Skip to main content

Evolving Effective Ensembles for Image Classification Using Multi-objective Multi-tree Genetic Programming

  • Conference paper
  • First Online:
Book cover AI 2022: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13728))

Included in the following conference series:

  • 1548 Accesses

Abstract

The high variations across images make image classification a challenging task, where the limited number of training instances further increases the difficulty of achieving good generalization performance. Applying ensemble learning to classification often yields better generalization results on unseen data than using a single classifier. However, for an ensemble to generalize properly, its base learners should be accurate and diverse. Genetic programming (GP) has achieved promising results in image classification. However, existing methods typically employ single-tree representation (i.e., an individual contains a single tree) and are not easy to evolve multiple base learners especially when only limited training data is available. This paper proposes a new ensemble construction method for image classification using multi-objective multi-tree GP (i.e., on individual contains multiple trees). In the new method, a GP individual forms an ensemble, and its multiple trees are base learners that can learn informative features from a relatively small number of training instances. To find effective GP individuals/ensembles, i.e., to make its multiple trees accurate and diverse, the proposed method formulates the ensemble learning problem as a multi-objective task explicitly. Thus, the new objective functions are developed to maximize the diversity and minimize the classification error simultaneously. The proposed method achieves significantly better generalization performance than many competitive methods on four datasets of varying difficulty. Further analysis demonstrates the effectiveness and potentially high interpretability of the constructed ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins, D., Neshatian, K., Zhang, M.: A domain independent genetic programming approach to automatic feature extraction for image classification. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 238–245 (2011)

    Google Scholar 

  2. Bi, Y., Xue, B., Zhang, M.: Genetic Programming for Image Classification: An Automated Approach to Feature Learning. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-65927-1

    Book  Google Scholar 

  3. Bi, Y., Xue, B., Zhang, M.: Genetic programming with a new representation to automatically learn features and evolve ensembles for image classification. IEEE Trans. Cybern. 51(4), 1769–1783 (2021)

    Article  Google Scholar 

  4. Bi, Y., Xue, B., Zhang, M.: Genetic programming with image-related operators and a flexible program structure for feature learning in image classification. IEEE Trans. Evol. Comput. 25(1), 87–101 (2021)

    Article  Google Scholar 

  5. Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algorithms. J. Math. Model. Algor. 5(4), 417–445 (2006)

    Article  MATH  Google Scholar 

  6. Chen, H., Yao, X.: Multiobjective neural network ensembles based on regularized negative correlation learning. IEEE Trans. Knowl. Data Eng. 22(12), 1738–1751 (2010)

    Article  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Fan, Q., Bi, Y., Xue, B., Zhang, M.: Genetic programming for image classification: a new program representation with flexible feature reuse. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.2022.3169490

  9. Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., Gagné, C.: Deap: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(70), 2171–2175 (2012)

    Google Scholar 

  10. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463–484 (2012)

    Google Scholar 

  11. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  13. Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87–112 (1994)

    Article  Google Scholar 

  14. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)

    Article  Google Scholar 

  16. Lensen, A., Xue, B., Zhang, M.: Generating redundant features with unsupervised multi-tree genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 84–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_6

    Chapter  Google Scholar 

  17. Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving similarity functions for clustering: Representations and analysis. Evol. Comput. 28(4), 531–561 (2020)

    Article  Google Scholar 

  18. Lu, H., Gao, H., Ye, M., Wang, X.: A hybrid ensemble algorithm combining adaboost and genetic algorithm for cancer classification with gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(3), 863–870 (2021)

    Article  Google Scholar 

  19. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)

    Article  Google Scholar 

  20. Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Object Recognition Supported by User Interaction for Service Robots, vol. 1, pp. 701–706. IEEE (2002)

    Google Scholar 

  21. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011)

    MATH  Google Scholar 

  22. Pooja, S., Balan, R.S., Anisha, M., Muthukumaran, M., Jothikumar, R.: Techniques tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting. Comput. Commun. 151, 266–274 (2020)

    Article  Google Scholar 

  23. Ruberto, S., Terragni, V., Moore, J.H.: Image feature learning with genetic programming. In: Bäck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 63–78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_5

    Chapter  Google Scholar 

  24. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  25. Shao, L., Liu, L., Li, X.: Feature learning for image classification via multiobjective genetic programming. IEEE Trans. Neural Netw. Learn. Syst. 25(7), 1359–1371 (2014)

    Article  Google Scholar 

  26. Young, S., Abdou, T., Bener, A.: Deep super learner: a deep ensemble for classification problems. In: Bagheri, E., Cheung, J.C.K. (eds.) Canadian AI 2018. LNCS (LNAI), vol. 10832, pp. 84–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89656-4_7

    Chapter  Google Scholar 

  27. Zhang, B., et al.: Intelligent gp fusion from multiple sources for text classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 477–484 (2005)

    Google Scholar 

  28. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  29. Zhou, Z.H., Feng, J.: Deep forest. Natl. Sci. Rev. 6(1), 74–86 (2018)

    Article  Google Scholar 

  30. Zhu, H., Jin, Y.: Real-time federated evolutionary neural architecture search. IEEE Trans. Evol. Comput. 26(2), 364–378 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglan Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, Q., Bi, Y., Xue, B., Zhang, M. (2022). Evolving Effective Ensembles for Image Classification Using Multi-objective Multi-tree Genetic Programming. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics