
GPTesT: A Testing Tool Based on Genetic Programming

Maria Cl�audia Figueiredo Pereira Emer

UFPR - Curitiba CP: 19081,

81531-970, Brazil

mpereira@inf.ufpr.br

Silvia Regina Vergilio

UFPR - Curitiba CP: 19081,

81531-970, Brazil

silvia@inf.ufpr.br

Abstract

Genetic Programming (GP) has recently
been applied to solve problems in several ar-
eas. It has the goal of inducing programs
from test cases by using the concepts of Dar-
win's evolution theory. On the other hand,
software testing, that is a fundamental and
expensive activity for software quality assur-
ance, has the objective of generating test
cases from the program being tested. In this
sense, a symmetry between induction of pro-
grams based on GP and testing is noticed.
Based on such symmetry, this work presents
GPTesT, a testing tool based on GP. Fault-
based testing criteria generally derive test
data using a set of mutant operators to pro-
duce alternatives that di�er from the pro-
gram under testing by a simple modi�cation.
GPtesT uses a set of alternatives genetically
derived, which allow the test of interactions
between faults. GPTesT implements two test
procedures respectively for guiding the selec-
tion and evaluation of test data sets. Ex-
amples with these procedures show that the
approach can be used as a testing criterion.

1 INTRODUCTION

The use of software products in most areas of human
activities has generated a growing interest in software
quality assurance. Software Engineering techniques
and tools were proposed with the goal of increasing
the quality of the software being developed. In this
context, the software testing activity has gained im-
portance during the last decade and is considered fun-
damental.

In the literature, there are three groups of testing tech-

niques proposed to reveal a great number of faults
with minimal e�ort and costs: 1) functional technique:
uses functional speci�cation of a program to derive test
cases; 2) structural technique: derives test cases based
on paths in the control 
ow graph of the program; 3)
fault-based technique: derives test cases to show the
presence or absence of typical faults in a program.

These techniques are generally associated to the test-
ing criteria. A criterion is a predicate to be satis�ed to
consider the testing activity ended, that is, to consider
a program tested enough [16, 25]. It helps the tester
in two major tasks: test case selection and test case
evaluation.

Fault-based criteria consider that most programmers
do their programs very similar to the correct program,
according to a speci�cation. This fact is known as
\competent programmer hypothesis [8]". When the
users test a program, they use the correct program that
they have in mind, and if the program P being tested
is not correct, there is a set of alternatives for P that
can include at least one correct program. The fault-
based criteria explore the use of alternatives for testing
P [8, 9, 14, 20]. In most cases, the alternative program
di�ers from P by a simple syntactic modi�cation, that
is, only a fault at a time is introduced. They assume
that complex faults are detected by analyzing simpler
faults, this assumption is named "coupling e�ect" [8,
22].

Some works [9, 14] assume only necessary conditions
for discovering faults; that is, to reveal a fault is neces-
sary to produce only an intermediate di�erent state in
the program and in its alternative, after the modi�ed
statement. This is assumed because determining suÆ-
cient conditions, which are the conditions to produce
di�erent �nal states, is undecidable (task related to the
term coincidental correctness [3]). However, Morell[20]
points out that these assumptions ignore the global
e�ect of faults or interactions of modi�cations in the



program.

Genetic Programming (GP) is a �eld of the called Evo-

lutionary Computation. The term was popularized by
Koza in 1992 [15]. The goal is to use the concepts of
Darwin's evolution theory [6] for computer program
induction. The concepts are usually applied by ge-
netic operators such as: selection, crossover, mutation
and reproduction. During the last decade, GP has re-

ceived signi�cant attention and been used to solve a
large number of problems, mainly in Arti�cial Intelli-
gence and Engineering Areas [1].

Some authors mention that there is a symmetry be-
tween the testing activity and the induction of pro-
grams [2, 3, 28]. In this sense, testing is an activity
that generates test cases from a program being tested,
and GP is a technique that generates programs from
test cases.

Based on such symmetry, this work describes GPTesT
tool, that supports a GP-based test approach. The al-
ternatives are generated using GP and can di�er from
P by more than simple modi�cations. GPTesT guides
the tester in two tasks: selection and evaluation of
test cases. It allows the test of C programs and uses

Chameleon [26], a GP tool. The paper is organized as
follows. Section 2 shows aspects related to GP and the
Chameleon tool. Section 3 presents a review about the
test activity. Section 4 describes GPTesT and Section
5 illustrates the mentioned test procedures. Finally,
Section 6 concludes the paper.

2 ABOUT CHAMELEON

Genetic Programming (GP) was introduced by John
Koza [15], based on the idea of Genetic Algorithms
presented by John Holland [13]. Instead of a popula-
tion of beings, GP works with a population of com-
puter programs. The goal of the GP algorithm is to
naturally select the program that better solves a given
problem, through recombination of "genes",. A special
heuristic function called �tness is used to guide the al-
gorithm in the process of selecting individuals. This
function receives a program and returns a number that
shows how close this individual is to the desired solu-
tion. First, an initial population of computer programs
is randomly generated (Generation 0). After that, the
GP algorithm enters a loop that is ideally executed
until a desired solution is found.

In this paper, the tool Chameleon [26] illustrates the
use of GP for software testing. Chameleon imple-
ments a grammar-oriented approach and evolves C
programs. It represents the programs using grammar-
based derivation trees.

Through the evolution process, genetic operators re-
combine programs by making modi�cations directly
on their derivation trees. In reproduction, no change

is made: the individual is simply replicated to the next
generation. It is equivalent to the asexual reproduction
of beings. Mutation is the addition of a new segment
of code to a randomly selected point of the program.

Crossover is the operator that truly performs recom-

bination of computer programs. This operation takes
two parents to generate two o�spring. A random point
of crossover is selected on each parent and the sub-
trees below these points are exchanged. It is equivalent
to the sexual reproduction of beings. When grammars
are used, the crossover operator is restricted and only
allows the exchange of tree branches that have been
generated using the same production rule.

To execute Chameleon, the user needs to provide the
grammar correspondent to the problem to be solved
and an initial con�guration I of parameters. The pa-
rameters are related to the genetic operations as mu-
tation and crossover rates; to the number of runs and
size of population; to the derivation tree; and to the
name of a �le that contains a set T of test cases. These
test cases are used to calculate the �tness value of each

individual. The number of runs is used to end the pro-
cess. The individual (or program) with better �tness
value is selected. The selection can also be random.

Figure 1 shows an example with the initial con�gu-
ration I of parameters, including the grammar, for
language C, adopted to the problem of calculating
the common minimum multiple of two given numbers
(cmm problem). Chameleon �nds, among other, the
solution presented in Figure 2.

3 ABOUT TESTING

The main goal of testing is to �nd an unrevealed fault
[21]. Hence, how to derive test cases for revealing as
many faults as possible is an important question. This
is because it is related to some factors such as eÆcacy,
costs, limitations to automate the testing activity, etc.
Other question to be considered is to known whether
a program has being tested enough or how to evaluate
a data test set T. These two questions, related to gen-
eration and evaluation of test cases, are discussed by
Rapps and Weyuker in [24].

In order to guide the testing activity and answer the
above questions, di�erent testing criteria were pro-
posed. They consider di�erent aspects to derive the
test data. Functional criteria use functional speci�-
cation of a program to derive test cases. Boundary
Value Analysis and Cause-E�ect Graphs [23] are ex-



[begin]
[parameters]
population size=500
number of runs=10
tournament size = 10
maximum depth for initial random programs = 15
maximum depth during the run = 30
crossover rate = 90
mutation rate = 0
elitist = N
threshold = 0.01
[compiler]
cl -nologo -G6 -MT -Fepop.exe
[result-producing branch]
terminal set = {X,Y}
function set = {%, !=, *, /}
output variable = Z
[result-producing branch productions]
<code> -> <def> <prog> <result>
<def> -> float R = 1, A = X, B = Y;
<result> -> Z = (A<op>B) <op> <var>;
<prog> -> if (<expc>) {<prog1>} else {<atr>}
<prog1> -> do {<bloco>} while (<expc>);
<bloco> -> <exp>
<bloco> -> <bloco> <exp>
<exp> -> <var> = <var> <opm> <var>;
<exp> -> <var> = <var>;
<expc> -> <var> <opc> <cte>
<atr> -> <var> = <cte>;
<opm> -> %
<op> -> *
<op> -> /
<opc> -> !=
<var> -> X
<var> -> Y
<var> -> R
<cte> -> 0
[fitness cases]
source -> cmm.dat
[end]

Figure 1: Initial Con�guration for Chameleon

amples of functional criteria. Structural criteria derive
test cases based on paths in the control-
ow graph of
the program. The best known structural criteria are
control-
ow and data-
ow based criteria [16, 24, 27].
Fault-based criteria derive test cases to show the pres-
ence or absence of typical faults in a program, con-
sidering common errors in the software development
process. The best known fault-based criterion is Mu-
tation Analysis [8].

This work focuses on fault-based testing, and the Mu-
tation Analysis criterion will be described in more de-
tail. It consists basically of generating mutant pro-
grams for the program P being tested. Mutation Anal-
ysis considers two assumptions [8]: 1) the hypothesis
of the competent programmer: \Programmers do their
programs very similar to the correct program"; 2) cou-

cmm (int X, int Y)
{

int A=X, B=Y, R=1;
if (Y!=0){
do {

R=Y;
Y=X%Y;
X=R;

} while (Y!=0)
}
else {
X=0;

}
return (A*B)/R;

}

Figure 2: A Possible Solution for the cmm Problem

pling e�ect: \Tests designed to reveal simple faults can
also reveal complex faults". It is also based on a set
of mutation operators. A mutant is represented by a
single mutation in the original program established by
a mutation operator.

All mutants are executed using a given input test case
set T. If a mutant M presents di�erent results from P,
it is said to be dead, otherwise, it is said to be alive.
In this case, either there are no test cases in T that
are capable to distinguish M from P, or M and P are
equivalent. To satisfy the criterion, we have to �nd
a test case set able to kill all non-equivalent mutants;
such a test case set T is considered adequate to test P.
Then, a mutant will be considered dead if its behav-
ior concerning a test case is di�erent from that of the
original program. The Mutation Score, obtained by
the relation between the number of mutants killed and
the total number of non-equivalent mutants generated,
allows the evaluation of the adequacy of the used test
case set. The number of equivalent mutants generated
is not determined automatically; it is obtained interac-
tively as an entry from the tester, since the equivalence
question is, in general, undecidable [5, 8].

In the literature, there are many testing tools. How-
ever, the complete automation of testing activity is
not possible due to many testing limitations: infeasi-
ble paths, equivalent mutants, etc. In general, there
is no algorithm to generate a test set that satis�es a
given criterion. It is not even possible to determine
if such set exists [12]. In spite of these limitations,
there are in the literature many works addressing test
data generation for satisfying testing criteria. Most re-
cent studies have been exploring Genetic Algorithms
[4, 17, 18, 19].

Proteum [10] and Mothra [7] are examples of testing
tools based on mutation testing. These tools gener-



ate mutants by using mutation operators. Proteum
has a set of 71 mutation operators and supports test
of C programs. Mothra supports testing of Fortran

programs. Di�erent operators are, in general, de�ned
for di�erent programming languages and the mutants
di�er from the program being tested by a simple mod-
i�cation. Morell[20], however, points out that such
fact ignores the global e�ect of faults or interactions

of modi�cations in the program.

This work proposes the use of GP to derive the mu-
tants. This can produce alternatives that are very dif-
ferent from the original program and consequently can
test global e�ects of faults. These aspects are discussed
in the following section.

4 GPTesT

In this section we describe GPTesT (Genetic
Programming-based Testing Tool) implemented to
support GP based testing. It implements two test
procedures for selection and evaluation of test cases,
showing that the approach can be used in the same
way as a testing criterion, such as Mutation Analysis.

Figure 3 contains the Use Case Diagram for GPTesT.
Next, we present a brief description and purpose of
each use case and describe the main GPTesT func-
tionalities.

Alternatives

Execute P

Generate

Results

cases

tester

Chameleon

Execute
Alternatives

View

Set alternatives
status

Maintain test

Figure 3: GPTesT: Use Case Diagram

� Maintain test cases: this use case is related to dif-

ferent functions for test case maintenance. The
tester can add a new test case, delete or disable
an existent, as well, visualize the obtained out-

put after execution of the program P being tested.
GPTesT saves all the given test cases as part of
the testing session for P.

� Execute P: this use case executes P with all the
non-executed test cases and saves the obtained
output. The tester analyzes the output. If the
output is di�erent from the expected, a failure

occurred. In this case, the tester must correct P
and start a new testing session.

� Generate alternatives using Chameleon tool: this
use case runs the Chameleon tool with the con�g-
uration I, as illustrated in Section 2. The tester
gives I as entry. GPTesT selects the programs
generated by Chameleon to obtain the set A of
alternatives. This selection discards some anoma-
lous and equivalent programs that can be syntac-
tically determined.

� Set alternative status: each alternative has a sta-
tus. This status can be:

{ anomalous: the alternative has an anomalous
behavior such as division by zero, loop for-
ever, etc.

{ equivalent: the alternative computes the
same function of P, producing the same out-
puts that P produces for any input.

{ dead: the alternative has already produced
a di�erent output for a test case when com-
pared with P.

{ alive: the alternative has produced the same
output produced by P for all enabled test
cases.

After executing the alternatives, GPTesT auto-
matically updates the alternative status. How-
ever, the tester has to identify the equivalence of
programs and to set the status of an equivalent
alternative. As mentioned in Section 3, there is
no algorithm to determine whether two programs
compute the same function. This is an undecid-
able question and all fault-based testing tools have
this limitation.

� Execute the alternatives: this use case executes
all the alive alternatives from A with all the non-
executed test cases.

� View the results: this use case allows the tester to
visualize the alternatives and their status, the test



cases and a testing score, similarly to other fault-
based testing tools and Proteum. To calculate the
score, GPTesT uses the following formula:

SM (P; T ) =
Ad(P; T )

A(P )�Ae(P )

where:

{ P : program being tested;

{ T : a test data set;

{ SM (P; T ): the coverage score;

{ Ad(P; T ): total number of dead alternatives;

{ A(P ): total number of alternatives;

{ Ae(P ): total number of equivalent alterna-
tives.

This initial version of GPTesT allows the unit test of
programs in C language. GPTesT, as well Chameleon,
are oriented to C functions, where only a C function is
tested at each time. All the results are saved in �les,
which are in a directory. To generate the executable
alternatives, GPTesT uses the compilation command
from I (Chameleon con�guration).

GPTesT was developed using the Uni�ed Modeling
Language (UML) and implemented in C++. Figure
4 presents the main class diagram for GPTesT. More
details about GPTesT implementation are in [11].

CSession

CTest

CCase CMutant

CCMutant CCoverage

Figure 4: GPTesT: Main Classes

According to some authors [16, 24], a testing criterion
or tool must support two testing procedures: selection
and evaluation of test cases. Next section illustrates
these procedures using GPTesT.

5 TEST PROCEDURES USING

GPTEST

5.1 Selection of Test Cases

To illustrate each step of the selection procedure, we
use the cmm program, whose source code is in Figure
5. This program prints the common minimum multiple
of two given numbers.

Suppose that the tester wants to test cmm, and does
not have any test case. GPTesT guides the tester in
the task of test case selection, using GP to perform
a fault-based testing. The tester takes the following
steps:

int cmm (int a, int b)

{

int A, B, r;

A = a;

B = b;

if (b!=0)

do {

r = A%B;

A = B;

B = r;

} while (r!=0);

else

a=0;

return (a*b)/A;

}

Figure 5: Source Code of cmm program

1. GPTesT initialization: gives initial information
for GPTesT summarized in Table 1.

Table 1: Initial Information to GPTesT

Section Name cmm

Source Code cmm.cpp

Initial Chameleon

Con�guration I illustrated in Section 2

2. Selection of alternatives: for cmm a set of 44 al-
ternatives were generated. Examples of these al-
ternatives are in Figure 6.

3. Generation of test cases to kill the alternatives:
to kill the alternative, the tester has to identify a
test case that produces an output that di�ers from
P output. Observe that the test case (a=2, b=4)
kills the alternative from Figure 6b. P produces
4 and the alternative produces a division by zero.



cmm (int X, int Y) cmm (int X, int Y)
{ {

int A=X, B=Y, R=1; int A=X, B=Y, R=1;
if (X!=0){ if (Y!=0){
do { do {

R=R%R; Y=X%Y;
R=Y; X=Y
X=X%Y; R=X%R;
Y=X; } while (Y!=0)
X=R; }

} while (Y!=0) else {
} Y=0;
else { }
X=0; return (A*B)/R;

} }
return (A*B)/R;

}

a) b)

cmm (int X, int Y) cmm (int X, int Y)
{ {

int A=X, B=Y, R=1; int A=X, B=Y, R=1;
if (Y!=0){ if (R!=0){
do { do {

R=Y; Y=X%Y;
Y=X%Y; R=Y%R;
X=R; } while (Y!=0)

} while (Y!=0) }
} else {
else { X=0;
X=0; }

} return (A*B)/R;
return (A*B)/R; }

}

c) d)

Figure 6: Examples of generated alternatives

4. Execution of the programs: using the compila-
tion command of I and the test cases given by the
tester, GPTesT executes P and the set of alterna-
tives, producing results shown in Figure 7. The
results show how many alternatives are dead, alive
or equivalent and the score calculated. This �nal
score was obtained with a set of 6 test cases.

5. Addition of new test cases: now, the tester visual-
izes the alive alternatives and continues the gen-
eration of test cases, repeating Steps 3 and 4 until
all the non-equivalent alternatives are dead or the
desired score is obtained. During this step, the
tester manually identi�es the equivalent alterna-
tives. Figures 6c shows an example of equivalent
alternative, that is identi�ed by the tester.

Figure 8 presents the �nal status obtained for cmm. A
score equal to 1 shows that all non-equivalent alterna-
tives are dead using the test cases.

Total Number of Alternatives: 44
Anomalous Alternatives: 0
Live Alternatives: 3
Equivalent Alternatives: 0
Number of Test Cases: 6
Coverage Score: 0.931818

Figure 7: GPTesT Results

Total Number of Alternatives: 44
Anomalous Alternatives: 0

Number of Test Cases: 6
Coverage Score: 1

Live Alternatives: 0
Equivalent Alternatives: 3

Figure 8: Final status for program cmm

5.2 Evaluation of a test set

The tester also uses GPTesT for evaluation of a test set
T. Consider the program P, which prints the greatest
of its three inputs. There is a test set T for P, pre-
sented in Table 2. The tester desires to evaluate how
good T is. GPTesT helps it in this task. The tester
must follow the evaluation procedure described next.
Observe that its two �rst steps are the same steps as
the selection procedure.

1. GPTesT initialization.

2. Generation of alternatives.

3. Addition of all test cases from T.

4. Execution of P and of the alternatives using the
available test cases.

5. Determination of equivalent alternatives.

6. Analysis of the score for T. The �nal results for
T is in Figure 9

According to the tester's goals, T can be considered
good \enough" and the testing activity ends. The eval-
uation procedure is also used to compare two test cases
sets. For example, we can consider that the greater the
score the better the set.



Test Case: 1)

Test Case: 3)

Test Case: 4)
Dead Alternatives: 0

Dead Alternatives: 2

Dead Alternatives: 99
Test Case: 2)
Dead Alternatives: 9

Test Case: 5)
Dead Alternatives: 0
Test Case: 6)
Dead Alternatives: 2
Execution Time: 00:01:08h

Anomalous Alternatives: 0
Total Number of Alternatives: 127

Live Alternatives: 15
Equivalent Alternatives: 0
Number of Test Cases: 6
Coverage Score: 0.88189

Figure 9: Status obtained for the test set T

When incorrect outputs of P are obtained, we have
to remove the fault and continue the procedure being
conducted. When we test a program, we usually follow
the two procedures. We can perform the evaluation
procedure with a functionally or randomly derived test
set T and after this, we start the selection procedure
on Step 3, to get the desired score.

Table 2: Test Case Set T

Number a b c

1) 0 1 2
2) 1 2 0
3) 1 0 2
4) 4 5 6
5) 5 6 4
6) 6 4 5

6 CONCLUSIONS

This work presented a framework, named GPTesT, to
support the use of Genetic Programming (GP) in the
software testing activity. GPTesT allows the use of a
new approach to fault-based testing.

The traditional approaches and tools are usually based
on mutation operators. An operator is used to gener-
ate an alternative program that di�ers from the pro-
gram under testing by a simple modi�cation. GPTesT
permits the alternative selection by using Chameleon,
a GP-based tool. The alternatives do not necessarily
di�er from the original program by only one modi-
�cation, and this permits to test interactions among
faults, and to reveal other kind of faults than those
reveled by the mutation operator approach.

The code of the program under testing is not used
to derive the alternatives. This is an advantage dur-
ing the maintenance phase. All alternatives continue
valid. The user decides whether other alternatives will
be generated. For the operator mutation approach and
structural testing criteria, all the required elements
must be generated again since they use the code to
establish the testing requirements.

This work presents examples, showing that GPTesT
supports two test procedures: test data set evaluation
and selection. These procedures are a basic require-
ment, supported by most testing and criteria tools.

In spite of GPTesT helps the test of C programs and
interacts with Chameleon, the GP approach imple-
mented by GPTesT is independent on the used lan-
guage. GPTesT implementation also permits future
extensions. A possible extension is to generate alterna-
tives using other GP tools that evolve programs writ-
ten in other languages or paradigms. We intend to
extend GPTesT to deal with Lisp programs.

Similar to other testing tools found in literature,
GPTesT has some limitations. This happens due to
the undecidibility related to the equivalence between
programs and to the generation of test cases. However,
in a future work we will extend GPTesT with mecha-
nisms to reduce these limitations. The mechanisms are
heuristics to determine equivalent alternatives and ge-
netic algorithms to automatically generate test cases,
helping the tester during the procedures exempli�ed
in this paper.



References

[1] Proceedings of Genetic and Evolutionary Computation
Conference. Morgan Kaufmann Publishers, 2000.

[2] F. Bergadano and D. Gunetti. Inductive Logic Pro-
gramming: From Machine Learning to Software Engi-

neering. MIT Press, 1995.

[3] T. Budd and D. Angluin. Two notions of correctness
and their relation to testing. Acta Informatica, Vol.
18(1):31{45, November 1982.

[4] I. Chung. Automatic testing generation for muta-
tion testing using genetic operators. In Proceedings
of SEKE. San Francisco, June 1998.

[5] W. Craft. Detecting Equivalents Mutants Using Com-
piler Optimization. Master's Thesis, Department of
Computer Science, Clemson University, Clemson-SC,
1989.

[6] C. Darwin. On the Origin of Species by Means of Nat-
ural Selection or the Preservation of Favoured Races
in the Struggle for Life. 1859.

[7] R. De Millo, D. Gwind, and K. King. An extended
overview of the mothra software testing environment.
In Proc. of the Second Workshop on Software Testing,
Veri�cation and Analysis, pages 142{151. Computer
Science Press, Ban� - Canada, July 19-21 1988.

[8] R. De Millo, R. Lipton, and F. Sayward. Hints on test
data selection: Help for the practicing programmer.
IEEE Computer, Vol. C-11:34{41, April 1978.

[9] R. De Millo and A. O�utt. Constraint-based
automatic test data generation. IEEE Transac-
tions on Software Engineering, Vol. SE-17(9):900{910,
September 1991.

[10] M. E. Delamaro and J. Maldonado. A tool for the
assesment for test adequacy for c programs. In Pro-
ceedings of the Conference on Performability in Com-
puting Systems, pages 79{95. East Brunswick, New
Jersey, USA, July 1996.

[11] M. Emer. Sele�c~ao e Avalia�c~ao de Dados de Teste

Baseadas em Programa�c~ao Gen�etica. Master's The-
sis, DInf - UFPR, Curitiba-PR, March 2002. (in Por-
tuguese).

[12] F. Frankl. The use of Data Flow Information for the
Selection and Evaluation of Software Test Data. PhD
Thesis, Department of Computer Science, New York
University, New York, U.S.A., October 1987.

[13] J. Holland. Adaptation in Natural and Arti�cial Sys-
tems. MIT Press, 1992.

[14] W. Howden. Weak mutation testing and completeness
of test sets. IEEE Transactions on Software Engineer-

ing, Vol. SE-8(4):371{379, July 1982.

[15] J. Koza. Genetic Programming: On the Programming
of Computers by Natural Slection. MIT Press, Cam-
bridge, MA, 1992.

[16] J. Maldonado, M. Chaim, and M. Jino. Briding the
gap in the presence of infeasible paths: Potential uses
testing criteria. In XII International Conference of
the Chilean Science Computer Society, pages 323{340.
Santiago, Chile, October 1992.

[17] G. McGraw and C. Michael. Automatic Generation of
test-cases for software testing. Technical Report RST
Corporation, 1997.

[18] C. Michael and et al. Genetic Algorithms for Dynamic
Test-Data Generation. Technical Report RST-003-97-
11 Corporation, 1997.

[19] C. Michael, G. McGraw, and M. Schatz. Generating
software test data by evolution. IEEE Trans. on Soft.
Engin., Vol 27(12):1085{1110, Dec. 2001.

[20] L. J. Morell. Theoretical insights into fault-based test-
ing. In Proc. of Workshop on Software Testing, Ver-
i�cation and Analysis, pages 45{62. Ban�, Canada,
1988.

[21] G. J. Myers. The Art of Software Testing. Wiley,
1979.

[22] A. O�ut. The coupling e�ect: Fact or �ction? In
Proc. of Workshop on Software Testing, Veri�cation
and Analysis, pages 131{140. 1989.

[23] R. Pressman. Software Engineering: A Practitioner's
Approach. McGraw-Hill, New-York, EUA, third edi-
tion, 1992.

[24] S. Rapps and E. Weyuker. Data 
ow analysis tech-
niques for test data selection. In Proceedings of Inter-
national Conference on Software Engineering. Tokio -
Japan, September 1982.

[25] S. Rapps and E. Weyuker. Selecting software test data
using data 
ow information. IEEE Transactions on
Software Engineering, SE-11(4):367{375, April 1985.

[26] E. Spinoza and et al. Chameleon: A generic tool for
genetic programming. In Proceedings of the Brazil-
ian Computer Society Conference. Fortaleza, Brazil,
August 2001.

[27] H. Ural and B. Yang. A structural test selection crite-
rion. Information Processing Letters, 28(3):157{163,
July 1988.

[28] E. Weyuker. Assessing test data adequacy through
program inference. ACM Trans. on Programming
Languages and Systems, Vol. SE-5(4):641{655, 1983.


