
Fast Genetic Programming on GPUs

Simon Harding and Wolfgang Banzhaf

Computer Science Department, Memorial University, Newfoundland
{simonh,banzhaf}@cs.mun.ca

http://www.cs.mun.ca

Abstract. As is typical in evolutionary algorithms, fitness evaluation
in GP takes the majority of the computational effort. In this paper we
demonstrate the use of the Graphics Processing Unit (GPU) to accelerate
the evaluation of individuals. We show that for both binary and floating
point based data types, it is possible to get speed increases of several
hundred times over a typical CPU implementation. This allows for eval-
uation of many thousands of fitness cases, and hence should enable more
ambitious solutions to be evolved using GP.

Key words: Genetic programming, Graphics Card Acceleration, Par-
allel Evaluation

1 Introduction

It is well known that fitness evaluation is the most time consuming part of the
genetic programming (GP) system. This limits the types of problems that may
be addressed by GP, as large numbers of fitness cases make GP runs imprac-
tical. In some systems it is possible to accelerate the evaluation process using
a variety of techniques. In this paper we present a method using the graphics
processing unit on the video adapter. We study the evaluation of evolved math-
ematical expressions and digital circuits, as they are typically used to evaluate
the performance of a genetic programming algorithm.

Different approaches have been used in the past for accelerating evaluation.
For example, it is possible to co-evolve fitness cases in order to reduce the number
of evaluations [1]. This, however, adds significant complexity to the algorithm,
and does not guarantee an increase in performance under all circumstances. In
other applications, one could select the number of fitness cases, e.g.. by stochastic
sampling or other methods [2]. Should the system need to be tested against
a complete input set, however, this approach would not be suitable. Another
method involves compiling the evolved expression to executable code or even
using binary code directly [3]. Writing expressions as native code or in a similar
vain has many advantages [4]. The compiler or a hand-written algorithm can
perform optimisations, e.g. by removing redundant code, which in addition to
directly running the expression gives a significant increase in performance. The
use of reflection in modern languages such as Java and C] provides for the
possibility to compile and link code to the currently executing application.



2 Simon Harding and Wolfgang Banzhaf

Under some circumstances it is possible to offload the evaluation to more suit-
able hardware. When evaluating digital circuits, they can be loaded into a field
programmable gate array (FPGA) and then executed on dedicated hardware [5].
This approach can provide large speed increases. However, the downloading of
configurations into an FPGA can be a costly overhead. The biggest drawback to
this approach is that it requires the use of external hardware, which may have
to be specifically developed.

Recently it has become possible to access the processing power of the graphic
processing unit (GPU). Modern GPUs are extremely good at performing parallel
mathematical operations [6]. However, until recently it was cumbersome to use
this resource for general purpose computing. For a general survey on algorithms
implemented on GPUs the reader is referred to [7]. For example, discrete wavelet
transformations [8], the solution of dense linear systems [9], physics simulations
for games, fluid simulators [10], etc., have been shown to be executed faster on
GPUs.

In this paper we demonstrate a method for using the GPU as an evaluator
for genetic programming expressions, and show that there are considerable speed
increases to be gained. Using recent libraries we also show that putting the func-
tions on the GPU to work is relatively painless. As many of these technologies
are new, we include web links to sites containing the most recent information on
the projects discussed.

Because capable hardware and software are new, there is relatively little
previous work on using GPUs for evolutionary computation. For example [11]
implements a evolutionary programming algorithm on a GPU, and finds that
there is a 5-fold speed increase. Work by [12] expands on this, and evaluates
expressions on the GPU. There all the operations are treated as graphics op-
erations, which makes implementation difficult and limits the flexibility of the
evaluations. Yu et al [13], on the other hand, implement a Genetic Algorithm
on GPUs. Depending on population size, they find a speed up factor of up to
20. Here both the genetic operators and fitness evaluation are performed on
the GPU. Ebner et al, use human interaction to evolve aesthetically pleasing
shader programs[14]. Here, linear genetic programming structures are compiled
into shader programs. The shader programs were then used to render textures on
images, which were selected by a user. However, the technique was not extended
into more general purpose computation.

To our knowledge, this contribution is the first study of general purpose Ge-
netic Programming, executed on a graphics hardware platform. It makes use of
the fact that GP fitness cases are numerous and can be executed in parallel. Pro-
vided there is a sufficient number of fitness cases (large datasets), a substantial
speedup can be reached.

2 The Architecture of Graphics Processing Units

Graphics processors are specialized stream processors used to render graphics.
Typically, the GPU is able to perform graphics manipulations much faster than



Fast Genetic Programming on GPUs 3

a general purpose CPU, as the processor is specifically designed to handle certain
primitive operations. Internally, the GPU contains a number of small processors
that are used to perform calculations on 3D vertex information and on textures.
These processors operate in parallel with each other, and work on different parts
of the problem. First the vertex processors calculate the 3D view, then the shader
processors paint this model before it is displayed. Programming the GPU is
typically done through a virtual machine interface such as OpenGL or DirectX
which provide a common interface to the diverse GPUs available thus making
development easy. However, DirectX and OpenGL are optimized for graphics
processing, hence other APIs are required to use the GPU as a general purpose
device. There are many such APIs, and section 3 describes several of the more
common ones.

For general purpose computing, we here wish to make use of the parallelism
provided by the shader processors, see Figure 1. Each processor can perform
multiple floating point operations per clock cycle, meaning that performance is
determined by the clock speed and the number of pixel shaders and the width
of the pixel shaders. Pixel shaders are programmed to perform a given set of
instructions on each pixel in a texture. Depending on the GPU, the number of
instructions may be limited. In order to use more than this number of operations,
a program needs to be broken down into suitably sized units, which may impact
performance. Newer GPUs support unlimited instructions, but some older cards
support as few as 64 instructions. GPUs typically use floating point arithmetic,
the precision of which is often controllable as less precise representations are
faster to compute with. Again, the maximum precision is manufacturer specific,
but recent cards provide up to 128-bit precision.

The graphics card used in these experiments is a NVidia GForce 7300 Go,
which is a GPU optimized for laptop use. It is underpowered compared to cards
available for desktop PCs. Because GPUs are parallel and have very strict pro-
cessing models, the computational ability of the GPU scales well with the num-
ber of pixel shaders. We would therefore expect to see major improvements to
the performance of the benchmarks given here if we were to run it on such a
GPU. According to [15], “an NVIDIA 7800 GTX 512 is capable of around 200
GFLOPS. ATI’s latest X1900 architecture has a claimed performance of 554
GFLOPS”. Since it is now possible to place multiple GPUs inside a single PC
chassis, this should result in TFLOP performance for numerical processing at
low cost.

A further advantage of the GPU is that it uses less power than a typical
CPU. Power consumption has become an important consideration in building
clusters, since it causes heat generation.

3 Programming a GPU

In this section we provide a brief overview of some of the general purpose com-
putation toolkits for GPUs that are available. This is not an exhaustive list, but



4 Simon Harding and Wolfgang Banzhaf

Fig. 1. Arrays, representing the test cases, are converted to textures. These textures
are then manipulated (in parallel) by small programs inside each of the pixel shaders.
The result is another texture, which can be converted back to a normal array for CPU
based processing.

is intended to act as a guide to others. More information on these systems can
be found at www.gpgpu.org.

SH Sh is an open source project for accessing the GPU under C++ [16,
17]. Many graphics cards are supported, and the system is platform indepen-
dent. Many low level features can be accessed using Sh, however these require
knowledge of the mechanisms used by the shaders. The Sh libraries provide
typical matrix and vector manipulations, such as dot products and addition-
multiplication operators. In addition to providing general purpose computing,
Sh also provides many routines for use in graphics programming. This feature
is unique amongst the tools described here, and would be useful in visualisation
of results.

Brook: Brook is another way to access the features on the GPU [18]. Brook
takes the form of extensions to the C programming language, adding support for
GPU specific data types. Applications developed with Brook are compiled using
a special C compiler, which generates C++ and Cg code. Cg is a programming
language for graphics, that is similar to C. One major advantage of Brook is
that it can target either OpenGL or DirectX, and is therefore more platform
independent than other tools. However, code must be compiled separately for
each target platform. Brook appears to be a very popular choice, and is used for
large applications, such as folding@home.



Fast Genetic Programming on GPUs 5

PyGPU: Another recent library allows the access of GPU functionality from
the Python language [19]. PyGPU runs as an embedded language inside Python.
The work is in its early stages, but results are promising. However it currently
lacks the optimization required to make full use of the GPU. It requires a variety
of extra packages to be installed into Python, such a NumPy and PyGame (which
does not yet support the most recent Python release). Given the rise in popularity
of Python for scientific computing, this implementation should prove useful in
the future. Python itself, however, appears to have significant performance issues
compared to C++ and JIT languages such as Java or C]1.

Accelerator: Recently a .Net assembly called Accelerator was released that
provides access to the GPU via the DirectX interface [20]. The system is com-
pletely abstracted from the GPU, and presents the end user with only arrays
that can be operated on in parallel. Unfortunately, the system is only available
for the Windows platform due to its reliance on DirectX. However, the assembly
can be used from any .Net programming language.

This tool differs from the previous interfaces in that it uses lazy evaluation.
Operations are not performed on the data until the evaluated result is requested.
This enables a certain degree of real time optimization, and reduces the computa-
tional load on the GPU. In particular, optimisation of common sub expressions,
which will reduce the creation of temporary shaders and textures. The movement
of data to and from the GPU can also be efficiently optimized, which reduces the
impact of the relatively slow transfer of data out of the GPU. The compilation
to the shader model occurs at run time, and hence can automatically make use
of the different features available on the supported graphics cards.

In this paper we use the Accelerator package. The total time required to
reimplement an existing parser tree based GP parser was less than two hours,
which we would expect to be considerably less than using any of the other
solutions presented here. As with other implementations, Accelerator is based
on arrays implemented as textures. The API then allows one to perform parallel
operations on the arrays. Conversion to textures, and transfer to the GPU is
handled transparently by the API, allowing the developer to concentrate on the
implementation of the algorithm. The available function set for operating on
parallel arrays is similar to the other APIs. It includes element-wise arithmetic
operations, square root, multiply-add, and trigonometric operations. There are
also conditional operations and functions for comparing two arrays. The API also
provides reduction operators, such as the sum, product, minimum or maximum
value in the array. Further functions perform transformations, such as shift and
rotate on the elements of the array.

The other systems described here present different variations on these func-
tions, and generally offer functionality that allows different operations to be
applied to different parts of the arrays.

1 As usual, available benchmarks may not give a fair reflection to real world perfor-
mance.



6 Simon Harding and Wolfgang Banzhaf

4 Parsing a GP Expression

Typically parsing a GP expression involves traversing the expression tree in a
bottom-up, breadth first manner. At each node visited the interpreter performs
the specified function on the inputs to the node, and outputs the result as the
node output. The tree is re-evaluated for every input set. Hence, for 100 test
cases the tree would be executed 100 times.

Using the GPU we are able to parallelize this process, which means that in
effect the tree only has to be parsed once - with the function evaluation performed
in parallel. Even without the arithmetic acceleration provided by the GPU, this
results in a considerable reduction in computation. Our GP interpreter uses a
case statement at the evaluation of each node to determine what function to
apply to the input values. If run on the GPU, the tree needs only to be executed
once - removing the need for repeatedly accessing the case statement. The use
of the GPU is illustrated in Figure 1. The population and genetic algorithm run
on the CPU, with evaluations run on the GPU. The CPU converts arrays of
test cases to textures on the GPU and loads a shader program into the shader
processors. The Accelerator tool kit compiles each individuals GP expression
into a shader program. The program is then executed, and the resulting texture
is converted back in to an array. The fitness is determined from this output array.

5 Benchmarks

5.1 Configuration

The GP parser used here is written in C], and compiled using Visual Studio
2005. All benchmarks were done using the Release build configuration, and were
executed on CLR 2.0 on Windows XP. The GPU is an NVidia GeForce 7300 GO
with 512Mb video memory. The CPU used is an Intel Centrino T2400 (running
at 1.83Ghz), with 1.5Gb of system memory.

In these experiments, GP trees were randomly generated with a given num-
ber of nodes. The expressions were evaluated on the CPU and then on the GPU,
and each evaluation was timed for evaluation purposes. Timing was performed
using calls to Win32 API QueryPerformanceCounter, which returns high preci-
sion timings. For each input size/expression length pair, 100 different randomly
generated expressions were used, and results were averaged to calculate accelera-
tion factors. Therefore our results show the average number of times the GPU is
faster at evaluating a given tree size for a given number of fitness cases. Results
less than 1 mean that the CPU was faster at evaluating the expression, values
above 1 indicate the GPU performed better.

5.2 Floating point

In the first experiment, we evaluated random GP trees containing varying num-
bers of nodes, and exposed them to varying test case sizes. Mathematical func-
tions +, −, ∗ and / were used. The same expression was tested on the CPU and



Fast Genetic Programming on GPUs 7

the GPU, and the speed difference was recorded. Results are shown in Table
1. For small node counts and fitness cases, the CPU performance is superior
because of the overhead of mapping the computation to the GPU. For larger
problems, however, there is a massive speed increase for GPU execution.

5.3 Binary

The second experiment compares the performance of the GPU at handling
boolean expressions. In the CPU version, we use the C] boolean type - which is
convenient, but not necessarily the most efficient representation. For the GPU,
we tested two different approaches, one using the boolean parallel array provided
by Accelerator, the other using float. The performance of these two represen-
tation is shown in Table 2. It is interesting to note that improvements are not
guaranteed. As can be seen in the table, the speed up can decrease as expression
size increases. We assume this is due to the way in which large shader programs
are handled by either the Accelerator or the GPU. For example, the length of
the shader program on the NVIDIA GPU may be limited, and going beyond this
length would require repeated passes of the data. This type of behaviour can be
seen in many of the results presented here.

We limit the functions in the expressions to AND, OR and NOT, which are
supported by the boolean array type. Following some sample code provided with
Accelerator, We mimicked boolean behavior using 0.0f as false, and 1.0f as true.
For two floats, AND can be viewed as the minimum of the two values. Similarly
OR can be viewed as the maximum of the two values. NOT can be performed
as a multiply add, where the first stage is to multiply by -1 then add 1.

5.4 Real world tests

In this experiment, we investigate the speed up on both toy and real world
problems, rather than on arbitrary expressions. The GP representation we chose
to use here is CGP, but similar results should be obtained from other repre-
sentations. CGP is fully described in [21]. In the benchmark experiments, the
expression lengths were uniform throughout the tests. However, in real GP the
length of the expressions vary throughout the run. As the GPU sometimes results
in slower performance, we need to verify that on average, there is an advantage.

Regression We evolved functions that regressed over x6 − 2x4 + x2 [22]. We
tested the evaluation difference using a number of test cases. In each instance,
the test cases were uniformly distributed between -1 to +1. We also changed
the maximum length of the CGP graph. Hence, expression lengths could range
anywhere from 1 node to the maximum size of the CGP graph. GP was run for
200 generations to allow for convergence. The function set comprised of +, −, ∗
and /. In C], division by zero on a float returns “Infinity”, which is consistent
with the result from the Accelerator library.



8 Simon Harding and Wolfgang Banzhaf

Test Cases

Expression Length 64 256 1024 4096 16384 65536

10 0.04 0.16 0.6 2.39 8.94 28.34
100 0.4 1.38 5.55 23.03 84.23 271.69
500 1.82 7.04 27.84 101.13 407.34 1349.52
1000 3.47 13.78 52.55 204.35 803.28 2694.97
5000 10.02 26.35 87.46 349.73 1736.3 4642.4
10000 13.01 36.5 157.03 442.23 1678.45 7351.06

Table 1. Results showing the number of times faster evaluating floating point based
expressions is on the GPU, compared to CPU implementation. An increase of less than
1 shows that the CPU is more efficient.

Boolean implementation

Test Cases

Expression Length 4 16 64 256 1024 4096 16384 65536

10 0.22 1.04 1.05 2.77 7.79 36.53 84.08 556.40
50 0.44 0.57 1.43 3.02 14.75 58.17 228.13 896.33
100 0.39 0.62 1.17 4.36 14.49 51.51 189.57 969.33
500 0.35 0.43 0.75 2.64 14.11 48.01 256.07 1048.16
1000 0.23 0.39 0.86 3.01 10.79 50.39 162.54 408.73
1500 0.40 0.55 1.15 4.19 13.69 53.49 113.43 848.29

Boolean implementation, using floating point

Test Cases

Expression Length 4 16 64 256 1024 4096 16384 65536

10 0.024 0.028 0.028 0.072 0.282 0.99 3.92 14.66
50 0.035 0.049 0.115 0.311 1.174 4.56 17.72 70.48
100 0.061 0.088 0.201 0.616 2.020 8.78 34.69 132.84
500 0.002 0.003 0.005 0.017 0.064 0.25 0.99 3.50
1000 0.001 0.001 0.003 0.008 0.030 0.12 0.48 1.49
1500 0.000 0.001 0.002 0.005 0.019 0.07 0.29 1.00

Table 2. Results showing the number of times faster evaluating boolean expressions is
on the GPU, compared to CPU implementation. An increase of less than 1 shows that
the CPU is more efficient. Booleans were implemented as floating point numbers and
as booleans. Although faster than the CPU for large input sizes, in general it appears
preferential to use the boolean representation. Using floating point representation can
provide speed increases, but the results are varied.

Test Cases

Max Expression Length 10 100 1000 2000

10 0.02 0.08 0.7 1.22
100 0.07 0.33 2.79 5.16
1000 0.42 1.71 15.29 87.02
10000 0.4 1.79 16.25 95.37

Table 3. Results for the regression experiment. The results show the number of times
faster evaluating evolved GP expressions is on the GPU, compared to CPU implemen-
tation. The maximum expression length is the number of nodes in the CGP graph.



Fast Genetic Programming on GPUs 9

Test Cases

Max Expression Length 194 388 970 1940

10 0.15 0.23 0.51 1.01
100 0.38 0.67 1.63 3.01
1000 1.77 3.19 9.21 22.7
10000 1.69 3.21 8.94 22.38

Table 4. Results for the two spirals classification experiment. The results show the
number of times faster evaluating evolved GP expressions is on the GPU, compared to
CPU implementation. The maximum expression length is the number of nodes in the
CGP graph.

Fitness was defined as the sum of the absolute errors of each test case and
the output of the expression. This can also be calculated using the GPU. Each
individual was evaluated with the CPU, then the GPU and the speed difference
recorded. Also the outputs from both the GPU and CPU were compared to
ensure that they were evaluating the expression in the same manner. We did not
find any instances where the two differed.

Table 3 shows results that are consistent with the tests described in previous
sections. For smaller input sets and small expressions, it was more efficient to
evaluate them on the CPU. However, for the larger test and expression sizes the
performance increase was dramatic.

Classification In this experiment we attempted the classification problem of
distinguishing between two spirals, as described in [22]. This problem has two
input values (x and y coordinates of a point on a spiral) and has a single output
indicating which spiral the point is found. In [22], 194 test cases are used. In
these experiments, we extend the number of test cases to 388, 970 and 1940. We
also extended the function set to include sin, cos,

√
x, xy and a comparator. The

comparator looks at the first input value to the node, and if it is less than or
equal to zero returns the second input, 0 otherwise. The relative speed increases
can be seen in Table 4. Again we see that the GPU is superior for larger numbers
of test cases, with larger expression sizes.

Classification in Bioinformatics In this experiment we investigate the be-
haviour on another classification problem, this time a protein classifier as de-
scribed in [23]. Here the task is to predict the location of a protein in a cell, from
the amino acids in the particular protein. We used the entire dataset as the train-
ing set. The set consisted of 2427 entries, with 19 variables each and 1 output.
We investigated the performance gain using several expression lengths, and the
results can be seen in Table 5. Here, the large number of test cases used results
in considerable improvements in evaluation time, even for small expressions.



10 Simon Harding and Wolfgang Banzhaf

Test Cases

Expression Length 2427

10 3.44
100 6.67
1000 11.84
10000 14.21

Table 5. Results for the protein classifcation experiment. The results show the number
of times faster evaluating evolved GP expressions is on the GPU, compared to CPU
implementation. The maximum expression length is the number of nodes in the CGP
graph.

6 Conclusions

This paper demonstrates that evaluation of genetic programming expressions can
strongly benefit from using the graphics processor to parallelise the evaluations.
With new development tools, it is now very easy to leverage the GPU for general
purpose computation. However, there are a few caveats. Here we have tested the
system using Cartesian GP, however we expect similar advantages with other
representations, such as tree and linear GP.

Few clusters are constructed with high performance graphics cards, which will
limit the immediate use of these systems. It will require further benchmarking
whether low end GPUs found in most PCs today provide a speed advantage.
Given the computational benefits and the relatively low costs of fast graphics
cards, it is likely that GPU acceleration for numerical applications will become
widespread amongst lower priced installations.

Many typical GP problems do not have large sets of fitness cases for two rea-
sons: First, evaluation has always been considered computationally expensive.
Second, we currently find it very difficult to evolve solutions to harder problems.
With the ability to tackle larger problems in reasonable time we have to also find
innovative approaches that let us solve these problems. Traditional GP has dif-
ficulty with scaling. For example, the largest evolved multiplier has 1024 fitness
cases [24]. In the same time it would take a CPU implementation to evaluate an
individual with that many fitness cases, we could test more than 65536 fitness
cases on a GPU. This leads to a gap between what we can realistically evaluate,
and what we can evolve. The authors of this paper advocate developmental en-
codings, and using the evaluation approach introduced here we will be able to
test this position.

For small sets of fitness cases, the overhead of transferring data to the GPU
and for constructing shaders results in a performance decrease. It can be imag-
ined that one would want to determine in practical applications when the ad-
vantage of GPU computing kicks in and switch execution to the proper type of
hardware. In this contribution, we have just looked at the most trivial way of
parallelizing a GP system on GPU hardware. More sophisticated approaches to
parallelisation will have to be examined in the future.



Fast Genetic Programming on GPUs 11

Appendix: Code Examples

To demonstrate the ease of development, we include a small code sample showing
the use of MS Accelerator from C]. The first stage is to make arrays of the data
to operate on. In a GP system these may be the fitness cases.

float[,] DataA = new float[4096, 4096];

float[,] DataB = new float[4096, 4096];

Next, the GPU has to be initialized, and the floating point arrays converted
to parallel arrays:

ParallelArrays.InitGPU();

FloatParallelArray ParallelDataA =

new DisposableFloatParallelArray(DataA);

FloatParallelArray ParallelDataB =

new DisposableFloatParallelArray(DataB);

The parallel arrays are textures inside the GPU memory. Next, the shader
program is specified by performing operations on the parallel arrays. However,
the computation is not done until requested, as the shader program needs to be
compiled, uploaded to the GPU shader processors and executed.

FloatParallelArray ParallelResult =

ParallelArrays.Add(ParallelDataA, ParallelDataB);

Finally, we request that the expression is evaluated, and get the result from
the GPU. The result is stored as a texture in the GPU, which needs to be
converted back into a floating point array that can be used by the CPU.

float[,] Result = new float[4096, 4096];

ParallelArrays.ToArray(ParallelResult, out Result);

References

1. Lasarczyk, C., Dittrich, P., Banzhaf, W.: Dynamic subset selection based on a
fitness case topology. Evolutionary Computation 12 (2004) 223–242

2. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming - An
Introduction. Morgan Kaufmann, San Francisco, CA, USA (1998)

3. Nordin, P., Banzhaf, W., Francone, F.: Efficient Evolution of Machine Code for
CISC Architectures using Blocks and Homologous Crossover. In Spector, L., Lang-
don, W., O’Reilly, U.M., Angeline, P., eds.: Advances in Genetic Programming III,
MIT Press, Cambridge, MA, USA (1999) 275–299

4. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer, New York,
USA (2006)

5. Lau, W.S., Li, G., Lee, K.H., Leung, K.S., Cheang, S.M.: Multi-logic-unit processor:
A combinational logic circuit evaluation engine for genetic parallel programming.
In: EuroGP. (2005) 167–177



12 Simon Harding and Wolfgang Banzhaf

6. Thompson, C., Hahn, S., Oskin, M.: Using Modern Graphics Architectures for
General-Purpose Computing: A Framework and Analysis. In: Proceedings of the
35th International Symposium on Microarchitecture, Istanbul, IEEE Computer
Society Press (2002) 306 – 317

7. Owens, J., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A., Purcell,
T.: A survey of general-purpose computation on graphics hardware. Eurographics
2005, State of the Art Reports (2005) 21–51

8. Wang, J., T. T. Wong, P.A.H., Leung, C.S.: Discrete wavelet transform on gpu.
In: Proceedings of ACM Workshop on General Purpose Computing on Graphics
Processors. (2004) C–41

9. Galoppo, N., Govindaraju, N., Henson, M., Manocha, D.: Lu-gpu: Efficient algo-
rithms for solving dense linear systems on graphics hardware. Supercomputing,
2005. Proceedings of the ACM/IEEE SC 2005 Conference (2005) 3– 3

10. Hagen, T.R., Hjelmervik, J.M., Lie, K.A., Natvig, J.R., Henriksen, M.O.: Visual
simulation of shallow-water waves. Simulation Modelling Practice and Theory 13

(2005) 716–726
11. Wong, M.L., Wong, T.T., Fok, K.L.: Parallel evolutionary algorithms on graphics

processing unit. In: Proceedings of IEEE Congress on Evolutionary Computation
2005 (CEC 2005). Volume 3. (2005) 2286–2293

12. Fok, K.L., Wong, T.T., Wong, M.L.: Evolutionary computing on consumer-level
graphics hardware. IEEE Intelligent Systems, to appear (2005)

13. Yu, Q., Chen, C., Pan, Z.: Parallel Genetic Algorithms on Programmable Graphics
Hardware. Lecture Notes in Computer Science 3612 (2005) 1051

14. Ebner, M., Reinhardt, M., Albert, J.: Evolution of vertex and pixel shaders. In
Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M., eds.: Pro-
ceedings of the Eighth European Conference on Genetic Programming (EuroGP
2005), Lausanne, Switzerland, Springer-Verlag (2005) 261–270

15. Wikipedia: Flops — wikipedia, the free encyclopedia. http://en.wikipedia.org/
w/index.php?title=FLOPS&oldid=84987291 (2006) [Online; accessed 1-November-
2006].

16. RapidMind Inc: Libsh. (http://libsh.org/)
17. LibSh Wiki: Libsh sample code. (http://www.libsh.org/wiki/index.php/

Sample_Code)
18. Stanford University Graphics Lab: Brook. (http://graphics.stanford.edu/

projects/brookgpu/)
19. Lejdfors, C., Ohlsson, L.: Implementing an embedded gpu language by combining

translation and generation. In: SAC ’06: Proceedings of the 2006 ACM symposium
on Applied computing, New York, NY, USA, ACM Press (2006) 1610–1614

20. Tarditi, D., Puri, S., Oglesby, J.: Msr-tr-2005-184 accelerator: Using data par-
allelism to program gpus for general-purpose uses. Technical report, Microsoft
Research (2006)

21. Miller, J.F., Thomson, P.: Cartesian genetic programming. In et al., R.P., ed.:
Proc. of EuroGP 2000. Volume 1802 of LNCS., Springer-Verlag (2000) 121–132

22. Koza, J.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge, Massachusetts, USA (1992)

23. Langdon, W.B., Banzhaf, W.: Repeated sequences in linear genetic programming
genomes. Complex Systems 15(4) (2005) 285–306

24. Torresen, J.: Evolving multiplier circuits by training set and training vector par-
titioning. In: ICES‘03:From biology to hardware. Volume 2606. (2003) 228–237


