] or logic
grammars[89, 90] as well as different mapping processes for GE [91, 92, 93]. A
survey of G3P is available by McKay et al. [86] and by Brabazon et al. [94, Part V].

Even though G3P systems are perfect candidates for tackling problems in the
program synthesis domain, so far they have been hugely underutilised. No general
concept for grammars exists that can tackle arbitrary program synthesis problems.
Every grammar that has been used to evolve programs has been tailored to a single
specific problem and cannot be reused without changes being made.

PushGP

PushGP [95] evolves programs in the Push programming language that was solely
developed for research in the field of evolutionary computation. Implementations
of Push and PushGP are available in many programming languages including
Python and C#. The reference implementation is in Clojure.

In contrast to many common programming languages, Push uses a stack-based
execution architecture. It has a stack per data type and additionally one for
instructions that are going to be executed. Due to this architecture, Push does
not need variables as data is stored on the corresponding stack and the execution
of code can be manipulated at runtime as the stack containing instructions can
be changed as well.

In PushGP there is no need to declare the number of variables beforehand, as
data is stored on stacks. All available instructions to PushGP are implemented
in the corresponding programming language in a protected way which avoids run-
time exceptions. By using wrapper functions, functionality and libraries of the
programming language, PushGP is run on, can be made available during evolu-
tion.

As Push is a language not used outside the research community, Push code can-
not directly be integrated into existing software. The Push interpreter is required
as well, which adds overhead. Push code can be run in different programming
languages, given an interpreter, but only if the core Push functionality is used.
This means wrapper functions to use libraries from the programming language
PushGP was run on, cannot be executed on any other Push interpreter.

27

CHAPTER 2. RELATED WORK

Strongly Formed Genetic Programming

Strongly Formed Genetic Programming (SFGP) [96] is an extension of Strongly
Typed Genetic Programming (STGP) [12]. While standard GP operates on the
premise that a function in a node must be able to handle any input from its
subtrees, STGP changed the behaviour of its genetic operators (initialisation,
crossover and mutation) to adhere the types, specifically node-types and data-
types, available in STGP. Data-types are similar to data-types in programming
languages, like integers or strings. Node-types, such as Statement, CodeBlock or
Loop, are used to restrict the shape and structure of a program. Every function
in STGP outputs a specific type and requires specific types as input. Its genetic
operators are not allowed to create or change any (sub-)trees that are not coherent
with the required types. Therefore, evolved individuals are type consistent, which
is important for program synthesis as many different data types may be used.

SFGP extends STGP by adding additional nodes that allow the generation of
generic code, like nodes for control flow (e.g.CodeBlock or ForLoop) and variables
(Variable). Every node needs to be implemented within the SFGP system. Many
aspects in SFGP have to be predefined, like a fixed number of statements/subtrees
per code block, so they do not have a variable length and the number of variables as
they are part of the terminals. SFGP only evolves programs in its own structure,
which can be viewed as pseudocode, which needs to be translated to be used in a
real-world program.

Although SFGP is an extension to STGP that allows evolving code for program
synthesis problems, it exhibits many limitations. The evolved code cannot be used
in a real-world program. Any new functionality has to be implemented in the
SFGP system and cannot be transferred to any other system, unlike grammars,
which can be used by any G3P system.

GPPS

The Genetic Programming Problem Solver (GPPS) by Koza et al. [51] is a sys-
tem that was designed as “a general-purpose method for automatically creating
computer programs to solve a problem.” GPPS consists of an input and output
vector to use various inputs and outputs, an indexed memory and is capable of
using subroutines and loops. In the version 2.0, recursion was included as well. A
variety of symbols are available which include usual GP symbols, like arithmetic

28

CHAPTER 2. RELATED WORK

and logical operations, but also symbols to read and write to memory and condi-
tional branching operators. The idea was that the same terminal and function set
could be used for each problem tackled. GPPS has been used to solve a variety of
problems in the boolean and regression domain as well as to control a robot and
design a minimal sorting network.

Similar to most GP systems, GPPS relies only on numerical values. Boolean
values are represented as numbers, and logical operations return numerical val-
ues representing the boolean value, either +1.0 or –1.0. GPPS’s use in program
synthesis is limited as char and string cannot be used as well as data structures.
The length of the maximal length of the input and output vector has to be pre-
determined. As the output of GPPS is a program with its own defined function
set, it can only be run with its own interpreter or the program can be used as
pseudocode and reimplemented in a programming language used by practitioners.

Although most of the problems tackled with GPPS have been toy problems,
GPPS has evolved a sorting network with fewer steps as a previously human-
designed one [51].

Genetic Improvement

The field of Search-Based Software Engineering (SBSE) [97, 98, 99] aims to tackle
software engineering with search-based optimization techniques. The most used
search-based optimization techniques in SBSE are evolutionary algorithms [98]. In
the GP community and closely related to SBSE, Genetic Improvement (GI) [100]
emerged, which uses existing code to improve a program, e.g. by enhancing non-
functional requirements or by fixing bugs.

The system GISMOE [14] automatically creates a BNF grammar from existing
code. Terminal symbols in the grammar are complete lines of that code. The
block structure of the code cannot be changed in GISMOE, e.g. opening and
closing brackets in C++, but the contents of these blocks can be. GISOME is a
GI system, and therefore its main goal is to improve existing code. It does not
create code from scratch, but reuses the existing code of a program and adapts it.
Inspired by the work done with GISMOE, Haraldsson et al. [4, 5] developed their
own GI system within a real-world application, which as able to solve 22 bugs
within the first six months of deployment. The system was operating outside

29

CHAPTER 2. RELATED WORK

office hours, parsing error logs, reproducing errors, generating test data and fixing
the errors.

Abstract Syntax Trees (ASTs) are another representation that can be used for
program synthesis instead of grammars. GenProg [101] or Gen-O-Fix [102] are
two such systems that utilise ASTs to synthesize code by reusing existing code. As
the name already suggests, ASTs represent the syntax of code in a tree structure,
similar to a derivation tree of a grammar. The tree can then be modified in a
manner like trees in SFGP. Crossover and mutation are only allowed to exchange
nodes of the same type to keep the chance of compilation errors low.

Using ASTs and the grammar representation used by GISMOE have the dis-
advantage that new individuals might be invalid in the sense that they might not
compile due to syntactical errors. Nevertheless, both approaches have been used
in real-world applications, GISMOE to improve the performance of programs [14],
GenProg and Haraldsson’s et al. GI system to fix bugs [101, 5]. GI systems are
specialised to modify existing code, which is a different kind of problem compared
to the systems presented so far.

2.3.2 General Program Synthesis Benchmark
Suite

The general program Synthesis benchmark suite was introduced by Helmuth and
Spector [1, 103] as a well defined set for comparing different approaches in the pro-
gram synthesis domain due to researches highlighting the need for better bench-
marks [40, 41, 42]. The benchmark suite consists of 29 problems which have been
selected from iJava [104] and IntroClass [105]. iJava is an interactive computer
science textbook to learn Java. IntroClass is a benchmark suite for program re-
pair of introductory course programs written by students, although in case of the
benchmark suite the purpose is to use these problems to evolve programs.

For each problem in the benchmark suite, a description of the problem itself
as well as how to generate the training and test set is given. When the benchmark
suite was introduced, it was tackled with PushGP. Therefore, the Push instruction
set for each problem was listed, as shown in Table 2.1. Parameter settings for
PushGP have also been given, but apart from the number of generations and
population size, these settings might not be useful for other GP systems.

30

CHAPTER 2. RELATED WORK

Table 2.1: Push instruction set used per problem as well as the number of training
and test cases.

Problem ex
ec

in
te

ge
r

flo
at

bo
ol

ea
n

ch
ar

st
rin

g
ve

ct
or

of
in

te
ge

r
ve

ct
or

of
flo

at
s

ve
ct

or
of

st
rin

gs
pr

in
t

fil
e

in
pu

t

Tr
ai

ni
ng

Te
st

Checksum x x x x x x 100 1000
Collatz Number x x x x 200 2000
Compare String Lengths x x x x 100 1000
Count Odds x x x x 200 2000
Digits x x x x x x 100 1000
Double Letters x x x x x x 100 1000
Even Square x x x x 100 1000
For Loop Index x x x x 100 1000
Grade x x x x x 200 2000
Last Index of Zero x x x x 150 1000
Median x x x x 100 1000
Mirror Image x x x x 100 1000
Negative To Zero x x x x 200 2000
Number IO x x x 25 1000
Pig Latin x x x x x x 200 1000
Replace Space w. Newline x x x x x x 100 1000
Scrabble Score x x x x x x 200 1000
Small Or Large x x x x x 100 1000
Smallest x x x x 100 1000
String Differences x x x x x x 200 2000
String Lengths Backwards x x x x x x 100 1000
Sum of Squares x x x 50 50
Super Anagrams x x x x x 200 2000
Syllables x x x x x x 100 1000
Vector Average x x x x 100 1000
Vectors Summed x x x 150 1500
Wallis Pi x x x x 150 50
Word Stat x x x x x x x x x x x 100 1000
X-Word Lines x x x x x x 150 2000

31

CHAPTER 2. RELATED WORK

Push contains instructions for printing and file operations. While it can be
helpful to have such instructions, simply returning values instead of printing them
is often preferable in programming when developing a method. The methods
evolved in this thesis aim to only use input and output values and involve no
printing, though they theoretically could be added in an existing software sys-
tem. Therefore, instead of printing values, they are returned. This is a technical
detail, which changes the problems, although they are still similar. The original
description of the problems is available in form of a conference paper [1] and a
technical report [103]. A description of each problem of the general program syn-
thesis benchmark suite with returning instead of printing values is available in
Appendix A as well as the corresponding fitness functions.

2.4 Semantics

For a long time in GP and many evolutionary algorithms, operators have been
designed to manipulate the internal representation without regarding how it will
affect the behaviour. In tree-based GP, common operators manipulate the tree
structure by randomly swapping subtrees without checking before or after the
effect of a change. The benefit of such operators is that they can be applied in
any problem domain as they rely on the internal representation of the system
used.

Since then a lot of research has happened in the field of semantics. A commonly
accepted definition of semantics in the GP community is that semantics refers to
“the behavior of a program, once it is executed on a set of data” [16]. Depending
on the problem domain “semantics” and “program” can mean something different.
In the regression domain, a program usually is a formula and semantics is a vector
of real values, while in the boolean domain a program is a boolean expression and
the semantics is a vector of booleans. Figure 2.8 illustrates the differences between
the internal representation (2.8a), the program (2.8b) and the semantics (2.8c) in
the regression domain. Figure 2.8a depicts a randomly generated GP tree, and
the program or formula represented by that tree is shown in Figure 2.8b. The last
Figure 2.8c contains the semantic produced by the formula when executed on the
data from the first two columns. The data can be either a subset of or the whole
training data or randomly sampled data. The last column contains the semantics
of the whole tree, which is a vector of real values. Many use cases for semantics

32

CHAPTER 2. RELATED WORK

+

*

*

𝑥1 𝑥2

2

*

𝑥1 3

(a) GP syntax tree repre-
sentation or genotype

𝑥1 * 𝑥2 * 2 + 𝑥1 * 3
(b) “Program” or phenotype

Data Subtree semantics Semantics
𝑥1 𝑥2 𝑥1 * 𝑥2 𝑥1 * 𝑥2 * 2 𝑥1 * 3 output
1 0.1 0.1 0.2 3 3.2
2 0.2 0.4 0.8 6 6.8
3 0.3 0.9 1.8 9 10.8

(c) Semantic output of the tree given some data.

Figure 2.8: The three figures represent the internal GP representation genetic
operators manipulate (a), the syntactical representation of the tree (b) and its
semantics (c). The semantics in (c) in the last column is calculated depending
on the data from the first two columns. The columns in between contain the
semantics of two subtrees.

do not require the output of the whole tree, but of subtrees which are depicted in
the columns between the data and the semantics of the whole tree. The semantics
of a tree for the training data is calculated by GP to determine the fitness of a
candidate solution. Therefore, no computational overhead is required to obtain
this information. This is also true in many cases for obtaining the semantics of
subtrees.

An aspect about semantics that should be pointed out is that there is a dif-
ference between syntactical and semantical identical. The following formulae are
syntactically different but semantically identical as they produce the same output
if the same input is given:

𝑓1(𝑥, 𝑦) = 𝑥 * 𝑦 * 2 + 3 (2.1)

𝑓2(𝑥, 𝑦) = 𝑥 * (𝑦 + 𝑦) + 2 + 1 (2.2)

This differentiation between syntax and semantics is essential. Individuals
with the same semantics have the same fitness but can have different syntax.
Therefore their internal representation is different and so different syntax can be
contributed to the next generation by semantically identical individuals. This is
not the case for syntactically identical individuals.

33

CHAPTER 2. RELATED WORK

As this explanation shows, semantics is different depending on the problem
domain. Hence, how semantics is used requires adaptation for each problem do-
main as well. Most research on semantics to date has been carried out in the
boolean [30, 31, 35] and regression domain [32, 33, 34, 36]. Both domains benefit
from using only a single data type, boolean and real values respectively, and the
semantics can be defined as a single vector of that data type. Chapter 7 will
address semantics in general program synthesis, which requires multiple different
data types and multiple vectors for semantics.

Two important properties of semantics in general that contribute to perfor-
mance improvements are semantic diversity and semantic locality [34, 16]. A high
semantic diversity is necessary for covering the search space and has been shown
to be more helpful than structural diversity [16]. Semantic locality means a small
change in a program corresponds to a small change in its semantics and there-
fore fitness. While keeping up semantic diversity is necessary, semantic locality is
essential for the search performance [34].

The next two sections review a range of semantic operators. Section 2.4.1
covers GP operators, crossover, mutation as well as selection, that have made
use of semantic information by promoting semantic diversity, semantic locality or
both. Section 2.4.2 gives an overview of a more direct approach of using semantic
information but also shows its limitations. Apart from the operators presented in
the next sections, other ways to use semantic information exist by using formal
methods or grammars which are reviewed in [106], but will not be covered as they
are not relevant to this thesis. Although grammars are a central topic in this
thesis the use of semantics in grammars is focused on checking semantic validity
of solutions by using attribute grammars [88] or logic grammars[89, 90], which
might be difficult to extend to program synthesis.

2.4.1 Semantic operators

In the boolean domain, Beadle et al. [30] proposed a Semantically Driven Cross-
over (SDC) that used Reduced Ordered Binary Decision Diagrams (ROBDDs)
to compare children to their parents. Boolean expressions that produce the same
ROBDD will produce the same semantic output. By using RODBBs, it is not nec-
essary to evaluate the fitness of a boolean expression to check if two expressions
are semantically equivalent. SDC reduced parents and children to their ROBDD

34

CHAPTER 2. RELATED WORK

form and test for semantic equivalence. If a child was semantically equivalent to
its parent, it was not added to the next generation and the process of crossover
was repeated. It was shown that SDC was a statistically significant improvement
over standard crossover. The work was extended to Semantically Driven Mutation
(SDM) that operated in a similar fashion, but instead of selecting a subtree from
a second parent, a randomly created one replaces an existing subtree. Again the
mutated program is only added to the population if its ROBDD is not semantically
equivalent.

Work by McPhee et al. [31] shows the importance of using semantics. They
investigated the behaviour of crossover in the boolean domain by enumerating all
possible inputs. In the experiments conducted, they showed that typically 75% of
crossover events happening do not affect the semantics of the whole expression.
The bigger the tree size, the more likely it was that a crossover event is not having
an effect.

Nguyen et al. did extensive research on semantics in the regression domain [32,
36, 33, 106, 34]. Similar to [30] a crossover operator was introduced [32] that
checked semantics to produce children that are semantically different from their
parents. Contrary to boolean expressions, checking the equivalence of arithmetic
expressions is NP-hard [107] and enumerating the space of real values is impos-
sible. Parents and children were measured on randomly sampled points from the
domain of the problem to check for semantic equivalence. A semantic sensitivi-
ties parameter was used to decide if the expressions were too similar. This idea
was extended to two mutation operators, Semantic Aware Mutation (SAM) and
Semantic Similarity-based Mutation (SSM), in [36]. While SAM works similar to
the crossover in [32], SSM checks for semantic similarity. The check for semantic
similarity is similar to the check for semantic equivalence, but a lower and upper
bound is used to make sure a subtree is not equivalent, which would not lead to a
change in the semantics of the expression, and not too different. Hence, SSM was
not only promoting semantic diversity by changing the semantics, but also seman-
tic locality by not changing it too much to affect the semantics of the expression
and therefore its fitness only slightly. As semantic similarity is more difficult to
achieve than semantic difference as the difference has to be between an upper and
lower bound compared to only being higher than a lower bound, SSM could use
multiple trials to find and generate subtrees that show semantic similarity. If a
maximum number of trials was reached, standard mutation was executed. In the

35

CHAPTER 2. RELATED WORK

experimental results, SSM was outperforming SAM and standard mutation, while
SAM achieved similar results to standard mutation.

In a next step, the improvements of SSM were brought back to a new crossover
operator, Semantic Similarity-based Crossover (SSC) [33], that outperformed the
previous semantic crossover and many syntax-based crossover operators. In [34],
Nguyen et al. introduced a Self-Adaptive Successful Execution (SASE) approach
to adapt the upper and lower bounds for SSC and another semantic crossover,
Most Semantically Similar Crossover (MSSC). The benefit of MSSC is that no
upper bound was required for the semantic similarity. The semantic similarity for
a number of crossover events was calculated. The crossover event that achieved the
most semantically similar result was executed in the end. It should be noted that
for all the semantic mutation and semantic crossover operators in the regression
domain no additional fitness evaluation was executed, although computational
overhead arises due to calculating the semantic similarity between subtrees. MSSC
has shown to improve the performance of GP on benchmark problems as well as
two real-world problems [34], which is attributed to the higher semantic locality
of MSSC.

Selection

Another operator that has benefited from semantics is selection. Most selection
operators, especially from the early years of evolutionary algorithms are solely
based on fitness. On the one hand, due to only using fitness, selection operators
can be used independently of the representation, which makes them even more
flexible than crossover or mutation operators which are based on syntax. On the
other hand, semantic selection operators have been introduced which outperform
traditional ones. Two operators that use semantics during the selection process are
Semantics in Selection (SiS) [108] and Semantic-Clustering Selection (SCS) [109].
Both selection operators always select two individuals as the next operator applied
is crossover, which combines parts of two selected individuals. SiS uses standard
tournament selection to choose the first parent for crossover. The second parent is
also selected with a tournament, but the parent is also checked if it is semantically
different from the first one to promote semantic diversity. SCS uses a different
approach, by clustering individuals based on their semantics. Again the first par-
ent is selected by standard tournament selection from the whole population. The

36

CHAPTER 2. RELATED WORK

second parent is then selected with tournament selection from the same cluster
as the first one to be semantically similar to the first one. The idea is to pro-
mote semantic locality within the cluster and having semantic diversity by having
multiple clusters.

Apart from using the semantic output, selection techniques have been invented
that are based on the error vector which contains the fitness of every training cases.
This approach is more fine-grained than using an aggregated fitness value as in
traditional methods and is more informative than using the semantic vector as the
error vector estimates how well the individual does on every training case. One
such operator, lexicase selection which is very successful in the program synthesis
domain, has already been discussed in Section 2.2.4, another one is Semantic
Tournament Selection (STS) [110]. STS promotes semantic diversity by using a
statistical test instead of solely relying on fitness. An individual is only better
than another one in a tournament if it is significantly different and more fit than
another one. The benefit of relying on the error vector instead of the semantic
vector is that the selection mechanism can be applied on any problem that uses
multiple training cases instead of having to adapt a semantic measure for every
problem domain.

2.4.2 Geometric Semantic GP

A more direct approach of using semantics is to create crossover and mutation
operators that induce a unimodal fitness landscape. Such operators are called
geometric due to exploiting the geometric properties of the search space. Based
on work from Krawiec et al. [111, 112], Moraglio et al. introduced Geometric
Semantic Genetic Programming (GSGP) [113]. Geometric semantic crossover and
mutation operators have been proposed. Due to the induced unimodal landscape,
the crossover operator cannot produce a child that is worse than either of its
parents. GSGP performed better than standard GP in the experiments executed
in [113]. The geometric semantic mutation was even used on its own in a hill
climber, which was able to outperform standard GP.

A major problem in GSGP is that solutions rapidly grow in size. The reason
is that crossover combines the whole tree structures of the parents for a new child
and mutation adds additional nodes to the tree before the root node. Hence,
crossover leads to exponential and mutation to linear growth. The growth problem

37

CHAPTER 2. RELATED WORK

has only been addressed with implementation tricks [114] which do not actually
reduce the size or by post-simplification-steps [115] that produces solutions that
are still orders of magnitude bigger than what standard GP produces.

GSGP also has a range of other issues. GSGP can only be applied to a re-
stricted number of problem domains for which geometric operators can be cre-
ated, like boolean and regression problems. GSGP produces overfit solutions
and has been outperformed on a broad set of benchmarks by other GP ap-
proaches [116]. Pawlak [117] criticised that “Geometric Semantic Genetic Pro-
gramming Is Overkill”. Even though the theory behind GSGP is correct, GSGP
only produces a linear combination of random parts. In the same paper [117],
linear combinations of random parts have been constructed in a more straight-
forward way, which performed similar to GSGP but produced smaller and less
time-consuming solutions.

The growth problem, which makes solutions not interpretable, and the issue
that geometric operators cannot be applied to any problem domain, make this
approach not usable for program synthesis.

2.5 Conclusion

This chapter presented an overview of evolutionary algorithms, especially Genetic
Programming. Grammars and the usage of grammars in GP have been discussed
with a focus on the operators being used in this thesis, like lexicase selection [60]
and PTC2 [56]. An introduction to program synthesis was given, and approaches
from different fields of research have been briefly described. GP systems that have
been applied in the program synthesis space have been discussed as well as their
advantages and disadvantages. Afterwards, a detailed introduction of semantics
has been given, and multiple semantic operators were presented. Lastly, Geomet-
ric Semantic Genetic Programming and some of its issues have been reviewed.

Although grammars have been used in GP to tackle program synthesis, only
little research has been undertaken in this domain. Especially, no general con-
cept exists to tackle program synthesis without writing a new grammar for the
problem at hand. This shortcoming will be addressed in Chapter 4 by propos-
ing a grammar design approach. To this end, a study on derivation tree based
GP will be conducted in Chapter 3. Then the grammar design approach will be
further investigated in Chapter 5 and 6. Finally, as already mentioned, seman-

38

CHAPTER 2. RELATED WORK

tics has been underutilized in program synthesis as most research in semantics
focused on the boolean and regression domain. Chapter 7 examines semantics in
program synthesis and explores how to exploit semantic information to improve
performance.

39

Part II

Experimental Research

40

Chapter 3

General Grammar Design for
Derivation Tree Based Genetic
Programming Systems

This initial experimental chapter covers grammar design for sorting networks with
a focus on derivation tree based Grammar-Guided Genetic Programming (G3P)
systems. Grammars created in this chapter can be used by linearised G3P systems
as well, but some observations do not hold for all G3P systems and will be pointed
out. Although G3P systems and therefore grammars are widely used in the GP
research community, the process of designing grammars is an underexplored re-
search area [86]. As a consequence, this chapter aims to give some insights about
derivation tree structures constructed by grammars and their influence on search
performance to understand grammars that use recursion and produce variable
length output. This knowledge is used to create a design pattern for grammars
in the program synthesis domain and is discussed in Chapter 4. This chapter is
based on work from [118].

3.1 Grammars for G3P

Grammars in G3P systems are used to represent a search space and are often used
to limit the search to valid individuals. If required, grammars can also be used to
include bias, e.g. expert knowledge, to drive the search into a specific region [17,
119]. The careful design of grammars is therefore of utmost importance, as it

41

CHAPTER 3. GENERAL GRAMMAR DESIGN

defines the representation and has a strong influence on the search performance
of an algorithm. Although some studies on grammars have been undertaken
including, but not limited to, Whigham [17], Nicolau [28, 29], Hemberg [26] and
Murphy [27], there is still little explicit knowledge of how to design a grammar
for a problem. This section sheds some light on grammar design for derivation
tree-based genetic programming systems.

For this purpose, a real-world problem, creating sorting networks, is chosen
to investigate how different grammars influence the search performance. Gram-
mars for sorting networks are small and only require two to three rules which
mainly define the structure of the derivation tree, which is the focus of this chap-
ter, and therefore makes this problem a perfect candidate for this analysis. The
study focuses on how different kinds of recursion, which is necessary for variable
length output, in grammars affect the search and how GP operators behave on
the different grammars.

3.2 Sorting Network

Sorting networks are networks, typically built in hardware, that can sort a fixed
number of values in contrast to sorting algorithms in software that allow arbitrarily
number of values. A sorting network consists of wires and comparators and it has
as many input as output wires. Comparators connect two wires and swap the
values if they are not in sorted order. Sorting networks are usually executed on
graphics processing units [120].

Figure 3.1 shows an optimal sorting network with four inputs. The wires are
drawn as horizontal lines from left, which shows the input, to the right, which
shows the output. Comparators are depicted as vertical lines with dots on each
end to show which wires are connected. It should be noted that the order of
the comparators is essential. For example, putting the rightmost comparator on
the left-hand side would not yield a correct output for the input displayed in
Figure 3.1.

A sorting network has three properties. The number of inputs, a size and a
depth. The number of inputs is given and the size is the number of comparators
within the network. The depth of a sorting network is the number of steps it takes
to complete the network. At a single step, multiple comparators can be executed
at once, as long as there are no comparators that require the same wires as inputs.

42

CHAPTER 3. GENERAL GRAMMAR DESIGN

0

2

1

3

1

3

0

2

3

1

2

0

3

2

1

0

Figure 3.1: Sorting network with four inputs and five comparators. Input values
on the left are passed to the right and swapped by comparators if the values are
not in sorted order. The output on the right are the input values in sorted order
from lowest to highest.

In Figure 3.1, the first two and second two comparators can be executed at once.
The last comparator has to be executed on its own as no other comparators are
left. Therefore, the sorting network has 4 inputs, 5 comparators and a depth of 3.

Initially, the input values of the sorting network depicted in Figure 3.1 are
[3,1,2,0]. After the first step, which executes two comparators at once as they
do not use the same wires, the values are in the following order [2,0,3,1]. The
order after the next step which again executes two comparators is [0,2,1,3].
Finally, after executing the last comparator the values are in the correct order
[0,1,2,3].

Sorting networks have already been tackled with GP [121, 51] and also genetic
algorithms [122] before this study. For a range of sorting networks, the optimal
size and depth have been proven, or an upper bound has been established [123,
124, 125]. Nevertheless, creating sorting networks is a challenging task.

Testing a sorting network with all possible permutations of inputs to prove its
correctness would result in a runtime complexity of 𝑛!. The runtime complexity
can be reduced to 2𝑛 due to the zero-one principle [123], by testing only all com-
binations of 0, 1. If all combinations of 0, 1 are sorted correctly by a network, all
arbitrary values will be sorted correctly as well.

3.3 Structure in Grammars

Variable length representations with grammars require direct or indirect recur-
sion, as shown in section 2.2.8. A direct recursion in a grammar appears when a
rule requires its own non-terminal in one of its productions. A simple direct left

43

CHAPTER 3. GENERAL GRAMMAR DESIGN

<rule>
<part> ...

<rule>
<part> ...

<rule>
<part> ...

<rule>
<part> ...

<rule> <part> ...

Figure 3.2: Possible derivation tree of a direct left recursion (<rule> ::=
<rule><part> | <part>). Three dots depicting further subtrees.

recursion, e.g. <rule> ::= <rule><part> | <part>, can create variable length
representations. <rule> and <part> can be replaced with any non-terminal sym-
bol. <part> could even be replaced with a terminal symbol. Many researchers
use direct left recursion, because it is intuitive, but do not argue if it is the best
representation. Some examples using this left recursion with other non-terminals
symbols include <code> and <line> for Santa Fe Ant Trail problem [18], <for>
and <code> for program synthesis [13], <design> and <component> for creating
designs [126], <int_constant> and <number> for integer constant creation [127].

When generating a sentence with such a grammar, the derivation tree for that
sentence is more similar to a list than a tree, which is depicted in Figure 3.2.
<rule> will always produce another <rule> non-terminal symbol until the recur-
sion stops, which produces a list of <part> non-terminal symbols that contain
subtrees with terminal symbols. When operating on derivation trees in G3P, in
most cases the same or similar operators as in standard GP are used. As these
operators were designed to operate on trees, in many cases n-ary trees, the ques-
tion is, if such a list-like derivation tree structure is well suited to result in good
search performance.

For example, standard crossover cannot exchange two <part> nodes, unless
they are the last two, between two parents. It only has the possibility to exchange
single <part> nodes and their respective subtrees or, when operating on a <rule>
node, crossover can only decide up to which <rule> node the derivation tree of
the first parent is kept, while the rest gets replaced with what is selected from the
second parent. Crossover on a <rule> node seems similar to single-point crossover
in a GA due to the list-like derivation tree structure. Standard crossover cannot
exchange multiple <part> nodes from within the “list”. Standard subtree mutation

44

CHAPTER 3. GENERAL GRAMMAR DESIGN

faces the same issue. When selecting a <rule> node, everything afterwards gets
replaced or if a <part> node is selected then only a single <part> node is replaced.
It is not possible to change two or more <part> nodes from within the derivation
tree.

To this end, grammars and their corresponding derivation tree structures are
analysed in this chapter to investigate how GP operators behave on different
derivation tree structures and if different structures influence the search perfor-
mance. As subtree crossover and subtree mutation cannot exchange multiple
non-recursive parts within a derivation tree on list-like structures, while this is
possible with tree-like structures, it is assumed that derivation trees in the shape
of trees are better suited as a representation and may improve performance.

3.4 Sorting Network Grammar Design

Sorting networks can be represented as a list of integer pairs. Every pair of integers
represents one comparator. The integers of such a pair are the indices of the wires
the comparator connects. Therefore, a grammar for this problem must be able to
represent every possible number of integer pairs and every possible combination of
two integers, where the integers are limited to the indices of the number of wires
of a given sorting network.

Table 3.1 show five different grammars for a sorting network with four inputs.
The grammars can produce the same sentences, although the derivation trees
generated as an intermediate process will be different in structure. The number
of inputs for the sorting network can be easily adapted by adding additional indices
to the rule <node>. The grammars have simply been named from G1 to G5.

G1: The first grammar G1 contains a start symbol snet, for sorting network, and
a simple direct left recursion, as explained in section 3.3. The non-terminal
<part> has been replaced with two non-terminals <node>. Therefore, every
recursion of <snet> adds a pair of integers or one comparator in terms of the
sorting network. A derivation tree for the optimal sorting network with four
inputs, shown in Figure 3.1, is depicted in Figure 3.3. As G1 only uses a left
recursion, the derivation tree can only expand on the left-hand side, which
leads to a similar list-like structure as with the previously seen derivation
tree in section 3.3. As already explained, crossover and mutation are not

45

CHAPTER 3. GENERAL GRAMMAR DESIGN

Table 3.1: Five different grammars for sorting networks with four inputs, which
all generate the same language.

Name BNF
G1: <snet> ::= <snet> <node> <node> | <node> <node>

<node> ::= 0 | 1 | 2 | 3
G2: <snet> ::= <snet> <nodes> | <nodes>

<nodes> ::= <node> <node>
<node> ::= 0 | 1 | 2 | 3

G3: <snet> ::= <snet> <node> <node> | <node> <node> <snet>
| <snet> <node> <node> <snet> | <node> <node>

<node> ::= 0 | 1 | 2 | 3
G4: <snet> ::= <snet> <nodes> | <nodes> <snet>

| <snet> <nodes> <snet> | <nodes>
<nodes> ::= <node> <node>
<node> ::= 0 | 1 | 2 | 3

G5: <snet> ::= <snet> <snet> | <node> <node>
<node> ::= 0 | 1 | 2 | 3

able to change multiple pairs of integers within the tree at once due to this
list-like structure, unless they are the last ones to the left-hand side of the
derivation tree.

G2: Grammar G2 is similar to G1 with the only addition of an extra rule <nodes>,
which encapsulates a pair of integers. Therefore, G2 is not only more sim-
ilar to the previously discussed grammar rule <rule> ::= <rule><part>
| <part>, but the additional rule <nodes> allows operators to exchange a
pair of integers instead of single integer values in G1.

G3: Grammar G3 is the first grammar that creates a more tree-like structure.
Additional to the left recursion in G1, a right recursion was added. This
change alone would still create a list-like structure, where the derivation tree
could either expand left or right. For the tree-like structure, the production
rule <snet> <node> <node> <snet> is required, as it allows expansions of
the derivation tree in two directions. Every production of <snet> adds a
pair of nodes as before.

A derivation tree created with G3 for the optimal four input sorting network
is depicted in Figure 3.4. Whereas with G1 there was only a single derivation

46

CHAPTER 3. GENERAL GRAMMAR DESIGN

<snet>

<node> 2

<node> 1

<snet>

<node> 3

<node> 2

<snet>

<node> 1

<node> 0

<snet>

<node> 3

<node> 1

<snet>
<node> 2

<node> 0

Figure 3.3: G1 derivation tree for the optimal sorting network with four inputs
shown in Figure 3.1.

tree that can express the optimal sorting network with 4 inputs, with G3
multiple derivation trees, exist that can express the same sorting network.

G4: Similar to G2, a grammar G4 was created from G3 that encapsulates a pair
of integers in an additional rule <nodes> with the same benefit as before
that a pair of nodes can be exchanged at once. Even with the tree-like
structure that makes a difference, because when looking at Figure 3.4 a
single pair of integers can only be exchanged in G3 when <snet> derives

<snet>

<snet>

<node>

2

<node>

1

<node>

3

<node>

2

<snet>

<snet>

<node>

1

<node>

0

<node>

3

<node>

1

<snet>

<node>

2

<node>

0

Figure 3.4: G3 derivation tree for the optimal sorting network with four inputs
shown in Figure 3.1.

47

CHAPTER 3. GENERAL GRAMMAR DESIGN

<snet>

<snet>

<snet>

<node>

2

<node>

1

<snet>

<node>

3

<node>

2

<snet>

<snet>

<snet>

<node>

1

<node>

0

<snet>

<node>

3

<node>

1

<snet>

<node>

2

<node>

0

Figure 3.5: G5 derivation tree for the optimal sorting network with four inputs
shown in Figure 3.1.

into <node><node>. Otherwise, multiple pairs will be exchanged at once.
For both, G3 and G4, GP operators can manipulate multiple pairs of nodes
within the tree, even if they are not the first or last pair. In terms of the
sorting network, multiple comparators can be changed at once that are not
executed at the first or last step. Therefore, crossover and mutation might
not be as destructive as in G1 or G2 were everything after a selected <snet>
node in the derivation tree will be changed.

G5: At last, grammar G5 might not be the most intuitive choice as a variable
length representation, but as G3 and G4 it will create tree-like structure,
which is depicted in Figure 3.5. The derivation tree created is a binary tree.
G5 could be adapted to create n-ary trees by adding additional <snet>
non-terminals to the first production of <snet>. In contrast to G1 and G3,
there is no need to create a grammar with the non-terminal symbol <nodes>
to encapsulate a pair of integers, as single pairs of integers can already be
exchanged by choosing a <snet> node that derives into two <node> nodes.
But similar to G3 and G4, GP operators can manipulate any number of
pairs of integers within the derivation tree due to the tree-like structure.
Therefore, G5 seems to combine the benefits of tree-like structures from G3
and G4 and the possibility to exchange single comparators in one operation
from G2 and G4.

48

CHAPTER 3. GENERAL GRAMMAR DESIGN

Table 3.2: Minimum number of nodes and minimum depth for each grammar
given a certain number of comparisons (𝑐)

Grammar Number of nodes Depth
G1 3 * 𝑐 𝑐 + 1
G2 4 * 𝑐 𝑐 + 2
G3 3 * 𝑐 ⌈log2(𝑐 + 1)⌉+ 1
G4 4 * 𝑐 ⌈log2(𝑐 + 1)⌉+ 2
G5 4 * 𝑐− 1 ⌈log2(𝑐)⌉+ 1

3.4.1 Derivation tree sizes

Derivation tree-based G3P systems have to limit the tree sizes either by depth or
number of nodes as otherwise, trees could theoretically grow infinitely big, as in
standard GP. As the grammars G1-G5 create different derivation tree structures,
representing the same sorting network with G1-G5 requires a different number of
nodes and depths, as can be seen in Figure 3.3, 3.4, 3.5. The sorting networks
are represented by the grammars as comparators that are executed. The number
of nodes and the minimum depth for a derivation tree per grammar to represent
a certain number of comparators can be calculated per grammar and is shown
in Table 3.2. Note that in contrast to the derivation tree representation used
in the figures, the G3P system used for the experiments represents a production
as a single node with as many subtrees as non-terminals are contained in the
subtree. Representing a production as a single node reduces the number of nodes
required within a tree for the G3P system but does not change the behaviour of
the derivation trees or search operators.

As can be seen in Table 3.2, grammars that create a list-like structure grow
linearly in depth, while grammars that produce a tree-like structure grow only
logarithmically. There is little difference in the number of nodes required per
comparator added to a derivation tree. G1 and G3 require fewer nodes to represent
the same number of comparators as the other grammars, because they do not have
the additional rule <nodes>, which also implicitly exists in G5. These formulas will
be used for the experiments to allow all grammars to be able to create derivation
trees with the same number of comparators.

49

CHAPTER 3. GENERAL GRAMMAR DESIGN

<nodes> ::= 0 1 | 0 2 | 0 3
| 1 2 | 1 3
| 2 3

Figure 3.6: All possible comparisons in a sorting network with four inputs.

3.4.2 Grammar Design Details

For linearised G3P systems, other properties of the grammars might be important
as well. For example, G3 and G4 have three productions in the rule <snet> that
add another recursion and only one production that stops the recursion. So there
is only a 25% chance that recursion will stop, while 75% of the time the recursion
will continue or even add a second recursion. Mapping individuals as it is done
in GE, might often lead to invalid individuals. As a derivation tree based G3P
system will be used, which stops recursion due to a tree depth or tree node limit, if
the tree would grow further than those limits, these problems are less of a concern.

Another detail about the grammars that should be noted is that the rule
<nodes> is a so-called unit production as it has only a single production that it
can be expanded to. Depending on the G3P system used, especially linearised G3P
systems, the rule might automatically be expanded, or all <nodes> non-terminals
will be replaced with its production. This will lead to grammars G1 and G2 as
well as G3 and G4 being treated identically and will not change anything in the
search performance.

Further improvements could be made to the grammar by reducing the com-
binations of integer pairs that can be created. The rule <nodes> can create any
combination of integers given by the rule <node>, which results in 𝑛2 combina-
tions. The problem is that many of these combinations are superfluous. 3 1 and
1 3 represent the same comparator and 1 1 would be a comparator with the same
input twice. The rule <nodes> could be changed to only contain valid combi-
nations and remove duplicate comparators, so that number of combinations is
reduced to 𝑛2−𝑛

2 . Figure 3.6 shows the rule <nodes> with the reduced number of
combinations for 4 inputs. This change would reduce the search space, but would
also remove the possibility of removing a comparator by changing its input to the
same wire, as those will be removed before executing the sorting network.

The reason why this possible optimisation has not been investigated is that
it is a problem specific adaption, while all other changes to grammars that have

50

CHAPTER 3. GENERAL GRAMMAR DESIGN

been made, like encapsulating non-terminals in an additional rule or using tree-
like derivation trees rather than list-like, can be applied to other grammars as
well.

3.5 Experimental Setup

The experiments are in two parts to answer two questions. First, how do the dif-
ferent grammars influence the amount of genetic material changed by the search
operators? Especially, do the grammars that produce tree-like structures help
the GP operators exchange less genetic material in one operation as is the as-
sumption form section 3.4. This is of interest, because it is assumed that subtree
operators will achieve worse performance on derivation trees with a list-like struc-
tures due to the inability of exchanging subtrees with multiple non-recursive parts
within the tree. Therefore, the amount of genetic material exchanged on different
grammars might give an indication over performance. The second question is,
do the different grammars, again especially the tree-like structures, influence the
search performance and can conclusions be drawn about general grammar design,
especially recursion in grammars?

3.5.1 Experiment 1

To answer the first question, the first experiment does not use any fitness eval-
uation and only checks the amount of genetic material, measured in the number
of nodes of a derivation tree, which gets exchanged by the GP operators. To this
end, each grammar is used three times. One time the experiment is run only with
crossover, a second time just with mutation and a third time with both search
operators. 100 runs are executed per grammar and per search operator combi-
nation. The probability of using each operator is set to 100% each time. As no
fitness evaluation takes place, random selection is applied. The sorting networks
created are limited to 50 comparators. This limit is implemented by restricting
the number of nodes in a tree per grammar as calculated by Table 3.2.

3.5.2 Experiment 2

In the second experiment, fitness evaluations are used to identify differences in
search performance in the grammars. A sorting network with 12 inputs is chosen to

51

CHAPTER 3. GENERAL GRAMMAR DESIGN

Table 3.3: Experimental parameter settings. 1Experiment 1. 2Experiment 2.

Parameter Setting
Runs 1001, 502

Generations 100
Population size 1000
Population initialisation PTC2 [56]
Tournament size 7
Internal Crossover probability 0.9
Mutation probability 100%1, 5%2

Elite size 01, 12

Maximum compare-exchange operations 501, 592

compare the grammars. Therefore, 4096 fitness cases have to be tested to establish
the correctness of the network. The same fitness function as in Koza et al. [121]
is used, which minimises the number of incorrect fitness cases plus the number of
used comparators divided by 100. So, the primary objective is to correctly sort
as many fitness cases correctly as possible, while the secondary goal is to use as
few as possible comparators. The optimal sorting network requires between 37
and 39 comparators as has been proven in [124]. The number of comparators for
this experiment has been limited to 59, which is the proven upper bound required
times 1.5 rounded up.

3.5.3 General Settings

The parameter settings for both experiments are summarised in Table 3.3, with
differences marked with superscripts. The elite size in the first experiment is zero
as no evaluation is used.

In both experiments, the number of nodes in a derivation has been restricted
as it allows more fine-grained control of the number of comparators that can
be created with one individual in contrast to the tree depth, which may enable
grammars to produce a tree-like structure to use more comparators than the
others. Also, Daida et al. [55] showed that GP tends to evolve rather sparse
binary trees than dense ones, which also encourages to restrict the number of
nodes in a tree rather than the tree depth. Therefore, Probabilistic Tree-Creation
2 (PTC2) [56] has been used, as in all experiments in this thesis, to initialize the
first generation, as PTC2 uniformly samples from trees of different length and the

52

CHAPTER 3. GENERAL GRAMMAR DESIGN

maximum number of nodes can be set, while other initialization strategies like,
e.g. ramped half-and-half [49] are only able to restrict the tree depth.

For these experiments, it is also important to note that the in the GP com-
munity widely adopted Koza style crossover [49] is used. This type of crossover
does not choose uniformly from all possible nodes in a tree but selects 90% of
the time an internal node and only 10% of the time a leaf node. The reason is
that trees used in GP usually have a branching factor, the number of subtrees per
node, of two or higher. Therefore, a tree will have more leaf nodes than internal
nodes and the chance of selecting a leaf node with crossover is high, which leads
to crossover only exchanging very small subtrees. Koza style crossover counter-
acts that behaviour by having a high probability of selecting an internal node.
This is especially of interest for the second experiment and will be discussed in
section 3.6.2.

3.6 Results

In this section, the results of the sorting network experiments with grammars that
produce a different kind of structures will be discussed.

3.6.1 Experiment 1

The general idea of using different grammars for variable length representations
which produce the same language emerged from the problem that standard GP
operators are designed for trees and with list-like structures as produced by G1
and G2 too much genetic material might get exchanged at once. The first set
of experiments confirms that hypothesis. Figure 3.7 shows the number of nodes
that get added and removed with a single crossover and mutation operation on
average over generations. Figure 3.7 only shows the results when using crossover
and mutation at the same time. The results gained when only using crossover
or mutation are very similar and do not add any further insight, hence they
have been omitted. The only difference when using crossover without mutation is
that trees shrink over the first 30 generations and then stabilises. The reason is
that while the node selected for crossover in the first parent is selected entirely at
random, the subtree selected in the second parent has to obey the number of node
restrictions allowed in a single tree. Therefore, the subtree selected in the second

53

CHAPTER 3. GENERAL GRAMMAR DESIGN

parent has a higher chance of being smaller. While this phenomenon stabilises
after 30 generations when using crossover on its own, it can only be observed
up to generation 10 when using crossover and mutation. Mutation counteracts
crossover by adding slightly bigger subtrees than it removes, probably because it
is applied after crossover. When using mutation on its own, a similar amount of
genetic material is removed and added.

Figure 3.7 confirms that genetic operators add and remove bigger subtrees
when grammars are used that produce a list-like structure, like G1 and G2. When
a node is changed that defines the structure, in these experiments <snet>, then
all the genetic material after that node will be changed. In case of grammars
that produce a list-like structure, every level of depth in the tree only decreases
the number of nodes linearly. Therefore, there are more possible nodes that have
large subtrees, while every level of depth with grammars that produce tree-like
structures can reduce the number of nodes by half. Derivation trees created
with grammars that produce tree-like structures contain more nodes with smaller
subtrees compared to the list-like structures with the same number of comparators.
Crossover and mutation add and remove less genetic material in case of G3, G4
and G5 as expected.

In case of crossover, a difference of genetic material added and removed be-
tween G1 and G2 can be seen that is not apparent with mutation. This appears in
crossover because G2 has the extra rule <nodes>. Therefore, G2 has more internal
nodes and <nodes> contains smaller subtrees compared to <snet>. Mutation se-
lects randomly from all nodes in a derivation tree, while crossover favours internal
nodes, as explained in section 3.5.

3.6.2 Experiment 2

For the second experiment fitness evaluation was turned on to analyse the perfor-
mance of grammars that produce different structures. Table 3.4, 3.5 and 3.6 show
the results on different sorting networks or using different operators. All tables
show a p-value calculated using Wilcoxon rank sum test of the best fitness over
50 runs between two grammars. A significance level 𝛼 = 0.05 is used with Bon-
ferroni correction of 𝑚 = 10, which results in 𝛼 = 0.05/10 = 0.005. Statistically
significant differences are marked in bold. Note that the matrix of p-values is
symmetrical and that upper triangular matrix has been removed for readability.

54

CHAPTER 3. GENERAL GRAMMAR DESIGN

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

N
o
d
e
s

Generation

Genetic Material removed by Crossover

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

N
o
d

e
s

Generation

Genetic Material added by Crossover

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

N
o
d

e
s

Generation

Genetic Material removed by Mutation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

N
o
d

e
s

Generation

Genetic Material added by Mutation

G1
G2
G3
G4
G5

Figure 3.7: Genetic material added and removed when using crossover and mu-
tation. Note that the y-axis scales for crossover and mutation are different as
mutation tends to exchange smaller amounts of genetic material.

55

CHAPTER 3. GENERAL GRAMMAR DESIGN

Table 3.4: Results for sorting networks with 12 inputs with the average best
fitness, standard deviation, best individual and success ratio over 50 runs as well as
the p-value of a Wilcoxon rank sum test of the best fitness between two grammars.

Avg fit. ± Std dev Best Succ. G1 G2 G3 G4 G5
G1 82.60 ± 42.79 18.56 0% –
G2 31.85 ± 21.66 0.58 4% 0.000 –
G3 65.60 ± 47.89 14.58 0% 0.015 0.000 –
G4 23.53 ± 15.47 0.53 8% 0.000 0.069 0.000 –
G5 34.13 ± 28.26 0.55 2% 0.000 0.962 0.000 0.075 –

Table 3.4 summarizes the results for sorting networks with 12 inputs. Only
three of the five grammars are able to evolve sorting networks that successfully
sort all inputs correctly, even though substantially more comparators are used as
an optimal network would need. Interestingly the best results are achieved by G2,
G4 and G5, where G2 generates list-like and G4 and G5 tree-like structures. G2
and G4 contain the extra rule <nodes>. So for a fair comparison between list-like
and tree-like structures G1 and G3 as well as G2 and G4 have to be compared. In
both cases, the tree-like do slightly better but none shows a statistically significant
difference.

The experiment has been repeated with a more complex instance of the prob-
lem, with a sorting network with 14 inputs which increases the number of training
cases to 16,384. Also, the maximum number of comparators allowed has been in-
creased, depending on the grammar used and Table 3.2. The results are summa-
rized in Table 3.5. No successful sorting network was found for 14 input with any
of the grammars. The overall results are similar to the experiment with sorting
networks with 12 inputs, even the p-values behave similarly. G1 and G3 do worse
than the other grammars. The tree-like structure of G3-G5 seems not to be of an
advantage. Otherwise, G3 would perform better and G2 worse.

The grammar G2 and G4 contain the extra rule <nodes>, which implicitly
exists in G5 as explained in section 3.4. So the overall structure of the derivation
tree has little effect while having the possibility of exchanging complete compara-
tors with a single operation of crossover or mutation gives the grammars G2, G4
and G5 a major advantage. As the Koza style crossover was used in the experi-
ments that favours selecting internal nodes for crossover, this might explain why
these grammars performed better. To prove this hypothesis, a last experiment is
executed where a subtree crossover is used that uniformly selects from all nodes at

56

CHAPTER 3. GENERAL GRAMMAR DESIGN

Table 3.5: Results for sorting networks with 14 inputs with the average best
fitness, standard deviation and best individual over 50 runs as well as the p-value
of a Wilcoxon rank sum test of the best fitness between two grammars.

Avg fit. ± Std dev Best G1 G2 G3 G4 G5
G1 769.83 ± 303.51 256.74 –
G2 245.52 ± 143.94 26.77 0.000 –
G3 575.55 ± 300.54 102.75 0.002 0.000 –
G4 230.20 ± 119.65 8.73 0.000 0.736 0.000 –
G5 297.68 ± 197.86 40.75 0.000 0.282 0.000 0.169 –

Table 3.6: Results for sorting network with 12 inputs with subtree crossover that
chooses from all nodes in the tree with equal probability. The Table shows the
average best fitness, standard deviation and best individual over 50 runs as well as
the p-value of a Wilcoxon rank sum test of the best fitness between two grammars.

Avg fit. ± Std dev Best Succ. G1 G2 G3 G4 G5
G1 9.72 ± 8.62 0.50 20 % –
G2 11.81 ± 11.21 0.53 22 % 0.471 –
G3 11.77 ± 12.83 0.53 18 % 0.863 0.815 –
G4 12.73 ± 11.41 0.53 16 % 0.198 0.694 0.361 –
G5 13.29 ± 11.91 0.52 16 % 0.123 0.517 0.370 0.836 –

random. The experiment is executed on the sorting network with 12 inputs and
the results are shown in Table 3.6. The percentage of runs that found a network
that successfully sorts all possible inputs drastically increased for all grammars
and no statistically significant difference between any grammars can be found in
contrast to the previous experiments. All grammars achieve similar performance
by using a crossover that does not favour internal nodes in the tree. Due to this
change, crossover is likely using leaf nodes more often and therefore it only ex-
changes single nodes. The structure of the derivation tree does not matter as
much anymore.

Allowing crossover to happen more often on the leave nodes appears to be a
benefit for the sorting network problem, but no conclusion can be drawn for other
problems. In case of many other problems which use recursion, see section 3.3, the
non-recursive part creates bigger subtrees than just single node with a number.
In such a case using crossover as in the last experiment have a negative effect.

57

CHAPTER 3. GENERAL GRAMMAR DESIGN

In terms of the structure of the grammar, G2, G4 and G5 had a positive effect
as can be seen in Table 3.4 and Table 3.5, because the non-recursive part, a single
comparator, could be exchanged in a single operation, which G1 and G3 lacked.

3.7 Summary

In this chapter, grammars that produce different structures in derivation trees
have been investigated. Grammars have been classified into those that generate
list-like derivation trees and tree-like. Five different grammars which produce the
same language have been created in total. All of which produced a variable number
of comparators for sorting networks. The grammars have been analysed in terms
of how genetic operators, crossover and mutation, behave, especially how much
genetic material gets exchanged in a single operation. Crossover and mutation
exchanged less genetic material in one operation on average if the derivation tree
was created with a grammar that produces tree-like structures, as was expected.

A second set of experiments was conducted to investigate performance differ-
ences in terms of the structure grammars produced. It was found that list-like and
tree-like structures performed equally well. Grammars that offered the ability to
exchange the non-recursive part in the recursive rule with one operation outper-
formed the grammars which did not provide that possibility. Another observation
was that Koza-style crossover had an adverse effect on performance in the case
of sorting networks as it favours internal nodes, but this behaviour is likely to be
problem specific, and no overall conclusion can be inferred.

The experiments showed that even though the structures that are produced
by grammars affect the amount of genetic material that gets exchanged by GP
operators, it has little or no effect on the overall performance with derivation tree-
based G3P systems. This suggests that no particular attention has to be paid on
the structure when using recursive rules in grammars. These observations will
most likely not hold true for linearised G3P systems, and separate experiments
would need to be conducted. Also, further investigations might be required to
analyse if grammars with non-recursive parts that create bigger subtrees than the
rule <nodes> exhibit similar behaviour.

In the next chapter, a grammar design pattern for tackling arbitrary program
synthesis problems is developed and how derivation tree structures influence search

58

CHAPTER 3. GENERAL GRAMMAR DESIGN

performance with grammars for program synthesis is further investigated on a
general program synthesis benchmark suite.

59

Chapter 4

A Grammar Design Pattern for
Arbitrary Program Synthesis
Problems

In this chapter, a grammar design pattern for program synthesis is discussed.
The grammar design pattern offers the ability to create grammars in arbitrary
languages that are reusable for arbitrary program synthesis problems. Gram-
mars have been used to tackle problems from the program synthesis domain, but
usually, the designed grammars were tailored to a specific problem resulting in
bespoke grammars, which cannot be reused. The shortcomings of other systems,
especially GP systems, are examined and addressed with a flexible grammar-based
approach. The grammar design approach is tested on the general program syn-
thesis benchmark suite, presented in Section 2.3.2, and compared to PushGP as
it is the state of the art system that has been used to tackle the problems from
the benchmark suite. Insights from the previous chapter are used while design-
ing the grammars and further experiments on the structures grammars create are
conducted. This chapter is based on research first published in [128].

4.1 Previous Approaches to Program Synthesis

This section recaps previous approaches to program synthesis in GP to highlight
shortcomings and promote a new grammar design approach. Advantages and
disadvantages of each approach are discussed. More detail on these and other

60

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

approaches can be found in Section 2.3.1. The main approaches to consider for
program synthesis in GP that create code from scratch are Grammar-Guided
Genetic Programming (G3P), Strongly Formed Genetic Programming (SFGP)
and PushGP. G3P will also be used by the grammar design approach introduced
in this chapter. Strongly Formed Genetic Programming applies restriction on
nodes to provide type safety and has similarities to the grammar design approach.
PushGP is the state of the art for program synthesis in GP and has been the first
system that has been tested on the general program synthesis benchmark suite.

4.1.1 Grammar-Guided Genetic Programming

G3P systems, like Grammatical Evolution [18] or CFG-GP [17], have been used
to evolve code for program synthesis in arbitrary languages. Grammars are very
flexible and can be used to represent the search space of a wide range of problems,
evolving music [20], creating truss design [21], optimising pylon structures [22],
evolving aircraft models [23], controlling femtocell network coverage [24] and pro-
gram synthesis [13]. A G3P system does not require any additional code to evolve
a solution, except a grammar and a fitness function that can evaluate individuals
created by the grammar. The code that is evolved in G3P can be in an arbitrary
programming language, which is defined by the grammar.

Even though G3P systems are perfect candidates for tackling problems in
the program synthesis domain, so far they have been underutilised. No general
concept for grammars exists that can tackle arbitrary problems. Every grammar
that has been used to evolve programs has been tailored to a single specific problem
and cannot be reused without changes being made. In Section 4.2 a grammar
design pattern will be introduced to solve these shortcomings. The grammar
design pattern will provide a way to create reusable grammars for many program
languages as well as an easy way to provide fitness evaluation to G3P for arbitrary
program synthesis problems.

4.1.2 Strongly Formed Genetic Programming

Strongly Formed Genetic Programming (SFGP) [96] is an extension of Strongly
Typed Genetic Programming (STGP) [12]. While standard GP operates on the
premise that a function in a node must be able to handle any input from its
subtrees, STGP changed the behaviour of its genetic operators (initialisation,

61

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

crossover and mutation) to adhere the types, specifically node-types and data-
types, available in STGP. Data-types are similar to data-types in programming
languages, like integers or strings. Node-types, such as Statement, CodeBlock or
Loop, are used to restrict the shape and structure of a program. Every function
in STGP outputs a specific type and requires specific types as input. Its genetic
operators are not allowed to create or change any (sub-)trees that are not coherent
with the required types. Therefore, evolved individuals are type consistent, which
is important for program synthesis as many different data types may be used.

SFGP extends STGP by adding additional nodes that allow the generation of
generic code, like nodes for control flow (e.g.CodeBlock or ForLoop) and variables
(Variable). Every node needs to be implemented within the SFGP system. Many
aspects in SFGP have to be predefined, like a fixed number of statements/subtrees
per code block, so they do not have a variable length and the number of variables as
they are part of the terminals. SFGP only evolves programs in its own structure,
which can be viewed as pseudocode, which needs to be translated to be used in a
real-world program.

Although SFGP is an extension to STGP that allows evolving code for program
synthesis problems, it exhibits many limitations. The evolved code cannot be used
in a real-world program. Any new functionality has to be implemented in the
SFGP system and cannot be transferred to any other system, unlike grammars,
that can be used by any G3P system.

4.1.3 PushGP

PushGP [95] evolves programs in the Push programming language that was solely
developed for research in the field of evolutionary computation. Implementations
of Push and PushGP are available in many programming languages including
Python and C#. The reference implementation is in Clojure.

In contrast to many common programming languages, Push uses a stack-based
execution architecture. It has a stack per data type and additionally one for
instructions that are going to be executed. Due to this architecture, Push does
not need variables as data is stored on the corresponding stack and the execution
of code can be manipulated at runtime as the stack containing instructions can
be changed as well.

62

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

PushGP offers many advantages over the previously discussed systems. There
is no need to declare the number of variables beforehand, as data is stored on
stacks. All available instructions to PushGP are implemented in the corresponding
programming language in a protected way which avoids runtime exceptions. By
using wrapper functions, functionality and libraries of the programming language,
PushGP is run on, can be made available during evolution.

As Push is a language not used outside the research community, Push code can-
not directly be integrated into existing software. The Push interpreter is required
as well, which adds overhead. Push code can be run in different programming
languages, given an interpreter, but only if the core Push functionality is used.
This means wrapper functions to use libraries from the programming language
PushGP was run on, cannot be executed on any other Push interpreter.

4.1.4 Summary

All of the systems mentioned above are capable of tackling general program syn-
thesis problems. But all of them come with certain limitations. PushGP is the
most flexible of the systems as grammars have to be tailored at the moment and
Push provides an extensive built-in set of functionality, although Push is not used
outside the research community and an interpreter is required to run the code.
An approach to evolve code in a target programming language without having to
adapt the function set per problem by hand and without reimplementing functions
or wrapping them would provide a flexible way to approach program synthesis in
research and industry.

4.2 System Description

The concept proposed to address shortcomings identified in the previous section
is using a grammar design approach. The choice to use grammars was made
because no modification is required to use a grammar in a G3P system, while to
add functionality in other systems code has to be changed within the system. So,
grammars can be exchanged between systems and researchers without the need
of changing one’s own system, given that the same format is used, Backus–Naur
form (BNF) in many systems [128, 39, 129]. Additionally, grammars can be

63

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

easily extended if they are well structured, even with little or no knowledge of
programming, which makes them easy to use for newcomers as well.

The grammar design approach aims to generate code for arbitrary program
synthesis problems, to be flexible and extensible to add more functionality when
required, to allow using libraries of the target programming language and having
the possibility to apply this approach to a number of program languages. Ad-
ditionally, it should be relatively simple to provide fitness evaluation to a G3P
system for the program synthesis problems. Otherwise, the simplicity gained with
the grammars would be wasted.

The approach presented in this thesis consists of two parts that have to be
provided to tackle program synthesis problems. The first part is the grammar
design pattern that outlines how to design grammars to tackle arbitrary program
synthesis problems, see Section 4.2.1, and the second part is a skeleton that pro-
vides protected methods and a fitness function, which is explained in detail in
Section 4.2.2. An important property in GP is closure [49], which consists of
type consistency and evaluation safety. Closure is required for GP to work effec-
tively. The grammar guarantees type consistency, whereas the skeleton provides
evaluation safety.

The code that is going to be evolved with the grammars created in this thesis is
not abstract code or pseudocode, but specific for a target programming language.
As there exist syntactical differences between programming languages, grammars
and skeletons need to be adapted for other languages. For a single language, the
grammars have to be created only once. Advantages and disadvantages compared
to other systems will be pointed out in Section 4.2.3. In this thesis, all the code
that is going to be evolved will be in Python, but the general concept of grammar
design applies to a variety of programming languages. Specific differences made
for Python will be outlined in Section 4.2.4. Due to exceptions during evaluations,
programs may not be evaluated, as can happen in other systems as well, and will
be discussed in Section 4.2.5.

4.2.1 Grammar Design Pattern

The first part of the grammar design approach is the grammar design pattern.
Grammars are used to specify all possible solutions that can be created and there-
fore define the search space. The design pattern presented here enables the cre-

64

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

ation of grammars that can tackle arbitrary program synthesis problems. While
grammars for all programming languages exist to be able to parse them for com-
pilation or interpretation, these grammars are not suited for evolving programs.
These grammars contain the full language specification, which will contain sub-
stantially more functionality than is usually used to tackle program synthesis and
will make the search space infeasible. Additionally, these grammars do not con-
tain function or variable names, which are required by most GP systems to be
defined beforehand. Even when providing variable names, these grammars would
not prohibit using variables before declaring which leads to error during execution.

Due to these issues, the idea is to create not a single grammar for every pos-
sible problem, but a range of grammars that can be combined depending on the
requirements of the problem. In contrary to other problem domains, like, e.g.
regression that only uses floating point values, program synthesis problems usu-
ally require multiple different data types. Although, regression can be seen as a
subproblem of program synthesis. Using all possible data types to solve a problem
that only requires a few increases the search space significantly. So, the idea is to
produce a number of grammars that can be combined to fit the requirements of
the problem at hand. One grammar per data type will be created as well as one
general grammar which contains the structure of the program.

Figure 4.1 displays the grammars that have to be created and Figure 4.2 shows
an example of the bool.bnf created for the boolean data type in Python. Note
that multiple grammars for lists are necessary, although lists could contain ele-
ments of different types in many programming languages. The reasons are that
these grammars guarantee type safety to achieve closure. All elements in a list of
list_integer.bnf are of type integer. Grammars are suited to address type consis-
tency, which is important because “type awareness reduces the search space and
makes genetic operators more effective” [100]. Not every function in a program-
ming language is defined for each data type. Applying an append operation on
an integer would result in an exception, either during runtime if the language is
interpreted or the program would not even compile. Through proper design of
grammars, these problems can be avoided, and it can be assured that all indi-
viduals evolved with the grammars are going to be syntactically correct. For this
purpose, each grammar contains a rule that returns a value, like bool.bnf <bool>,
which defines all possible operations that operate with boolean values. Another
rule for variable definition is required. In case of bool.bnf, it is <bool_var>, which

65

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

structure.bnf
bool.bnf list_bool.bnf
integer.bnf list_integer.bnf
float.bnf list_float.bnf
string.bnf list_string.bnf

Figure 4.1: Grammars per data type.

<bool_assign> ::= <bool_var>’ = ’<bool>
<bool_var> ::= ’b0’ | ’b1’ | ’b2’
<bool> ::= <bool_var> | <bool_const>

| <bool_pre> <bool>
| ’(’ <bool> <bool_op> <bool> ’)’

<bool_const> ::= ’True’ | ’False’
<bool_pre> ::= ’not’
<bool_op> ::= ’and’ | ’or’

Figure 4.2: Boolean grammar (bool.bnf)

contains all boolean variables that can be used. The last rule that is required is
one to assign values to variables, <bool_assign> in case of bool.bnf as shown
in Figure 4.2. All grammars are defined in the context-free Backus-–Naur Form
(BNF).

Functions might require multiple different data types as input and output.
For example, the comparison of two integers results in a boolean value. Such
operations can be added to either grammar. Before using the grammars, they
have to be combined depending on the data types required for a problem. This
process can easily be automated, and additional steps can be taken. One is to
remove functions for which not all possible data types are available. For example,
the integer comparison operation can be removed if the boolean data type is
not used. Another step is to remove unit-productions, rules that only contain a
single production. Every instance of the non-terminal of that rule can be replaced
with its production as there is only one option. During the process of combining
grammars, the number of variables available and input and output variables have
to be added as well. The data types of the input and output of a program are
known beforehand, and variables for those can be added to the corresponding
grammars. The number of variables required for a program to store temporary
data is most likely not known, which poses a problem, as individuals can only
consist of what is defined in the grammars. Therefore the number of variables has

66

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

to be defined beforehand unless the grammar is changed during the evolutionary
process [130]. In the example in Figure 4.2, <bool_var> has three variables, but
more could be added.

The grammars created in this thesis are aimed to tackle general program syn-
thesis problems without being tailored to any specific problem. Nevertheless,
grammars provide one with the possibility to easily adapt them if required for a
particular case. This could either be by adding bias to use a specific function,
by adding it more often to the grammar and therefore increasing the chance of it
being used or by adding complete code snippets. Another advantage of grammars
is that functionality of any library available in a programming language can be
added if necessary to evolve even more complex programs, instead of evolving
everything from scratch.

As the grammar design pattern introduced in this section, is targeted to evolv-
ing code for a single programming language, the grammars have to be written for
every programming language for which code should be evolved for. But this pro-
cess has to be done only once, as the grammar can be reused because of the
aim for tackling general program synthesis problems. The grammars written for
this thesis target Python and are available online [37] as part of the G3P plugin
used for all experiments as well as in Appendix B, which also describes how the
automatic combination of grammars takes place.

4.2.2 Skeleton

The skeleton is the second part of the grammar design approach. The skeleton
consists of multiple components. It contains the libraries used, if any, required
by the grammars and the evolved code, protected methods to guarantee evalu-
ation safety, a method header for the code that should be evolved and a fitness
function. A shortened example of a skeleton is shown in Figure 4.3 and its parts
are highlighted. While the libraries and protected methods are mostly problem
independent, the method header and fitness function are specific to a problem.
GP systems usually have protected methods in regression, like protected division
to avoid division by zero. Protected methods are defined in the skeleton and
are used in the grammar to prevent exceptions during runtime. The protected
methods can be reused across different problems. The method header specifies
the input and output variables for the problem. The variables are defined in the

67

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

import maths
import Levenshtein

Protected Methods
def div(nom, denom):

return num if denom <= 0.00001 else num / denom
...

evolved function
def evolve(in0, in1):

<insert_code_here>
return res

def fitness(in_val, out_val):
fit = []
for (i, o) in zip(in_val, out_val):

fit.append(abs(evolve(i[0], i[1]) - o[0]))
return fit

Figure 4.3: Example skeleton in Python. Available libraries are highlighted in
green, protected methods in blue, method header in red and fitness function in
orange.

grammar with the corresponding data type. In case of Python, the data type
does not have to be specified in the method header. The skeleton even specifies
the fitness function, which provides certain benefits. As the whole skeleton is in
the same programming language as the code that is going to be evolved, it can be
executed as a whole with the evolved code. There is no need to implement every
fitness function for every program synthesis problem within the GP system as it
will be different for every single one. Additionally, the grammars and skeleton can
be easily exchanged with other researchers or practitioners. A G3P system just
needs to be able to execute code of the target programming language.

4.2.3 Comparison of Program Synthesis Approaches

The design pattern approach presented in this chapter poses many advantages
over the methods discussed in Section 4.1. The main advantage over previously
used grammar-based approaches is that this grammar design pattern produces
reusable grammars which are not customised to a single specific problem. The

68

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

design pattern is also not tailored for a particular programming language, like
PushGP. Grammars for arbitrary languages can be created, which has to be done
only once, and the full extent of libraries available in a language can be integrated
if desired as the evolved code is executed in the language it is targeted for. There
is also no need to reimplement a system as with SFGP if one does not want to use
the original source because grammars can be exchanged between any G3P system
as well as the skeletons. The grammar design pattern approach also satisfies
the closure property due to the type consistency in grammars and evaluation
safety from the skeleton. This helps the GP system to work effectively and avoids
syntactically incorrect programs as well as should keep errors to a minimum. The
evolved code can also be integrated into real-world applications as the code is not
evolved in some form of pseudocode.

Although the presented grammar design pattern offers advantages over other
systems, it also has its limitations. One disadvantage is that grammars and skele-
tons have to be created by hand for every new language. Even though that requires
substantial knowledge of the new programming language, especially to make the
grammars type consistent, this process has to be done only once for each program-
ming language. Afterwards, only the problem specific parts of a skeleton have to
be adapted to specify the correct method header for a problem and to have the
correct fitness function. An advantage PushGP still has is that no variables have
to be defined as data is stored on stacks. Grammars require the number of vari-
ables available beforehand and have to be estimated per problem. Although it is
possible to adapt grammars during the search process [130], this solution has not
yet been further investigated for the grammar design pattern approach proposed
here. One benefit bespoke grammars have over more general grammars is that
the search space is most likely smaller. Even though this might be the case, as
grammars can be easily be adapted, the search space can be further restricted in
the proposed approach as well. Additionally, writing a bespoke grammar for a
specific problem can be time intensive, while the grammar design approach can
be applied to arbitrary problems, as will be shown in Section 4.3.

The advantages and disadvantages of the grammar design approach are sum-
marised below:

Pros:

∙ All individuals are syntactically correct

69

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

∙ Protected methods keep exceptions to a minimum

∙ Produces code in a programming languages used by practitioners

∙ Use of libraries of programming languages

∙ Grammars and skeletons are reusable for arbitrary problems

Cons:

∙ Grammar and skeleton have to be created by hand and for the first time for
a new language

∙ Grammars have to be made type consistent

∙ Variables have to be predefined

∙ Search space might be more extensive than required

As code for Python is going to be evolved in the following experiments, gram-
mars for all data types from Figure 4.1 and skeletons for the problems of the
general program synthesis benchmark suite, see Section 2.3.2, are already avail-
able in Python. Although the process of writing the grammars from scratch can
seem complicated, extending them with additional functionality is easy. Addition-
ally, the Python grammars can also be used as examples for other programming
languages.

4.2.4 Python Specific Differences

Even though the concept presented can be applied to create grammars for arbi-
trary programming languages, some parts are specific to a language. The main
Python specific difference in the grammars, compared to other languages, is that
Python uses indentation instead of brackets to separate code blocks. It is not pos-
sible to add information about the code block level, the number of indentations
required, within a context-free grammar, as information of the indentation level of
the previous block would be needed, also known as off-side rule [131]. A Context-
Sensitive Grammar (CSG) [87] would be required to cope with indentation levels.
To avoid CSG’s and at the same time keep it similar to other languages, special
characters “{:” and “:}” have been introduced in the grammar to identify code

70

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

blocks. Before executing the evolved code, the code created by the grammar will
be preprocessed to add the indentation required and to format it according to the
Python syntax.

Another aspect that has to be taken care of that affects all languages is that
methods used in different languages have different behaviour. Therefore, protected
methods need to be adapted not only due to the different syntax but also due to the
default behaviour of a language. Protected methods are necessary, as mentioned
before, to guarantee evaluation safety and keep exceptions which result in invalid
individuals to a minimum.

4.2.5 Invalid Individuals

While grammars guarantee syntactically correct code and protected methods in
the skeleton reduce errors, runtime exceptions and long evaluations cannot be
avoided entirely. If any runtime exceptions occur, for example memory overflow
or stack overflow, the individual will be marked as invalid and assigned the worst
possible fitness. The main problem still is long evaluation and the halting prob-
lem [132, 133]. The halting problem is that given a program and an input, it
is not possible to prove if the program will stop eventually or run forever, for
example due to infinite loops. In most cases in GP, this is not a major concern as
programs can be given a time budget within programs have to finish. The idea
proposed to let G3P run real code within the corresponding interpreter or on the
machine directly can be executed in a separated process which can be stopped
if not finished within the time budget or even a virtual machine could be used
to have even more control. If a program needs to be stopped, its corresponding
individual will be given the worst possible fitness as no evaluation was possible.
A timeout parameter for the time budget can be given to the G3P system. This
parameter should not be seen as a way to control for code performance, but as
a last resort to stop evaluation. One origin for problems with programs that do
not stop was found during preliminary experiments which are loops. Loops are
necessary in programming to execute the same set of instructions multiple times.
Loops may never stop if its stopping condition never becomes true. To reduce the
number of individuals that timeout which results in the worst possible fitness and
no information about what the individual does can be gained, a maximum number
of loop iterations is added. This can be done by adding a small piece of code at

71

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

the end of the loop statement in the grammar, that always stops loops after a
certain number of iterations. The number of iterations allowed is set for all loops
globally, which means that the iterations of all loops are added up. The reason is
that even a small number of iterations for each individual loop can result in long
evaluations if the loops are nested which increases the runtime exponentially.

4.3 Experimental Setup

The general program synthesis benchmark suite presented in Section 2.3.2 has
been used to test the grammar design pattern presented in this chapter, as it con-
tains an extensive set of 29 program synthesis problems of varying difficulty. The
benchmark suite has been tested on first with PushGP [95], which will, therefore,
be compared to. In order for a fair comparison, the functions available in the
grammars are only a subset of the built-in functionality available in Python. The
parameter settings for the experiments are as close as possible to the settings give
in [1], but most of them are PushGP specific. PushGP has been tested with three
different selection operators. Tournament selection, Implicit Fitness Sharing [134]
and Lexicase selection [61]. Experiments conducted to compare to PushGP will
be executed with tournament selection and lexicase selection. Tournament se-
lection will be used, because it is the most commonly used in GP, and lexicase
selection because it has been the most successful one on program synthesis prob-
lems. Other parameter settings have chosen from typical GP settings and are
summarised in Table 4.1. Additional to the required input and output variables
for each problem, a number of three additional variables per data type is used to
store temporary data, which is more than enough for all problems. This number
has to be predefined as explained in Section 4.2.1. Increasing this number will
also increase the search space. The maximum execution time which is required to
stop non-halting programs has been set to one second which is sufficient as the
programs should be able to finish within less than a tenth of a second on each
problem. PushGP uses a number of steps the interpreter is allowed to execute
as it has full control of the interpreter. Using a number of steps is not possible
when using default interpreters or compilers as such options are not available.
The interpreter used in for the experiments is CPython, which is the reference
implementation of Python.

72

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

Table 4.1: Experimental parameter settings

Parameter Setting
Runs 100
Generations 300 1

Population size 1000
Tournament size 7
Crossover probability 0.9
Mutation probability 0.05
Elite size 1
Node limit 250
Variables per type 3
Max execution time 1 second
1 200 Generations for Median, Number

IO and Smallest as set in [1]

Although the experiments conducted are the same as in [128] the results may
differ slightly. In [128] grammars have been combined by hand, which is now
done automatically, which removes possible errors made by hand as well as unit-
productions are removed. Lastly, minor tweaks to the grammars have been made
since the original paper was published.

4.3.1 PushGP Differences

PushGP and the grammar design pattern are different approaches to program
synthesis, and two critical aspects should be noted. In PushGP, programs in-
clude instructions to print data which is sometimes expected as output. The code
evolved with the grammar design approach are methods with only input and out-
put variables and no additional print instructions. Results that should be printed
have to be returned. Therefore, certain problem specific terminals, mostly strings,
that are only used to format the output are not included in the grammars. Due to
this difference and because the grammars do not allow data structures to contain
different data types to guarantee type safety, the problem String Differences has
been excluded from the benchmark suite, as it requires to either print or to have
a data structure containing different data types. String Differences has not yet
been solved with PushGP.

73

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

4.3.2 Derivation Tree Structures

Chapter 3 studied the difference of derivation tree structures created by gram-
mars or specifically by their recursive rules. Although the conclusion was drawn
that there are performance improvements when the non-recursive part of a re-
cursive rule can be exchanged in one operation, no answer could be given if the
overall structure, either list-like or tree-like, influences performance on the prob-
lem at hand. It was experimentally shown that this is not the case for sorting
networks. This conclusion cannot be extended to other problems. To this end,
further experiments are conducted with the grammar design approach on pro-
gram synthesis problems with different grammar structures. Similar to sorting
networks, the recursive rules have been adapted to create different derivation tree
structures. There are three direct recursive rules in the grammars for program
synthesis. <code> creates a range of statements (<statement>). <number> and
<string_const_part> create numerical and string constants. All three rules are
part of structure.bnf. In Chapter 3, five different grammars have been created,
although two of them only added an additional rule to aggregate the non-recursive
part. From a perspective of different structures in the derivation tree, Chapter 3
only contained three different grammars. The recursive rules that created the
different structures are shown in Table 4.2. Whereas the first rule List creates a
list-like structure, the other two Tree and Binary create tree-like structures. The
recursive rules, <code>, <number> and <string_const_part>, in structure.bnf of
the grammar design pattern approach are replaced with the generic rules from
Table 4.2 and each will be executed on the program synthesis benchmark suite as
in the previous experiment, which already uses the List rule. These experiments
aim to check if the structure of the derivation tree influences the performance of
the search algorithm.

Other parameter settings are the same as before, shown in Table 4.1. Only
lexicase selection is used for the experiments on grammar design, as the previ-
ous experiment will show that this selection operator is superior to tournament
selection on program synthesis problems.

74

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

Table 4.2: Three different recursive rules for creating different derivation tree
structures.

Name BNF
List: <recursive> ::= <recursive><non-recursive>

| <non-recursive>
Tree: <recursive> ::= <recursive><non-recursive>

| <non-recursive><recursive>
| <recursive><non-recursive><recursive>
| <non-recursive>

Binary: <recursive> ::= <recursive><recursive> | <non-recursive>

4.4 Results

This section analyses and discusses the results of the experiments conducted in
this chapter. Even though the results are going to be compared to the results
achieved with PushGP [1], the overall goal is to test if the grammar design pat-
tern can solve general program synthesis problems without being tailored to a
specific problem and therefore is flexible for use in the program synthesis domain
in general. Additionally, advantages and disadvantages are uncovered during the
analysis which can help to improve the concept further. Furthermore, the influ-
ence of the derivation tree structure on program synthesis problems is analysed
as a continuation of the work in Chapter 3.

Although Helmuth et al. state in [135] that PushGP has been able to solve
Checksum in contrary to [1] and that Vector Average has been solved more often,
no actual numbers of how often this occurred have been given. Therefore, the
numbers available in [1] will be used for comparison between G3P and PushGP.

4.4.1 Tournament Selection

The left-hand side of Table 4.3 shows the results achieved with tournament se-
lection with G3P compared to PushGP. The values are the number of runs that
produced a successful solution. A successful solution or correct individual is a
program that was able to correctly solve all training cases and generalise to the
unseen test cases. The grammar design approach with G3P was able to solve 11
out of the 28 problems at least once with tournament selection and even two, For
Loop Index and Grade, that PushGP did not solve. All these problems require
different data types including the list data structure. G3P solved a variety of

75

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

problems in terms of required data types without using tailored grammars. This
shows that the approach presented in this chapter can be used to solve general
program synthesis problems.

Nonetheless, PushGP found at least one correct for 13 problems including four
that G3P was not able to solve with tournament selection. When looking at the
numbers of runs that evolved a successful solution, then it can be seen that G3P
in cases when a correct solution was found this number was often substantially
higher. To be exact, for five problems, Median, Negative To Zero, Number IO,
Smallest and String Length Backwards, G3P had at least ten more runs than
PushGP that found correct solutions, while that was only the case for two, Mirror
Image and Vector Average, the other way around.

4.4.2 Lexicase Selection

Using lexicase selection with G3P increases the number of problems solved at least
once and the number of successful solutions found in 100 runs compared to using
tournament selection, similar to the findings in [1] with PushGP. To the author’s
knowledge, this is the first time that lexicase selection was used in a G3P system,
including [128]. With lexicase selection, G3P solves 16 problems at least once,
which is five more than before and the number of successful solutions increased
or is equal to tournament selection in all, except three cases. This shows that
lexicase selection is a useful operator in the program synthesis domain. Further,
the results indicate even stronger than with just tournament selection that the
grammar design approach can be used to successfully tackle general program
synthesis problems, which was the goal of this chapter.

When comparing G3P to PushGP on lexicase selection, PushGP is still able to
solve more problems at least once. This is not surprising as the grammars created
for G3P only contain basic Python functionality which was restricted not to exceed
the functionality of Push. It should be pointed out to the reader that this is the
case for all available data types except, string. Four functions, namely strip,
lstrip, rstrip and capitalize have been overlook before the experiments and
are part of the grammars, but not available in Push. These methods did not give
G3P much, if any, advantage, as it performed poorly on problems that use the
string data type, as will be shown in Table 6.1 in Chapter 6.

76

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

Table 4.3: Number of times a correct individual was found that solves all test
cases for all 29 Problems with tournament and lexicase selection. PushGP results
taken from [1]. The best results are marked in bold. The column “Diff” shows
the difference between G3P and PushGP.

Tournament Lexicase
Problem G3P PushGP Diff G3P PushGP Diff
Checksum 0 0 0 0 0 0
Collatz Numbers 0 0 0 0 0 0
Compare String Lengths 2 3 -1 2 7 -5
Count Odds 0 0 0 12 8 +4
Digits 0 0 0 0 7 -7
Double Letters 0 0 0 0 6 -6
Even Squares 0 0 0 1 2 -1
For Loop Index 1 0 +1 8 1 +7
Grade 4 0 +4 31 4 +27
Last Index of Zero 2 8 -6 22 21 +1
Median 48 7 +41 79 45 +34
Mirror Image 0 46 -46 0 78 -78
Negative To Zero 79 10 +69 63 45 +18
Number IO 94 68 +26 94 98 -4
Pig Latin 0 0 0 0 0 0
Replace Space with Newline 0 8 -8 0 51 -51
Scrabble Score 0 0 0 1 2 -1
Small Or Large 8 3 +5 6 5 +1
Smallest 97 75 +22 94 81 +13
String Lengths Backwards 18 7 +11 69 66 +3
Sum of Squares 0 2 -2 3 6 -3
Super Anagrams 0 0 0 0 0 0
Syllables 0 1 -1 0 18 -18
Vector Average 1 14 -13 16 16 0
Vectors Summed 0 0 0 91 1 +90
Wallis Pi 0 0 0 0 0 0
Word Stats 0 0 0 0 0 0
X-Word Lines 0 0 0 0 8 -8

77

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

Table 4.4: Statistics of how many problems have been solved, how often G3P
or PushGP did better than the other with the same selection method and the
average rank of each method.

G3P PushGP
Tour Lex Tour Lex

of solved Problems 11 16 13 22
Better than same selection method 9 10 7 11
Average rank 2.21 1.64 2.46 1.50

At the same time, PushGP includes some functionality that has not been added
to the grammars, because the grammars should be kept as general as possible to
contain merely built-in Python functions. PushGP was able to solve six problems
at least once that G3P was not able to solve at all. While PushGP even has 11
problems where more successful solutions have been found, only 5 when excluding
the ones G3P was not able to find any successful solutions, G3P outperforms
PushGP on ten problems in this regard. And when looking at the difference of
the number of successful solutions found, G3P has five problems, namely Grade,
Median, Negative To Zero, Smallest and Vectors Summed, with a difference of
10 or more successful runs, whereas PushGP only has 3, Mirror Image, Replace
Space with Newline and Vector Average. Of these three, G3P was not able to
solve any of them. All this indicates that if G3P was able to solve more problems
from the benchmark suite, it might outperform PushGP.

Table 4.4 shows the number of problems solved with each approach and selec-
tion operator, as well as the number of problems where an approach with a par-
ticular selection method outperformed the other with the same selection method.
Finally, it shows the average rank of each method and selection operator. The
average rank for lexicase selection is lower than with tournament selection, which
indicates that lexicase selection outperforms tournament selection. Otherwise,
both systems, G3P and PushGP, achieve similar ranks.

Overall G3P is able to solve a variety of different general program synthesis
problems and achieve competitive results to PushGP, the only other GP sys-
tem that has been tested on this benchmark suite as well. In a study on the
difficulty of benchmarking program synthesis methods [136], two other non-GP
systems that have been tested on the benchmark suite, namely Flash Fill [81] and
MagicHaskeller [9, 80]. Although it should be mentioned that Flash Fill’s primary
purpose is not to generate general-purpose programs but to be used within Mi-

78

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

crosoft Excel to perform string manipulation and therefore could not be tested on
all benchmark problems, both systems were outperformed by G3P and PushGP.
Flash Fill could not find a solution to any of the 21 problems it has been tested
on and MagicHaskeller only to 6 out of all 29 problems. Hence, these two systems
have not been used in the comparison of this chapter.

4.4.3 Generational Progress and Invalids

For the experiments conducted in this chapter, the parameter settings have been
taken from [1], which use 300 generations for all experiments except Number IO,
Smallest and Median. Table 4.5 shows the average generation when a solution
was found for each problem with G3P with lexicase selection. If a run did not
produce a correct solution, it has been excluded. This number is below 100 for ten
problems, which means that solutions have been found in the first third (or half)
of the search. Only 33 correct solutions over the total of 592 solutions found for all
problems have been discovered after generation 200. This indicates that in some
cases the number of generations, therefore computational effort, can drastically be
reduced without significantly reducing the number of successful solutions found.
No numbers for PushGP are available to compare this to.

Another phenomenon that was also present for PushGP is that for certain
problems a high number of solutions were found which correctly solved all training
cases but failed to generalise to the test cases. G3P shows similar behaviour. G3P
produced on seven problems more than 20 programs that correctly solve training
but not test. In case of Compare String Lengths this number is even 97 and for
Grade, Mirror Image and Small Or Large 50 or higher. This phenomenon might
be caused by lexicase selection, as it also appears with PushGP but does not
happen that regularly with tournament selection.

The skeleton used in the grammar design approach contains protected methods
to provide evaluation safety, and the grammars provide type safety. The idea
behind this is to avoid exceptions which marks them as invalid and results in
giving individuals the worst possible fitness. This helps to have an effective search
process. Exceptions can still occur, e.g. due to memory errors or stack overflows.
Also if an evaluation takes longer than the maximum execution time of one second,
it will just timeout and also be marked as invalid. Table 4.5 show the percentage
of invalid individuals encountered during the search averaged over all runs per

79

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

Table 4.5: Average generation a solution was found with G3P with lexicase selec-
tion and the percentage of invalids including (incl.) and excluding (excl.) indi-
viduals that timed out during evaluation.

Problem name Avg. generation Invalids incl. Invalids excl.
Checksum - 0.30% 0.001%
Collatz Numbers - 0.10% 0.001%
Compare String Lengths 11.50 0.37% 0.002%
Count Odds 176.25 1.46% 0.003%
Digits - 1.41% 0.018%
Double Letters - 0.68% 0.037%
Even Squares 262.00 1.10% 0.007%
For Loop Index 149.13 1.36% 0.002%
Grade 91.10 1.14% 0.001%
Last Index of Zero 88.59 2.36% 0.006%
Median 13.51 0.23% 0.000%
Mirror Image - 0.84% 0.000%
Negative To Zero 35.32 2.48% 0.014%
Number IO 45.18 0.00% 0.000%
Pig Latin - 0.58% 0.030%
Replace Space with Newline - 0.25% 0.013%
Scrabble Score 179.00 0.71% 0.007%
Small Or Large 77.00 0.63% 0.000%
Smallest 6.78 0.69% 0.000%
String Lengths Backwards 81.17 1.10% 0.005%
Sum of Squares 245.33 0.16% 0.002%
Super Anagrams - 0.98% 0.000%
Syllables - 0.39% 0.003%
Vector Average 173.81 0.55% 0.031%
Vectors Summed 42.16 1.51% 0.013%
Wallis Pi - 0.15% 0.000%
Word Stats - 0.61% 0.009%
X-Word Lines - 0.90% 0.014%

80

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

problem including and excluding invalids due to timeouts. As can be seen, most
problems produce less than one percent of invalids and only two problems, Last
Index of Zero and Negative To Zero produce more than two percent. Most of these
invalids happen due to a timeout during the evaluation. All problems produce
invalids of less than 0.04% due to other exceptions. This shows that the skeleton
provides evaluation safety, although further protections could be put in place by
restricting numbers to a specific range, as Python does not have a real upper or
lower limit, or the length of strings and lists which can cause memory errors.

4.4.4 Derivation Tree Structures

Finally, Table 4.6 shows the number of successful solutions found over 100 runs
with G3P and lexicase selection for the three derivation tree structures presented
in Section 4.3.2 to analyse if the derivation tree structures influence the search
performance. The results of List are the same as in Table 4.3 as the same structure
has been used. Overall, it can be seen that all three derivation tree structures
achieve similar results on all problems. On the one hand, Binary is the only on that
successfully solved Mirror Image once, but List was able to produce 51 solutions
that solved all training cases for Mirror Image, but they did not generalise to the
test. On the other hand, Binary does not have any solutions for Even Squares
and Sum of Squares. The number of found solutions is rather small for all three
problems with any derivation tree structure. Even when examining the p-values,
which have been calculated with the Wilcoxon Rank sum test and shows if there
is a significant difference between two structures used, there is no evidence to
support that one derivation tree structure is superior to another. This indicates
that the derivation tree structure of grammars has little influence on the grammar
design on general problem synthesis problems as was also demonstrated for sorting
networks in Chapter 3.

4.5 Summary

In this chapter, a grammar design pattern for creating grammars in arbitrary
programming languages to tackle general program synthesis problems has been
presented. The design approach consists of multiple grammars of various types
to provide type safety and a skeleton to achieve evaluation safety. This approach

81

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

Table 4.6: The Table shows the number of successful solutions found over 100 runs
with different derivation tree structures as well as the p-values when comparing
the test fitness of two structures calculated with the Wilcoxon Rank sum test.
p-values lower than 0.05 are marked in bold (L = List, B = Binary, T = Tree).

Solved Runs p-value
Problem List Tree Binary L-T L-B T-B
Checksum 0 0 0 0.877 0.812 0.898
Collatz Numbers 0 0 0 0.521 0.310 0.690
Compare String Lengths 2 4 1 0.138 0.036 0.686
Count Odds 12 12 11 0.399 0.660 0.166
Digits 0 0 0 0.022 0.102 0.553
Double Letters 0 0 0 0.833 0.248 0.187
Even Squares 1 1 0 0.000 0.009 0.027
For Loop Index 8 13 11 0.915 0.491 0.690
Grade 31 34 33 0.738 0.652 0.812
Last Index of Zero 22 29 29 0.349 0.573 0.679
Median 79 90 89 0.029 0.063 0.781
Mirror Image 0 0 1 0.602 0.388 0.224
Negative To Zero 63 72 76 0.102 0.012 0.424
Number IO 94 98 93 0.006 0.007 0.860
Pig Latin 0 0 0 0.210 0.931 0.217
Replace Space with Newline 0 0 0 0.391 0.719 0.621
Scrabble Score 1 2 4 0.238 0.492 0.106
Small Or Large 6 9 7 0.435 0.593 0.947
Smallest 94 88 93 0.146 0.828 0.212
String Lengths Backwards 69 61 61 0.354 0.102 0.443
Sum of Squares 3 3 0 0.000 0.000 0.549
Super Anagrams 0 0 0 0.067 0.249 0.487
Syllables 0 0 0 0.233 0.000 0.000
Vector Average 16 6 7 0.000 0.031 0.098
Vectors Summed 91 93 83 0.636 0.072 0.026
Wallis Pi 0 0 0 0.031 0.060 0.589
Word Stats 0 0 0 0.016 0.421 0.248
X-Word Lines 0 0 0 0.021 0.437 0.177

82

CHAPTER 4. PROGRAM SYNTHESIS GRAMMAR DESIGN PATTERN

solves the problem of creating a new tailored grammar from scratch for every
program synthesis program that is going to be tackled with a G3P system.

Experiments have been conducted on the general program synthesis bench-
mark suite to validate that it can be applied to various problems requiring multi-
ple data types and to evaluate the design pattern approaches’ performance. The
results achieved with the design pattern has been compared to PushGP, the only
other system that has been tested on the benchmark suite with substantial success.
The overall results of the grammar design approach are competitive to PushGP
and showed that lexicase selection is the superior selection method for program
synthesis problems. In many cases, G3P only used up a fraction of the available
number of generations to find a correct solution, while the percentage of invalid
individuals was kept small due to the evaluation safety of the grammar design
approach. Further experiments have been conducted to show that the derivation
tree structure has little influence on the search performance similar to sorting
networks in Chapter 3.

Randomly selected solutions that solve each problem with the grammar design
approach are shown in Appendix E for visualization of the code that can be
evolved.

Part III contains three chapters which are expansions to this one. First, Chap-
ter 5 analyses the computational effort required to solve program synthesis prob-
lems and uncovers signals that help practitioners improve success rates. Then,
Chapter 6 shows an example of how grammars from the grammar design ap-
proach can be extended and analyses what is missing to solve more problems of
the benchmark suite with G3P. Finally, Chapter 7 explains the concept of seman-
tics in program synthesis in detail and introduces novel semantic operators in the
domain of program synthesis to improve success rates.

83

Part III

Extended Experimental Research

84

Chapter 5

Refining Computational Effort
for Program Synthesis

The previous chapter, a grammar design pattern to tackle general program syn-
thesis problems has been introduced. The grammar design pattern approach with
Grammar-Guided Genetic Programming (G3P) has been able to solve a variety
of problems from the general program synthesis benchmark suite as has PushGP
before. While Genetic Programming is capable of finding correct solutions, the
actual success rate per problem is low in many cases. The work that follows stud-
ies the computational effort required to solve program synthesis problems to check
if an increase in computational effort can increase the success rates or if there are
underlying problems that prevent G3P from achieving a higher success rate. The
reason is that although problems in the benchmark suite are of varying difficulty,
the computational effort specified in [1], is identical for almost all problems. To
this end, a subset of problems from the benchmark suite is identified on which
G3P performs poorly. An increased amount of computational effort is provided
for these problems, and the performance of G3P is analysed. The results suggest
that an increase of computational effort is helpful to solve more problems and a
bigger training set is required to help solutions to generalize to the test set. This
chapter is based on work from [137].

85

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

5.1 General Program Synthesis Benchmark
Suite Remarks

When the general program synthesis benchmark suite was first presented, PushGP
was able to solve 22 of all problems at least one out of 100 times, although success
rates vary depending on the problem. Since then, the datasets of two problems,
Checksum and Vector Average have been adapted with additional data, which
made it possible for PushGP to solve Checksum and increase the success rate of
Vector Average [135].

Subsequently, the benchmark suite has been tested with other systems. A
grammar design approach with G3P was tested in Chapter 4, whose results were
compared to PushGP. Although PushGP was able to find at least one solution to
more problems, in general, the success rate on problems that G3P found solutions
for was higher on most problems.

A more exhaustive study of different inductive program synthesis methods was
conducted by Pantridge et al. [136]. The five methods tested are again the two
GP systems PushGP and G3P as well as Flash Fill [81], MagicHaskeller [80, 9]
and TerpreT [138], which have not been tested on the benchmark suite before.
TerpreT is the only one that has not been used on the benchmark suite, as no
implementation of it is publicly available. As FlashFill and MagicHaskeller are
deterministic, a single run is sufficient to check if a solution can be found. FlashFill
was designed for string manipulation within spreadsheets. Therefore it cannot be
applied to all problems and subsequently fails to find solutions for many problems
in the benchmark suite. MagicHaskeller was applied on all 29 problems and at
least managed to find solutions for 6 of them. The results are not compared on
success rates, but merely on the fact if a solution was found or not, which seems
reasonable for deterministic algorithms, but bears little meaning for stochastic
algorithms. A stochastic algorithm like a GP system that is run up to 100 times
on a specific problem and only comes up with a single solution is not reliable and
could have found a solution by chance. In such a case the problem can hardly be
counted as solved.

Low success rates are problematic when comparing different stochastic ap-
proaches or operators, as it is difficult to distinguish if a new approach was more
successful or if the increase in successful solutions found was by chance. This
issue becomes even more problematic, if many solutions have been found on a

86

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

program synthesis problem that do not generalize to the test set, which has been
shortly discussed in [1] for PushGP and has been a problem for the grammar
design approach as well, which will be examined in this chapter as well.

5.2 Experimental Setup

As the goal of this work is to analyse and better understand the existing suite
of benchmark problems, the problems have been categorized based on the ease
with which they have been solved to date. Problems have been put into three
categories depending on the success rate of G3P in 100 runs.

High Problems with more than 50 successful solutions

Medium Problems with more than 5 but below or equal to 50 successful solutions

Low Problems with less than or equal to 5 successful solutions

These thresholds have been chosen without a statistical measure and are open
to discussion, but seemed adequate when looking at the success rates achieved.

The focus of this chapter is to check if an increase in computational effort can
increase the success rates or if there are underlying problems that prevent G3P
from achieving a higher success rate. At the same time the experiments should
give a deeper understanding of why success rates are low in some instances. The
subset of problems selected for this study is shown in Table 5.1. The problems
marked with an X in column “Used” have been tackled in this study. All problems
categorized with a medium success rate as well as all that have been solved at
least once from the low success rate category are used in this study, as the idea
is to see if and how the success rate increases. Additionally, Checksum has been
added, because the training set changed since the introduction of the benchmark
suite, Super Anagrams because the number of runs that solve the training set was
high in previous experiments, as well as Mirror Images which has been solved one
time in 100 runs in Chapter 4 with the binary grammar structure as shown in
Table 4.6.

5.2.1 Parameters and Computational Effort

The general program synthesis benchmark suite [1] was first used with PushGP
as explained in Section 2.3.2 and therefore parameter settings for PushGP are

87

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

Table 5.1: Number of solutions found that correctly solve the test data with 100
runs on the general program synthesis benchmark suite with G3P. The table also
shows if a problem is used in this thesis and the number of training and test cases.

Problem Successes Used Training Test
Number IO 94 25 1000
Smallest 94 100 1000
Vectors Summed 91 150 1500
Median 79 100 1000
String Lengths Backwards 69 100 1000
Negative To Zero 63 200 2000
Grade 31 X 200 2000
Last Index of Zero 22 X 150 1000
Vector Average 16 X 100 1000
Count Odds 12 X 200 2000
For Loop Index 8 X 100 1000
Small Or Large 6 X 100 1000
Sum of Squares 3 X 50 50
Compare String Lengths 2 X 100 1000
Even Square 1 X 100 1000
Scrabble Score 1 X 200 1000
Checksum 0 X 100 1000
Collatz Number 0 200 2000
Digits 0 100 1000
Double Letters 0 100 1000
Mirror Image 0 X 100 1000
Pig Latin 0 200 1000
Replace Space with Newline 0 100 1000
Super Anagrams 0 X 200 2000
Syllables 0 100 1000
Wallis Pi 0 150 50
Word Stat 0 100 1000
X-Word Lines 0 150 2000

88

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

Table 5.2: Experimental Parameter Settings. Increased effort settings are marked
in bold.

Parameter Increased effort / Default
Runs 100
Generations 600 / 300
Population size 2000 / 1000
Crossover probability 0.9
Mutation probability 0.05
Elite size 1
Node limit 250
Variables per type 3
Max execution time 1 second

available, which are not applicable to all other GP systems, except, e.g. popula-
tion size and number of generations. The population size and maximum number
of generations in the benchmark suite description was set to 1000 and 300 respec-
tively, except for Number IO, Median and Smallest, which only were allowed to
use 200 generations. When G3P was tested on these problems, the same settings
were used to be able to make a comparison between the two approaches.

To analyse if GP is unable to solve the selected problems more often or if the
computational effort it is given is just too limited, the population size and the
number of generations were doubled which quadruples the search effort. All other
parameter settings have been taken from Chapter 4 and no parameter tuning has
taken place to be consistent and to allow for cross-comparison. A summary of the
settings is shown in Table 5.2. Lexicase selection [61] is used as it was shown to be
superior to other selection operators in the program synthesis domain. Additional
to the usual stopping criterion, the maximum number of generations, for GP,
runs are also stopped as soon as a successful solution based on the training data
is found, as runs cannot further improve the results without looking at additional
data when all training cases are solved.

5.2.2 Larger Training Set

A subset set of problems marked in Table 5.1 has been used to analyse problems
that show a high success rate on training, but fail to generalize to the test set.
G3P achieved a twice as high or even higher success on training than on test
on a number of problems with increased computational effort. Therefore, an

89

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

additional experiment with an increased training set size was carried out with
problems that showed such a characteristic after increasing the computational
effort. Section 5.3.4 explains and discusses that experiment and its results.

5.3 Results

This section discusses the results of the experiments run with increased compu-
tational effort, where the population size and number of generations have been
doubled. First, the overall success rate and performance of the two parameter
settings are compared. Afterwards, specific problems with the datasets and over-
fitting are analysed, which are addressed in a subsequent experiment.

5.3.1 Success Rates

The number of successful runs on all the problems tackled as well as the average
test fitness of the best training individual per runs are shown in Table 5.3. The
number of successful runs is of importance in program synthesis as a program that
not always gives the correct answer might be of little use unless it can be repaired
after the run. Nevertheless, the test fitness of the best training solution gives a
good indication of how close to the optima a solution is. A Wilcoxon rank-sum
test is used to compare the test fitness of the best training solutions. The p-values
are also shown in Table 5.3.

Statistically significant different values are indicated in bold. As expected
when increasing the computational effort, many problems show a significant dif-
ference, 8 out of 13. In some cases, like Compare String Lengths and Grade, it is
not surprising that no difference is found. Even though the number of successful
solutions was increased, the number of solutions that pass all training cases is al-
ready rather high, which indicates that the runs have finished. Therefore the eight
significantly different problems with increased effort are an improvement over the
default setting. In many cases, even the number of successfully found solutions
has drastically improved. In some cases, this number was nearly doubled or, in
the extreme case of Sum of Squares, increased by more than eight times what was
achieved with the default setting.

In all cases, except Checksum, the number of solutions found that correctly
solve training has increased, but on 10 out of 13 problems, the increased effort

90

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

Ta
bl

e
5.

3:
R

es
ul

ts
on

be
nc

hm
ar

k
pr

ob
le

m
s

ru
nn

in
g

G
3P

10
0

tim
es

on
ea

ch
pr

ob
le

m
w

ith
in

cr
ea

se
d

eff
or

t.
T

he
ta

bl
e

co
nt

ai
ns

th
e

nu
m

be
r

of
su

cc
es

sfu
lr

un
s

on
te

st
an

d
tr

ai
ni

ng
da

ta
,t

he
av

er
ag

e
te

st
fit

ne
ss

an
d

th
e

av
er

ag
e

pe
rc

en
ta

ge
of

so
lv

ed
tr

ai
ni

ng
an

d
te

st
ca

se
so

ft
he

be
st

so
lu

tio
n

fo
un

d
du

rin
g

tr
ai

ni
ng

w
ith

th
e

im
pr

ov
em

en
to

ve
rt

he
de

fa
ul

ts
et

tin
gs

an
d

th
e

p-
va

lu
e

fro
m

W
ilc

ox
on

ra
nk

-s
um

te
st

on
th

e
av

er
ag

e
te

st
fit

ne
ss

.
T

he
re

su
lt

is
co

m
pa

re
d

to
th

e
de

fa
ul

t
se

tt
in

g.
T

he
di

ffe
re

nc
es

ar
e

sh
ow

n
in

br
ac

ke
ts

.

Pr
ob

le
m

N
am

e
Te

st
Tr

ai
ni

ng
Av

g
Fi

tn
es

s(
%

Im
pr

ov
.)

Av
g

So
lv

ed
Tr

ai
n.

Av
g

So
lv

ed
Te

st
p-

va
lu

e
C

he
ck

su
m

0(
+

0)
0(

+
0)

31
06

5.
12

(+
13

.7
4%

)
53

.3
7%

(+
21

.2
0)

30
.6

9%
(+

18
.4

9)
0.

00
00

C
om

pa
re

St
rin

g
Le

ng
th

s
6(

+
4)

10
0(

+
1)

10
3.

35
(+

6.
98

%
)

10
0.

00
%

(+
0.

01
)

89
.6

7%
(+

0.
78

)
0.

52
20

C
ou

nt
O

dd
s

22
(+

10
)

28
(+

16
)

38
81

.1
1(

+
24

.2
5%

)
59

.5
8%

(+
15

.9
2)

44
.8

0%
(+

15
.1

5)
0.

00
29

Ev
en

Sq
ua

re
s

2(
+

1)
4(

+
3)

19
47

38
1.

31
(+

9.
24

%
)

6.
60

%
(+

3.
83

)
5.

37
%

(+
3.

32
)

0.
00

00
Fo

r
Lo

op
In

de
x

21
(+

13
)

35
(+

15
)

25
91

91
1.

15
(+

46
.3

3%
)

44
.8

5%
(+

16
.6

3)
44

.1
4%

(+
16

.4
7)

0.
00

00
G

ra
de

34
(+

3)
97

(+
16

)
70

.1
9(

+
71

.5
1%

)
99

.9
0%

(+
2.

65
)

98
.6

0%
(+

3.
20

)
0.

29
06

La
st

In
de

x
of

Ze
ro

26
(+

4)
64

(+
10

)
27

07
.1

8(
+

5.
47

%
)

89
.8

3%
(+

5.
27

)
71

.8
7%

(+
3.

55
)

0.
61

49
M

irr
or

Im
ag

e
1(

+
1)

94
(+

43
)

29
9.

93
(+

11
.0

7%
)

99
.9

2%
(+

0.
99

)
70

.0
1%

(+
3.

74
)

0.
02

80
Sc

ra
bb

le
Sc

or
e

17
(+

16
)

23
(+

22
)

47
87

.0
1(

+
26

.8
0%

)
45

.5
1%

(+
26

.5
2)

32
.8

0%
(+

24
.3

3)
0.

00
01

Sm
al

lO
r

La
rg

e
7(

+
1)

87
(+

28
)

56
3.

64
(+

4.
87

%
)

99
.8

0%
(+

2.
62

)
88

.6
9%

(+
1.

02
)

0.
59

00
Su

m
of

Sq
ua

re
s

26
(+

23
)

32
(+

29
)

58
56

0.
96

(+
77

.6
5%

)
46

.4
6%

(+
35

.6
6)

43
.5

8%
(+

34
.7

2)
0.

00
00

Su
pe

r
A

na
gr

am
s

0(
+

0)
98

(+
56

)
27

8.
48

(–
4.

79
%

)
99

.9
9%

(+
0.

33
)

86
.0

8%
(–

0.
64

)
0.

00
49

Ve
ct

or
Av

er
ag

e
18

(+
2)

19
(+

2)
23

73
07

.4
2(

–4
.5

9%
)

37
.1

1%
(+

2.
42

)
36

.0
5%

(+
2.

62
)

0.
46

93

91

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

setting increases the number of solutions that do not generalize. A problem that
is discussed in Section 5.3.3.

5.3.2 Accumulated Successful Solutions Over Generations

A more fine-grained comparison between the default settings and the increased
effort can be made with Figure 5.1, which shows the accumulated successful so-
lutions that have been found for every problem over generations. If all the runs
of a problem stop before reaching the maximum number of generations due to
successful solutions on the training data, the line in the plot is also stopped to
indicate how many generations the experiments ran at maximum. This is only
the case for Compare String Length with the increased effort parameter setting.

When comparing the number of successful solutions at generation 300, the
results of only doubling the population size can be compared, which only doubles
the computational effort. All problems have more successful solutions at gener-
ation 300 with increased effort except Even Squares and Vector Average, which
are both just one off. This indicates that an increase of computational effort by a
factor of four might not be required. For most problems, the increased population
size accounts for most of the improvements over the default settings. Only a few
problems, like Count Odds, For Loop Index, Scrabble Score and Sum of Squares,
seem to take advantage of the increased number of generations. Especially Sum
of Squares is able to double the number of successful solutions after generation
300. It is difficult to make any definitive comments for Even Square, as only one
successful solution was found with the default settings and even with increased
effort, only two were found, which have been found after generation 300.

Another aspect that should be mentioned is that although the increased effort
parameter setting was given a total budget of four times the computational effort,
this is only the worst-case scenario where no solution is found. As shown in
Figure 5.1, the increase of the population on its own provided better results in most
cases and many runs stop before reaching the maximum number of generations.
On average the last generation reached over all problems is generation 370 with
double the population and generations. This is less than 2.5 times the total budget
of computation effort compared to the default setting.

92

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

A
cc

um
ul

at
ed

 S
uc

ce
ss

fu
l S

ol
ut

io
ns

Generation

Increased Effort

 0

 5

 10

 15

 20

 25

 30

 35

 0 100 200 300 400 500 600

A
cc

um
ul

at
ed

 S
uc

ce
ss

fu
l S

ol
ut

io
ns

Generation

Default

Grade
Last Index of Zero

Sum of Squares
Count Odds

For Loop Index
Vector Average
Scrabble Score
Small Or Large

Compare String Lengths
Even Squares

Mirror Image
Checksum

Super Anagrams

Figure 5.1: Comparison of accumulated successful solutions over generations over
100 runs. The top graphs shows the results with increased effort and the bottom
one with the default settings. The dashed red line indicated generation 300, at
which the default settings stop and the increased settings have used up twice the
computational effort due to the increased population.

93

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

Checksum
Compare String Lengths
Count Odds
Even Squares

For Loop Index
Grade
Last Index of Zero
Mirror Image

Scrabble Score
Small Or Large
Sum of Squares
Super Anagrams

Vector Average

Te
st

Training

Figure 5.2: Number of runs which successfully solve the training and test set per
problem. Note that the y-axis ends at 50 for visualization purposes. The red
dashed line indicates at which point a problem is solved at least half the times on
test as it is on training.

5.3.3 Problems with the Training Data

The increased effort further boosts the problem of having solutions that solve the
training but do not generalize to the test set similar to the default parameter set-
ting. This phenomenon has already been observed before with program synthesis
problems [1]. This boost is expected, as increasing population and generations
does not counter this problem, but shows that it is an even bigger concern. Fig-
ure 5.2 depicts the number of successful solutions on training and test. For five
problems, Compare String Lengths, Grade, Mirror Image, Small Or Large and
Super Anagrams, the training data is solved by almost all runs, but only a few or
no solutions generalize to the test set. This may be due to overfitting or because
the training data does not represent the problem well. All runs for the problems
Compare String Lengths stop before reaching the maximum number of genera-
tions at generation 148 due to all runs finding solutions that solve the training
cases. Even without increased effort 99 solutions that solve the training dataset
have been found for Compare String Lengths.

As mentioned in Section 2.3.2, the datasets of two problems, Checksum and
Vector Average have been adapted before, which lead to finding better solutions
with PushGP [135]. This can be confirmed for Vector Average with the grammar

94

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

design approach with G3P [137]. This shows that the dataset has a tremendous
influence on the success of the search and adapting the training set seems to
be a logical conclusion to represent the problem more accurately and counter
overfitting.

5.3.4 Larger Training Set

An additional experiment was carried out on all problems used in the previous
experiment that have been solved more than twice as often on the training than
on the test data. Compare String Lengths, Grade, Last Index of Zero, Mirror
Image, Small Or Large and Super Anagrams. All problems that are below the
red dashed line in Figure 5.2. Each problem gets an additional 100 training cases
randomly generated from the same range as the original training set described
in the general program synthesis benchmark suite. The experiment is run with
increased effort as before.

The results are presented in Table 5.4 and compared to the increased effort
setting with the original training set. Figure 5.3 illustrates these results. Three of
the six cases, Compare String Lengths, Last Index of Zero and Small Or Large,
show an increase of successful test solutions of up to 2.5 times. Only Grade and
Mirror Image decrease slightly. Another positive side effect is that the number of
solutions that solve the training but do not generalize to the test set decreases
in all other cases. For Mirror Image and Super Anagrams, this number has de-
creased to less than half than before. The decrease shows the advantage of using
a bigger training set, as it indicates that the previous training set might not have
represented the problem space accurately. As a solution that solves training but
not test is of little use and only stops the search prematurely. No solution found
that solves training might be better than one that solves training but not test
as it would continue the search. One should also be aware that just because a
solution solves every case in the test set does not automatically mean that it is
correct, as not every possible combination of inputs can be tested.

This experiment shows that with a bigger training dataset that better rep-
resents the problem, overfitting can be countered at least to some degree, as is
expected in typical supervised learning. In most cases, the number of runs that
only solve the training set is still double compared to the ones that generalize to

95

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

Table 5.4: Results of using an increased training data. The table shows the number
of successful solutions for training and test. The difference to the increased effort
setting with the original dataset is shown in brackets.

Problem Name Test Training
Compare String Lengths 12 (+6) 100 (+0)
Grade 29 (–5) 93 (–4)
Last Index of Zero 41 (+15) 79 (+15)
Mirror Image 0 (–1) 24 (–70)
Small Or Large 18 (+11) 88 (+1)
Super Anagrams 0 (+0) 45 (–53)

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100

Compare String Lengths
Compare String Lengths+
Grade
Grade+

Last Index of Zero
Last Index of Zero+
Mirror Image
Mirror Image+

Small Or Large
Small Or Large+
Super Anagrams
Super Anagrams+

Te
st

Training

Figure 5.3: Number of runs which produce successful solutions that solve training
and test with the larger training set. + marks the problems that were run with the
increased training set. Note that the y-axis ends at 50 for visualization purposes.
The red dashed line indicates at which point a problem is solved at least half the
times on test as it is on training.

96

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

the test set. Further investigation is needed to understand the problem better
and solve it.

One approach by Helmuth et al. [135] is a post simplification process that is
shown to improve generalization of programs as well as that smaller programs
tend to generalize better. Therefore, it might be worth to run experiments with
smaller tree sizes.

5.4 Computational Effort Discussion

Regarding the problems tackled with G3P in this chapter, multiple signals have
become apparent that hint at what steps should be taken to increase the success
rate on program synthesis problems with G3P.

The first signal for problems with low success rate is the check if training
was solved significantly more often then test, also referred to as overfitting. If
that is the case, increasing the computational effort will have little effect. The
step to take in this case may be to adapt the dataset to represent the problem
accurately or adding more data if available. Getting more data or adjusting the
dataset is not always possible for real-world problems or when problems are used
for comparing different methods. As datasets of some problems in the benchmark
suite used in this paper have already been adapted to improve performance before,
it is undoubtedly of interest to see what is required to solve others that are still
not solved.

The second signal is a low number of solutions that solve training and test.
An increased population size has improved most problems. Additionally, an in-
creased number of generations further improved the results of some problems and
may be necessary if increasing the population size is not enough. It has not yet
been identified what type of problems may benefit from the increased number of
generations at this moment.

The improvement of success rates is an iterative process as increasing the com-
putational effort can result in an increase of solutions that solve the training, but
may fail test and adapting the dataset can lead to requiring more computational
effort. If neither of those two methods improves the results, other steps have to
be considered, like using better operators or adapting the search space, e.g. by
changing the function set.

97

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

It should be noted that the first signal to counteract overfitting by increasing
the training set to more accurately represent the problem at hand is just one
measure to approach this problem. Although there is extensive research on the
topic of overfitting [139, 140, 141, 142, 143, 144], more advanced techniques have
not yet been regarded. Especially, one has to first check, what approaches are
applicable to program synthesis. For example, early stopping [140, 141] is of no
use, because stopping before all training cases are solved lead to a program that
is not correct. The reason is that while solutions in domains like regression may
be sufficient if they are approximations of the global optima, for many program
synthesis problems, as is the case with the benchmark suite used in this work, a
solution that nearly solves all cases is of little or no use. Nevertheless, considering
research about overfitting from other domains could be beneficial for the program
synthesis domain in future work.

5.5 Benchmark Suite Discussion

Although the general program synthesis benchmark suite provides a well-defined
set of problems that helps researchers compare different approaches to program
synthesis, the benchmark suite may require improvements, especially in regards
adapting computational effort corresponding to the difficulty of a problem, to
be of better use. At the same time modifications should not be made without
considerations of other systems than G3P to avoid adjusting the problems to one
system rather than addressing general issues.

As mentioned before, the computational effort, in terms of population size
and number of generations, specified in [1] is the same for all problems, except for
Median, Number IO and Smallest, which use a reduced number of generations.
As shown in Section 5.3, G3P is able to significantly improve its results on a
number of problems when the computational effort is increased. This shows that
in many cases the computational effort restricts G3P. While other problems are
fairly easy to solve as outlined in Section 5.2. Figure 5.4 shows the accumulated
successful solutions over generations with default settings. All of these problems
with a general high success rate have a steep increase in successful solutions found
within the first 50 generations, except String Lengths Backwards. For three of
these six problems, Median, Negative To Zero and Smallest, only a few more

98

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300

A
cc

um
ul

at
ed

 S
uc

ce
ss

fu
l S

ol
ut

io
ns

Generation

Default

Number IO
Smallest

Vectors Summed
Median

String Lengths Backwards
Negative To Zero

Figure 5.4: Accumulated successful solutions over generations over 100 runs with
default settings. The dashed red line indicates that at generation 68 half the
solutions on average over all problems have been found.

solutions are found after generation 50 and half of all solutions on average will be
found before generation 68.

Adjusting the computational effort for problems in the general program syn-
thesis benchmark suite could make them more useful for comparing different ap-
proaches. Increasing population size and number of generations for more difficult
problems may yield higher success rates while reducing these numbers for easier
problems could make them better benchmarks because problems that are solved
every run and problems that are only solved once in a 100 runs barely provide
useful information for comparisons between different approaches. To make proper
adjustments to the computational effort, similar experiments as in this chapter
should be run with other program synthesis systems, like PushGP.

5.6 Summary

The grammar design approach to tackle program synthesis problems has been in-
vestigated with an increased computational effort to analyse if the success rates on
certain problems can be improved. To this end, a subset of problems with low and
medium success rate has been selected and rerun with double the population size
and number of generations to get insights on the amount of computational effort

99

CHAPTER 5. REFINING COMPUTATIONAL EFFORT

required for each problem. While a statistically significant increase in perfor-
mance could be verified, underlying problems with the general program synthesis
benchmark suite could be identified. One is that the computational effort is not
adjusted to the difficulty of the problems it contains, which could be useful for
comparisons between systems. Also, the issue of overfitting problems, already
observed in Chapter 4 and [1], drastically increases with increased computational
effort and was addressed by increasing the training set size. A number of sig-
nals that can help practitioners to raise the success rates for program synthesis
problems with G3P have been identified in Section 5.4.

The next chapter is the second expansion of Chapter 4 that is independent of
what has been discussed above. The second expansion focuses on extending the
grammars of the grammar design approach with additional functionality already
available to other program synthesis systems, as well as recursion. Additionally,
a grammar for characters has been added as many problems require characters as
specified in [1], which technically is covered by the string grammar, but has been
identified as one reason that G3P fails to solve particular problems.

100

Chapter 6

Extending Program Synthesis
Grammars

The grammar design pattern approach with Grammar-Guided Genetic Program-
ming (G3P) introduced in Chapter 4 is the most successful GP approach to tackle
general program synthesis problems after PushGP. G3P achieved higher success
rates on many problems from the general program synthesis benchmark suite than
PushGP but failed to solve some problems at all. Current restrictions that could
prevent G3P from solving additional problems are analysed in this chapter. These
possible restrictions range from less “out of the box” functionality compared to
PushGP within grammars, to not providing a char data type or recursion. The
previously created grammars are extended with additional functionality and a
new grammar for the data type char to counteract these problems. Extending
the grammars to include functionality available in PushGP as well as a char data
type allows for a fairer comparison between G3P and PushGP. The results show
that these extensions provide G3P with the ability to solve more problems, espe-
cially ones that have not been solved before as well as one that has not even been
solved with PushGP to date. This chapter is based on work from [145].

6.1 Grammar Design Approach Remarks

The functionality of the grammar design approach for program synthesis problems
introduced in Chapter 4 has been kept to the basics of Python without including
more than was available in PushGP. Therefore being a subset of Python and Push

101

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

functionality, except four string methods, namely strip, lstrip, rstrip and
capitalize, which have been overlooked and are part of the program synthesis
grammars, but are not available in Push. But these methods did not give G3P
much, if any, advantage as G3P performed poorly on problems using strings as
will be discussed below. Other data types do not exceed the functionality that is
available in PushGP.

This has been done for two reasons. First, the grammar design approach was
constructed to tackle general program synthesis problems without being tailored
to a specific problem or problem set. Hence, the function set should not contain
tailored functionality not provided by a language. Second, a comparison to an-
other system can only be made if the functionality does not extend further than
the other system. For example, adding the built-in sum function from Python
would make solving the problem Vector Average fairly easy. Due to these re-
strictions, G3P might have been unable to solve certain problems in the general
program synthesis benchmark suite detailed in Section 2.3.2.

The focus of this chapter lies in providing a fairer comparison between G3P
and PushGP as well as determining how much better G3P can perform with
functionality already available in Push especially on problems G3P has failed to
provide solutions. To this end, differences between the function set of G3P and
PushGP are identified, the problems G3P fails at in the general program synthesis
benchmark suite are investigated, and grammars are extended accordingly. At the
same time, the grammars shall stay as general as possible to be able to use them
outside of the context of benchmark problems and should not be adjusted to
“cheat” on any particular problem within the benchmark suite. Therefore, the
functionality added to the grammars in this chapter is not allowed to be extended
further than the function set available to PushGP. As the benchmark suite that
has been used so far, proposes to have an explicit char data type which is currently
missing in G3P [128] the possibility of adding it is further investigated.

Table 6.1 shows the results achieved with G3P with lexicase selection on the
general program synthesis benchmark suite, which has been taken from Chapter 4.
The table indicates that G3P with the current grammars is able to solve problems
that require string as a data type, but it has difficulty to solve problems that
require char as a data type as well. At the moment, only string is provided,
because the initial grammars were based on Python which treats char as string
of length one. The only problem G3P was able to solve that required char as

102

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

Table 6.1: Results of G3P on the general program synthesis benchmark suite
sorted by successfully found solutions. String and Char row indicate if these data
types have to be used when solving the problem according to [1].

N
um

be
r

IO
Sm

al
le

st
V

ec
to

rs
Su

m
m

ed
M

ed
ia

n
St

ri
ng

Le
ng

th
s

B
ac

kw
ar

ds
N

eg
at

iv
e

To
Ze

ro
G

ra
de

La
st

In
de

x
of

Ze
ro

V
ec

to
r

Av
er

ag
e

C
ou

nt
O

dd
s

Fo
r

Lo
op

In
de

x
Sm

al
l O

r
La

rg
e

Su
m

of
Sq

ua
re

s
C

om
pa

re
St

ri
ng

Le
ng

th
s

E
ve

n
Sq

ua
re

Sc
ra

bb
le

Sc
or

e
C

he
ck

su
m

C
ol

la
tz

N
um

be
r

D
ig

it
s

D
ou

bl
e

Le
tt

er
s

M
ir

ro
r

Im
ag

e
P

ig
La

ti
n

R
ep

la
ce

Sp
ac

e
w

it
h

N
ew

lin
e

Su
pe

r
A

na
gr

am
s

Sy
lla

bl
es

W
al

lis
P

i
W

or
d

St
at

X
-W

or
d

Li
ne

s

Successes 94 94 91 79 69 63 31 22 16 12 8 6 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0
String X X X X X X X X X X X X X X
Char X X X X X X X X X X

data type was Scrabble Score. The reason might be because to solve this problem
a string has to be iterated with a loop which iterates through every character,
represented as a string of length one. Theoretically, all of the problems requiring
char as a data type could be solved with the current Python grammars. While a
programmer has no difficulty to understand how or when to use a single character
string, it is more complicated for GP to find out how or when to use a string
of length one. Adding a char data type could alleviate this problem and yield
better results. An explicit char data type was mentioned in the description of the
general program synthesis benchmark suite and available to PushGP as well.

6.2 Extending Program Synthesis Grammars

This section describes how the program synthesis grammars from Chapter 4 have
been extended to include a char data type as well as additional functionality
to have a fairer comparison to PushGP. Extending the grammar also means in-
creasing the size of the search space as more programs can be generated from
the grammar. Therefore, the extension of the grammars can also have a negative
effect on the search performance.

6.2.1 Data Type Char

As shown in Section 6.1, G3P does poorly on problems that require a data type
char. G3P only used string as it mainly relied on Python even though the concepts

103

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

can be applied to other languages as well and because a char can be interpreted
as a string of length one. As many problems in the general program synthesis
benchmark suite require to check or manipulate single characters, G3P not using a
char grammar could explain why it currently fails at solving such problems. While
programmers have the intrinsic knowledge that a string consists of characters, and
a string of length one can be treated similar to a char, GP either has to discover
this knowledge or has to be told a priori. The currently available grammar data
types are bool, integer, float and string, as well as a list version grammar of each of
these data types, plus the new char grammar. A list of char grammar is currently
not included as the benchmark suite does not require it and strings can be viewed
as a list of char. As G3P adds variables of the data types of every used grammar
to the evolved program, including the char grammar makes it likely that chars
are used as opposed to before where G3P had to find that a string of length one
is required.

6.2.2 Recursion

Recursion is a method of programming where a program calls itself to solve a
smaller instance of the same problem first and uses that solution to solve the initial
problem. Recursion is a common strategy to tackle problems in GP [146, 147]. In
many cases, a recursive solution can be significantly shorter in terms of code than
an iterative program. PushGP is capable of evolving recursive programs and for
a fair comparison should be part of the grammars for G3P as well.

A program needs to be able to call itself and a way to stop the recursion,
usually an if condition called guard, to allow recursion. As the grammars of the
grammar design approach for G3P are automatically merged depending on the
required data types, and the number of input/output variables, as well as there
types, a rule for a recursive call can be generated and added to the grammar.
Figure 6.1 show the required rules in a grammar to add recursion. Figure 6.1a
shows an example where outputX can be replaced with the correct type variable
non-terminal (e.g. <bool_var>) and inputX with the correct type (e.g. <bool>).
In a similar way, a return statement can be generated, as shown in Figure 6.1b,
where every resultX is a variable containing a result value of the function.

The grammar used to define the control flow (structure.bnf) already contains
if statements, but it is very likely that it might not be used and the program

104

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

<call> ::= ’if rec_counter < 900’:{:
’rec_counter += 1’
<output1>’,’...’,’<outputN>’ = evolve(’<input1>’,’...’,’<inputN>’)’
’rec_counter -= 1’

’:}’

(a) Grammar rule for a recursive call.

<call> ::= ’return result1, ..., resultN’

(b) Grammar rule for a return statement.

Figure 6.1: Rules required for recursion.

gets stuck in an infinite recursion and at some point will throw an error due to
a stack overflow. A similar problem occurs with infinite loops as well and was
handled by adding a guard to avoid any additional iterations if a certain limit is
reached. A guard is used to avoid infinite recursion, see Figure 6.1a. The benefit
of using this mechanism is that evolved programs will not throw an error and
return a value. Therefore, the program will be given a fitness value based on what
it returns instead of a default worst case fitness due to an error. This added guard
merely stops the recursion to avoid infinite recursion but does not add any helpful
information when to stop the recursion when evolving a program. G3P still has
to evolve a guard to stop the recursion at the right time.

6.2.3 List Operations

When the grammars for program synthesis were introduced, grammars for lists of
all data types were included but kept to the essential functionality. Items could
be added at the end, inserted or replaced at a specific index or removed. Lists
could be iterated, compared, checked if they are empty and their length could be
determined as well as slicing of lists was possible. Any additional functionality the
algorithm had to discover itself. PushGP offers more functionality out of the box,
which has been added to the grammars for G3P, like reversing a list, counting the
occurrences of an item, replacing or removing items if a condition is met etc. All
of this functionality could be discovered as well. But for example O’Neill et al. [13]
showed that GP has difficulties finding a solution to the integer sorting problem,
however by adding a swap function the problem was easily solvable. As stated

105

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

before no further functionality has been added, that was not already available for
PushGP as well. At the same time, it should be noted that adding additional
functionality also increases the search space, which can make it more difficult
to find a correct solution. While additional functionality can make it easier to
solve one problem, it can make it more challenging to solve another. Therefore a
decrease of successful solutions found on some problems is to be expected.

6.2.4 Additional Methods

Similar to the list operations in the previous section, additional methods were
added to other data types that in general could have been discovered by G3P.
One example that is also often not included for boolean problems is XOR, as it
can be constructed with AND, OR and NOT and can make certain problems like
multiplexer too easy [148]. To be able to have a better comparison between G3P
and PushGP, such methods have been added as well. The extended grammars
with the additional functions are provided in Appendix C as well as online [37].
The Push function set is outlined in [103]. Again, it should be noted that only
functionality already available in PushGP has been added to the grammars.

6.3 Experimental Setup

The grammar design approach in a G3P system as presented in Chapter 4 is
used with the extended grammars, which are described in Section 6.2 to tackle all
problems from the general program synthesis benchmark suite (see Section 2.3.2)
except Word Stats. A special focus is put on the problems that use the char
data type, discussed in Section 6.1, as an additional grammar was added for those
problems. The same parameter settings as in Chapter 4 are used for consistency
and to allow cross comparison. The parameter settings are summarized in Ta-
ble 6.2. Only lexicase selection is used as selection operator as it has shown that
it produces a higher success rate than tournament selection in the program syn-
thesis domain. Additionally to the stopping criterion of reaching the maximum
number of generations, a run is stopped when it successfully solves the training,
as no further improvement is possible.

106

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

Table 6.2: Experimental parameter settings

Parameter Setting
Runs 100
Generations 300 1

Population size 1000
Crossover probability 0.9
Mutation probability 0.05
Elite size 1
Node limit 250
Variables per type 3
Max execution time 1 second
1 200 Generations for Median, Number

IO and Smallest as set in [1]

6.4 Results

First, the overall performance of G3P with the extended grammars is compared
to the initial grammars as well as the results of PushGP from [1]. Afterwards, the
effect of the extended grammars on the search is analysed in more detail, primarily
how the new char grammar and recursion have influenced the search. The results
vary slightly from the ones in [145], as the experiments have been rerun due to
minor grammar corrections, but overall the same conclusion can be drawn from
the results.

6.4.1 Successful Solutions

Table 6.3 shows the solutions found for each problem with G3P with extended
grammars for training and test with 100 runs. The results are compared to the
previously achieved successful solutions with the initial grammars from Chapter 4.
Only one, Scrabble Score, of the ten problems that require a char data type
has been solved with G3P before. With extended grammars five problems have
successfully been solved, namely Pig Latin, Replace Space with Newline, Scrabble
Score, Syllables and X-Word Lines. Pig Latin has not even been solved to date
with PushGP, to the best of the author’s knowledge. Double Letters has not been
solved with G3P, but one run discovered a program to succeeds in training but
does not generalise. It is also interesting that Mirror Image, which has sometimes

107

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

been solved one time in 100 runs in previous experiments, has been solved 40
times, which might be due to the additional list operations.

The results also show that due to the increased search space, which is caused
by the additional functions added to the grammars, the number of successful
solutions decreases for some problems. Two problems, Even Squares and Vector
Average, could not be solved anymore, but the success rate of the first one was
rather small before as well. Furthermore, Table 6.3 includes the p-value for the
Wilcoxon Rank sum test on the best test fitness of the two grammar approaches
and shows a significant difference for nearly all of the problems. The significant
differences are not surprising as the grammar has a massive influence on the
search, as a function set has on vanilla GP. It should be noted that the significant
difference is not always a positive effect as the success rates on some problems
have decreased.

Finally, Table 6.3 shows the results of PushGP taken from [1] compared to G3P
with extended grammars. According to [135], PushGP is able to solve Checksum
after the original dataset has been changed. The comparison shows that both
approaches have problems where one method is more capable of finding solutions
than the other, but there does not seem to be a clear advantage over one or the
other. Some problems have been solved with PushGP that have currently not
been solved with G3P, but again the success rates of these problems are small,
below 10, in most cases, which makes a comparison difficult. The low success rate
is an issue that needs to be addressed by both approaches.

6.4.2 Char Analysis

This section analyses the usage of the char grammar. Ten problems use the char
data type grammar. The grammar contains a rule <char> with productions for
char variables, char constants and all functions that return a char value. Therefore,
checking the percentage of nodes in individuals shows if GP is making use of the
additional data type. Figure 6.2 depicts this usage. The percentage is calculated
by summing the absolute amount of <char> nodes of all individuals of a generation
in all runs divided by the absolute amount of all nodes of all individuals of a
generation in all runs. It should be noted that the absolute amount of all nodes
varies over time not only because individuals tend to grow over time, a maximum
number of nodes limits this growth, but also because if a run finds a correct

108

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

Table 6.3: Successful solutions found with G3P with extended grammars on train-
ing and test with 100 runs as well as increase and decrease to the previously used
grammars in brackets. The p-value shows if there is a significant difference in the
best test performance between the two different grammars with 0.05 as level of
significance. A significant difference is highlighted in bold. Finally, the results of
PushGP on the benchmark suite from [1] and the difference to G3P with extended
grammars in brackets are compared.

G3P PushGP
Problem Name Test Training p-value Test
Checksum 0 (+0) 0 (+0) 0.0004 0 (+0)
Collatz Numbers 0 (+0) 0 (+0) 0.2092 0 (+0)
Compare String Lengths 2 (+0) 96 (–3) 0.0000 7 (+5)
Count Odds 6 (–6) 7 (–5) 0.0003 8 (+2)
Digits 0 (+0) 0 (+0) 0.3589 7 (+7)
Double Letters 0 (+0) 1 (+1) 0.2163 6 (+6)
Even Squares 0 (–1) 0 (–1) 0.6381 2 (+2)
For Loop Index 8 (+0) 9 (–11) 0.0005 1 (–7)
Grade 24 (–7) 68 (–13) 0.0038 4 (–20)
Last Index of Zero 30 (+8) 96 (+42) 0.0000 21 (–9)
Median 46 (–33) 100 (+0) 0.0000 45 (–1)
Mirror Image 40 (+40) 94 (+43) 0.0000 78 (+38)
Negative To Zero 13 (–50) 29 (–37) 0.0000 45 (+32)
Number IO 77 (–17) 94 (–6) 0.6519 98 (+21)
Pig Latin 5 (+5) 7 (+7) 0.0000 0 (–5)
Replace Space with Newline 7 (+7) 22 (+22) 0.0000 51 (+44)
Scrabble Score 1 (+0) 1 (+0) 0.6060 2 (+1)
Small Or Large 5 (–1) 37 (–22) 0.0883 5 (+0)
Smallest 76 (–18) 100 (+0) 0.0007 81 (+5)
String Lengths Backwards 15 (–54) 16 (–56) 0.0000 66 (+51)
Sum of Squares 6 (+3) 6 (+3) 0.0014 6 (+0)
Super Anagrams 0 (+0) 56 (+14) 0.0088 0 (+0)
Syllables 32 (+32) 52 (+52) 0.0000 18 (–14)
Vector Average 0 (–16) 0 (–17) 0.0001 16 (+16)
Vectors Summed 32 (–59) 40 (–53) 0.0000 1 (–31)
Wallis Pi 0 (+0) 0 (+0) 0.1960 0 (+0)
Word Stats 0 (+0) 0 (+0) 0.0167 0 (+0)
X-Word Lines 1 (+1) 1 (+1) 0.0000 8 (+7)

109

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

Generation

<char>

Checksum
Digits
Double Letters
Pig Latin
Replace Space with Newline
Scrabble Score
Super Anagrams
Syllables
Word Stats
X-Word Lines

Figure 6.2: Percentage of <char> nodes in individuals averaged over 100 runs over
generations.

solution, even if it is just on training, the run is stopped. If a run is stopped,
the absolute number of all nodes changes, but also if a high number of certain
nodes, e.g. <char>, is used in that particular run, the percentage of those nodes
can suddenly drop.

In the initial generation, the percentage of nodes being <char> is nearly identi-
cal for some problems, which is expected as these problems require the same data
types, which means the grammars are almost identical, except maybe input and
output variables. Therefore, the grammars have the same structure and the same
number of possible nodes, which leads to this effect. The percentage of <char>
nodes used may seem small being between 0.5% and 1.5%, but considering the
number of productions available in the grammar, it is rather high. In case of
almost all problems, the usage of <char> nodes is either constant or increases
over time, after a few generations. The only problem that seems to decrease the
usage of <char> nodes is Digits. This decrease can be explained by how G3P is
tackling the problems. While PushGP prints every integer for Digits, G3P has to
return a list of integers as it does not use print statements and therefore does not
necessarily need a char data type.

110

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

For some problems, especially Replace Space with Newline, Syllables and Super
Anagrams, the lines are not as stable as for the other problems. The reason is that
solutions that solve the problem at least for training have been found and runs are
stopped as soon as this happens. Hence, the average percentage suddenly drops
after a run is terminated. These drops indicate that runs that use <char> nodes
more often seem to be able to find a successful solution earlier. This suggests that
the char grammar improves the search for successful solutions.

6.4.3 Recursion Analysis

The percentage of recursion used can be checked in a similar way as in the previ-
ous section for char. Figure 6.3 depicts the percentage of recursion nodes, nodes
that call the function that is being evolved, used over generations. The initial per-
centage is lower than with <char>, because there is only one recursion production
rule in the grammar, whereas <char> is used by multiple functions. Afterwards,
it drops even lower for all problems and is barely used overall. One exception is
Smallest, which creates a spike before generation 50. This spike might be due
to many runs finishing quite quickly and runs that do not use recursion for this
problem finish earlier, in contrast to the smaller drops seen in Section 6.4.2.

As explained in Section 6.2.2, to use recursion, a method needs to be able to
call itself and a stopping criterion. At the moment the GP system can evolve
a method to call itself, but at the same time has to evolve a stopping criterion,
which seems to make it too complicated to be used. Without a stopping criterion,
the evolved program continues to call itself until the G3P system stops it. A way
to improve this might be to adapt the grammar such that an if statement is added
to the same production rule as the recursion. This ensures that the recursive call
always adds a stopping criterion. The condition of the stopping criterion can be
evolved by G3P. This could increase the chance to make G3P use recursion to
solve problems.

6.5 Summary

The difficulties of solving multiple problems of the general program synthesis
benchmark suite with a grammar design approach, introduced in Chapter 4, have
been discussed. As some of this problems have been solved with another approach

111

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

Generation

Recursion

Checksum
Collatz Numbers

Compare String Lengths
Count Odds

Digits
Double Letters
Even Squares

For Loop Index
Grade

Last Index of Zero
Median

Mirror Image
Negative To Zero

Number IO

Pig Latin
Replace Space with Newline

Scrabble Score
Small Or Large

Smallest
String Lengths Backwards

Sum of Squares
Super Anagrams

Syllables
Vector Average

Vectors Summed
Wallis Pi

Word Stats
X-Word Lines

Figure 6.3: Percentage of recursion nodes in individuals averaged over 100 runs
over generations.

before, the functionality of the grammars has been extended in various ways to
be closer to previous methods, without “cheating” by adding functionality not
used before. A significant enhancement of the grammars is that an explicit char
grammar has been added as many problems operate on single characters instead
of strings. Programmers are able to identify such characteristics of a problem
quickly, while GP would have to discover such knowledge. As the benchmark
suite proposes to use char as a data type, this additional information does not
give G3P an unfair advantage when comparing to other systems and might be
helpful when tackling problems outside of the benchmark suite.

Afterwards, the extended grammars are used to tackle the program synthesis
benchmark suite, and the results are compared to the previously used grammars.
The results show significant differences for nearly all problems and successful solu-
tions have been found for previously unsolved problems with G3P. One problem,
Pig Latin, has been successfully solved that was not solved by any other approach
before. Additionally, a comparison with PushGP [1] has been made, as the ex-
tended grammars are closer in functionality to PushGP as before.

Due to the increased search space created by the extended grammars, a de-
crease of successful solutions found on previously solved problems was expected.

112

CHAPTER 6. EXTENDING PROGRAM SYNTHESIS GRAMMARS

A way to dynamically adjust the functionality of grammars during runs could
help avoid this problem, similar to the multi-level grammar approach by Saber et
al. [130].

Code of solutions to problems that have not been solved in previous chapters
have been put in Appendix E for visualization of the code that can be evolved.

The next chapter explains a novel concept of semantics in the program syn-
thesis domain and introduces new operators based on the defined semantics, to
create better offsprings by checking the behaviour of programs rather than making
random syntactic changes.

113

Chapter 7

Semantics and Semantic
Operators for Program Synthesis
in Genetic Programming

Semantics is the behaviour or output of a program and this information has been
used to improve search performance in GP [30, 34]. Semantic information has
mainly been used in the regression and boolean problem domains [16], but to
date is underutilised in program synthesis. The reason is that semantics is problem
specific and therefore has to be defined for each problem domain. Hence, semantic
measures require to be adapted and so do semantic operators. Defining semantics
in program synthesis is especially difficult because program synthesis uses multiple
data types and may even include data structures in contrast to regression and
boolean problems, which only require real and boolean values respectively.

In this chapter, semantics for program synthesis will be defined in Section 7.2,
which will be used to create novel semantic operators, crossover and mutation,
in Section 7.3 and 7.4 that can use semantic information to improve the search
performance. The behaviour of these new operators will be analysed on their
performance as well as semantic aspects, like their ability to create semantically
different children. While the initial semantic crossover, presented in Section 7.3,
shows only minor improvements over conventional crossover, the insights gained
have been used to propose enhanced semantic operators in Section 7.4 that signif-
icantly outperform standard operators. This chapter is based on work published
in [149] and [150].

114

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

7.1 Semantics

Semantics and its most important properties are shortly recapped for the reader.
A more detailed description of semantics and how semantics has been used in
Genetic Programming can be found in Section 2.4.

Semantics can be defined as “the behavior of a program, once it is executed
on a set of data” [16]. In the regression domain, a program is an arithmetic
expression, which returns a vector of real values, when executed on data. Similarly,
in the boolean domain, the semantics is a vector of boolean values. This semantic
information can then be used in diverse ways to improve the performance of GP.
Most approaches are based on new crossover [30, 31, 32, 33, 34] or mutation [35, 36]
operators, but also semantic selection operators have been created [109, 108]. The
downside of semantic operators, in most cases, is that as semantics are problem
domain specific, operators based on semantics are domain specific as well. In
contrast, conventional GP operators operate on a syntactic level. Hence they can
be used regardless of the problem domain.

Two important properties of semantics that contribute to performance im-
provements are semantic diversity and semantic locality [34, 16]. While a high
semantic diversity is necessary for covering the search space, semantic locality,
which means a small change in a program corresponds to a small change in its
semantics and therefore fitness, is essential for the search performance [34].

7.1.1 Semantic Operators

A variety of semantic operators has been introduced to GP and have shown to im-
prove performance compared to conventional operators. The operators introduced
in this chapter focuses on crossover and mutation, but also selection operators can
harness semantic information [109, 108].

As stated previously, most research around semantics has been conducted in
the regression and boolean problem domain. A series of operators have been
introduced, some of which have been adapted and improved over time [32, 33].
One of which led to the Most Semantic Similarity based Crossover (MSSC) [34] in
the regression domain. Operators introduced in this chapter are loosely based on
MSSC. MSSC selects multiple pairs of subtrees, one from each parent, and chooses
the pair that is most semantically similar. The most semantically similar pair
is the one that has semantics, real-valued output vectors, whose mean absolute

115

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

difference is smallest compared to the other pairs. At the same time, the semantics
of a subtree pair is not allowed to be equivalent, because if they were equivalent,
the change would have no impact on the overall fitness.

Most semantic operators are based on the principle that the change that is
being made has to change the semantics and if possible should be similar at
the same time. Semantic mutation operators were created in a similar way, but
instead of selecting a subtree from a second parent, it was generated at random,
as in conventional mutation operators [35, 36].

7.2 Semantics in Program Synthesis

Semantics being domain specific means that it needs to be specified for each
domain as well as the semantic operators need to be tweaked. For a regression
problem, the semantics is a vector of real values. In the case of program synthesis,
the output can be multiple vectors of different data types. A semantic similarity
can be calculated on the difference between the variables of two programs. Sim-
ilar to semantics in regression, it is not only possible to get the semantics of the
final output, but also of intermediate steps. In the case of program synthesis,
intermediate steps can be one or more executable statements. After every state-
ment, the change of variables can be checked. Therefore, the semantics of every
statement can be saved and used in a genetic operator. Many semantic operators
exchange subtrees of a GP tree and need to be able to evaluate semantics of sub-
trees instead of a whole solution. Therefore, the first parent node representing
an actual program statement is used to measure the semantics of a subtree which
only represents part of a program statement (e.g. a binary comparison).

The process of logging variable changes in a program is called tracing and
produces a trace. These traces are used to check the semantics of every statement
in the program and to measure semantic similarity. A short example of a program,
the corresponding GP tree and its trace is shown in Figure 7.1, which is used
to explain how the semantics for program synthesis can be defined. The figure
shows a short program that only consists of two statements. The GP tree is
a derivation tree that is generated when using a grammar-based variant of GP.
The bottom of the figure shows the variable settings at different states during
the execution of the program referenced with numbers from 1* to 3*. It should
be noted that in contrast to regression or boolean solutions, the output may not

116

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Code: x = b > a

a = a * b

1* <code> <statement> 3*

1* <statement> 2* 2* <int_assign> 3*

1* <bool_assign> 2* <int_var> = <int>

a <int_var> <int_op> <int_var>

a * b

<bool_var> = <bool>

x <int_var> <comp_op> <int_var>

b > a

1*

a b x

0 3 False

-4 1 False

2 3 False

2*

a b x

0 3 True

-4 1 True

2 3 True

3*

a b x

0 3 True

-4 1 True

6 3 True

Figure 7.1: Program synthesis semantics example. A sample of code is shown with
its corresponding derivation tree and its trace for three different inputs. The state
of the variables before running the code is shown in variable setting 1*. While
the variable setting 3* shows the state of the variables after executing code, 2*
displays the intermediate state after executing the first statement and before the
second one. The numbers 1*-3* are also shown within the derivation tree to
indicate the semantics before and after executing a particular node.

only be a single vector of some values but multiple vectors, as a program contains
multiple variables that undergo state changes. The variable setting 1* contains
the initial setting, which might be the training data. In this example, it consists
of only three cases. The variable setting 2* shows the state of the variables after
executing the first line of the code, but before executing the second line. 2* is
the semantic output of the subtree to the left of the root node. The variable
setting 3* contains the state of the variable after executing both lines of code and
is the semantics of the whole tree. Depending on the statement that is executed
a variable can change its stored value in all, some or even no cases. Variable 𝑥 is
changed in all instances after executing the first statement, while variable 𝑎 has
only been changed in one of three cases.

117

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

1* to 3* are also shown within the GP tree to indicate at which point a specific
variable state is established. A number to the left means the variable setting before
and to the right after executing the node. Not every node has a number with a
variable setting. To evaluate the semantic change when exchanging a subtree on
the lower levels that cannot be executed on its own, the first parent node that can
be executed is used.

Unlike the code example in Figure 7.1, most code as well as code evolved with
the grammar design approach contains conditions and loops, which leads to code
statements that are either not executed for every single training case or executed
multiple times. If a statement is not executed, there is no information if the code
would change the current state of variables and therefore is of no interest. If code
is executed multiple times and all of the variable changes would be tracked, it
would make semantics difficult to compare as the trace that is logged would be of
different length. A decision was made to log the variables the first time a change
in any variable appears when executing a statement, to avoid these issues.

An example of a code snippet containing a loop and an if condition is shown in
Figure 7.2. Similar to the previous example the code, its corresponding derivation
tree and the variable settings before and after executing different nodes in the
tree are shown. Due to some statements being executed multiple times and the
if condition, the example is more complex as the one in Figure 7.1. Note that
the for loop already changes the variable i, so the first statement within the
loop already has a different variable setting before it is executed. So, the node
<code><statement> has variable setting 2* before it is executed and variable
setting 4* after it is executed as semantics. The semantics after executing the for
loop 5* is different from 4*, because only the first time <code><statement> is
executed the variables are logged. The reasoning is the same for variable settings
3* and 4* being the same, although <code><statement> contains an if condition.
The statements within the if condition are not executed in the first iteration,
but variables have changed for its parent node. So these changes are saved for
<code><statement>. Although the if condition is executed in every iteration, it
does not change any variable. Therefore these executions are not logged. The
first time the statements within the if statement are executed is when i becomes
4. This is the time the variable settings A* and B* are logged.

The definition of semantics for program synthesis presented in this section is
used throughout this chapter. To use this semantic information within an oper-

118

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Code: for i in range(0,5):

a = a + 1

if i > 3:

b = i * a

1* for i in range(0,5) <code> 5*

2* <code> <statement> 4*

A* if <bool> : <code> B*2* <statement> 3*

A* <int_assign> B*

<int_var> = <int>

b <int_var> <int_op> <int_const>

A* <statement> B*<int_var> <comp_op> <int>2* <int_assign> 3*

<int_var> = <int>

a <int_var> <int_op> <int_const>

i > 3

a + 1

i * a

1*

a b i

0 3 7

-4 1 7

2 3 7

2*

a b i

0 3 0

-4 1 0

2 3 0

3*

a b i

1 3 0

-3 1 0

3 3 0

4*

a b i

1 3 0

-3 1 0

3 3 0

5*

a b i

5 20 4

1 4 4

7 28 4

A*

a b i

5 3 4

1 1 4

7 3 4

B*

a b i

5 20 4

1 4 4

7 28 4

Figure 7.2: Program synthesis semantics example including a loop and an if con-
dition. A sample of code containing a loop and an if condition is shown with its
corresponding derivation tree and its trace for three different inputs. The state of
the variables at different points of the derivation tree before executing the code is
shown in variable setting 1*-5* as well as A* and B*. Variable changes are only
logged the first time a statement is executed and any variable changes.

119

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Table 7.1: Similarity measures per variable

Variable type Similarity measure
Boolean Hamming distance
Integer Sum of absolute differences
Float Sum of absolute differences
String Sum of Levenshtein distances
List of any type Sum of Levenshtein distances

ator, a measure to compare the semantics of two programs is required. Different
semantic measures have been tested and will be discussed in Section 7.3 and 7.4.

7.3 Semantic Crossover for Program Synthesis

The first semantic operator, Semantic Crossover for Program Synthesis (SCPS),
presented is loosely based on Most Semantic Similarity-based Crossover (MSSC)
by Nguyen et al. [34], which is summarised in Section 7.1.1. A semantic measure
for program synthesis which is required to compare the similarity of two programs
is described in Section 7.3.1. This measure will be used in SCPS. The operator
SCPS is described in Section 7.3.2. The goal of this operator is to check if se-
mantics in program synthesis can be used to improve performance similarly as in
regression and boolean domain, to analyse its behaviour and to gain insights that
can help to make SCPS more effective.

7.3.1 Semantic Measure

The semantics used for program synthesis is defined in Section 7.2. It shows that
in contrast to regression and the boolean domain, which only use a single vector
of one data type, real values and boolean respectively, program synthesis requires
multiple vectors of different data types. Therefore, to compare the semantics
of two programs, multiple similarity measures are needed. A suggestion for the
similarity measures for each data type is shown in Table 7.1.

Most of the measures are well-known, like Hamming distance for boolean vec-
tors or the sum of absolute differences for integer and float values, which is also
used in MSSC. Strings can be compared with the Levenshtein distance. So for two
vectors of strings, the sum over these distances is used. The last entry in Table 7.1

120

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

“List of any type”, refers to semantics produced when using lists in a program.
As two lists do not necessarily have the same number of values and list operations
in a program can add, remove or change a value, the Levenshtein distances is an
appropriate measure to capture the number of changes required to transform one
list into the other. Similar to strings, the sum over all the distances is used.

Other distance measures can be used to compare the semantics of two pro-
grams. The ones in Table 7.1 are merely suggestions for the initial investigation
of semantics in program synthesis and may be changed depending on the insights
gained during the experiments.

It should be noted that it is not recommended to sum over the distances of
different data types. The reason is that depending on the data type a different
measure is used. While for boolean the Hamming distance can be between zero
and the length of a vector, for integers and floats the sum of absolute differences
can be between zero and infinity. Therefore, comparing two different distance
measures seems not reasonable, which is why for each comparison in SCPS a
single data type is chosen as explained in the next section.

7.3.2 Operator

The pseudocode in Algorithm 7.1 describes the proposed Semantic Crossover for
Program Synthesis (SCPS). As with standard crossover, a crossover point from
the first parent is selected. Then, instead of picking one random subtree from the
second parent, which is of the same type as the selected node from the first parent,
up to a maximum value of subtrees (Max_Tries) are chosen at random without
repetition. Max_Tries is a parameter that can be set. If the second parent does
not contain a subtree of the same node type as the selected one from parent one,
no crossover is executed.

In the next step, the semantic differences between the subtree of the first
parent and all the selected subtrees from the second parent are calculated. The
calculation is performed in the following way. During the evaluation, the semantic
information of every individual is saved in the form of an execution trace as
explained in Section 7.2. The variable settings before and after the execution
of each statement and therefore the corresponding subtree is saved as well. The
variable setting before the execution of a subtree can be viewed as the input and
the setting afterwards as the output of that code snippet. For each selected subtree

121

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Algorithm 7.1 Semantic Crossover for Program Synthesis (SCPS)
select crossover point from first parent
select Max_Tries possible subtrees from second parent
if no subtrees of same type as crossover point available then

no crossover
return

end if
get semantics of every selected subtree from second parent
calculate semantic differences for every selected subtree per type
if differences then

select random type
select most semantically similar subtree based on selected type

else
select random subtree for crossover from second parent

end if
crossover with selected subtree

Algorithm 7.2 Semantic similarity calculation for two subtrees
input1, output1 ← semantics of subtree from first parent
set variables to input1
output2 ← execute one subtree from second parent
calculate semantic distance between output1 and output2

from the second parent, the variables are set to input of the subtree of the first
parent, followed by executing the subtree of the second parent and comparing
the variable outputs to the output variable setting of the subtree from the first
parent. A more concise description of this process is given in Algorithm 7.2 as
pseudocode.

It should be noted that this is not a fitness evaluation as no fitness value is
calculated, but a necessary process to find the semantic differences. If there is no
difference for any subtree, one subtree is chosen randomly. If there is a semantic
difference, a random data type is chosen, which shows a semantic difference. The
reason why only one data type is chosen is that different data types use different
distance measures and mixing them might result in unwanted behaviour. For all
variables of the selected data type, the sum of semantic similarities is calculated
with the corresponding similarity measure, shown in Table 7.1. The most semantic
similar subtree that is not equal is chosen for crossover.

122

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Parent code:
...

a = 7

b = a * 2 + 1 + x

n = b % 2 == 0

c = 5

...

Subtree code 1:
a = x * 8

n = a % 4 == 0

Subtree code 2:
b = 16 + x

x a b c n

2 7 1 5 False

1 7 1 3 False

3 7 1 5 False

Semantics before

x a b c n

2 7 17 5 False

1 7 16 3 True

3 7 18 5 True

Semantics after

x a b c n

2 16 1 5 True

1 8 1 3 True

3 24 1 5 True

Semantics after code 1

x a b c n

2 7 18 5 False

1 7 17 3 False

3 7 19 5 False

Semantics after code 2

Figure 7.3: Semantic Crossover for Program Synthesis example. Code of the
parent, possible code to replace two lines marked in red within the parent and the
corresponding semantics of all code pieces after being executed on the variable
state of “Semantics before”. Differences of the “Semantics after” of the parent
code compared to code 1 and 2 are highlighted in bold red.

Figure 7.3 shows an example of a possible semantic crossover event. The two
statements marked in red in the parent code have been selected for crossover
and subtree code 1 and subtree code 2 selected as possible replacements. The
semantics before and after the selected statements in the parent code are shown
on the right-hand side and have been collected during the fitness evaluation. The
semantics before is only required to be able to execute subtree code 1 and 2 on
the same state of variables, which is done as described in Algorithm 7.2 which
calculates semantics after code 1 and 2.

123

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

The semantics after the parent code is then used to compare to each semantics
of the possible replacement subtrees and differences are highlighted in bold red
in the figure. The variables that show a difference are then used for comparison.
In the example, a, b and n show a difference in at least one semantics. a and b
are of data type integer, while n is a boolean data type. In the semantics after
code 1, a shows a difference of 27, b of 50 and n of 1, using hamming distance and
sum of absolute differences for the corresponding data type, see Table 7.1. In the
semantics after code 2, a does not show a difference, b has a difference of 3 and
n of 2. This example shows why different data types are not just summed up for
comparison, because the boolean data type can only have a maximum difference of
3 while the maximum difference in case of integer is infinite. Therefore, one data
type is selected at random to compare the semantics of the subtrees. If integer is
selected, subtree code 2 is most semantically similar as it only shows a difference
of 3, while code 1 has a difference of 77 by summing over all differences from
integer variables. If boolean is selected for the semantic similarity comparison,
then code 1 is the most similar one as it has a difference of one compared to code
2, which has a difference of 2.

7.3.3 Experimental Setup

The goal of the experiments is to study SCPS and see if it can improve the per-
formance of program synthesis tasks overall as well as if it can construct children
that perform better than its parents. Further, semantic properties of SCPS are
investigated as well as the semantic measure to find ways to improve SCPS. To
this end, the G3P system with the grammar design pattern presented in Chapter 4
is used and a range of benchmark problems from the general program synthesis
benchmark suite, described in Section 2.3.2, are selected. The problems chosen
are of varying difficulty and require a mix of different data types, namely Check-
sum, Collatz Numbers, Compare String Lengths, Double Letters, Grade, Mirror
Image, Number IO, Small Or Large, Sum of Squares, Super Anagrams and Vector
Average. The experiments are executed with SCPS and standard crossover [54]
for comparison.

The same parameter settings as in Chapter 4 are used and shown in Table 7.2.
Lexicase selection is used, as it was shown to be more successful in program
synthesis than tournament selection. Again three variables per data type will be

124

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Table 7.2: Experimental parameter settings

Parameter Setting
Runs 100
Generations 300 1

Population size 1000
Selection Lexicase
Crossover probability 0.9
Mutation probability 0.05
Elite size 1
Node limit 250
Variables per type 3
Max execution time 1 second
Max_Tries 10
1 200 Generations for Number IO as

set in [1]

available for storing temporary data and one second will be used as maximum
execution time before a program will time out. The only additional parameter
is Max_Tries for SCPS, which has been set to 10. Max_Tries is the number of
subtrees that are selected from the second parent and compared to a subtree from
the first parent. This number has been established in preliminary experiments. Up
to 10 comparisons may seem high compared to standard crossover the chooses two
subtrees and exchanges them without a single comparison, but as will be shown
in Section 7.3.4, SCPS still has difficulty to find a subtree pair to exchange.

7.3.4 Results

In this section, the results of the experiments described in Section 7.3.3 are anal-
ysed. As mentioned, the overall goal of the experiments is to analyse and draw
conclusions from the behaviour of a semantic crossover. Due to the additional
computation that is required for the semantic crossover for program synthesis, an
increased runtime is expected, but it has not been analysed, because the compu-
tational cost was added to collect the measurements which will be discussed in
this Section. Additionally, the current implementation of semantic crossover has
in no form been optimised.

125

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Successful Runs and Fitness

Table 7.3 shows the number of times a run was able to find a correct solution
to a problem for test and training, as well as the average test fitness of the best
training solution, average training and test cases solved and the p-value from
Wilcoxon rank-sum test on the average test fitness comparing SCPS with SC.
When comparing SCPS to standard crossover, Table 7.3 shows that the correct
solutions on test found on 100 runs is quite similar in most cases. In the case of
Grade, the number of found solutions is smaller, but more solutions have been
found on training, which means that although training was solved the solutions
did not generalize. An issue also discussed in Chapter 5. Vector Average is the
only problem on which SCPS does worse on all accounts, but the difference is
not statistically significant in terms of test fitness of the best individual. Even
after a thorough investigation, no explanation has been found, why this is the
case. SCPS achieves more successful solutions on training on five of the problems
with 33 more on Super Anagrams and over ten more on three problems. Even
though the number of successful solutions is usually more important for program
synthesis, the fitness gives an indication if a solution has gotten closer to solving
all test cases. While the improvements on fitness with SCPS are on average higher
than the decline, on two problems, the average test fitness of the best individuals
decreases and the difference is statistically significant. On Double Letters and
Sum of Squares, SCPS improves, and the difference is statistically significant.

Additionally, Figure 7.4 depicts the average best training fitness over 100 runs.
The plots show that on average with SCPS better solutions are found in earlier
generations, except on Vector Average. Although SCPS helps to improve solutions
overall, the results are only slightly better than with standard crossover.

Parent Comparison

The goal of SCPS is to exchange similar subtrees, but not equivalent ones. There-
fore, this change should be visible in the child by having a different semantics than
its parent. McPhee et al. noticed in the boolean domain that more than 50% of
standard crossover operations were not able to change the semantics [31] and
Nguyen et al. reported that even though standard crossover was able to change
semantics in the regression domain in 60%-80% of crossover operations, semantic
crossover was often 20% higher [34]. Figure 7.5 shows the percentage of individ-

126

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Ta
bl

e
7.

3:
R

es
ul

ts
on

be
nc

hm
ar

k
pr

ob
le

m
s

ru
nn

in
g

G
3P

10
0

tim
es

on
ea

ch
pr

ob
le

m
w

ith
SC

PS
.T

he
ta

bl
e

co
nt

ai
ns

th
e

nu
m

be
r

of
su

cc
es

sfu
lr

un
s

on
te

st
an

d
tr

ai
ni

ng
da

ta
,t

he
av

er
ag

e
te

st
fit

ne
ss

an
d

th
e

av
er

ag
e

pe
rc

en
ta

ge
of

so
lv

ed
tr

ai
ni

ng
an

d
te

st
ca

se
s

of
th

e
be

st
so

lu
tio

n
fo

un
d

du
rin

g
tr

ai
ni

ng
w

ith
th

e
im

pr
ov

em
en

t
ov

er
st

an
da

rd
cr

os
so

ve
r

an
d

th
e

p-
va

lu
e

fro
m

W
ilc

ox
on

ra
nk

-s
um

te
st

on
th

e
av

er
ag

e
te

st
fit

ne
ss

.
T

he
re

su
lt

is
co

m
pa

re
d

to
st

an
da

rd
cr

os
so

ve
rw

ith
th

e
di

ffe
re

nc
es

sh
ow

n
in

br
ac

ke
ts

.

Pr
ob

le
m

N
am

e
Te

st
Tr

ai
ni

ng
Av

g
Fi

tn
es

s(
%

Im
pr

ov
.)

Av
g

So
lv

ed
Tr

ai
n.

Av
g

So
lv

ed
Te

st
p-

va
lu

e
C

he
ck

su
m

0(
+

0)
0(

+
0)

35
87

4.
03

(+
0.

39
%

)
45

.1
8%

(+
13

.0
1)

21
.2

8%
(+

9.
08

)
0.

75
73

C
ol

la
tz

N
um

be
rs

0(
+

0)
0(

+
0)

83
35

1.
78

(–
0.

38
%

)
1.

98
%

(+
0.

31
)

0.
80

%
(–

0.
01

)
0.

88
15

C
om

pa
re

St
rin

g
Le

ng
th

s
4(

+
2)

99
(+

0)
12

8.
05

(–
15

.2
5%

)
99

.9
9%

(+
0.

00
)

87
.2

0%
(–

1.
69

)
0.

65
83

D
ou

bl
e

Le
tt

er
s

0(
+

0)
0(

+
0)

43
61

.2
9(

+
6.

36
%

)
24

.4
3%

(+
0.

80
)

11
.3

9%
(–

0.
41

)
0.

03
77

G
ra

de
19

(–
12

)
95

(+
14

)
88

.5
2(

+
64

.0
7%

)
99

.8
9%

(+
2.

65
)

98
.2

3%
(+

2.
83

)
0.

64
07

M
irr

or
Im

ag
e

0(
+

0)
63

(+
12

)
40

0.
93

(–
18

.8
7%

)
99

.5
3%

(+
0.

60
)

59
.9

1%
(–

6.
37

)
0.

00
01

N
um

be
r

IO
96

(+
2)

99
(–

1)
32

0.
28

(+
99

.1
0%

)
99

.0
0%

(–
1.

00
)

98
.9

8%
(–

0.
57

)
0.

27
78

Sm
al

lO
r

La
rg

e
7(

+
1)

72
(+

13
)

50
1.

33
(+

15
.3

9%
)

98
.8

0%
(+

1.
62

)
89

.8
3%

(+
2.

16
)

0.
09

93
Su

m
of

Sq
ua

re
s

9(
+

6)
12

(+
9)

14
01

79
.1

5(
+

46
.4

9%
)

28
.1

0%
(+

17
.3

0)
24

.7
6%

(+
15

.9
0)

0.
00

00
Su

pe
r

A
na

gr
am

s
0(

+
0)

75
(+

33
)

27
3.

51
(–

2.
92

%
)

99
.8

7%
(+

0.
22

)
86

.3
2%

(–
0.

39
)

0.
04

64
Ve

ct
or

Av
er

ag
e

3(
–1

3)
3(

–1
4)

25
99

13
.7

3(
–1

4.
55

%
)

28
.5

1%
(–

6.
18

)
24

.3
5%

(–
9.

08
)

0.
08

39

127

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

 3000
 3200
 3400
 3600
 3800
 4000
 4200
 4400
 4600
 4800
 5000
 5200

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Checksum

Default
Semantic

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 10500

 0 50 100 150 200 250 300

Collatz Numbers

Default
Semantic

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

Compare String Lengths

Default
Semantic

 420
 440
 460
 480
 500
 520
 540
 560
 580
 600

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Double Letters

Default
Semantic

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0 50 100 150 200 250 300

Grade

Default
Semantic

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50 100 150 200 250 300

Mirror Image

Default
Semantic

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

Pe
rc

e
n
ta

g
e

Number IO

Default
Semantic

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

Small Or Large

Default
Semantic

 0
 500000

 1x106
 1.5x106

 2x106
 2.5x106

 3x106
 3.5x106

 4x106
 4.5x106

 0 50 100 150 200 250 300

Sum of Squares

Default
Semantic

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Super Anagrams

Default
Semantic

 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000
 60000
 65000
 70000

 0 50 100 150 200 250 300

Generation

Vector Average

Default
Semantic

Default
Semantic

Figure 7.4: Average best training fitness over generations for SCPS (“Semantic”)
and standard crossover (“Default”).

128

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

uals that are different from their rooted parent, with SCPS on top and standard
crossover below. The rooted parent is the parent which removes a subtree to add
the subtree from the second parent. Therefore the child and the parent have the
same root node. For each problem, SCPS is able to create more children that are
semantically different from their rooted parent. The percentage for Number IO is
lower than the others because it is a rather simple problem and solved within the
first few generations in most runs. It seems that when a run found a successful
solution that it becomes more difficult to generate semantically different children.
A similar case, but not as extreme, can be seen in Compare String Lengths, which
has a decrease over generations. Similar to Number IO, Compare String Lengths
is solved in almost all runs at least for training and the fitness is close to zero, as
shown in Figure 7.4.

More interesting than just if a child is different than a parent, is if a child is
better than its parents. Figure 7.6 shows the percentage of children that have
better fitness than their rooted parent and better fitness than both parents. For
many problems, like Checksum, Collatz Numbers, Double Letters, Sum of Squares
and Vector Average, SCPS creates continuously more children that are better
than their rooted and both parents than standard crossover. For other problems,
SCPS still achieves higher percentages initially but drops after some generations.
Sometimes the percentages become lower than with standard crossover. These
drops only occur on problems that are solved quite frequently on training, like
Double Letters, Grade, Mirror Image, Number IO, Small Or Large and Super
Anagrams are all solved more than 50 times on training. The runs continue even
after training is solved to collect these statistics. Because the runs continue, even
though the run found a solution that solves training, it is not possible to produce
a child that is better than a parent that already solves the problem. Also, SCPS
often finds more solution on training. Therefore the percentage of children that
are better than its parents may drop below the percentage achieved with standard
crossover. In general, SCPS produces more children that are better than their
parents.

Types Selected for Similarity Measurement

As described in Section 7.3, one data type of all available data types that shows a
semantic difference is randomly chosen to measure semantic similarity. Figure 7.7

129

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Semantic Crossover for Program Synthesis

Checksum
Compare String Lengths

Collatz Numbers
Double Letters

Grade
Mirror Image

Number IO
Small Or Large

Sum of Squares
Super Anagrams

Vector Average

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Standard Crossover

Figure 7.5: Percentage of children semantically different from their rooted parent.
SCPS on top and standard crossover below.

130

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Checksum

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

Collatz Numbers

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100 150 200 250 300

Compare String Lengths

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Double Letters

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

Grade

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100 150 200 250 300

Mirror Image

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200

Pe
rc

e
n
ta

g
e

Number IO

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 0 50 100 150 200 250 300

Small Or Large

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

Sum of Squares

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Super Anagrams

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

Generation

Vector Average

Semantic: Better than rooted
Default: Better than rooted
Semantic: Better than both

Default: Better than both

Figure 7.6: Percentage of children that are better than rooted or better than both
parents for SCPS (“Semantic”) and standard crossover (“Default”).

131

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

shows the percentages of how often a particular type has been selected for the
semantic similarity measure or if a random crossover or no crossover was executed.
As mentioned before, no crossover can happen, if the second parent does not
contain a subtree of the same type as the selected node from the first parent or no
subtree of the same type applies the node limits set. Random crossover happens
if no semantic difference can be found with any data type on the specified number
of subtrees selected.

As can be seen in all cases, the data type that has been chosen most often for
calculating the semantic similarity is the data type that is used as a return value
for each problem and therefore has the most influence on the fitness. Although
SCPS uses its semantic measure to choose a subtree in all cases more often than
falling back to random crossover, the amount of random crossover is high on all
problems, which happens because no semantic difference can be found with any
data type. For many problems, 20-40% of random crossover is used. In the case
of Number IO, SCPS falls back to random crossover 50% of the time.

The high percentage of random crossover indicates two things. First, that
many crossover operations are not able to find subtrees that are semantically
different, which means the individual produced will not be different from their
parents. If the individual is not different from their parents, it can also not be
better, which is why the percentage of children that are better than their parents
is not higher, see Figure 7.6. Second, the semantic similarity measure used for
SCPS is very detailed and might not be required to make such a complicated
comparison. A relatively high number of subtrees that have been checked during
the semantic crossover for program synthesis seem not to be able to create a
semantically different individual. Adapting the crossover to using the first subtree
that is semantically different instead of using the most semantically similar one
might be sufficient and improve run time, which will be more similar to the original
semantic similarity-based crossover proposed in [33]. Increasing the number of
Max_Tries could also increase the number of times a semantic crossover finding
a semantic difference, but that would increase run time.

7.3.5 Summary of SCPS

A semantic similarity-based crossover was adapted for the program synthesis do-
main. To this end, methods for semantic distance measure were proposed, which

132

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Checksum

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Collatz Numbers

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Compare String Lengths

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Double Letters

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Grade

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Mirror Image

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

Pe
rc

e
n
ta

g
e

Number IO

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Small Or Large

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Sum of Squares

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Super Anagrams

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Generation

Vector Average

Random crossover
Bool

Int
Float

String
List Int

List Float
No crossover

Figure 7.7: Percentage of crossover of a specific type with SCPS.

133

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

use the execution trace of a program, and the semantic crossover was applied to
a suite of benchmark problems.

Semantic similarity crossover for program synthesis was able to produce more
children that are semantically different from their parents as well as more children
that are better than their rooted parent and both parents. Nevertheless, this did
not lead to better overall performance. A reason might be that a high percentage
of times the semantic crossover was still falling back to random crossover if it does
not find any semantic difference on any selected subtree.

As mentioned before, the check for semantic similarity was complex and still a
lot of times SCPS had to fall back to random crossover, because no semantically
similar subtree could be found, even with up to 10 tries. A more straightforward
check for semantic similarity like checking only for any semantic difference might
be sufficient to improve performance and might reduce run time over the semantic
similarity measure proposed for SCPS. Additionally, adapting the crossover to
consider multiple different crossover points in the first parent instead of a single
one might also lead to finding semantic differences more often. Improvements on
SCPS will be studied in the next section.

7.4 Effective Semantic Operators for Program
Synthesis

In this section, novel semantic operators are presented which use semantic in-
formation more effectively than the previously introduced operator SCPS. Using
insights gained from the experiments with SCPS, shortcomings are addressed to
create effective semantic operators. A semantic crossover is described in the next
section, followed by a mutation operator that acts on a similar principle.

7.4.1 Effective Semantic Crossover for Program Synthesis

An adapted version of SCPS that fixes the issues discussed in Section 7.3.5 has
been created and named Effective Semantic Crossover for Program Synthesis (ES-
CPS). Pseudocode for ESCPS is shown in Algorithm 7.3. The first small but im-
portant change is that similar to MSSC a pair of subtrees is selected. One subtree
from each parent. The semantic information from the subtree of the first parent

134

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Algorithm 7.3 Effective Semantic Crossover for Program Synthesis (ESCPS)
repeat

select subtree from first parent
select subtree of matching type from second parent
calculate semantics of second subtree
compare semantics for partial change
if partial change found? then

do crossover between subtrees
return

end if
until successful crossover or maximum tries
check all subtree pairs again for any difference
do crossover with the first pair that shows any difference

Algorithm 7.4 Calculate semantics for a subtree from the second parent
input1, output1 ← semantics of subtree from first parent
set variables to input1
output2 ← execute subtree from second parent

has already been collected during the fitness evaluation, so no further overhead is
required for that part.

To be able to compare the semantics of two subtrees, both subtrees have to
be executed on the same state of variables. It is important to note that this is
not a fitness evaluation as no fitness value is calculated. The pseudocode that
describes the process of establishing the semantics of the subtree from the second
parent, which has also been used for SCPS, is shown in Algorithm 7.4. The only
difference between Algorithm 7.4 and Algorithm 7.2 is that the last line has been
removed. The semantic distance is not calculated within this algorithm anymore,
as the semantics is used within ESCPS up to two times.

In the next step, the semantics of the two subtrees are compared. As explained
in Section 7.3.5, the previous measure for similarity was rather complex and still
was unable to find many subtrees that produced different semantics. Therefore,
a more straightforward semantic measure that is easier to use and implement for
various data types has been established that checks for a partial change. As the
semantics of a subtree is a vector of values for each variable, the measure checks
for every variable if there is at least one difference between the semantics from
the subtrees in a single entry in the vector, but the vectors are not allowed to
be completely different. Or to put it in other words, at least one entry has to

135

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

be different, and at least one entry has to be identical. This check provides the
information that the subtrees are not equivalent but have some similarity.

If a partial change has been found, the two subtrees are used for crossover. No
further steps need to take place. Therefore, the number of semantic comparisons
can be smaller than the number of comparisons that need to take place with SCPS
or even MSSC, which reduces the computational effort. Although in the worst-
case scenario the number of semantic comparisons will be identical to SCPS and
MSSC. As it is still possible to not find a partial change after a maximum number
of tries and to avoid falling back to random crossover right away, an additional
second semantic measure is used. The second semantic measure checks for any
change in the semantics between two subtrees. The same subtrees are checked
with the second measure and the first pair of subtrees that shows any difference is
selected for crossover. The intention is to avoid falling back to random crossover
and use the semantic information gathered in the previous loop. Additionally, the
second semantic measure comes with little computational overhead, as all pairs of
subtrees and the corresponding semantics have already been calculated.

Only if both semantic measures fail to find a partial or any change, crossover
falls back to the default behaviour, which is selecting subtrees at random. So, one
subtree pair that has been selected within the loop is used for crossover.

7.4.2 Effective Semantic Mutation for Program Synthesis

An Effective Semantic Mutation for Program Synthesis (ESMPS) operator has
been created as well, because semantics can be used for mutation in a similar
way to crossover. It works on the same principle as the ESCPS described above.
Like conventional subtree mutation, a new random subtree is generated, but the
semantics of the new subtree is evaluated to decide if it should be used. Again,
a maximum number of tries can be set to do so and first ESMPS checks for a
partial change as long as the maximum number of tries has not been exceeded.
Afterwards, it falls back to check for any change, before it has no other choice
than to fall back to random mutation. The pseudocode would be very similar to
Algorithm 7.3, except the third line, would be replaced with “generating a random
subtree”, which would be used in line four instead of the “second subtree”.

136

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

7.4.3 Experimental Setup

The goal of the experiments is to show that semantic operators are able to outper-
form conventional operators even in the program synthesis domain as well as that
the semantic operators do not have to fall back to random crossover or mutation
as it was often the case with SCPS. The same experimental setup, parameter set-
tings and problems, is used as in Section 7.3.3, which shows the parameter settings
in Table 7.2. No additional parameters are required for ESCPS and ESMPS ex-
cept Max_Tries, which has already been added with SCPS. In contrary to SCPS,
which selects up to Max_Tries subtrees and compares to all of the selected sub-
trees, ESCPS and ESMPS compare one subtree pair at a time, which therefore
can decrease the number of comparisons required. The parameter settings are
shown in Table 7.2.

7.4.4 Results

This section discusses the results of the experiments carried out with the effective
semantic operators. The overall success rates, as well as semantic aspects of the
operators, are discussed. The following results are mainly focused on crossover
since it is the operator that is primarily used and therefore of higher interest. The
plots for mutation are very similar and thus omitted from the chapter, but can
be found in Appendix D.

Successful Runs and Fitness

The overall number of successful runs, the average test fitness of the best indi-
viduals, the average percentage of training and test cases solved for the semantic
operators are shown in Table 7.4 as well as the improvements compared to con-
ventional subtree operators. Additionally, a Wilcoxon rank sum test on the test
fitness of the best training individuals was carried out to check for statistically
significance.

The table shows that in almost all cases the semantic operators have improved
the results on the benchmark problems. Sum of Squares gained the most successful
runs due to the ESCPS and ESMPS. Some problems suffer from overfitting as is
the case with the standard operators, but the increase of successful solutions found
on training and improvements on average test fitness indicate that the semantic

137

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Ta
bl

e
7.

4:
R

es
ul

ts
on

be
nc

hm
ar

k
pr

ob
le

m
s

ru
nn

in
g

G
3P

10
0

tim
es

on
ea

ch
pr

ob
le

m
w

ith
ES

C
PS

an
d

ES
M

PS
.T

he
ta

bl
e

co
nt

ai
ns

th
e

nu
m

be
r

of
su

cc
es

sfu
lr

un
s

on
te

st
an

d
tr

ai
ni

ng
da

ta
,t

he
av

er
ag

e
te

st
fit

ne
ss

an
d

th
e

av
er

ag
e

pe
rc

en
ta

ge
of

so
lv

ed
tr

ai
ni

ng
an

d
te

st
ca

se
so

ft
he

be
st

so
lu

tio
n

fo
un

d
du

rin
g

tr
ai

ni
ng

w
ith

th
e

im
pr

ov
em

en
to

ve
rs

ta
nd

ar
d

cr
os

so
ve

ra
nd

th
e

p-
va

lu
e

fro
m

W
ilc

ox
on

ra
nk

-s
um

te
st

on
th

e
av

er
ag

e
te

st
fit

ne
ss

.
T

he
re

su
lt

is
co

m
pa

re
d

to
st

an
da

rd
ge

ne
tic

op
er

at
or

s
w

ith
th

e
di

ffe
re

nc
es

sh
ow

n
in

br
ac

ke
ts

.

Pr
ob

le
m

N
am

e
Te

st
Tr

ai
ni

ng
Av

g
Fi

tn
es

s(
%

Im
pr

ov
.)

Av
g

So
lv

ed
Tr

ai
n.

Av
g

So
lv

ed
Te

st
p-

va
lu

e
C

he
ck

su
m

0(
+

0)
0(

+
0)

33
38

9.
56

(+
7.

29
%

)
50

.1
7%

(+
18

.0
0)

26
.7

8%
(+

14
.5

8)
0.

21
68

C
ol

la
tz

N
um

be
rs

0(
+

0)
0(

+
0)

83
54

8.
64

(–
0.

61
%

)
1.

96
%

(+
0.

29
)

0.
84

%
(+

0.
03

)
0.

21
91

C
om

pa
re

St
rin

g
Le

ng
th

s
4(

+
2)

99
(+

0)
93

.7
3(

+
15

.6
4%

)
99

.9
9%

(+
0.

00
)

90
.6

3%
(+

1.
74

)
0.

17
23

D
ou

bl
e

Le
tt

er
s

0(
+

0)
0(

+
0)

43
62

.0
8(

+
6.

34
%

)
24

.0
4%

(+
0.

41
)

11
.3

7%
(–

0.
43

)
0.

03
34

G
ra

de
27

(–
4)

79
(–

2)
14

4.
73

(+
41

.2
5%

)
98

.9
8%

(+
1.

73
)

97
.2

9%
(+

1.
89

)
0.

46
48

M
irr

or
Im

ag
e

0(
+

0)
67

(+
16

)
34

3.
50

(–
1.

84
%

)
99

.5
8%

(+
0.

65
)

65
.6

5%
(–

0.
62

)
0.

82
21

N
um

be
r

IO
97

(+
3)

10
0(

+
0)

92
.6

8(
+

99
.7

4%
)

10
0.

00
%

(+
0.

00
)

99
.8

4%
(+

0.
29

)
0.

00
82

Sm
al

lO
r

La
rg

e
6(

+
0)

66
(+

7)
53

2.
75

(+
10

.0
8%

)
98

.6
1%

(+
1.

43
)

89
.3

0%
(+

1.
62

)
0.

36
14

Su
m

of
Sq

ua
re

s
13

(+
10

)
16

(+
13

)
15

78
54

.5
3(

+
39

.7
5%

)
35

.0
4%

(+
24

.2
4)

30
.7

8%
(+

21
.9

2)
0.

00
00

Su
pe

r
A

na
gr

am
s

0(
+

0)
42

(+
0)

26
4.

44
(+

0.
50

%
)

99
.6

7%
(+

0.
01

)
86

.7
8%

(+
0.

07
)

0.
90

76
Ve

ct
or

Av
er

ag
e

16
(+

0)
16

(–
1)

19
50

73
.0

5(
+

15
.3

8%
)

38
.8

2%
(+

4.
13

)
33

.9
8%

(+
0.

55
)

0.
01

54

138

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

operators are beneficial for those problems as well. The average test fitness of the
best training solution and percentage of solved test cases has not improved on
all problems, but the amount it has decreased by is negligible compared to the
improvements that were achieved in most cases. Only in case of Grade, the number
of successful solutions found on training and test has slightly decreased, but the
improvement on the fitness indicates that on average the solutions found were
closer to solving the problem. Maybe with a bigger population size, a successful
solution would have been found, see Chapter 5.

In Figure 7.8, notched box plots of the test fitness of the best individual are
shown. The test fitness of the best individual in training of the runs with semantic
operators (Semantic) are compared with conventional subtree operators (Default).
In four cases, Double Letters, Number IO, Sum of Squares and Vector Average,
the results with the semantic operators are significantly better than with subtree
operators. The semantic operators were able to significantly improve on four of
the problems tackled and had little effect on the others. So, in the worst-case
scenario, some computational overhead is used with ESCPS and ESMPS, but the
results do not become worse.

Semantic Measure Used

One of the shortcomings of SCPS was that standard crossover was used between
20-40% of the time, 50% for Number IO. ESCPS tries to address this issue. Fig-
ure 7.9 shows the semantic measure used for comparison. “Partial change” is the
default semantic measure used, as explained in Section 7.4.1. If no subtree with a
partial change is found, “Any change” will be accepted. As a last resort, standard
crossover will be used. It should be noted that it is possible, that no crossover
happens if no subtrees of the same type can be found that applies to the node
limit but this only happens in rare cases.

For all problems “Partial change” is used most of the time, in many cases
close to 100% of the time. This shows that this semantic measure is able to
use the semantic information of subtrees more often than in the case of SCPS in
Section 7.3.4. The second semantic measure “Any change” is rarely used and only
during the initial generations of GP because “Any change” is solely used if “Partial
change” fails and “Any change” is a slightly more general measure than “Partial
change”. Even with this additional semantic measure, random crossover might be

139

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

Semantic Default

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

Checksum

F
it
n

e
s
s

Semantic Default

7
8

0
0

0
8

2
0

0
0

8
6

0
0

0
9

0
0

0
0

Collatz Numbers

Semantic Default

0
1

0
0

2
0

0
3

0
0

4
0

0

Compare String Lengths

Semantic Default

3
5

0
0

4
0

0
0

4
5

0
0

5
0

0
0

Double Letters

Semantic Default

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Grade

F
it
n

e
s
s

Semantic Default

1
0

0
2

0
0

3
0

0
4

0
0

5
0

0

Mirror Image

Semantic Default

7
.4

e
−

1
1

7
.8

e
−

1
1

8
.2

e
−

1
1

Number IO

Semantic Default

0
5

0
0

1
0

0
0

1
5

0
0

Small Or Large

Semantic Default

0
e

+
0

0
4

e
+

0
5

8
e

+
0

5

Sum of Squares

F
it
n

e
s
s

Semantic Default

2
2

0
2

6
0

3
0

0
3

4
0

Super Anagrams

Semantic Default

0
e

+
0

0
1

e
+

0
5

2
e

+
0

5
3

e
+

0
5

4
e

+
0

5

Vector Average

Figure 7.8: Notched box plots of the test ftness of the best individual during
training comparing the semantic operators (“Semantic”) to the syntactical subtree
operators (“Default”). Outliers have been omitted for visibility.

140

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Checksum

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Collatz Numbers

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Compare String Lengths

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Double Letters

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Grade

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Mirror Image

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

Pe
rc

e
n
ta

g
e

Number IO

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Small Or Large

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Sum of Squares

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Super Anagrams

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Generation

Vector Average

Partial Change
Any Change

Random
No Crossover

Figure 7.9: Percentage of semantic measure used during crossover over genera-
tions. “Partial change” is the semantic measure that is used first. If no subtree
pair for crossover is found, “Any change” is used before falling back to “Random”
crossover. ‘No crossover’ indicates that no crossover has taken place.

141

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f

Tr
ie

s

Generation

Number of Tries for Semantic Crossover

Checksum
Compare String Lengths

Collatz Numbers
Double Letters

Grade
Mirror Image

Number IO
Small Or Large

Sum of Squares
Super Anagrams

Vector Average

Figure 7.10: Average number of tries subtrees were selected for semantic compar-
isons until a subtree pair was used for crossover.

used more often, during the first few generations, but declines quickly. The only
exception is Number IO, which continually uses standard crossover 30% of the
time. This means that ESCPS is not able to find subtrees that are semantically
different in 30% of the crossover events which is still a decrease of 20 percent point
compared to SCPS. SCPS had to fall back to standard crossover about 50% of
the time. In Section 7.4.4 it will be shown that even standard crossover has the
least amount of semantically different children on Number IO.

Semantic Comparisons

Semantic comparisons are computationally expensive and a drawback of semantic
operators. Figure 7.10 shows the average number of semantic comparisons that
were required until a pair of subtrees were selected for crossover for all problems.
If the second semantic “Any change” was used, the number of comparisons was
already at the maximum of 10.

Figure 7.9 showed that in the initial generations it is more difficult to find a
pair of subtrees with semantic differences, which explains why initially the number
of comparisons is high in Figure 7.10, but it quickly declines for all problems and

142

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

stabilizes around 2 to 3. This shows that the number of comparisons is not even
close to the maximum except in the initial generations and that the computational
overhead of the semantic operator is on average low and less than for SCPS. The
only exception again is Number IO, which usually would not be running longer
than a few generations anyway, because solutions to that problem are found within
the first few generations.

Parent Comparison

When the semantic operator is used and does not fall back to the conventional
operator, the subtrees that are exchanged have different semantics. But this does
not mean that the overall semantics of the whole individual changes. Figure 7.11
depicts the percentage of children that have semantics different compared to their
rooted parent for all problems, showing ESCPS on top and standard crossover
below. The rooted parent is the one a subtree is removed from, and the child
shares the same root node with.

The percentage of children that are semantically different from their rooted
parent is higher than with standard crossover as well as SCPS, see Figure 7.5.
It is not 100%, because not every semantic operation on a subtree automatically
leads to a change in the overall semantics, but it gets close to 100% for some prob-
lems. In some cases, the percentage declines slightly over generations. This only
affects problems for which solutions were found that solve training. It seems that
problems are more affected the more often they are solved, which might explain
why Number IO has such a low percentage of semantically different children.

Changing the semantics of an individual is essential to keep semantic diversity
high but does not automatically lead to better solutions. Figure 7.12 shows the
percentages of children that are better than their rooted parent and both parents
for crossover. For all problems, ESCPS achieves a higher percentage of children
that are better than their parents than standard crossover.

It is expected that lines decrease over time as runs will have solved the problem
and continue for the purpose of this analysis, even though the run will not be able
to create better individuals. This is even the case when a solution only solves all
training but not test cases. The same effect could be seen with SCPS in Figure 7.6.
An extreme case is Compare String Lengths, where 99 runs have been able to solve
the training data. The percentage of children that are better than their parents

143

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Effective Semantic Crossover for Program Synthesis

Checksum
Compare String Lengths

Collatz Numbers
Double Letters

Grade
Mirror Image

Number IO
Small Or Large

Sum of Squares
Super Anagrams

Vector Average

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Standard Crossover

Figure 7.11: Percentage of children semantically different from their rooted parent
with ESCPS (top) and standard crossover (bottom).

144

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Checksum

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Collatz Numbers

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

Compare String Lengths

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Double Letters

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

Grade

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

Mirror Image

 0

 5

 10

 15

 20

 25

 0 50 100 150 200

Pe
rc

e
n
ta

g
e

Number IO

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

Small Or Large

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

Sum of Squares

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Super Anagrams

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

Generation

Vector Average

Semantic: Better than rooted
Default: Better than rooted
Semantic: Better than both

Default: Better than both

Figure 7.12: Percentage of children that are better than their rooted parent and
both parents over generations created with crossover. “Semantic” for ESCPS and
“Default” for standard crossover.

145

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

rapidly decreases and gets close to zero. In that case, even standard crossover
achieves a higher percentage than semantic crossover, but only because more runs
with ESCPS have already been solved, at least in training. A similar effect can
be seen for Grade, Mirror Image, Small Or Large and Super Anagrams.

7.4.5 Summary of Effective Semantic Operators for Pro-
gram Synthesis

Novel and effective semantic operators for program synthesis, ESCPS and ESMPS,
have been introduced. These operators are adaptations of the previously studied
Semantic Crossover for Program Synthesis (SCPS) and improve it by addressing
its shortcomings. ESCPS and ESMPS are able to effectively use the semantic in-
formation available almost all of the time in contrary to SCPS by using a simpler
semantic measure and selecting pairs of subtrees instead of comparing a single
subtree to multiple others. These effective semantic operators were able to pro-
duce more children that were improvements over their parents as well as achieve
statistically significantly better results than conventional subtree operators.

The results show that effective semantic operators for program synthesis can
be created, but it would be helpful to know on which kinds of problems it is
more likely to improve performance with semantic information. Additionally, it
should be tested, if it is possible to create a semantic measure that can estimate
the similarity between two subtrees more precisely than the partial change or
any change measure used so far and still be effective, as semantic locality is of
importance to improve performance.

7.5 Summary

Semantics and how it can be used in the domain of program synthesis has been
studied in this chapter. A definition of semantics in program synthesis has been
given in Section 7.2. Based on that definition multiple semantic operators have
been introduced. SCPS is the first approach of having a semantic operator for
program synthesis, and it is loosely based on MSSC, a semantic crossover from
the regression domain. SCPS improved results on a set of benchmark problems,
but in most cases not significantly and some result got worse. Nevertheless, SCPS
provided the first insights about semantics in program synthesis. SCPS could

146

CHAPTER 7. SEMANTIC OPERATORS IN PROGRAM SYNTHESIS

produce more semantically different children than standard crossover, and more
of the children produced outperformed their parents.

Using the insights gained from SCPS, an improved crossover was created and
named ESCPS, as well as a mutation operators ESMPS. Experiments conducted
with both semantic operators either improved results on a benchmark problem
or it showed not much of a difference. These experiments proved that improve-
ments with semantic operators in program synthesis are possible. The definition
of semantics in program synthesis, the created operators and the experiments con-
ducted in this chapter builds a good foundation for further research in the area of
semantics in program synthesis.

This chapter concludes the extended experimental research conducted with
the grammar design approach. Part IV consists of the last chapter about the
conclusion and future work as well as the appendices with grammars used and
additional plots from experiments and finally the bibliography.

147

Part IV

Fin.

148

Chapter 8

Conclusion & Future Work

After having explored a grammar design approach to tackle program synthesis
and studied semantics in the program synthesis domain, this chapter discusses
the conclusions. Section 8.1 summarizes the thesis, its contributions and insights.
Possible limitations are outlined in Section 8.3. Finally, future work is discussed
in Section 8.4.

8.1 Thesis Summary

The overall goal of the thesis was to investigate a flexible grammar-based approach
to tackle arbitrary program synthesis problems with a single reusable grammar
as well as defining and exploiting semantics in the program synthesis domain to
improve performance. For this purpose, four research questions have been stated
in Chapter 1, which have been addressed throughout this thesis.

How can Grammar Guided-Genetic Programming (G3P) be utilized to
tackle program synthesis?

Chapter 4 introduced a grammar design approach that is flexible and has
been proven to be capable of tackling a range of program synthesis prob-
lems successfully. Results confirmed that performance similar to the state
of the art is achievable, while no tailoring of the grammars as in previ-
ous approaches is required. Further studies in Chapter 5 and Chapter 6
investigated in two directions. Chapter 5 explored the computational ef-
fort required to solve program synthesis problems as well as showed some
underlying issues with overfitting. Additionally, suggestions for improving

149

CHAPTER 8. CONCLUSION & FUTURE WORK

performance and counteracting overfitting were given. Chapter 6 extended
the grammar design approach showcasing its flexibility as well as improving
results on a range of problems that had not been solved before as well as
solving one problem the state of the art system PushGP has not yet solved.

Do different derivation tree structures defined with grammars influence
the search performance?

The first study undertaken, in Chapter 3, explored the influence of different
derivation tree structures produced by grammars on the search performance.
Five different grammars for sorting were created each of which produced
different derivation trees but the same language. A significant difference in
performance could only be found with Koza-style crossover and not with a
crossover that chooses from all nodes in a tree uniform randomly. A similar
experiment was carried out in Chapter 4 on program synthesis problems
with the grammar design approach. This second experiment showed little
performance differences using grammars producing different derivation tree
structures in the program synthesis domain.

How to define semantics and semantic measures in GP for program
synthesis?

Semantics for program synthesis was thoroughly investigated in Chapter 7.
A definition of semantics in the domain of program synthesis has been stated,
which allowed the exploitation of semantic information in that domain. Mul-
tiple semantic measures have been suggested and analysed with the grammar
design approach.

How can semantic information be exploited in operators to improve
performance?

Based on the definition of semantics in program synthesis in Chapter 7,
search operators have been introduced. While the first semantic crossover
operator in Section 7.3 displayed limited improvements to standard oper-
ators, the insights gained from the experiments were used to propose an
enhanced version of the initial crossover as well as a semantic mutation op-
erator. Section 7.4 explains the changes to the initial semantic crossover in
detail and shows that semantic operators can outperform standard operators
in the program synthesis domain.

150

CHAPTER 8. CONCLUSION & FUTURE WORK

8.2 Contributions

The main contributions of this thesis are listed below. Additionally, many of these
contributions have been published in form of papers, which are listed on page xx.

Literature review
An overview of the most relevant topics, genetic programming, program
synthesis and semantics is given in Chapter 2. The chapter reviews work
from the program synthesis domain, outlines relevant methods to tackle
program synthesis with, especially in the area of GP, and surveys work on
the topic of semantics.

Study on derivation trees in G3P
Different derivation tree structures produced by grammars have been studied
on the problem of sorting networks in Chapter 3 as well as program synthesis
in Chapter 4, which showed that the form of recursive rules in grammars
has little influence on the performance of G3P.

Grammar design approach
A novel approach to tackle arbitrary program synthesis problems with a
single set of reusable grammars was introduced in Chapter 4, which can
compete with the state of the art system PushGP and also produce code in
a programming language used by practitioners. This approach was studied
in depth in Part III of the thesis. Chapter 5 studied the computational effort
required to solve program synthesis problems as well as analysed overfitting.
Chapter 6 showed that G3P with a similar function set to PushGP, can
solve more problems from a benchmark suite. It was also shown that the
grammars can easily be extended if required. Finally, Chapter 7 investigated
the use of semantics in the program synthesis domain with the grammar
design approach.

Grammars for general purpose programs in Python
The grammars produced for the grammar design approach to evolve general
purpose programs in Python have been made available in Appendix B and
extended grammars in Appendix C, as well as online for public use [37].

Insights into the general program synthesis benchmark suite
Experiments conducted in the area of program synthesis use the prob-

151

CHAPTER 8. CONCLUSION & FUTURE WORK

lems available in the general program synthesis benchmark suite, see Sec-
tion 2.3.2. All experiments carried out on this set of problems have given
further insight in the benchmark suite, especially because the grammar de-
sign approach was the second method tested on these problems. Certain
shortcomings of the benchmark problems and suggestions to improve them
have been made in Chapter 5, e.g. adapting the computational effort de-
pending on the difficulty of the problem as well as adjusting the dataset
sizes to counter overfitting.

Definition of semantics in program synthesis
A definition and detailed description of semantics in program synthesis has
been given in Chapter 7. Based on the definition further research can be
conducted, even independently of the grammar design approach.

Novel semantic operators for program synthesis
Novel semantic operators for program synthesis have been introduced and
improved in Chapter 7 based on the definition of semantics in program
synthesis. Chapter 7 proved that semantics can be used in program synthesis
to improve performance.

8.2.1 Technical contributions

All the implementation done during the completion of this thesis has been made
available online on GitHub [37], which includes plugins for a heuristic and evolu-
tionary algorithms framework called HeuristicLab [38], which are publicly avail-
able and open source. These plugins include all the code necessary to rerun any
experiment conducted for this thesis, provide support for grammar-based prob-
lems to HeuristicLab, include the grammars and an automatic grammar combiner,
lexicase selection as well as all the problems from the general program synthesis
benchmark suite, discussed in detail in Section 2.3.2.

Parts of the implementation have also been integrated into PonyGE2 [39] as
a showcase that other systems can quickly adopt the grammar design approach.

152

CHAPTER 8. CONCLUSION & FUTURE WORK

8.3 Limitations

This thesis covers a very broad and computationally expensive problem domain
and introduces semantics in the area of program synthesis which leads to the
consideration of certain limitations.

First, a derivation tree-based G3P, similar to CFG-GP [17] was used through-
out the thesis. It has not been tested if the grammar design approach behaves
similarly with a linearised G3P system like grammatical evolution.

The experiments conducted in this thesis on program synthesis only used prob-
lems from the general program synthesis benchmark suite [103] due to the lack of
better benchmark problems in GP [40, 41, 42]. On the one hand, the benefit is
that the results can be compared to other systems using the same benchmarks. On
the other hand, the risk of missing an important problem instance that behaves
differently exists.

The grammar design approach has only been compared to PushGP [95] in this
thesis. Comparisons of program synthesis systems have been done by Thomas Hel-
muth in his PhD thesis [151] and Pantridge et al. [136]. Helmuth discussed the
limitations of a range of program synthesis systems compared to GP approaches.
Pantridge et al. showed the difficulty of comparing program synthesis systems.
Nevertheless, a comparison was conducted including results from the grammar
design approach [128]. The grammar design approach and PushGP were outper-
forming other methods used in the comparison. When comparing the grammar
design approach to PushGP, the results from [1] have been used, although more
recent results are available [152], because the more recent results also include
additional optimizations not yet used in the grammar design approach.

Although the whole Chapter 7 is dedicated to investigating semantics in the
program synthesis domain, many avenues of exploration have not yet been covered.
Therefore many possibilities for future work exist.

Finally, no parameter optimization has taken place before the experiments.
Most of the parameter settings have been taken from literature, the benchmark
suite description [103] or have been established through preliminary experiments.
The reasons why no parameter optimization has been done are partially due to the
computational expensive nature of the problem domain and because confirming
the successful application of and studying the grammar design approach was of

153

CHAPTER 8. CONCLUSION & FUTURE WORK

higher importance. The grammar design approach might achieve better results
through parameter optimization.

8.4 Future Work

The work presented in this thesis opens up many avenues for further research.
The flexible grammar design approach presented was only used on a benchmark
suite of general program synthesis problems. Even though this suite consists of
programming problems tackled by students and provides a way to compare differ-
ent program synthesis systems, the problems have limited real-world application.
Testing the approach on real-world problems might not only provide insights for
research but would also be of interest to practitioners. Many applications in the
area of software engineering are tackled with evolutionary algorithms already [98].
The grammar design approach might be able to help with new applications or im-
prove on existing ones.

As shown in Chapter 6, grammars can easily be extended, but this increases
the search space as well. The extension of the grammars lead to solving previously
unsolved problems, but the reduction of success rates of others. Automatically
adjusting the grammars and the functions used in the grammars could solve this
problem. A technique named multi-level grammars by Saber et al. [130] allows
using grammars of different sizes. Using such a method could allow introducing
grammars with a larger function set if the problem cannot be solved with a smaller
one. A possibility would also be to reduce the size of the grammars over time by
removing functionality.

No parameter optimization has yet been undertaken as stated in Section 8.3.
A parameter optimization could be a simple way to increase the success rates of
the grammar design approach further. Rather than doing an exhaustive search
of all possible parameter combinations, which would be very time-consuming in
the program synthesis domain, systems to automatically configure optimization
algorithms already exist, e.g. iterated racing for automatic algorithm configura-
tion (irace) [153] and Sequential Parameter Optimization Toolbox (SPOT) [154].
Additionally, no post-processing was used so far, which can improve success rates
as shown with PushGP [135]. It is worth investigating if such improvements also
occur with the grammar design approach.

154

CHAPTER 8. CONCLUSION & FUTURE WORK

As already discussed in Chapter 4 and in more detail in Chapter 5, overfitting
is an issue in program synthesis with GP, not just with the grammar design
approach, but also PushGP is facing similar issues [1]. While some work has
already been done, see Chapter 5 and [135], it is far from solved. Investigating
issues causing overfitting and how to counteract it, would be of importance to the
program synthesis community.

Semantics has helped improve performance in many problem domains and
Chapter 7 showed that even in the program synthesis domain semantics can be
exploited to achieve better results than with traditional operators. While the
work in this thesis gave interesting insights on how to use semantics in program
synthesis, there are still many avenues of research to explore. One is semantic ini-
tialization because it was shown that semantic diversity is more important than
syntactical diversity [16]. Also, fine-tuning of the semantic operators, especially
the semantic measures, presented in Chapter 7 to further promote semantic local-
ity could help in solving more problems. Another aspect of semantics in program
synthesis that should be investigated is the amount of semantic information that
has to be saved to gain performance improvements. While the semantic infor-
mation of a program can be collected during the evaluation, depending on the
number of variables used and the number of assignments of values to variables,
the more information has to be stored, which might end up to be a memory issue.
To reduce the memory usage and maybe even increase runtime, only the semantics
of a certain percentage of training cases may be stored.

155

Appendix A

General Program Synthesis
Benchmark Suite Problem
Description & Fitness Functions

A description of every problem of the general program synthesis benchmark suite
is given in Section A.1 as well as its fitness function is listed in Section A.2.

A.1 Problem Description

Description of the general program synthesis benchmark suite [103] problems with
returning instead of printing values:

Checksum
Return a single character that is the sum of all integer values of the charac-
ters of the input string modulo 64 plus 32 converted to ASCII.

Collatz Numbers
Return the number of terms in the Collatz conjecture sequence given an
integer.

Compare String Lengths
Return a boolean value indicating if three given strings fulfill the following
condition: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑡𝑟𝑖𝑛𝑔1) < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑡𝑟𝑖𝑛𝑔2) < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑡𝑟𝑖𝑛𝑔3)

Count Odds
Return the number of odd values in a list of integers.

156

APPENDIX A. PROGRAM SYNTHESIS PROBLEM DESCRIPTION

Digits
Return the single digits of a number starting with the least significant digit.
The most significant digit has to include the negative sign if the given num-
ber is negative.

Double Letters
Return the given string, but doubling every letter character and tripling
every exclamation point.

Even Squares
Return a list of positive even squares that are smaller than a given number.

For Loop Index
Return a list of integer given a start, end and step size value.

Grade
Return a letter grade (A, B, C, D, or F) given five integers. The first four
integers represent the thresholds between two grades and the last value is
the grade as a numeric value.

Last Index of Zero
Return an integer representing the last occurrence of 0 in a vector of integers.

Median
Return the median value given 3 integer values.

Mirror Image
Return a boolean value indicating if two given lists of integers are the reverse
of each other.

Negative To Zero
Return a list of integers that is the same as the given list of integers, except
that negative values have been replaced with zero.

Number IO
Return a float that is the sum of a given integer and float value.

Pig Latin
Return a string that is the given input string translated to pig Latin. Every

157

APPENDIX A. PROGRAM SYNTHESIS PROBLEM DESCRIPTION

word starting with a vowel has “ay” added at the end. Every other word
has its first letter added at the and followed by “ay”.

Replace Space with Newline
Return a string that has space characters replaced with newline characters.
Additionally, return an integer representing the number of non-whitespace
characters.

Scrabble Score
Return the Scrabble score for a given string of visible ASCII characters.
Each character has a corresponding value in Scrabble.

Small Or Large
Return “small”, “large” or a string of length zero depending if a given integer
is smaller than 1000, bigger than or equals to 2000 or in between.

Smallest
Return the smallest of four given integers.

String Differences
Return a list containing a number and two characters that indicate at which
position two given strings are different. The characters represent the two
characters, one from each string, that are different.

String Lengths Backwards
Return a list of integers containing the lengths of strings in a given list in
reverse order of the given list of strings.

Sum of Squares
Return the sum of all squared values between 1 and a given integer.

Super Anagrams
Return a boolean value indicating if a string 𝑎 is a super anagram of 𝑏.
Every character in 𝑏 must be in 𝑎 as many times as it is in 𝑏. 𝑎 may contain
extra characters.

Syllables
Return an integer that is the number of vowels in a given string that contains
only spaces, digits and lowercase letters.

158

APPENDIX A. PROGRAM SYNTHESIS PROBLEM DESCRIPTION

Vector Average
Return a float that is the average of all floats in a given list.

Vectors Summed
Return a list of integers that is the element-wise sum of two given lists of
integers of equal size.

Wallis Pi
Return a float representing the product of the first 𝑛 terms of the Wallis
product.

Word Stats
Return a list of integers containing the number of words of the length cor-
responding to the index for a given string. Additionally, return an integer
representing the number of sentences as well as a float representing the av-
erage number of words per sentence.

X-Word Lines
Return a string that contains the same words as a given string, but has
precisely 𝑛, which is a given integer, words per line. The given string includes
spaces and newlines.

A.2 Fitness Functions

The fitness functions used for experiments with the general program synthesis
benchmark suite are described in Table A.1. The fitness is minimized. Therefore
the optimal value that can be reached is zero. Table A.1 describes the fitness
function for a single training case. The values for all training cases are aggregated
by summing them up to get the fitness values, which is required for many selection
operators. Lexicase selection can operate on a non-aggregated list of values, which
makes it possible to have multiple fitness functions as is the case for Replace Space
with Newline, Word Stats and X-Word Lines.

“Absolute difference” is the absolute difference between two numerical values.
“Boolean difference” is either zero if two boolean values are the same, otherwise
one. “Levenshtein distance” is used to compare strings, which calculates the
number of single-character edits (insertions, deletions or substitutions) required to
transform one string into another. Fitness functions comparing lists use one of the

159

APPENDIX A. PROGRAM SYNTHESIS PROBLEM DESCRIPTION

previously mentioned functions and sum over the calculated values. Additionally,
a penalty value is used if the lists are of different length. A “length difference
penalty” value is multiplied by the difference in length of the two lists. The
“length difference penalty” value is set differently for each problem as it depends
on the maximum and minimum values that can occur as the output of a problem.

Table A.1: Fitness functions for the problems of the general program synthesis
benchmark suite used in this theses.

Problem Fitness Function
Checksum Absolute difference between the returned character and the

expected character in the ASCII table. Note: When no char-
acter data type is available, a string is used. If the string is
empty, the fitness value is set to 1000. If the string contains
multiple characters, the first character is compared

Collatz Numbers Absolute difference
Compare String Lengths Boolean difference
Count Odds Absolute difference
Digits Sum of absolute difference. Length difference penalty of 20
Double Letters Levenshtein distance
Even Squares Sum of absolute difference. Length difference penalty of 100
For Loop Index Sum of absolute difference. Length difference penalty of 2000
Grade Absolute difference between the returned character and the

expected character in the ASCII table. A penalty of 6 is used
if no value has been set or if the returned string contains more
than one character

Last Index of Zero Absolute difference
Median Boolean difference
Mirror Image Boolean difference
Negative To Zero Sum of absolute difference. Length difference penalty of 5000
Number IO Absolute difference
Pig Latin Levenshtein distance
Replace Space with Newline Levenshtein distance for string comparison; Absolute differ-

ence for the number of non-whitespace characters
Scrabble Score Absolute difference
Small Or Large Levenshtein distance
Smallest Boolean difference
String Differences Has not been used, see Section 4.3.1
String Lengths Backwards Sum of absolute difference. Length difference penalty of 50
Sum of Squares Absolute difference
Super Anagrams Boolean difference
Syllables Absolute difference

160

APPENDIX A. PROGRAM SYNTHESIS PROBLEM DESCRIPTION

Vector Average Absolute difference
Vectors Summed Sum of absolute difference. Length difference penalty of 10000
Wallis Pi Absolute difference
Word Stats Levenshtein distance between the integer lists after converting

to strings; Absolute difference for the integer representing the
number of sentences; Absolute difference for the float repre-
senting the average number of words per sentence

X-Word Lines Levenshtein distance; Absolute difference of number of new-
lines; Sum of the absolute difference of number of words in
each line

161

Appendix B

Program Synthesis Grammars

The following section explains how grammars are combined automatically fol-
lowed by the grammars used within this thesis for all experimental chapters about
program synthesis, except for Chapter 6. The grammars for Chapter 6 are in Ap-
pendix C. Finally, Section B.11 shows the code for the protected methods used
within the grammars.

The grammars contain some unnecessary line breaks due to the page width.

B.1 Automatic Grammar Combination

The grammars used for the grammar design approach are split up in smaller ones,
one for each available data type plus an additional grammar for defining some basic
structure. Depending on the problem and its data types required, grammars can
be automatically combined containing any or even all smaller grammars. Only
structure.bnf must always be used.

The following grammars may define the same non-terminal symbols multiple
times or even contain empty non-terminal symbols. Empty non-terminal symbols
are just placeholders to make it easier to understand the grammars. For example,
structure.bnf contains a <for> non-terminal with no productions, but shows that
for loops can be used. The <for> non-terminal is defined in multiple grammars
like string.bnf, list_bool.bnf, list_float.bnf etc. When combining those grammars,
all the productions which are defined with the same non-terminal are put as
productions in a single non-terminal symbol with the same name.

162

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

Although a grammar usually only defines functionality for a single data type,
some functions require multiple data types, e.g. <string>’[’<int>’:]’, or return
a different data type, e.g. <int> ::= ’len(’<string>’)’. Such functions are put in
the grammar they fit best. When grammars are then combined, having functions
that require multiple data types can lead to the issue that a certain type should
not be added to the final grammar. For example, the grammar string.bnf contains
multiple functions that would require the integer data type. If the final grammar
should only contain bool and string as data types, integer is not available, but the
final grammar contains functions that require the non-terminal <int>. Therefore,
a clean up is done after combining the grammar, by removing productions that
contain non-terminals that are not available in the grammar as well as removing
non-terminals which do not contain any productions as the combined grammar
should not contain any placeholders any more.

Finally, the grammars shown in this chapter contain two additional special
placeholders as terminals, “forCounter%” and “loopBreak%”. These terminals
are used in the G3P system and are replaced before executing the final code.
“forCounter%” is replaced by a variable with the same name, just instead of the
“%” sign, a number is used. This can be helpful if a loop should do as many
iterations as a list has elements, but not use the values of the list. The second
special placeholder “loopBreak%” is used to break loops, if too many iterations
have been used, e.g. in case of infinite loops. “loopBreak%” can either be replaced
in the same way as “forCounter%” by replacing the “%” sign with a number to
break loops individually or by replacing it with the same name without the “%”
sign to use a maximum amount of iterations for all loops, as has been done in this
thesis. The variable “loopBreakConst” has to be set before executing any other
code to define the maximum number of iterations either for each individual loop
or all loops combined.

Another technical detail is “stop.value”, which is a boolean variable in shared
memory to be able to stop the execution of loops from another process, if the
maximal allowed execution time has been used up.

163

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

B.2 structure.bnf

// **
// Grammar containing the python structure
// **

<predefined> ::= <code>

<code> ::= <code><statement>’\n’ | <statement>’\n’

<statement> ::= <simple_stmt> | <compound_stmt>
<simple_stmt> ::= <call> | <assign>
<compound_stmt> ::= <for>

<call> ::= // call statements
<assign> ::= // assign statements

<for> ::= // for statements depend on lists or use of range

<loop-header> ::= ’loopBreak% = 0\n’
// stop.value is set by outer code to break immediately
<loop-block> ::= ’:{:\n’<code>’\nif loopBreak% > loopBreakConst or

stop.value:{:\nbreak\n:}loopBreak% += 1\n:}’

// for integer and float
<number> ::= <number><num> | <num>
<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<comp_op> ::= ’<’|’>’|’==’|’>=’|’<=’|’!=’|’is’|’is not’

// for string
<string_const_part> ::= <string_const_part><string_literal>

| <string_literal>

// for list
<in_list_comp_op> ::= ’in’|’not in’
<list_comp_op> ::= ’==’|’!=’

164

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

B.3 bool.bnf

// **
// bool grammar
// **

<bool_var> ::= // placholder for variable names

<assign> ::= <bool_assign>
<bool_assign> ::= <bool_var>’ = ’<bool>

<bool> ::= <bool_var> | <bool_const>
| <bool_pre> <bool>
| ’(’ <bool> <bool_op> <bool> ’)’

<bool_op> ::= ’and’ | ’or’
<bool_pre> ::= ’not’

<bool_const> ::= ’True’ | ’False’

// structure only need if bool is used
<compound_stmt> ::= <if> | <while>

<if> ::= <if-then> | <if-then><else>
<if-then> ::= ’if ’<bool><block>
<else> ::= ’else’<block>
<block> ::= ’:{:\n’<code>’:}’

<while> ::= <loop-header>’while ’<bool><loop-block>

B.4 float.bnf

// **
// float grammar
// **

<float_var> ::= // placholder for variable names

<assign> ::= <float_assign>
<float_assign> ::= <float_var> ’=’ <float>

165

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

| <float_var> <arith_assign> <float>

<float> ::= <float_var> | <float_const>
| <arith_prefix><float>
| ’(’ <float> <arith_ops> <float> ’)’
| <float_arith_ops_protected>’(’<float>’,’<float>’)’
| ’math.ceil(’<float>’)’ | ’math.floor(’<float>’)’
| ’round(’<float>’)’
| ’min(’<float>’, ’<float>’)’
| ’max(’<float>’, ’<float>’)’
| ’abs(’<float>’)’

<float_const> ::= <number>’.’<number>

<float_arith_ops_protected> ::= ’div’ | ’divInt’ | ’mod’

// Return int
// have to call int() for python 2.7.5
<int> ::= ’int(math.ceil(’<float>’))’

| ’int(math.floor(’<float>’))’ | ’int(round(’<float>’))’
| ’int(’<float>’)’

// Return bool
<bool> ::= <float> <comp_op> <float> | <int> <comp_op> <float>

| <float> <comp_op> <int>

B.5 int.bnf

// **
// int grammar
// **

<int_var> ::= // placholder for variable names

<assign> ::= <int_assign>
<int_assign> ::= <int_var> ’=’ <int>

| <int_var> <arith_assign> <int>

<int> ::= <int_var> | <int_const>
| <arith_prefix><int>
| ’(’ <int> <arith_ops> <int> ’)’

166

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

| <int_arith_ops_protected>’(’<int>’,’<int>’)’
| ’min(’<int>’, ’<int>’)’
| ’max(’<int>’, ’<int>’)’
| ’abs(’<int>’)’

// to avoid problems with leading zeros in python int
<int_const> ::= ’int(’<number>’.0)’

<arith_assign> ::= <arith_ops>’=’
<arith_ops> ::= ’+’|’-’|’*’

<int_arith_ops_protected> ::= ’divInt’ | ’mod’
<arith_prefix> ::= ’+’|’-’

// Return bool
<bool> ::= <int> <comp_op> <int>

// Return float
<float> ::= <int>

// Return string
<string> ::= ’saveChr(’<int>’)’

B.6 string.bnf

// **
// string grammar
// **

<string_var> ::= // placholder for variable names

<assign> ::= <string_assign>
<string_assign> ::= <string_var>’ = ’<string>

<string> ::= <string_var> | <string_const> | <string_slice>
| <getStringIndexCall>
| ’(’<string>’ + ’<string>’)’
| <string>’.lstrip()’ | <string>’.rstrip()’
| <string>’.strip()’ | <string>’.lstrip(’<string>’)’
| <string>’.rstrip(’<string>’)’
| <string>’.strip(’<string>’)’

167

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

| <string>’.capitalize()’

<string_slice> ::= <string>’[’<int>’:’<int>’]’
| <string>’[:’<int>’]’ | <string>’[’<int>’:]’

<getStringIndexCall> ::= ’getCharFromString(’<string>’, ’<int>’)’

<string_const> ::= "’"<string_const_part>"’"
// <string_const_part> in structure(_tree).bnf
<string_literal> ::= ’’ | ’\\n’ | ’\\t’ | ’ ’ | ’!’ | ’"’ | ’#’

| ’$’ | ’%’ | ’&’ | "\\’" | ’(’ | ’)’ | ’*’
| ’+’ | ’,’ | ’-’ | ’.’ | ’/’ | ’0’ | ’1’ | ’2’
| ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ | ’:’
| ’;’ | ’<’ | ’=’ | ’>’ | ’?’ | ’@’ | ’A’ | ’B’
| ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’
| ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’
| ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’
| ’[’ | ’\\\\’ | ’]’ | ’^’ | ’_’ | ’‘’ | ’a’
| ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’
| ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’
| ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’
| ’z’ | ’{’ | ’|’ | ’}’

// Returns int
<int> ::= ’len(’<string>’)’ | ’saveOrd(’<string>’)’

// Return bool
<bool> ::= <string>’ in ’<string> | <string>’ not in ’<string>

| <string>’ == ’<string> | <string>’ != ’<string>
| <string>’.startswith(’<string>’)’
| <string>’.endswith(’<string>’)’

B.7 list_bool.bnf

// **
// list grammar for bool list
// **

<list_bool_var> ::= // placholder for variable names

<assign> ::= <list_bool_assign>
<list_bool_assign> ::= <list_bool_var>’ = ’<list_bool>

168

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

<list_bool> ::= <list_bool_var> | <list_bool_slice>
<list_bool_slice> ::= <list_bool>’[’<int>’:’<int>’]’

| <list_bool>’[:’<int>’]’
| <list_bool>’[’<int>’:]’

<getListIndexCall_bool> ::=
’getIndexBoolList(’<list_bool>’, ’<int>’)’

<setListIndexToCall_bool> ::=
’setListIndexTo(’<list_bool>’, ’<int>’, ’<bool>’)’

<deleteListItemCall_bool> ::=
’deleteListItem(’<list_bool>’, ’<int>’)’

<bool> ::= <getListIndexCall_bool>

// Add to
<call> ::= <list_bool_var>’.append(’<bool>’)’

| <list_bool_var>’.insert(’<int>’,’<bool>’)’
| <deleteListItemCall_bool>
| <setListIndexToCall_bool>

<for> ::= <loop-header>’for forCounter% in ’<list_bool><loop-block>
| <loop-header>’for ’<bool_var>’ in ’<list_bool><loop-block>

// Return int
<int> ::= ’len(’<list_bool>’)’

// Return bool
<bool> ::= <bool> <in_list_comp_op> <list_bool>

| <list_bool> <list_comp_op> <list_bool>
| <list_bool>’ == []’

B.8 list_float.bnf

// **
// list grammar for float list
// **

<list_float_var> ::= // placholder for variable names

169

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

<assign> ::= <list_float_assign>
<list_float_assign> ::= <list_float_var>’ = ’<list_float>

<list_float> ::= <list_float_var> | <list_float_slice>
<list_float_slice> ::= <list_float>’[’<int>’:’<int>’]’

| <list_float>’[:’<int>’]’
| <list_float>’[’<int>’:]’

<getListIndexCall_float> ::=
’getIndexFloatList(’<list_float>’, ’<int>’)’

<setListIndexToCall_float> ::=
’setListIndexTo(’<list_float>’, ’<int>’, ’<float>’)’

<deleteListItemCall_float> ::=
’deleteListItem(’<list_float>’, ’<int>’)’

<float> ::= <getListIndexCall_float>

// Add to
<call> ::= <list_float_var>’.append(’<float>’)’

| <list_float_var>’.insert(’<int>’,’<float>’)’
| <deleteListItemCall_float>
| <setListIndexToCall_float>

<for> ::=
<loop-header>’for forCounter% in ’<list_float><loop-block>

| <loop-header>’for ’<float_var>’ in ’<list_float><loop-block>

// Return int
<int> ::= ’len(’<list_float>’)’

// Return bool
<bool> ::= <float> <in_list_comp_op> <list_float>

| <list_float> <list_comp_op> <list_float>
| <list_float>’ == []’

B.9 list_int.bnf

// **
// list grammar for int list
// **

170

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

<list_int_var> ::= // placholder for variable names

<assign> ::= <list_int_assign>
<list_int_assign> ::= <list_int_var>’ = ’<list_int>

<list_int> ::= <list_int_var> | <list_int_range> | <list_int_slice>
<list_int_slice> ::= <list_int>’[’<int>’:’<int>’]’

| <list_int>’[:’<int>’]’
| <list_int>’[’<int>’:]’

<list_int_range> ::= ’list(saveRange(’<int>’,’<int>’))’

<getListIndexCall_int> ::= ’getIndexIntList(’<list_int>’, ’<int>’)’
<setListIndexToCall_int> ::=

’setListIndexTo(’<list_int>’, ’<int>’, ’<int>’)’
<deleteListItemCall_int> ::=

’deleteListItem(’<list_int>’, ’<int>’)’

// Add to
<call> ::= <list_int_var>’.append(’<int>’)’

| <list_int_var>’.insert(’<int>’,’<int>’)’
| <deleteListItemCall_int>
| <setListIndexToCall_int>

<for> ::= <loop-header>’for forCounter% in ’<list_int><loop-block>
| <loop-header>’for ’<int_var>’ in ’<list_int><loop-block>

// Return int
<int> ::= <getListIndexCall_int>

| ’len(’<list_int>’)’

// Return bool
<bool> ::= <int> <in_list_comp_op> <list_int>

| <list_int> <list_comp_op> <list_int>
| <list_int>’ == []’

B.10 list_string.bnf

// **
// list grammar for string list
// **

171

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

<list_string_var> ::= // placholder for variable names

<assign> ::= <list_string_assign>
<list_string_assign> ::= <list_string_var>’ = ’<list_string>

<list_string> ::= <list_string_var> | <list_string_slice>
| ’saveSplit(’<string>’,’<string>’)’

<list_string_slice> ::= <list_string>’[’<int>’:’<int>’]’
| <list_string>’[:’<int>’]’
| <list_string>’[’<int>’:]’

<getListIndexCall_string> ::=
’getIndexStringList(’<list_string>’, ’<int>’)’

<setListIndexToCall_string> ::=
’setListIndexTo(’<list_string>’, ’<int>’, ’<string>’)’

<deleteListItemCall_string> ::=
’deleteListItem(’<list_string>’, ’<int>’)’

// Add to
<call> ::= <list_string_var>’.append(’<string>’)’

| <list_string_var>’.insert(’<int>’,’<string>’)’
| <deleteListItemCall_string>
| <setListIndexToCall_string>

<for> ::=
<loop-header>’for forCounter% in ’<list_string><loop-block>

| <loop-header>’for ’<string_var>’ in ’<list_string><loop-block>

// Return int
<int> ::= ’len(’<list_string>’)’

// Return string
<string> ::= <string>’.join(’<list_string>’)’

| <getListIndexCall_string>

// Return bool
<bool> ::= <string> <in_list_comp_op> <list_string>

| <list_string> <list_comp_op> <list_string>
| <list_string>’ == []’

172

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

B.11 Protected methods

The protected methods listed below are used in the grammars to avoid error and
provide evaluation safety. Some of the methods are only used in the extended
program synthesis grammars from Appendix C.

// **
Protected methods
// **
import math

def div(nom, denom):
if denom <= 0.00001:

return nom
else:

return nom / denom

def divInt(nom, denom):
if denom <= 0.00001:

return nom
else:

return nom // denom

def mod(nom, denom):
if denom <= 0.00001:

return nom
else:

return nom % denom

def deleteListItem(curList, index):
if not curList:

return
del curList[index % len(curList)]

def setListIndexTo(curList, index, value):
if not curList:

return
curList[index % len(curList)] = value

def getIndexBoolList(curList, index):
if not curList:

return bool()

173

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

return curList[index % len(curList)]

def getIndexFloatList(curList, index):
if not curList:

return float()
return curList[index % len(curList)]

def getIndexIntList(curList, index):
if not curList:

return int()
return curList[index % len(curList)]

def getIndexStringList(curList, index):
if not curList:

return str()
return curList[index % len(curList)]

def getCharFromString(curString, index):
if not curString:

with extended grammars it was changed to return ’ ’
return ’’

return curString[index % len(curString)]

def saveChr(number):
return chr(number % 128)

def saveOrd(literal):
if len(literal) <= 0:

return 32
return ord(literal[0])

def saveRange(start, end):
if end > start and abs(start - end) > 10000:

return range(start, start + 10000)
return range(start, end)

def setchar(s, c, i):
if not s:

return s
s = list(s)
s[i % len(s)] = c
return ’’.join(s)

174

APPENDIX B. PROGRAM SYNTHESIS GRAMMARS

chr_map = {0: chr(0), 1: chr(1)}
def int_to_chr(i):

96 visible characters in ascii + space + tab + newline
i = i % 96
return chr_map[i] if i in chr_map else chr(i + 30)

def float_to_chr(f):
return int_to_chr(int(f))

def saveIndex(l, i):
if i not in l:

return -1
return l.index(i)

def replaceFirstElementInList(l, a, b):
i = saveIndex(l, a)
if i < 0:

return l
l[i] = b
return l

def saveSplit(s, sep):
if not sep:

return s.split()
return s.split(sep)

// **

175

Appendix C

Extended Program Synthesis
Grammars

The grammars contain some unnecessary line breaks due to the page width.

C.1 structure.bnf

// **
// Grammar containing the python structure
// **

<predefined> ::= <code>

<code> ::= <code><statement>’\n’ | <statement>’\n’

<statement> ::= <simple_stmt> | <compound_stmt>
<simple_stmt> ::= <call> | <assign>
<compound_stmt> ::= <for>

<call> ::= // call statements
<assign> ::= // assign statements

<for> ::= // for statements depend on lists or use of range

<loop-header> ::= ’loopBreak% = 0\n’
// stop.value is set by outer code to break immediately
<loop-block> ::= ’:{:\n’<code>’\nif loopBreak% > loopBreakConst or

stop.value:{:\nbreak\n:}loopBreak% += 1\n:}’

176

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

// for integer and float
<number> ::= <number><num> | <num>
<num> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<comp_op> ::= ’<’|’>’|’==’|’>=’|’<=’|’!=’|’is’|’is not’

// for string
<string_const_part> ::= <string_const_part><string_literal>

| <string_literal>

// for list
<in_list_comp_op> ::= ’in’|’not in’
<list_comp_op> ::= ’==’|’!=’

C.2 bool.bnf

// **
// bool grammar
// **

<bool_var> ::= // placholder for variable names

<assign> ::= <bool_assign>
<bool_assign> ::= <bool_var>’ = ’<bool>

<bool> ::= <bool_var> | <bool_const>
| ’(’<bool_pre> <bool>’)’
| ’(’<bool> <bool_op> <bool>’)’
// boolean_invert_first_then_and
| ’(not’ <bool> ’and’ <bool>’)’
// boolean_invert_second_then_and
| ’(’<bool> ’and not’ <bool>’)’

<bool_op> ::= ’and’ | ’or’ | ’^’ | ’==’
<bool_pre> ::= ’not’

<bool_const> ::= ’True’ | ’False’

// structure only need if bool is used
<compound_stmt> ::= <if> | <while>

177

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

<if> ::= <if-then> | <if-then><else>
<if-then> ::= ’if ’<bool><block>
<else> ::= ’else’<block>
<block> ::= ’:{:\n’<code>’:}’

<while> ::= <loop-header>’while ’<bool><loop-block>

// Return int
<int> ::= ’int(’<bool>’)’

// Return float
<float> ::= ’float(’<bool>’)’

// Return string
<string> ::= ’str(’<bool>’)’

C.3 float.bnf

// **
// float grammar
// **

<float_var> ::= // placholder for variable names

<assign> ::= <float_assign>
<float_assign> ::= <float_var> ’=’ <float>

| <float_var> <arith_assign> <float>

<float> ::= <float_var> | <float_const>
| <arith_prefix><float>
| ’(’<float> <arith_ops> <float>’)’
| <float_arith_ops_protected>’(’<float>’,’<float>’)’
| ’math.ceil(’<float>’)’ | ’math.floor(’<float>’)’
| ’round(’<float>’)’
| ’min(’<float>’, ’<float>’)’
| ’max(’<float>’, ’<float>’)’
| ’abs(’<float>’)’
| ’math.sin(’<float>’)’ | ’math.cos(’<float>’)’
| ’math.tan(’<float>’)’
| ’(’<float> ’+ 1)’ | ’(’<float> ’- 1)’

178

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

<float_const> ::= <number>’.’<number>

<float_arith_ops_protected> ::= ’div’ | ’divInt’ | ’mod’

// Return int
// have to call int() for python 2.7.5
<int> ::= ’int(math.ceil(’<float>’))’

| ’int(math.floor(’<float>’))’ | ’int(round(’<float>’))’
| ’int(’<float>’)’

// Return bool
<bool> ::= ’(’<float> <comp_op> <float>’)’ | ’bool(’<float>’)’

// Return char
<char> ::= ’float_to_chr(’<float>’)’

// Return string
<string> ::= ’str(’<float>’)’

C.4 int.bnf

// **
// int grammar
// **

<int_var> ::= // placholder for variable names

<assign> ::= <int_assign>
<int_assign> ::= <int_var> ’=’ <int>

| <int_var> <arith_assign> <int>

<int> ::= <int_var> | <int_const>
| <arith_prefix><int>
| ’(’ <int> <arith_ops> <int> ’)’
| <int_arith_ops_protected>’(’<int>’,’<int>’)’
| ’min(’<int>’, ’<int>’)’
| ’max(’<int>’, ’<int>’)’
| ’abs(’<int>’)’
| ’(’<int> ’+ 1)’ | ’(’<int> ’- 1)’

179

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

// to avoid problems with leading zeros in python int
<int_const> ::= ’int(’<number>’.0)’

<arith_assign> ::= <arith_ops>’=’
<arith_ops> ::= ’+’|’-’|’*’
// ** raises ZeroDivision error when ’a = 0; a ** ~a’
// |’**’

<int_arith_ops_protected> ::= ’divInt’ | ’mod’
<arith_prefix> ::= ’+’|’-’
//|’~’

// Add to
<for> ::= <loop-header>’for forCounter% in

saveRange(0, ’<int>’)’<loop-block>
| <loop-header>’for ’<int_var>’ in

saveRange(0, ’<int>’)’<loop-block>
| <loop-header>’for forCounter% in

saveRange(’<int>’, ’<int>’)’<loop-block>
| <loop-header>’for ’<int_var>’ in

saveRange(’<int>’, ’<int>’)’<loop-block>

// Return bool
<bool> ::= ’(’<int> <comp_op> <int>’)’ | ’bool(’<int>’)’

// Return float
<float> ::= <int>

// Return char
<char> ::= ’int_to_chr(’<int>’)’

// Return string
<string> ::= ’str(’<int>’)’

C.5 char.bnf

// **
// char grammar
// **

180

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

<char_var> ::= // placholder for variable names

<assign> ::= <char_assign>
<char_assign> ::= <char_var>’ = ’<char>

<char> ::= <char_var> | "’"<char_literal>"’"

<char_literal> ::= ’\\n’ | ’\\t’ | ’ ’ | ’!’ | ’"’ | ’#’ | ’$’
| ’%’ | ’&’ | "\\’" | ’(’ | ’)’ | ’*’ | ’+’ | ’,’
| ’-’ | ’.’ | ’/’ | ’0’ | ’1’ | ’2’ | ’3’ | ’4’
| ’5’ | ’6’ | ’7’ | ’8’ | ’9’ | ’:’ | ’;’ | ’<’
| ’=’ | ’>’ | ’?’ | ’@’ | ’A’ | ’B’ | ’C’ | ’D’
| ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’ | ’K’ | ’L’
| ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’ | ’S’ | ’T’
| ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’ | ’[’ | ’\\\\’
| ’]’ | ’^’ | ’_’ | ’‘’ | ’a’ | ’b’ | ’c’ | ’d’
| ’e’ | ’f’ | ’g’ | ’h’ | ’i’ | ’j’ | ’k’ | ’l’
| ’m’ | ’n’ | ’o’ | ’p’ | ’q’ | ’r’ | ’s’ | ’t’
| ’u’ | ’v’ | ’w’ | ’x’ | ’y’ | ’z’ | ’{’ | ’|’
| ’}’

// Return string
<string> ::= <char>

// Return bool
<bool> ::= <char>’.isdigit()’ | <char>’.isspace()’

| <char>’.isalpha()’ | ’(’<char>’ == ’<char>’)’

// Return int
<int> ::= ’ord(’<char>’)’

C.6 string.bnf

// **
// string grammar
// **

<string_var> ::= // placholder for variable names

<assign> ::= <string_assign>
<string_assign> ::= <string_var>’ = ’<string>

181

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

<string> ::= <string_var> | <string_const> | <string_slice>
| ’(’<string>’ + ’<string>’)’
| <string>’.lstrip()’ | <string>’.rstrip()’
| <string>’.strip()’ | <string>’.lstrip(’<string>’)’
| <string>’.rstrip(’<string>’)’
| <string>’.strip(’<string>’)’
| <string>’.capitalize()’
| "’’.join(reversed("<string>"))" // reverse
| <string>’.replace(’<string>’,’<string>’, 1)’
| <string>’.replace(’<string>’,’<string>’)’
| <string>’.replace(’<char>’,’<char>’, 1)’
| <string>’.replace(’<char>’,’<char>’)’
| <string>’.replace(’<char>’,"")’
| ’setchar(’<string>’,’<char>’,’<int>’)’

<string_slice> ::= <string>’[’<int>’:’<int>’]’
| <string>’[:’<int>’]’ | <string>’[’<int>’:]’
| <string>’[1:]’ | <string>’[:1]’

<string_const> ::= "’"<string_const_part>"’"
// <string_const_part> in structure(_tree).bnf
<string_literal> ::= ’’ | ’\\n’ | ’\\t’ | ’ ’ | ’!’ | ’"’ | ’#’

| ’$’ | ’%’ | ’&’ | "\\’" | ’(’ | ’)’ | ’*’
| ’+’ | ’,’ | ’-’ | ’.’ | ’/’ | ’0’ | ’1’ | ’2’
| ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ | ’:’
| ’;’ | ’<’ | ’=’ | ’>’ | ’?’ | ’@’ | ’A’ | ’B’
| ’C’ | ’D’ | ’E’ | ’F’ | ’G’ | ’H’ | ’I’ | ’J’
| ’K’ | ’L’ | ’M’ | ’N’ | ’O’ | ’P’ | ’Q’ | ’R’
| ’S’ | ’T’ | ’U’ | ’V’ | ’W’ | ’X’ | ’Y’ | ’Z’
| ’[’ | ’\\\\’ | ’]’ | ’^’ | ’_’ | ’‘’ | ’a’
| ’b’ | ’c’ | ’d’ | ’e’ | ’f’ | ’g’ | ’h’ | ’i’
| ’j’ | ’k’ | ’l’ | ’m’ | ’n’ | ’o’ | ’p’ | ’q’
| ’r’ | ’s’ | ’t’ | ’u’ | ’v’ | ’w’ | ’x’ | ’y’
| ’z’ | ’{’ | ’|’ | ’}’

// Add to
<for> ::= <loop-header>’for forCounter% in ’<string><loop-block>

| <loop-header>’for ’<char_var>’ in ’<string><loop-block>
| <loop-header>’for ’<string_var>’ in ’<string><loop-block>
| <loop-header>’for ’<string_var>’ in

’<string>’.strip().split()’<loop-block>
| <loop-header>’for ’<string_var>’ in

182

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

saveSplit(’<string>’.strip(), ’<string>’)’<loop-block>

// Returns int
<int> ::= ’len(’<string>’)’ | <string>’.count(’<char>’)’

| <string>’.count(’<string>’)’

// Return bool
<bool> ::= ’(’<string>’ in ’<string>’)’

| ’(’<string>’ not in ’<string>’)’
| ’(’<string>’ == ’<string>’)’
| ’(’<string>’ != ’<string>’)’
| <string>’.startswith(’<string>’)’
| <string>’.endswith(’<string>’)’
| ’(not ’<string>’)’ // is empty

// Return char
<char> ::= ’getCharFromString(’<string>’, ’<int>’)’

// Return list_string
<list_string> ::= <string>’.strip().split()’

| ’saveSplit(’<string>’.strip(), ’<string>’)’

C.7 list_bool.bnf

// **
// list grammar for bool list
// **

<list_bool_var> ::= // placholder for variable names

<assign> ::= <list_bool_assign>
<list_bool_assign> ::= <list_bool_var>’ = ’<list_bool>

<list_bool> ::= <list_bool_var> | <list_bool_slice>
| <list_bool> + <list_bool>
| ’list(reversed(’<list_bool>’))’
| ’[x if x == ’<bool>’ else ’<bool>’ for x in ’<list_bool>’]’
| ’replaceFirstElementInList(’<list_bool>’,’<bool>’,’<bool>’)’
| ’[x for x in ’<list_bool>’ if x == ’<bool>’]’

183

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

<list_bool_slice> ::= <list_bool>’[’<int>’:’<int>’]’
| <list_bool>’[:’<int>’]’
| <list_bool>’[’<int>’:]’
| <list_bool>’[1:]’ | <list_bool>’[:1]’

// Return bool
<bool> ::= ’getIndexBoolList(’<list_bool>’, ’<int>’)’

| ’getIndexBoolList(’<list_bool>’, 0)’
| ’getIndexBoolList(’<list_bool>’, -1)’
| ’(’<bool> <in_list_comp_op> <list_bool>’)’
| ’(’<list_bool> <list_comp_op> <list_bool>’)’
| ’(’<list_bool>’ == [])’

// Add to
<call> ::= <list_bool_var>’.insert(’<int>’,’<bool>’)’

| <list_bool_var>’.insert(0,’<bool>’)’
| <list_bool_var>’.append(’<bool>’)’
| ’deleteListItem(’<list_bool>’, ’<int>’)’
| ’setListIndexTo(’<list_bool>’, ’<int>’, ’<bool>’)’

<for> ::= <loop-header>’for forCounter% in ’<list_bool><loop-block>
| <loop-header>’for ’<bool_var>’ in ’<list_bool><loop-block>

// Return int
<int> ::= ’len(’<list_bool>’)’

| ’saveIndex(’<list_bool>’, ’<bool>’)’
| <list_bool>’.count(’<bool>’)’

C.8 list_float.bnf

// **
// list grammar for float list
// **

<list_float_var> ::= // placholder for variable names

<assign> ::= <list_float_assign>
<list_float_assign> ::= <list_float_var>’ = ’<list_float>

<list_float> ::= <list_float_var> | <list_float_slice>
| ’list(reversed(’<list_float>’))’
| ’[x if x == ’<float>’ else ’<float>’ for x in ’<list_float>’]’

184

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

| ’replaceFirstElementInList(’<list_float>’,’<float>’,’<float>’)’
| ’[x for x in ’<list_float>’ if x == ’<float>’]’

<list_float_slice> ::= <list_float>’[’<int>’:’<int>’]’
| <list_float>’[:’<int>’]’
| <list_float>’[’<int>’:]’
| <list_float>’[1:]’ | <list_float>’[:1]’

<getListIndexCall_float> ::=
’getIndexFloatList(’<list_float>’, ’<int>’)’

<setListIndexToCall_float> ::=
’setListIndexTo(’<list_float>’, ’<int>’, ’<float>’)’

<deleteListItemCall_float> ::=
’deleteListItem(’<list_float>’, ’<int>’)’

// Return float
<float> ::= <getListIndexCall_float>

| ’getIndexFloatList(’<list_float>’, 0)’
| ’getIndexFloatList(’<list_float>’, -1)’

// Add to

<call> ::= <list_float_var>’.append(’<float>’)’
| <list_float_var>’.insert(’<int>’,’<float>’)’
| <list_float_var>’.insert(0,’<float>’)’
| <deleteListItemCall_float>
| <setListIndexToCall_float>

<for> ::=
<loop-header>’for forCounter% in ’<list_float><loop-block>

| <loop-header>’for ’<float_var>’ in ’<list_float><loop-block>

// Return int
<int> ::= ’len(’<list_float>’)’

| ’saveIndex(’<list_float>’, ’<float>’)’
| <list_float>’.count(’<float>’)’

// Return bool
<bool> ::= ’(’<float> <in_list_comp_op> <list_float>’)’

| ’(’<list_float> <list_comp_op> <list_float>’)’
| ’(’<list_float>’ == [])’

185

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

C.9 list_int.bnf

// **
// list grammar for int list
// **

<list_int_var> ::= // placholder for variable names

<assign> ::= <list_int_assign>
<list_int_assign> ::= <list_int_var>’ = ’<list_int>

<list_int> ::= <list_int_var> | <list_int_range>
| <list_int_slice>
| ’list(reversed(’<list_int>’))’
| ’[x if x == ’<int>’ else ’<int>’ for x in ’<list_int>’]’
| ’replaceFirstElementInList(’<list_int>’,’<int>’,’<int>’)’
| ’[x for x in ’<list_int>’ if x == ’<int>’]’

<list_int_slice> ::= <list_int>’[’<int>’:’<int>’]’
| <list_int>’[:’<int>’]’
| <list_int>’[’<int>’:]’
| <list_int>’[1:]’ | <list_int>’[:1]’

<list_int_range> ::= ’list(saveRange(’<int>’,’<int>’))’

<getListIndexCall_int> ::=
’getIndexIntList(’<list_int>’, ’<int>’)’

<setListIndexToCall_int> ::=
’setListIndexTo(’<list_int>’, ’<int>’, ’<int>’)’

<deleteListItemCall_int> ::=
’deleteListItem(’<list_int>’, ’<int>’)’

// Add to
<call> ::= <list_int_var>’.append(’<int>’)’

| <list_int_var>’.insert(’<int>’,’<int>’)’
| <list_int_var>’.insert(0,’<int>’)’
| <deleteListItemCall_int>
| <setListIndexToCall_int>

<for> ::= <loop-header>’for forCounter% in ’<list_int><loop-block>
| <loop-header>’for ’<int_var>’ in ’<list_int><loop-block>

// Return int
<int> ::= <getListIndexCall_int>

186

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

| ’len(’<list_int>’)’
| ’getIndexIntList(’<list_int>’, 0)’
| ’getIndexIntList(’<list_int>’, -1)’
| ’saveIndex(’<list_int>’, ’<int>’)’
| <list_int>’.count(’<int>’)’

// Return bool

<bool> ::= ’(’<int> <in_list_comp_op> <list_int>’)’
| ’(’<list_int> <list_comp_op> <list_int>’)’
| ’(’<list_int>’ == [])’

C.10 list_string.bnf

// **
// list grammar for string list
// **

<list_string_var> ::= // placholder for variable names

<assign> ::= <list_string_assign>
<list_string_assign> ::= <list_string_var>’ = ’<list_string>

<list_string> ::= <list_string_var> | <list_string_slice>
| ’saveSplit(’<string>’,’<string>’)’
| ’list(reversed(’<list_string>’))’
| ’[x if x == ’<string>’ else ’<string>’

for x in ’<list_string>’]’
| ’replaceFirstElementInList(’<list_string>’,’<string>’,’

<string>’)’
| ’[x for x in ’<list_string>’ if x == ’<string>’]’

<list_string_slice> ::= <list_string>’[’<int>’:’<int>’]’
| <list_string>’[:’<int>’]’
| <list_string>’[’<int>’:]’
| <list_string>’[1:]’ | <list_string>’[:1]’

<getListIndexCall_string> ::=
’getIndexStringList(’<list_string>’, ’<int>’)’

<setListIndexToCall_string> ::=
’setListIndexTo(’<list_string>’, ’<int>’, ’<string>’)’

<deleteListItemCall_string> ::=

187

APPENDIX C. EXTENDED PROGRAM SYNTHESIS GRAMMARS

’deleteListItem(’<list_string>’, ’<int>’)’

<call> ::= <list_string_var>’.insert(’<int>’,’<string>’)’
| <deleteListItemCall_string>
| <setListIndexToCall_string>

// Add to
<call> ::= <list_string_var>’.append(’<string>’)’

| <list_string_var>’.insert(’<int>’,’<string>’)’
| <list_string_var>’.insert(0,’<string>’)’
| <deleteListItemCall_string>
| <setListIndexToCall_string>

<for> ::=
<loop-header>’for forCounter% in ’<list_string><loop-block>

| <loop-header>’for ’<string_var>’ in ’<list_string><loop-block>

// Return int
<int> ::= ’len(’<list_string>’)’

| ’saveIndex(’<list_string>’, ’<string>’)’
| <list_string>’.count(’<string>’)’

// Return string
<string> ::= <string>’.join(’<list_string>’)’

| <getListIndexCall_string>
| ’getIndexStringList(’<list_string>’, 0)’
| ’getIndexStringList(’<list_string>’, -1)’

// Return bool
<bool> ::= ’(’<string> <in_list_comp_op> <list_string>’)’

| ’(’<list_string> <list_comp_op> <list_string>’)’
| ’(’<list_string>’ == [])’

188

Appendix D

Plots for Effective Semantic
Mutation for Program Synthesis

The figures on the following pages contain additional plots for Chapter 7 for
Effective Semantic Mutation for Program Synthesis (ESMPS). The plots have
been omitted from the chapter as they are very similar to the ones for the semantic
crossover version, but put in the appendix for the sake of completeness.

Ad Figure D.1: In case of mutation the new subtree is created randomly,
therefore mutation can always takes place, in contrast to crossover were it can
happen that no subtree from the second parent fits in a selected position from the
first parent.

189

APPENDIX D. PLOTS FOR ESMPS

D.1 Semantic Measure Used with ESMPS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Checksum

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Collatz Numbers

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Compare String Lengths

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Double Letters

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Grade

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Mirror Image

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

Pe
rc

e
n
ta

g
e

Number IO

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Small Or Large

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Sum of Squares

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Super Anagrams

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Generation

Vector Average

Partial Change
Any Change

Random

Figure D.1: Percentage of semantic measure used during mutation over genera-
tions. “Partial change” is the semantic measure that is used first. If no subtree
for mutation is found, “Any change” is used before falling back to “Random”
mutation.

190

APPENDIX D. PLOTS FOR ESMPS

D.2 Number of Tries for ESMPS

 0

 2

 4

 6

 8

 10

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f

Tr
ie

s

Generation

Number of Tries for Semantic Mutation

Checksum
Compare String Lengths

Collatz Numbers
Double Letters

Grade
Mirror Image

Number IO
Small Or Large

Sum of Squares
Super Anagrams

Vector Average

Figure D.2: Average number of tries for creating a subtree that has a “Partial
Change” compared to the selected subtree with mutation.

191

APPENDIX D. PLOTS FOR ESMPS

D.3 Percentage of Semantically Different with
ESMPS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Effective Semantic Mutation for Program Synthesis

Checksum
Compare String Lengths

Collatz Numbers
Double Letters

Grade
Mirror Image

Number IO
Small Or Large

Sum of Squares
Super Anagrams

Vector Average

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Standard Mutation

Figure D.3: Percentage of children semantically different from their rooted parent
with ESMPS (top) and standard mutation (bottom).

192

APPENDIX D. PLOTS FOR ESMPS

D.4 Percentage of Fitter Children with ESMPS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Checksum

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Collatz Numbers

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

Compare String Lengths

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Double Letters

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

Grade

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

Mirror Image

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200

Pe
rc

e
n
ta

g
e

Number IO

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

Small Or Large

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300

Sum of Squares

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 50 100 150 200 250 300

Pe
rc

e
n
ta

g
e

Generation

Super Anagrams

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300

Generation

Vector Average

Semantic: Better than rooted
Default: Better than rooted

Figure D.4: Percentage of children that are better than their rooted parent
over generations created with ESMPS (“Semantic”) and standard mutation (“De-
fault”).

193

Appendix E

Grammar Design Pattern
Solutions

Solutions shown here have passed all generated and hard-coded training as well
as test cases. This does not prove their correctness, but not all possible inputs
can be tested.

To increase readability of the code parts that are the same for every prob-
lem have been removed. That includes the initialization of temporary variables
(i0 = int();..., b0 = bool();... etc.) and the variables loopBreakConst,
loopBreak and rec_counter in the initialization, which are used to stop itera-
tions of loops and recursion. Additionally, empty lines have been omitted as well.
Otherwise, the code has not been modified in any way, although much code could
be removed in many cases.

Solutions are taken from the first experiment ordered chronologically by chap-
ter in the thesis that found a successful solution to a problem using lexicase selec-
tion. If multiple solutions to a problem have been found, one is picked at random.
Of the 28 problems tackled from the general program synthesis benchmark suite,
String Differences has not yet been tried, 21 problems have been solved at least
once. The code of 16 solutions are from Chapter 4, code for Mirror Image is from
Section 4.4.4 and Pig Latin, Replace Space with Newline, Syllables, and X-Word
Lines are from Chapter 6.

The code contains some unnecessary line breaks due to the page width.

194

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

E.1 Compare String Lengths

def evolve(in0, in1, in2):
res0 = bool()
i2 = len(in0)
if len(in1) < len(in2):

b1 = True
while False:

b1 = b2
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

b2 = True
res0 = in1[i2:] != s2

E.2 Count Odds

def evolve(in0):
res0 = int()
for i1 in in0:

if res0 <= +mod(res0,len(li2)):
deleteListItem(li2, i0)
if res0 <= +mod(res0,len(li2)):

if not +getIndexIntList(in0, i2) <= i0:
if not getIndexIntList(li2, (i2 + int(4.0))) <=
mod(i1,divInt(int(3.0),res0)):

deleteListItem(li2, i1)
li2.append((i0 + i1))
deleteListItem(li2, res0)

li1.insert(i0,(i1 + res0))
li1.insert(mod(abs(int(0.0)),(len(li2) + int(0.0))),res0)
li2.append(len(list(saveRange(i2,getIndexIntList(li2,
int(4.0))))))
res0 = len(li2[mod((i1 * i1),max(int(0.0), int(4.0))):])
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

li2.append(i2)
li2.append(len(list(saveRange(i2,getIndexIntList(li1,
len(li1))))))

195

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

deleteListItem(li2[mod((i1 + i1),max((i1 + int(4.0)),
int(4.0))):], res0)
return res0

E.3 Even Squares

def evolve(in0):
res0 = []
while abs(((len(res0) * abs(((len(li1) *
getIndexIntList(li1, len(res0))) + getIndexIntList(res0,
len(res0))))) + abs(((len(li1) * getIndexIntList(li1,
len(res0))) + int(4.0))))) < in0:

b1 = False
res0.insert(len(res0),abs(((len(res0) * abs(((len(li1) *
getIndexIntList(li1, len(res0))) + int(4.0)))) + abs(((
len(li1) * getIndexIntList(li1, len(res0))) + int(4.0))))))
res0 = li1
for forCounter0 in res0:

b1 = (int(9.0) + int(0.0)) is not int(94.0)

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
b1 = (int(9.0) + int(0.0)) is not int(94.0)
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

E.4 For Loop Index

def evolve(in0, in1, in2):
res0 = []
res0.append(in0)
for i0 in list(saveRange(in1,in0)):

res0.insert(getIndexIntList(res0, min(i0, max(int(31.0),
i0))),in0)
if loopBreak > loopBreakConst or stop.value:

break

196

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

loopBreak += 1
for i0 in list(saveRange(in0,in1)):

for in0 in list(saveRange(in0,i0))[in2:int(771.0)]:
res0.append(in0)
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

for i0 in list(saveRange(i0,int(771.0)))[i1:int(2.0)]:
for in0 in list(saveRange(in0,i0))[in2:int(1171.0)]:

res0.append(in0)
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

for in0 in list(saveRange(int(2.0),i1)):
for in0 in list(saveRange(in0,int(3.0)))[in2:int(7.0)]:

res0.append(in0)
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

for i0 in list(saveRange(in1,int(31.0))):
li1.insert(int(11.0),len(li0))
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
return res0

E.5 Grade

def evolve(in0, in1, in2, in3, in4):
res0 = str()
res0 = ’B’
while False:

197

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

res0 = s0
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

while in0 <= abs(abs(in4)):
res0 = ’A’
while False:

s0 = ’C’
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
b2 = in1 <= abs(abs(in4))
while not b2:

res0 = ’C’
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

i2 -= i0
b2 = (not in4 <= abs(abs(in4)) or in2 <= abs(abs(abs(in4))))
while not b2:

res0 = ’D’
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

b2 = (not in4 <= abs(abs(in4)) or in3 <= abs(abs(abs(in4))))
while not b2:

res0 = ’F’
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

E.6 Last Index of Zero

def evolve(in0):
res0 = int()
for res0 in in0:

li0.insert((res0 * res0),len(li0))

198

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
res0 = getIndexIntList(li0, len(in0))
return res0

E.7 Median

def evolve(in0, in1, in2):
res0 = int()
i0 = max(min(max(in0, in2), divInt(in1,+min(abs(i1),
int(3.0)))), min(in0, divInt(min(mod(divInt(in2,i2),i0), (
max(i2, in0) * min((in0 - divInt(-abs(i1),max(i1, i1))),
+abs(in0)))),+min(abs(i1), int(3.0)))))
b1 = b1
b1 = b2
while not False:

res0 = i0
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

E.8 Mirror Image

def evolve(in0, in1):
res0 = bool()
li0 = li1
li1.insert(-int(9.0),getIndexIntList(in0, len(li2)))
res0 = li2 == in1
for i2 in in0:

res0 = in1[-len(in0[divInt(getIndexIntList(in1,
divInt(divInt(getIndexIntList(in1,
max(getIndexIntList(in0[--getIndexIntList(in1, i2):],
len(in0)), int(9.0))),getIndexIntList(in1,
getIndexIntList(in0,
len(in1)))),+len(in1[divInt(getIndexIntList(in1,
+i2),getIndexIntList(in0,
len(li0))):][len(li0):][:getIndexIntList(in1,

199

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

len(in1))]))),getIndexIntList(in0, getIndexIntList(in1,
divInt(getIndexIntList(in1, getIndexIntList(in0,
int(2.0))),len(in0))))):][:i1][:len(li1)]):] == li1
li1.insert(-len(li0),getIndexIntList(in0, len(li0)))
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

E.9 Negative To Zero

def evolve(in0):
res0 = []
if False:

li0 = li2
else:

for i2 in in0:
res0.append(min(abs(len(list(saveRange(min(-min(divInt(int(7.
0),divInt(max(i2, i2),abs(i2))), max(max(i0, i1), i1)),
divInt(i2,divInt(i2,i2))),(min(max(mod(abs(i2),i0),
int(4.0)), (int(4.0) - (i1 * -min(i0, i1)))) +
max(-min(-abs(i2), i2), i1)))))), max(max(i0, i2), i1)))
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

i2 = mod(getIndexIntList(in0, getIndexIntList(li0,
getIndexIntList(li0, max(max(i0, i0), i1)))),abs(divInt(i2,i2)))
if not list(saveRange((
mod(getIndexIntList(list(saveRange(divInt(max(i2,
int(7.0)),abs(i2)),abs(i1))),
i1),abs(max(+getIndexIntList(list(saveRange(i1,i0)), i2), i2)))
+ len(li0)),i2)) == li0:

in0.append(i0)
else:

li2.append(i1)
if True:

in0.append(i0)
else:

in0.append(i0)
return res0

200

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

E.10 Number IO

As the other solutions this one was picked at random. Many other solutions found
for Number IO contain more bloat code.

def evolve(in0, in1):
res0 = float()
res0 = (in0 + in1)

E.11 Pig Latin

def evolve(in0):
res0 = str()
for in0 in saveSplit(in0.strip(), c1.lstrip()):

for in0 in saveSplit(in0.strip(), c1.lstrip()):
for in0 in saveSplit(in0.strip(), c1.lstrip()):

for in0 in saveSplit(in0.strip(), ’}’.lstrip()):
for res0 in saveSplit((res0 + setchar((s0 +
((in0.replace(’}’,"").lstrip(s0.capitalize()) +
getCharFromString((in0.replace(int_to_chr(len(in0)),
int_to_chr(len(s1)), 1) +
in0.capitalize().capitalize().replace(’}’,"").lstrip(
’’.join(reversed(’aeiou’))).lstrip()).lstrip(in0).replace
(int_to_chr(i0),’}’, 1), int(’aeiou’.startswith(’’.join(
reversed(’aeiou’))))).lstrip()).lstrip((in0.lstrip(in0.
replace(’}’,"").lstrip(’’.join(reversed((in0.lstrip(in0.
replace(getCharFromString(’’.join(reversed(s0)).lstrip(),
len(’’.join(reversed(’aeiou’)).replace(getCharFromString(
’’.join(reversed(in0)).lstrip(), int(in0.startswith(in0.
replace(c1,"")))),"").replace(’}’,""))),"").lstrip((in0 +
in0).lstrip(in0.replace(getCharFromString(c1.lstrip().
lstrip(), len((in0 + s1))),"").lstrip(’’.join(reversed(
’aeiou’))).replace(getCharFromString(in0.capitalize(),
len(in0.replace(’}’,"").lstrip(’aeiou’))),""))).replace(
int_to_chr(len(in0)),"")) + s1)))).replace(
getCharFromString(c1.lstrip(), i0),"")) + s1)).lstrip(
’aeiou’) + ’ay’)),getCharFromString(s1.replace(
int_to_chr(i0),int_to_chr(len(in0)), 1), i0),len(s1)).
capitalize()).strip(), ’aeiou’):

c1 = c1
if loopBreak > loopBreakConst or stop.value:

201

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

E.12 Replace Space with Newline

def evolve(in0):
res0 = str(); res1 = int()
for res1 in saveRange(i0, ((in0.strip().replace(’\n’,"").rstrip()
+ s1).replace(’\n’,"").replace(c0,"").rstrip() +
s1).replace(’\t’,"").count(s0)):

res0 = in0.replace(c0,’\n’.replace(in0.rstrip(),s1.strip(s0),
1)).replace(c0,’\n’.replace(res0,’\n’.replace(in0.strip().
replace(c0,""),in0.replace(c0,’\n’, 1).replace(c0,""), 1), 1),
1).replace(’\n’.replace(s1.rstrip(),in0.replace(c0,’\n’.
replace(in0.rstrip(),s1.strip(s0), 1), 1),
1).strip(),’\n’.replace(s1.rstrip(),in0.replace(c0,’\n’.
replace(in0.rstrip(),s1.strip(s0), 1), 1),
1).strip().replace(c0,’\n’.replace(in0.rstrip(),’\n’.strip(s0),
1), 1), 1).replace(c0,’\n’.replace(res0,s1.rstrip(), 1),
1).replace(c0,"")
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0, res1

202

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

E.13 Scrabble Score

Scrabble Score has a global variable scrabblescore that contains the correct
scrabble value for every character.

def evolve(in0):
global scrabblescore
res0 = int()
li1.append(i2)
for i0 in list(saveRange(mod(res0,res0),max(+len(s2),
mod(len(in0.rstrip(s2).strip(s2).lstrip()),
len(scrabblescore))))):

scrabblescore.append(i2)
res0 += getIndexIntList(scrabblescore[saveOrd(s2):],
divInt(saveOrd(getCharFromString(in0.strip(in0.rstrip(
getCharFromString(in0, saveOrd(in0)))[:divInt(int(7.0),abs((
max(int(3.0), divInt(abs(+len(scrabblescore)),max(i2, i2))) -
saveOrd(s2))))]).lstrip(), (i2 - len(scrabblescore)
)).lstrip().lstrip().capitalize().lstrip().rstrip()),len(
getCharFromString(in0.strip(in0.rstrip(getCharFromString(in0,
saveOrd(in0)))[:divInt(int(7.0),abs((max(int(3.0),
divInt(abs(+len(scrabblescore)),max(i2, i2))) - saveOrd(s2)
)))]).lstrip(), (i0 - i0)).lstrip().strip())))
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

res0 += i2
li2 = scrabblescore
scrabblescore.append(i2)
res0 += getIndexIntList(scrabblescore,
divInt(saveOrd((in0.strip().lstrip()[len(saveChr(i2).lstrip())
:int(3.0)].capitalize() +
in0.lstrip().capitalize().lstrip().rstrip().capitalize().
rstrip())),len(getCharFromString(in0, res0))))
return res0

E.14 Small Or Large

def evolve(in0):
res0 = str()
s2 = s0

203

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

if int(410.0) > ((in0 - int(896.0)) - int(694.0)):
s2 = s2.rstrip(’large’).strip(res0.strip()).strip(’large’.
rstrip()).rstrip(((s0.lstrip().strip() + s0.lstrip()) +
’large’)).lstrip()
if int(896.0) > (in0 - int(104.0)):

b1 = (not divInt(int(4.0),int(8.0)) is not int(640.0) and
True)
res0 = ’small’

else:
s2 = s2.rstrip(’large’).strip(res0.strip()).strip(’large’.
rstrip()).rstrip(((’small’.strip() + s0.lstrip()) +
’large’)).lstrip()

else:
b1 = b1
res0 = ’large’

i1 *= -int(82.0)
b1 = True
return res0

E.15 Smallest

def evolve(in0, in1, in2, in3):
res0 = int()
if b2:

res0 = -+int(1119.0)
res0 += min((abs(min(max(+int(69.0), mod((max(mod(int(4.0),+
in0), mod(int(49.0),abs(abs((max(abs(min(in3, abs(in1))),
+divInt((in2 + (i0 * i0)),res0)) - abs(max(in3, min(in0,
in3)))))))) - abs(divInt(max(min(max(min(max(int(51.0), min(in0,
in3)), abs(abs(i1))), (-(i0 + min(in1, in1)) + i0)), int(9.0)
), min(min(abs(+i0), i1), abs(max((--divInt(abs(i1),in2) -
mod(i1,res0)), max(abs(in0), i0))))),(int(6.0) * abs(abs((in1
- divInt(in2,in0)))))))),++i1)), res0)) + min(max(in1, in1),
min(in2, min(min(in1, in1), min(in0, in3))))), max(min(i1,
int(2.0)), divInt(abs(in0),i0)))
return res0

204

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

E.16 String Lengths Backwards

def evolve(in0):
res0 = []
for forCounter0 in in0:

ls2.append(s0)
li2 = res0[:i0]
res0.append(len(getIndexStringList(in0[(i2 - max(len(ls2),
len(ls2))):], abs((
len(’Kch&zFz"={C{t5&z=&z"=?{&="h&zt{&z={=z"="5)cv58F?t58ch&"={h
h&F5\tch&?5\’FhYh&={ztz?"=C’) * len(ls2))))))
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

E.17 Sum of Squares

def evolve(in0):
res0 = int()
res0 = divInt((+max(in0, abs(int(6.0))) + abs(abs(max(i2, (
abs(max(i1, (divInt(+(in0 + (+min(abs(in0), int(3.0)) +
divInt(in0,i2))),i2) * in0))) * in0))))),int(6.0))
i0 -= i0
if i2 > min(((+(i2 - (mod(+(+in0 + in0),+(int(979.0) +
int(95880.0))) * int(640.0))) + -i2) + (+int(0.0) - i2)),
abs(int(97.0))):

i0 -= abs(int(6.0))
else:

res0 = divInt((abs(int(970497.0)) + (int(6.0) + int(511889.0)
)),abs(abs(int(6.0))))

return res0

E.18 Syllables

def evolve(in0):
res0 = int()
for in0 in saveSplit((in0.replace(’’.join(reversed(s2)),’+’.

205

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

rstrip()) + s2).strip(), s2.rstrip()):
for in0 in saveSplit((in0.replace(’’.join(reversed(s2)),’+’.
rstrip()) + s2).strip(), s2.rstrip()):

for in0 in saveSplit(((in0 +
s1.replace(in0.capitalize(),str(int(4.0)).replace(setchar(s2,
c2,int(4.0)).replace(’’.join(reversed(’’.join(reversed(s2)).
rstrip())),s1),(in0 + c2).rstrip()))) + s0).strip(),
getCharFromString(’’.join(reversed(getCharFromString(
getCharFromString(’’.join(reversed(getCharFromString(’’.join
(reversed(in0.rstrip(’aeiou’).capitalize().capitalize().
rstrip().capitalize())), max(int(4.0), (’aeiou’.capitalize().
count(getCharFromString(in0, int(4.0))) + 1))))), res0),
max(int(4.0), int(3.0))).capitalize())),
len(’o’.rstrip())).rstrip()):

for in0 in saveSplit(in0.rstrip().strip(), ’aeiou’):
for in0 in saveSplit((in0 + ’’.join(reversed(’’.join(
reversed(’aeiou’.rstrip(in0).capitalize())).rstrip())
)).strip(), getCharFromString(in0.rstrip(’aeiou’),
min(int(4.0), (res0 + 1))).rstrip()):

res0 += +s2.count(s1.replace(in0.capitalize().replace(
in0,s0.replace(c1,int_to_chr(i1)), 1).rstrip().
replace(’{’,""),’*’))
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

206

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

E.19 Vector Average

def evolve(in0):
res0 = float()
lf1.append(2.204)
for res0 in in0:

lf1.append(+min(-2.27, i1))
for res0 in lf0[:int(2.0)]:

for res0 in lf0[:int(3.0)]:
for forCounter0 in in0:

i1 += int(113.0)
res0 -= div(+min(-getIndexFloatList(in0, max(int(339.0),
i1)), i1),math.ceil(div(len(in0),min(int(round(f2)),
9.723))))
lf1.append(div(+min(min(int(round(f2)), 2.834),
int(2389.0)),min(int(round(math.ceil(18.2))),
math.ceil(div(int(round(math.ceil(4.3))),f2)))))
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

for f2 in lf1:
for f2 in lf1:

lf0.append(f0)
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

if loopBreak > loopBreakConst or stop.value:
break

loopBreak += 1
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

207

APPENDIX E. GRAMMAR DESIGN PATTERN SOLUTIONS

E.20 Vectors Summed

def evolve(in0, in1):
res0 = []
for i2 in in1:

li0 = li0
i1 = min((i0 - i2), (i0 - i2))
res0.append((mod(getIndexIntList(in0, (i1 - ((i1 - int(0.0)
) - len(res0)))),int(0.0)) - i1))
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

E.21 X-Word Lines

def evolve(in0, in1):
res0 = str()
for s0 in in0.strip().split():

s2 = (’\n’ + s1.replace(res0,res0, 1)).replace(
getCharFromString(setchar(c2.strip(setchar(res0,’\n’,len(c2)).
replace(c0,c0)),’2’,res0.lstrip().rstrip().count(c2)).
replace(’;’,’;’), (in1 - 1)),"")
res0 = s2.replace(getCharFromString(setchar(s2,’\n’,int(1.0)).
replace(setchar(s2,getCharFromString(s2.replace(c2.strip(res0).
replace(’B’,""),s0, 1), +((res0.lstrip().rstrip().count(c2) +
1) - (res0.count(c2) + 1))),(+int((not False)) + 1)).replace(
’\n’,""),c2, 1), (max(max(min((setchar(setchar(res0,c2,len(
s2.capitalize())).replace(’\n’,c2)[:in1],’\n’,+(setchar(res0,
’2’,’\n’.lstrip().rstrip(s2).count(c2)).replace(’\n’,c2).count(
c2) + 1)).capitalize().lstrip().count(’\n’) + 1), (+(
(res0.lstrip().count(c1) + 1) - in1) + 1)),
’\n’.lstrip().rstrip(s2).count(c2)), s2.rstrip().count(c0)) -
1)),c2, 1).replace(s2,s2, 1).replace(setchar(s2,’\n’,(+int(
False) + 1)).replace(’\n’,""),(res0 + s0), 1).lstrip()
if loopBreak > loopBreakConst or stop.value:

break
loopBreak += 1

return res0

208

Bibliography

[1] T. Helmuth and L. Spector, “General program synthesis benchmark suite,”
in GECCO ’15: Proceedings of the 2015 on Genetic and Evolutionary Com-
putation Conference, (Madrid, Spain), pp. 1039–1046, ACM, 11-15 July
2015.

[2] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided component-
based program synthesis,” in Proceedings of the 32Nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1, ICSE ’10, (New
York, NY, USA), pp. 215–224, ACM, 2010.

[3] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically finding
patches using genetic programming,” in Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, (Washington, DC, USA),
pp. 364–374, IEEE Computer Society, 2009.

[4] S. O. Haraldsson, J. R. Woodward, A. E. I. Brownlee, and D. Cairns, “Ex-
ploring fitness and edit distance of mutated python programs,” in Genetic
Programming (J. McDermott, M. Castelli, L. Sekanina, E. Haasdijk, and
P. García-Sánchez, eds.), (Cham), pp. 19–34, Springer International Pub-
lishing, 2017.

[5] S. O. Haraldsson, J. R. Woodward, A. E. I. Brownlee, and K. Siggeirs-
dottir, “Fixing bugs in your sleep: How genetic improvement became an
overnight success,” in GI-2017 (J. Petke, D. R. White, W. B. Langdon, and
W. Weimer, eds.), (Berlin), pp. 1513–1520, ACM, 15-19 July 2017. Best
paper.

[6] T. Lau, P. Domingos, and D. S. Weld, “Learning programs from traces using
version space algebra,” in Proceedings of the 2Nd International Conference

209

BIBLIOGRAPHY

on Knowledge Capture, K-CAP ’03, (New York, NY, USA), pp. 36–43, ACM,
2003.

[7] C. Shearer, “The CRISP-DM model: The new blueprint for data mining,”
Journal of Data Warehousing, 2000.

[8] R. S. Olson, R. J. Urbanowicz, P. C. Andrews, N. A. Lavender, L. C.
Kidd, and J. H. Moore, Applications of Evolutionary Computation: 19th
European Conference, EvoApplications 2016, Porto, Portugal, March 30 –
April 1, 2016, Proceedings, Part I, ch. Automating Biomedical Data Science
Through Tree-Based Pipeline Optimization, pp. 123–137. Springer Interna-
tional Publishing, 2016.

[9] S. Katayama, “Recent improvements of MagicHaskeller,” in Approaches and
Applications of Inductive Programming, pp. 174–193, Springer Verlag, 2010.

[10] S. Muggleton, L. De Raedt, D. Poole, I. Bratko, P. Flach, K. Inoue, and
A. Srinivasan, “Ilp turns 20,” Machine Learning, vol. 86, pp. 3–23, Jan 2012.

[11] T. A. Lau, P. Domingos, and D. S. Weld, “Version space algebra and its
application to programming by demonstration,” in Proceedings of the Sev-
enteenth International Conference on Machine Learning, ICML ’00, (San
Francisco, CA, USA), pp. 527–534, Morgan Kaufmann Publishers Inc., 2000.

[12] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, pp. 199–230, June 1995.

[13] M. O’Neill, M. Nicolau, and A. Agapitos, “Experiments in program synthesis
with grammatical evolution: A focus on integer sorting,” in Evolutionary
Computation (CEC), 2014 IEEE Congress on, pp. 1504–1511, July 2014.

[14] W. B. Langdon and M. Harman, “Optimizing existing software with genetic
programming,” IEEE Transactions on Evolutionary Computation, vol. 19,
pp. 118–135, Feb 2015.

[15] J. R. Woodward and R. Bai, “Why evolution is not a good paradigm for pro-
gram induction: A critique of genetic programming,” in Proceedings of the
First ACM/SIGEVO Summit on Genetic and Evolutionary Computation,
GEC ’09, (New York, NY, USA), pp. 593–600, ACM, 2009.

210

BIBLIOGRAPHY

[16] L. Vanneschi, M. Castelli, and S. Silva, “A survey of semantic methods
in genetic programming,” Genetic Programming and Evolvable Machines,
vol. 15, no. 2, pp. 195–214, 2014.

[17] P. A. Whigham, Grammatical Bias for Evolutionary Learning. PhD thesis,
University of New South Wales, New South Wales, Australia, Australia,
1996. AAI0597571.

[18] M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language. Norwell, MA, USA: Kluwer Aca-
demic Publishers, 2003.

[19] M. O’Neill and C. Ryan, “Automatic generation of caching algorithms,” in
Evolutionary Algorithms in Engineering and Computer Science (K. Miet-
tinen, M. M. Mäkelä, P. Neittaanmäki, and J. Periaux, eds.), (Jyväskylä,
Finland), pp. 127–134, John Wiley & Sons, 30 May - 3 June 1999.

[20] R. Loughran, J. McDermott, and M. O’Neill, “Tonality driven piano com-
positions with grammatical evolution,” in IEEE Congress on Evolutionary
Computation, CEC 2015, Sendai, Japan, May 25-28, 2015, pp. 2168–2175,
IEEE, 2015.

[21] M. Fenton, C. McNally, J. Byrne, E. Hemberg, J. McDermott, and
M. O’Neill, “Automatic innovative truss design using grammatical evolu-
tion,” Automation in Construction, vol. 39, no. 0, pp. 59 – 69, 2014.

[22] J. Byrne, M. Fenton, E. Hemberg, J. McDermott, and M. O’Neill, “Opti-
mising complex pylon structures with grammatical evolution,” Information
Sciences, no. 0, pp. –, 2014.

[23] J. Byrne, P. Cardiff, A. Brabazon, and M. O’Neill, “Evolving parametric
aircraft models for design exploration and optimisation,” Neurocomputing,
vol. 142, no. 0, pp. 39 – 47, 2014. {SI} Computational Intelligence Tech-
niques for New Product Development.

[24] E. Hemberg, L. Ho, M. O’Neill, and H. Claussen, “A comparison of gram-
matical genetic programming grammars for controlling femtocell network
coverage,” Genetic Programming and Evolvable Machines, vol. 14, no. 1,
pp. 65–93, 2013.

211

BIBLIOGRAPHY

[25] M. Fenton, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill, “Multilayer
optimization of heterogeneous networks using grammatical genetic program-
ming,” in Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO ’17, (Berlin, Germany), pp. 3–4, ACM, 15-19
July 2017.

[26] E. Hemberg, An Exploration of Grammars in Grammatical Evolution. PhD
thesis, University College Dublin, Ireland, 2010.

[27] E. Murphy, An Exploration of Tree-Adjoining Grammars for Grammatical
Evolution. PhD thesis, University College Dublin, Ireland, 6 Dec. 2014.

[28] M. Nicolau, “Automatic grammar complexity reduction in grammatical
evolution,” in GECCO 2004 Workshop Proceedings, (Seattle, Washington,
USA), 26-30 June 2004.

[29] M. Nicolau, M. O’Neill, and A. Brabazon, “Termination in grammatical
evolution: grammar design, wrapping, and tails,” in 2012 IEEE Congress
on Evolutionary Computation, pp. 1–8, June 2012.

[30] L. Beadle and C. Johnson, “Semantically driven crossover in genetic pro-
gramming,” in Proceedings of the IEEE World Congress on Computational
Intelligence (J. Wang, ed.), (Hong Kong), pp. 111–116, IEEE Computational
Intelligence Society, IEEE Press, 1-6 June 2008.

[31] N. F. McPhee, B. Ohs, and T. Hutchison, Semantic Building Blocks in
Genetic Programming, pp. 134–145. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008.

[32] Q. U. Nguyen, X. H. Nguyen, and M. O’Neill, “Semantic aware crossover for
genetic programming: The case for real-valued function regression,” in Pro-
ceedings of the 12th European Conference on Genetic Programming, EuroGP
2009 (L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, and M. Ebner,
eds.), vol. 5481 of LNCS, (Tuebingen), pp. 292–302, Springer, Apr. 15-17
2009.

[33] Q. U. Nguyen, X. H. Nguyen, M. O’Neill, R. I. McKay, and E. Galván-
López, “Semantically-based crossover in genetic programming: application

212

BIBLIOGRAPHY

to real-valued symbolic regression,” Genetic Programming and Evolvable
Machines, vol. 12, pp. 91–119, June 2011.

[34] Q. U. Nguyen, X. H. Nguyen, M. O’Neill, R. I. McKay, and D. N. Phong,
“On the roles of semantic locality of crossover in genetic programming,”
Information Sciences, vol. 235, pp. 195–213, 20 June 2013.

[35] L. Beadle and C. Johnson, “Semantically driven mutation in genetic pro-
gramming,” in Evolutionary Computation, 2009. CEC ’09. IEEE Congress
on, pp. 1336–1342, May 2009.

[36] Q. U. Nguyen, X. H. Nguyen, and M. O’Neill, “Semantics based mutation
in genetic programming: The case for real-valued symbolic regression,” in
15th International Conference on Soft Computing, Mendel’09 (R. Matousek
and L. Nolle, eds.), (Brno, Czech Republic), pp. 73–91, June 24-26 2009.

[37] S. Forstenlechner, “GitHub repository: HeuristicLab.CFGGP: Provides con-
text free grammar problems for HeuristicLab,” 2018. [Online; accessed 07-
May-2018].

[38] S. Wagner, G. Kronberger, A. Beham, M. Kommenda, A. Scheibenpflug,
E. Pitzer, S. Vonolfen, M. Kofler, S. Winkler, V. Dorfer, and M. Affenzeller,
Advanced Methods and Applications in Computational Intelligence, vol. 6 of
Topics in Intelligent Engineering and Informatics, ch. Architecture and De-
sign of the HeuristicLab Optimization Environment, pp. 197–261. Springer,
2014.

[39] M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg, and
M. O’Neill, “Ponyge2: Grammatical evolution in python,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion,
GECCO ’17, (Berlin, Germany), pp. 1194–1201, ACM, 2017.

[40] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi,
W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, and U.-M. O’Reilly,
“Genetic programming needs better benchmarks,” in Proceedings of the 14th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’12,
(New York, NY, USA), pp. 791–798, ACM, 2012.

213

BIBLIOGRAPHY

[41] D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman,
G. Kronberger, W. Jaśkowski, U.-M. O’Reilly, and S. Luke, “Better gp
benchmarks: Community survey results and proposals,” Genetic Program-
ming and Evolvable Machines, vol. 14, pp. 3–29, Mar. 2013.

[42] J. Woodward, S. Martin, and J. Swan, “Benchmarks that matter for genetic
programming,” in Proceedings of the Companion Publication of the 2014 An-
nual Conference on Genetic and Evolutionary Computation, GECCO Comp
’14, (New York, NY, USA), pp. 1397–1404, ACM, 2014.

[43] C. Darwin, “On the origin of species by means of natural selection, or the
preservation of favoured races in the struggle for life,” John Murray, London,
pp. 1–556, Oct. 1859.

[44] L. Fogel, A. Owens, and M. Walsh, Artificial Intelligence Through Simulated
Evolution. John Wiley & Sons, 1966.

[45] I. Rechenberg, Evolutionsstrategie: optimierung technischer systeme nach
prinzipien der biologischen evolution. Frommann-Holzboog, 1973.

[46] H.-P. Schwefel, Numerische Optimierung von Computer-Modellen mittels
der Evolutionsstrategie, vol. 26 of ISR. Basel/Stuttgart: Birkhaeuser, 1977.

[47] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation distri-
butions in evolution strategies: the covariance matrix adaptation,” in Pro-
ceedings of IEEE International Conference on Evolutionary Computation,
pp. 312–317, May 1996.

[48] J. H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA, USA: MIT Press, 1975.

[49] J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[50] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. Cambridge, MA, USA: MIT Press, 1994.

[51] J. R. Koza, D. Andre, F. H. Bennett, and M. A. Keane, Genetic Program-
ming III: Darwinian Invention & Problem Solving. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1st ed., 1999.

214

BIBLIOGRAPHY

[52] J. R. Koza, Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[53] K. A. De Jong, Evolutionary Computation: A Unified Approach. MIT press,
2006.

[54] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R.
Koza).

[55] J. Daida and A. Hilss, “Identifying structural mechanisms in standard ge-
netic programming,” in Genetic and Evolutionary Computation — GECCO
2003 (E. Cantú-Paz, J. Foster, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly,
H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. We-
gener, D. Dasgupta, M. Potter, A. Schultz, K. Dowsland, N. Jonoska, and
J. Miller, eds.), vol. 2724 of Lecture Notes in Computer Science, pp. 1639–
1651, Springer Berlin Heidelberg, 2003.

[56] S. Luke, “Two fast tree-creation algorithms for genetic programming,” Evo-
lutionary Computation, IEEE Transactions on, vol. 4, pp. 274–283, Sep
2000.

[57] H. Xie and M. Zhang, “Impacts of sampling strategies in tournament selec-
tion for genetic programming,” Soft Computing, vol. 16, pp. 615–633, Apr
2012.

[58] A. Brindle, Genetic Algorithms for Function Optimization. PhD thesis,
University of Alberta, 1981.

[59] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1st ed., 1989.

[60] L. Spector, “Assessment of problem modality by differential performance of
lexicase selection in genetic programming: A preliminary report,” in Pro-
ceedings of the 14th Annual Conference Companion on Genetic and Evo-
lutionary Computation, GECCO ’12, (New York, NY, USA), pp. 401–408,
ACM, 2012.

215

BIBLIOGRAPHY

[61] T. Helmuth, L. Spector, and J. Matheson, “Solving uncompromising prob-
lems with lexicase selection,” IEEE Transactions on Evolutionary Compu-
tation, vol. 19, pp. 630–643, Oct 2015.

[62] W. La Cava, L. Spector, and K. Danai, “Epsilon-lexicase selection for regres-
sion,” in Proceedings of the Genetic and Evolutionary Computation Confer-
ence 2016, GECCO ’16, (New York, NY, USA), pp. 741–748, ACM, 2016.

[63] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, “Four prob-
lems for which a computer program evolved by genetic programming is
competitive with human performance,” in Proceedings of the 1996 IEEE
International Conference on Evolutionary Computation, vol. 1, pp. 1–10,
IEEE Press, 1996.

[64] S. Luke and L. Spector, “A comparison of crossover and mutation in genetic
programming,” in Genetic Programming 1997: Proceedings of the Second
Annual Conference (J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon,
H. Iba, and R. L. Riolo, eds.), (Stanford University, CA, USA), pp. 240–248,
Morgan Kaufmann, 13-16 July 1997.

[65] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf, “Open issues
in genetic programming,” Genetic Programming and Evolvable Machines,
vol. 11, pp. 339–363, Sep 2010.

[66] I. Dempsey, M. O’Neill, and A. Brabazon, Foundations in Grammatical
Evolution for Dynamic Environments. Springer Publishing Company, In-
corporated, 1st ed., 2009.

[67] A. Church, “Applications of recursive arithmetic to the problem of circuit
synthesis,” Summaries of the Summer Institute of Symbolic Logic, vol. 1,
pp. 3–50, 1957.

[68] A. L. Samuel, “Some studies in machine learning using the game of check-
ers,” IBM Journal of Research and Development, vol. 3, no. 3, pp. 210–229,
1959.

[69] J. R. Koza, “Darwinian invention and problem solving by means of
genetic programming,” in IEEE SMC’99 Conference Proceedings. 1999

216

BIBLIOGRAPHY

IEEE International Conference on Systems, Man, and Cybernetics (Cat.
No.99CH37028), vol. 3, pp. 604–609 vol.3, Oct 1999.

[70] S. Gulwani, “Dimensions in program synthesis,” in Proceedings of the 12th
International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming, PPDP ’10, (New York, NY, USA), pp. 13–24,
ACM, 2010.

[71] J. R. Koza, “Hierarchical genetic algorithms operating on populations of
computer programs,” in Proceedings of the 11th International Joint Confer-
ence on Artificial Intelligence - Volume 1, IJCAI’89, (San Francisco, CA,
USA), pp. 768–774, Morgan Kaufmann Publishers Inc., 1989.

[72] D. L. Parnas, “Software aspects of strategic defense systems,” Commun.
ACM, vol. 28, pp. 1326–1335, Dec. 1985.

[73] B. A. Hockey and M. Rayner, “Using paraphrases of deep semantic repre-
sentions to support regression testing in spoken dialogue systems,” in Pro-
ceedings of the Workshop on Software Engineering, Testing, and Quality As-
surance for Natural Language Processing, SETQA-NLP ’09, (Stroudsburg,
PA, USA), pp. 14–21, Association for Computational Linguistics, 2009.

[74] S. Srivastava, S. Gulwani, and J. S. Foster, “From program verification to
program synthesis,” in Proceedings of the 37th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’10,
(New York, NY, USA), pp. 313–326, ACM, 2010.

[75] A. Cypher, D. C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B. A.
Myers, and A. Turransky, eds., Watch What I Do: Programming by Demon-
stration. Cambridge, MA, USA: MIT Press, 1993.

[76] N. Immerman, “Upper and lower bounds for first order expressibility,” in
21st Annual Symposium on Foundations of Computer Science (sfcs 1980),
pp. 74–82, Oct 1980.

[77] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv, “A simple inductive
synthesis methodology and its applications,” in Proceedings of the ACM In-
ternational Conference on Object Oriented Programming Systems Languages

217

BIBLIOGRAPHY

and Applications, OOPSLA ’10, (New York, NY, USA), pp. 36–46, ACM,
2010.

[78] R. P. Nix, “Editing by example,” ACM Trans. Program. Lang. Syst., vol. 7,
pp. 600–621, Oct. 1985.

[79] C. de la Higuera, “A bibliographical study of grammatical inference,” Pat-
tern Recogn., vol. 38, pp. 1332–1348, Sept. 2005.

[80] S. Katayama, “Systematic search for lambda expressions,” in Revised Se-
lected Papers from the Sixth Symposium on Trends in Functional Program-
ming, TFP 2005, Tallinn, Estonia, 23-24 September 2005., pp. 111–126,
2005.

[81] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’11,
(New York, NY, USA), pp. 317–330, ACM, 2011.

[82] A. Solar Lezama, Program Synthesis By Sketching. PhD thesis, EECS De-
partment, University of California, Berkeley, Dec 2008.

[83] S. Katayama, “Efficient exhaustive generation of functional programs using
monte-carlo search with iterative deepening,” in PRICAI 2008: Trends in
Artificial Intelligence (T.-B. Ho and Z.-H. Zhou, eds.), (Berlin, Heidelberg),
pp. 199–210, Springer Berlin Heidelberg, 2008.

[84] T. M. Mitchell, “Generalization as search,” Artificial Intelligence, vol. 18,
no. 2, pp. 203–226, 1982.

[85] C. Ryan, J. Collins, and M. Neill, “Grammatical evolution: Evolving pro-
grams for an arbitrary language,” in Genetic Programming (W. Banzhaf,
R. Poli, M. Schoenauer, and T. Fogarty, eds.), vol. 1391 of Lecture Notes in
Computer Science, pp. 83–96, Springer Berlin Heidelberg, 1998.

[86] R. McKay, N. Hoai, P. Whigham, Y. Shan, and M. O’Neill, “Grammar-
based genetic programming: a survey,” Genetic Programming and Evolvable
Machines, vol. 11, no. 3-4, pp. 365–396, 2010.

218

BIBLIOGRAPHY

[87] N. Paterson, Genetic programming with context-sensitive grammars. PhD
thesis, Saint Andrew’s University, Sept. 2002.

[88] R. Cleary and M. O’Neill, “An attribute grammar decoder for the 01 mul-
ticonstrained knapsack problem,” in Evolutionary Computation in Combi-
natorial Optimization (G. Raidl and J. Gottlieb, eds.), vol. 3448 of Lecture
Notes in Computer Science, pp. 34–45, Springer Berlin Heidelberg, 2005.

[89] M. L. Wong and K. S. Leung, “An induction system that learns programs
in different programming languages using genetic programming and logic
grammars,” in Proceedings of 7th IEEE International Conference on Tools
with Artificial Intelligence, pp. 380–387, Nov 1995.

[90] M. L. Wong and K. S. Leung, “Evolutionary program induction directed by
logic grammars,” Evol. Comput., vol. 5, pp. 143–180, June 1997.

[91] M. O’Neill, A. Brabazon, M. Nicolau, S. M. Garraghy, and P. Keenan,
“𝜋grammatical evolution,” in Genetic and Evolutionary Computation –
GECCO 2004 (K. Deb, ed.), (Berlin, Heidelberg), pp. 617–629, Springer
Berlin Heidelberg, 2004.

[92] N. Lourenço, F. B. Pereira, and E. Costa, “Sge: A structured representation
for grammatical evolution,” in Artificial Evolution (S. Bonnevay, P. Legrand,
N. Monmarché, E. Lutton, and M. Schoenauer, eds.), (Cham), pp. 136–148,
Springer International Publishing, 2016.

[93] E. Medvet, “Hierarchical grammatical evolution,” in Proceedings of the Ge-
netic and Evolutionary Computation Conference Companion, GECCO ’17,
(New York, NY, USA), pp. 249–250, ACM, 2017.

[94] A. Brabazon, M. O’Neill, and S. McGarraghy, Natural Computing Algo-
rithms. Springer Publishing Company, Incorporated, 1st ed., 2015.

[95] L. Spector and A. Robinson, “Genetic programming and autoconstructive
evolution with the push programming language,” Genetic Programming and
Evolvable Machines, vol. 3, no. 1, pp. 7–40, 2002.

[96] T. Castle and C. G. Johnson, “Evolving high-level imperative program trees
with strongly formed genetic programming,” in Proceedings of the 15th Eu-
ropean Conference on Genetic Programming, EuroGP 2012 (A. Moraglio,

219

BIBLIOGRAPHY

S. Silva, K. Krawiec, P. Machado, and C. Cotta, eds.), vol. 7244 of LNCS,
(Malaga, Spain), pp. 1–12, Springer Verlag, 11-13 Apr. 2012.

[97] M. Harman, J. Krinke, J. Ren, and S. Yoo, “Search based data sensitivity
analysis applied to requirement engineering,” in Proceedings of the 11th An-
nual Conference on Genetic and Evolutionary Computation, GECCO ’09,
(New York, NY, USA), pp. 1681–1688, ACM, 2009.

[98] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engi-
neering: Trends, techniques and applications,” ACM Comput. Surv., vol. 45,
pp. 11:1–11:61, Dec. 2012.

[99] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, Search Based Software
Engineering: Techniques, Taxonomy, Tutorial, pp. 1–59. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012.

[100] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A. Clark,
“The gismoe challenge: constructing the pareto program surface using ge-
netic programming to find better programs (keynote paper),” in Automated
Software Engineering (ASE), 2012 Proceedings of the 27th IEEE/ACM In-
ternational Conference on, pp. 1–14, Sept 2012.

[101] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A generic
method for automatic software repair,” IEEE Transactions on Software En-
gineering, vol. 38, pp. 54–72, Jan.-Feb. 2012.

[102] J. Swan, M. G. Epitropakis, and J. R. Woodward, “Gen-O-Fix: an embed-
dable framework for dynamic adaptive genetic improvement programming,”
Tech. Rep. CSM-195, Computing Science and Mathematics, University of
Stirling, UK, 17 Jan. 2014.

[103] L. S. T. M. Helmuth, “Detailed problem descriptions for general program
synthesis benchmark suite,” tech. rep., School of Computer Science, Univer-
sity of Massachusetts Amherst, 2015.

[104] R. Moll, “ijava - an online interactive textbook for elementary java instruc-
tion: Demonstration,” J. Comput. Sci. Coll., vol. 26, pp. 55–57, June 2011.

220

BIBLIOGRAPHY

[105] C. L. Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest,
and W. Weimer, “The manybugs and introclass benchmarks for automated
repair of c programs,” IEEE Transactions on Software Engineering, vol. 41,
pp. 1236–1256, Dec 2015.

[106] Q. U. Nguyen, Examining Semantic Diversity and Semantic Locality of Op-
erators in Genetic Programming. PhD thesis, University College Dublin,
Ireland, 18 July 2011.

[107] N. Dershowitz and J.-P. Jouannaud, “Rewrite systems,” in Handbook of
Theoretical Computer Science Volume B: Formal Methods and Semantics
(J. van Leeuwen, ed.), ch. 6, pp. 243–320, Cambridge, MA, USA: MIT
Press, 1990.

[108] E. Galván-López, B. Cody-Kenny, L. Trujillo, and A. Kattan, “Using seman-
tics in the selection mechanism in genetic programming: A simple method
for promoting semantic diversity,” in Evolutionary Computation (CEC),
2013 IEEE Congress on, pp. 2972–2979, June 2013.

[109] S. Forstenlechner, M. Nicolau, D. Fagan, and M. O’Neill, “Introducing
semantic-clustering selection in grammatical evolution,” in GECCO 2015
Semantic Methods in Genetic Programming (SMGP’15) Workshop (C. John-
son, K. Krawiec, A. Moraglio, and M. O’Neill, eds.), (Madrid, Spain),
pp. 1277–1284, ACM, 11-15 July 2015.

[110] T. H. Chu, Q. U. Nguyen, and M. O’Neill, “Semantic tournament selec-
tion for genetic programming based on statistical analysis of error vectors,”
Information Sciences, vol. 436-437, pp. 352 – 366, 2018.

[111] K. Krawiec, “Medial crossovers for genetic programming,” in Genetic Pro-
gramming (A. Moraglio, S. Silva, K. Krawiec, P. Machado, and C. Cotta,
eds.), vol. 7244 of Lecture Notes in Computer Science, pp. 61–72, Springer
Berlin Heidelberg, 2012.

[112] K. Krawiec and T. Pawlak, “Locally geometric semantic crossover: a study
on the roles of semantics and homology in recombination operators,” Genetic
Programming and Evolvable Machines, vol. 14, pp. 31–63, Mar 2013.

221

BIBLIOGRAPHY

[113] A. Moraglio, K. Krawiec, and C. Johnson, “Geometric semantic genetic pro-
gramming,” in Parallel Problem Solving from Nature - PPSN XII (C. Coello,
V. Cutello, K. Deb, S. Forrest, G. Nicosia, and M. Pavone, eds.), vol. 7491 of
Lecture Notes in Computer Science, pp. 21–31, Springer Berlin Heidelberg,
2012.

[114] M. Castelli, S. Silva, and L. Vanneschi, “A c++ framework for geometric
semantic genetic programming,” Genetic Programming and Evolvable Ma-
chines, vol. 16, pp. 73–81, Mar 2015.

[115] J. F. B. S. Martins, L. O. V. B. Oliveira, L. F. Miranda, F. Casadei, and
G. L. Pappa, “Solving the exponential growth of symbolic regression trees
in geometric semantic genetic programming,” in Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’18, (New York, NY,
USA), pp. 1151–1158, ACM, 2018.

[116] P. Orzechowski, W. La Cava, and J. H. Moore, “Where are we now?: A large
benchmark study of recent symbolic regression methods,” in Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’18, (New
York, NY, USA), pp. 1183–1190, ACM, 2018.

[117] T. P. Pawlak, “Geometric semantic genetic programming is overkill,” in
Genetic Programming (M. I. Heywood, J. McDermott, M. Castelli, E. Costa,
and K. Sim, eds.), (Cham), pp. 246–260, Springer International Publishing,
2016.

[118] S. Forstenlechner, M. Nicolau, D. Fagan, and M. O’Neill, “Grammar design
for derivation tree based genetic programming systems,” in EuroGP 2016:
Proceedings of the 19th European Conference on Genetic Programming (M. I.
Heywood, J. McDermott, M. Castelli, and E. Costa, eds.), vol. 9594 of
LNCS, (Porto, Portugal), pp. 192–207, Springer Verlag, 30 Mar.–1 Apr.
2016.

[119] E. Murphy, E. Hemberg, M. Nicolau, M. O’Neill, and A. Brabazon, “Gram-
mar bias and initialisation in grammar based genetic programming,” in Ge-
netic Programming (A. Moraglio, S. Silva, K. Krawiec, P. Machado, and
C. Cotta, eds.), vol. 7244 of Lecture Notes in Computer Science, pp. 85–96,
Springer Berlin Heidelberg, 2012.

222

BIBLIOGRAPHY

[120] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, pp. 879–899,
May 2008.

[121] J. R. Koza, I. Bennett, F.H., J. Hutchings, S. Bade, M. A. Keane, and D. An-
dre, “Evolving sorting networks using genetic programming and the rapidly
reconfigurable xilinx 6216 -programmable gate array,” in Signals, Systems
amp; Computers, 1997. Conference Record of the Thirty-First Asilomar
Conference on, vol. 1, pp. 404–410 vol.1, Nov 1997.

[122] L. Sekanina and M. Bidlo, “Evolutionary design of arbitrarily large sort-
ing networks using development,” Genetic Programming and Evolvable Ma-
chines, vol. 6, no. 3, pp. 319–347, 2005.

[123] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.)
Sorting and Searching. Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc., 1998.

[124] M. Codish, L. Cruz-Filipe, M. Frank, and P. Schneider-Kamp, “Twenty-
five comparators is optimal when sorting nine inputs (and twenty-nine for
ten),” in 2014 IEEE 26th International Conference on Tools with Artificial
Intelligence, pp. 186–193, Nov 2014.

[125] M. Codish, L. Cruz-Filipe, T. Ehlers, M. Müller, and P. Schneider-Kamp,
“Sorting networks: To the end and back again,” Journal of Computer and
System Sciences, 2016.

[126] J. McDermott, J. M. Swafford, M. Hemberg, J. Byrne, E. Hemberg, M. Fen-
ton, C. McNally, E. Shotton, and M. O’Neill, “String-rewriting grammars
for evolutionary architectural design,” Environment and Planning B: Plan-
ning and Design, vol. 39, no. 4, pp. 713–731, 2012.

[127] I. Dempsey, M. O’Neill, and A. Brabazon, “Constant creation in grammat-
ical evolution,” International Journal of Innovative Computing and Appli-
cations, vol. 1, no. 1, pp. 23–38, 2007.

[128] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “A grammar design
pattern for arbitrary program synthesis problems in genetic programming,”
in EuroGP 2017: Proceedings of the 20th European Conference on Genetic

223

BIBLIOGRAPHY

Programming (M. Castelli, J. McDermott, and L. Sekanina, eds.), vol. 10196
of LNCS, (Amsterdam, Netherlands), pp. 262–277, Springer Verlag, 19-21
Apr. 2017.

[129] M. O’Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott, and
A. Brabazon, “Geva: Grammatical evolution in java,” SIGEVOlution, vol. 3,
pp. 17–22, July 2008.

[130] T. Saber, D. Fagan, D. Lynch, S. Kucera, H. Claussen, and M. O’Neill,
“Multi-level grammar genetic programming for scheduling in heterogeneous
networks,” in Genetic Programming (M. Castelli, L. Sekanina, M. Zhang,
S. Cagnoni, and P. García-Sánchez, eds.), (Cham), pp. 118–134, Springer
International Publishing, 2018.

[131] P. J. Landin, “The next 700 programming languages,” Commun. ACM,
vol. 9, pp. 157–166, Mar. 1966.

[132] A. M. Turing, “On computable numbers, with an application to the entschei-
dungsproblem,” Proceedings of the London mathematical society, vol. 2,
no. 1, pp. 230–265, 1937.

[133] A. M. Turing, “On computable numbers, with an application to the entschei-
dungsproblem. a correction,” Proceedings of the London Mathematical So-
ciety, vol. 2, no. 1, pp. 544–546, 1938.

[134] R. I. B. McKay, “Fitness sharing in genetic programming,” in Proceedings
of the 2Nd Annual Conference on Genetic and Evolutionary Computation,
GECCO’00, (San Francisco, CA, USA), pp. 435–442, Morgan Kaufmann
Publishers Inc., 2000.

[135] T. Helmuth, N. F. McPhee, E. Pantridge, and L. Spector, “Improving gen-
eralization of evolved programs through automatic simplification,” in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO
’17, (Berlin, Germany), pp. 937–944, ACM, 15-19 July 2017.

[136] E. Pantridge, T. Helmuth, N. F. McPhee, and L. Spector, “On the diffi-
culty of benchmarking inductive program synthesis methods,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference Companion,
GECCO ’17, (New York, NY, USA), pp. 1589–1596, ACM, 2017.

224

BIBLIOGRAPHY

[137] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Towards under-
standing and refining the general program synthesis benchmark suite with
genetic programming,” in 2018 IEEE Congress on Evolutionary Computa-
tion (CEC), (Rio de Janeiro, Brasil), July 2018.

[138] A. L. Gaunt, M. Brockschmidt, R. Singh, N. Kushman, P. Kohli, J. Tay-
lor, and D. Tarlow, “TerpreT: A probabilistic programming language for
program induction,” CoRR, vol. abs/1608.04428, 2016.

[139] I. Gonçalves and S. Silva, “Balancing learning and overfitting in genetic
programming with interleaved sampling of training data,” in Genetic Pro-
gramming (K. Krawiec, A. Moraglio, T. Hu, A. Ş. Etaner-Uyar, and B. Hu,
eds.), (Berlin, Heidelberg), pp. 73–84, Springer Berlin Heidelberg, 2013.

[140] Z. Cataltepe, Y. S. Abu-Mostafa, and M. Magdon-Ismail, “No free lunch for
early stopping,” Neural Comput., vol. 11, pp. 995–1009, May 1999.

[141] C. Tuite, A. Agapitos, M. O’Neill, and A. Brabazon, “Early stopping criteria
to counteract overfitting in genetic programming,” in Proceedings of the 13th
Annual Conference Companion on Genetic and Evolutionary Computation,
GECCO ’11, (New York, NY, USA), pp. 203–204, ACM, 2011.

[142] Y. Liu and T. Khoshgoftaar, “Reducing overfitting in genetic program-
ming models for software quality classification,” in Proceedings of the Eighth
IEEE International Conference on High Assurance Systems Engineering,
HASE’04, (Washington, DC, USA), pp. 56–65, IEEE Computer Society,
2004.

[143] J. Fitzgerald, R. M. A. Azad, and C. Ryan, “A bootstrapping approach
to reduce over-fitting in genetic programming,” in Proceedings of the 15th
Annual Conference Companion on Genetic and Evolutionary Computation,
GECCO ’13 Companion, (New York, NY, USA), pp. 1113–1120, ACM,
2013.

[144] J. Žegklitz and P. Pošík, “Model selection and overfitting in genetic pro-
gramming: Empirical study,” in Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO Companion ’15, (New York, NY, USA), pp. 1527–1528, ACM,
2015.

225

BIBLIOGRAPHY

[145] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Extending pro-
gram synthesis grammars for grammar-guided genetic programming,” in
Parallel Problem Solving from Nature – PPSN XV (A. Auger, C. M. Fon-
seca, N. Lourenço, P. Machado, L. Paquete, and D. Whitley, eds.), (Coim-
bra, Portugal), pp. 197–208, Springer International Publishing, 2018.

[146] A. Agapitos and S. M. Lucas, “Learning recursive functions with object ori-
ented genetic programming,” in Proceedings of the 9th European Conference
on Genetic Programming (P. Collet, M. Tomassini, M. Ebner, S. Gustafson,
and A. Ekárt, eds.), vol. 3905 of Lecture Notes in Computer Science, (Bu-
dapest, Hungary), pp. 166–177, Springer, 10 - 12 Apr. 2006.

[147] T. Yu, “A higher-order function approach to evolve recursive programs,” in
Genetic Programming Theory and Practice III, vol. 9 of Genetic Program-
ming, ch. 7, pp. 93–108, Ann Arbor: Springer, 12-14 May 2005.

[148] M. Keijzer, C. Ryan, G. Murphy, and M. Cattolico, “Undirected training of
run transferable libraries,” in Proceedings of the 8th European Conference
on Genetic Programming, vol. 3447 of Lecture Notes in Computer Science,
(Lausanne, Switzerland), pp. 361–370, Springer, 30 Mar. - 1 Apr. 2005.

[149] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Semantics-based
crossover for program synthesis in genetic programming,” in Artificial Evo-
lution (E. Lutton, P. Legrand, P. Parrend, N. Monmarché, and M. Schoe-
nauer, eds.), (Paris, France), pp. 58–71, Springer International Publishing,
2018.

[150] S. Forstenlechner, D. Fagan, M. Nicolau, and M. O’Neill, “Towards effec-
tive semantic operators for program synthesis in genetic programming,” in
GECCO ’18: Genetic and Evolutionary Computation Conference, (Kyoto,
Japan), ACM, 15-19 July 2018.

[151] T. M. Helmuth, General Program Synthesis from Examples Using Genetic
Programming with Parent Selection Based on Random Lexicographic Or-
derings of Test Cases. PhD thesis, College of Information and Computer
Sciences, University of Massachusetts Amherst, USA, Sept. 2015.

[152] T. Helmuth, N. F. McPhee, and L. Spector, “Program synthesis using uni-
form mutation by addition and deletion,” in Proceedings of the Genetic and

226

BIBLIOGRAPHY

Evolutionary Computation Conference, GECCO ’18, (New York, NY, USA),
pp. 1127–1134, ACM, 2018.

[153] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and
M. Birattari, “The irace package: Iterated racing for automatic algorithm
configuration,” Operations Research Perspectives, vol. 3, pp. 43–58, 2016.

[154] T. Bartz-Beielstein, C. Lasarczyk, and M. Zaefferer, “Sequential parameter
optimization,” in Proceedings Congress on Evolutionary Computation 2005
(CEC’05), (Edinburgh, Scotland), p. 1553, 2005.

227

	Contents
	Abstract
	Statement of Original Authorship
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Publications Arising
	I Introduction and Literature Review
	Introduction
	Aim of Thesis
	Research Questions
	Contributions
	Technical contributions

	Limitations
	Thesis Outline

	Related Work
	Evolutionary Computation
	Genetic Programming
	Representation
	Initialization
	Fitness
	Selection
	Crossover
	Mutation
	GP Summary
	Grammars

	Program Synthesis
	Program Synthesis in Genetic Programming
	General Program Synthesis Benchmark Suite

	Semantics
	Semantic operators
	Geometric Semantic GP

	Conclusion

	II Experimental Research
	General Grammar Design
	Grammars for G3P
	Sorting Network
	Structure in Grammars
	Sorting Network Grammar Design
	Derivation tree sizes
	Grammar Design Details

	Experimental Setup
	Experiment 1
	Experiment 2
	General Settings

	Results
	Experiment 1
	Experiment 2

	Summary

	Program Synthesis Grammar Design Pattern
	Previous Approaches to Program Synthesis
	Grammar-Guided Genetic Programming
	Strongly Formed Genetic Programming
	PushGP
	Summary

	System Description
	Grammar Design Pattern
	Skeleton
	Comparison of Program Synthesis Approaches
	Python Specific Differences
	Invalid Individuals

	Experimental Setup
	PushGP Differences
	Derivation Tree Structures

	Results
	Tournament Selection
	Lexicase Selection
	Generational Progress and Invalids
	Derivation Tree Structures

	Summary

	III Extended Experimental Research
	Refining Computational Effort
	General Program Synthesis Benchmark Suite Remarks
	Experimental Setup
	Parameters and Computational Effort
	Larger Training Set

	Results
	Success Rates
	Accumulated Successful Solutions Over Generations
	Problems with the Training Data
	Larger Training Set

	Computational Effort Discussion
	Benchmark Suite Discussion
	Summary

	Extending Program Synthesis Grammars
	Grammar Design Approach Remarks
	Extending Program Synthesis Grammars
	Data Type Char
	Recursion
	List Operations
	Additional Methods

	Experimental Setup
	Results
	Successful Solutions
	Char Analysis
	Recursion Analysis

	Summary

	Semantic Operators in Program Synthesis
	Semantics
	Semantic Operators

	Semantics in Program Synthesis
	Semantic Crossover for Program Synthesis
	Semantic Measure
	Operator
	Experimental Setup
	Results
	Summary of SCPS

	Effective Semantic Operators for Program Synthesis
	Effective Semantic Crossover for Program Synthesis
	Effective Semantic Mutation for Program Synthesis
	Experimental Setup
	Results
	Summary of Effective Semantic Operators for Program Synthesis

	Summary

	IV Fin.
	Conclusion & Future Work
	Thesis Summary
	Contributions
	Technical contributions

	Limitations
	Future Work

	Program Synthesis Problem Description
	Problem Description
	Fitness Functions

	Program Synthesis Grammars
	Automatic Grammar Combination
	structure.bnf
	bool.bnf
	float.bnf
	int.bnf
	string.bnf
	list_bool.bnf
	list_float.bnf
	list_int.bnf
	list_string.bnf
	Protected methods

	Extended Program Synthesis Grammars
	structure.bnf
	bool.bnf
	float.bnf
	int.bnf
	char.bnf
	string.bnf
	list_bool.bnf
	list_float.bnf
	list_int.bnf
	list_string.bnf

	Plots for ESMPS
	Semantic Measure Used with ESMPS
	Number of Tries for ESMPS
	Percentage of Semantically Different with ESMPS
	Percentage of Fitter Children with ESMPS

	Grammar Design Pattern Solutions
	Compare String Lengths
	Count Odds
	Even Squares
	For Loop Index
	Grade
	Last Index of Zero
	Median
	Mirror Image
	Negative To Zero
	Number IO
	Pig Latin
	Replace Space with Newline
	Scrabble Score
	Small Or Large
	Smallest
	String Lengths Backwards
	Sum of Squares
	Syllables
	Vector Average
	Vectors Summed
	X-Word Lines

	Bibliography

