
Constant Generation for the Financial Domain using
Grammatical Evolution

Ian Dempsey
University of Limerick

Pipeline Trading Systems
New York

ian.dempsey@pipelinetrading.com

ABSTRACT
This study reports the work to date on the analysis of differ-
ent methodologies for constant creation with the aim of ap-
plying the most advantageous method to the dynamic real
world problem of a live trading system. The methodolo-
gies explored here are Digit Concatenation and Grammat-
ical Ephemeral Random Constants with clear advantages
identified for a digit concatenation approach in combination
with the ability to form new constants through their recom-
bination within expressions.

Categories and Subject Descriptors
I.2.0 [Computing Methodologies]: Artificial Intelligence—
General

General Terms
Algorithms, Theory

Keywords
Constant Creation, Digit Concatenation, Genetic Program-
ming, Grammatical Evolution

1. INTRODUCTION
Many applications in Genetic Programming require the

generation of constants, the application of GE to financial
analysis is no exception. All technical and fundamental indi-
cators require as parameters; constants. Hence the discovery
of an efficient means of generating diverse constants is im-
portant. But this initial discovery is not the only factor to
take into consideration when using these parameters in the
financial domain. The markets of the world are dynamic
in nature with behaviours varying by different degrees un-
der different circumstances, and so it becomes key that once
good parameters are discovered for a particular indicator

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

that these parameters can be tuned within its local neigh-
bourhood or changed radically. Thus a flexible efficient ap-
proach is required for constant generation which maintains
a high level of diversity.

In this paper we explore Digit Concatenation [1, 2, 3]in
Grammatical Evolution as a method for creating constants
and analyse its utility under different benchmark problems
with the aim of applying this method in a grammar for fi-
nancial time series analysis. The next section gives a brief
background in constant generations techniques in GP. Then
Section 3 compares the performance of Concatenation with
traditional method for constant creation in GE and a form
of Ephemeral Random Constants (ERC) adapted to the GE
paradigm. Section 4 develops the Concatenation technique
further and section 5 presents our conclusions.

2. BACKGROUND
Ephemeral random constants are the standard approach

to constant creation in Genetic Programming (GP), having
values created randomly within a pre-specified range at a
run’s initialisation [4]. These values are then fixed through-
out a run, and new constants can only be created through
combinations of these values and other items from the func-
tion and terminal set.

A number of variations on the ephemeral random constant
concept have been applied in tree-based GP systems, all of
which have the common aim of making small changes to the
initial constant values.

Constant perturbation [5] allows GP to fine-tune float-
ing point constants by rescaling them by a factor between
0.9 and 1.1. This has the effect of modifying a constant’s
value by up to 10% of its original value.

Numerical terminals and numerical terminal mu-
tation were used in [6]. The numerical terminal mutation
operator selects a real valued numerical terminal in an in-
dividual and adds a Gaussian distributed noise factor, such
that small changes are made to the constant values.

The numeric mutation operator [7] replaces the nu-
meric constants in an individual with new ones drawn at ran-
dom from a uniform distribution with a pre-specified range.
The selection range for each constant is specified as the old
value of that constant plus or minus a temperature factor.

Linear scaling This method [8, 9, 10] has been used to
optimise values within their local neighbourhood. It is per-
formed using linear regression on the values expressed where
a line is derived to fit the data and new values explored in
the neighbourhood.

A study in [11] used two forms of constant mutation,
creep and uniform mutation, where values are altered by
a small amount or mutated to a randomly different number.
The study found greater benefits in uniform mutation where
the ability to introduce new constants into a population as
evolution progresses and maintain a highly diverse array of
constants is generally beneficial to the fitness of individuals.

With ERC as their base each of these methods focused
on changing the original random values by small amounts
to improve fitness with the exception of [11], which also
examined wholesale transformation of constant values and
found this feature to be more beneficial than slight changes.
GE can borrow from the experience of GP by extending
the established methodology and introducing a new form of
constant creation which potentially addresses the issue of
beginning an evolutionary run with a fixed range of con-
stants and providing the feature of creating new values over
the course of a run. Digit Concatenation works by simply
forming constants through the concatenation of the digits 0
through 9, making obsolete the requirement that a large se-
lection of random numbers be generated upon initialisation.
An example of the a grammar using Digit Concatenation is
provided below.

<int> ::= <int><digit> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

3. PROBLEM DOMAIN & EXPERIMENTAL
APPROACH

In this section the Concatenation method is analysed by
examining the preferences of evolutionary search when a
number of different grammar-based constant generation meth-
ods are provided to GE. Along with Concatenation, a gram-
mar defined Ephemeral Random Constants technique is ex-
plored. Grammatical ERC places a variation on Koza’s ERC
in that the initial random constants are actually part of the
grammar and as such are available to the system through
out a run, i.e., they can be evolved out of the population and
re-introduced at a later generation. As well as grammati-
cal ERC the Traditional technique for constant generation
in GE is added. This method is a watered down version
of ERC in that initially, just a handful of basic constants
are supplied to the grammar with all other values being de-
rived through expressions. All three methods are included
in a grammar which only allows the use of one method ex-
clusively. The preference of the evolutionary search is then
examined across a range of constant generation problems.
The grammar adopted in these experiments is provided be-
low.

<exp> ::= <value>
<value> ::= <trad> | <catR> | <eph>
<op> ::= + | - | / | *
<trad> ::= <trad> <op> <trad> | <tradT>
<tradT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<catR> ::= <cat> . <cat> | <cat>
<cat> ::= <cat> <catT> | <catT>
<catT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<eph> ::= <eph> <op> <eph> | <ephT>
<ephT> ::= ‘‘150 randomly generated real constants’’

The concatenation part of the grammar (<cat>) only al-
lows the creation of constants through the concatenation of
digits. This is in contrast to the Traditional part of the
grammar (<trad>) that restricts constant creation to the
generation of values from expressions using a fixed set of
constants specified by the non-terminal <tradT>. The third
part of the grammar concerns ephemeral random constants.
In this method, a set of 150 real-valued constants are gener-
ated randomly in the range 0 to 100 inclusive at the outset of
a run and these are then directly incorporated as choices for

the nonterminal <ephT>. In a standard GP manner, these
constants can then be utilised in arithmetic expressions to
generate new constant values. The <value> production then
is essentially the rule which permits the exclusive choice of
one of these methods for each individual.

A comparison is performed on the utility of three different
constant creation methods for evolving constants by perfor-
mance analysis on two different types of constant creation
problems. The problems tackled are, finding a static integer
and finding dynamic real constants.

3.0.1 Finding a Static Constant
The aim of this problem is to evolve a single integer con-

stant. For these experiments the constant selected is a com-
plex floating point real number outside the range of the
ERC, 20021.11501. Fitness in these experiments is the ab-
solute difference between the target and evolved values, the
goal being to minimise the difference value.

3.0.2 Finding Dynamic Real Constants
This problem of finding dynamic real constants involves a

dynamic fitness function that changes its target real con-
stant values at regular intervals (every 10th generation).
This experiment sets successive target valuse to be 192.47,
71.84, 173.59 and 192.47. The aim here as in the previous
section is to analyse the different constant representations
in terms of their ability to adapt to a changing environment,
and to investigate that behaviour in the event of both small
and large changes. As in the static constant problem, fitness
in this case is the absolute difference between the target and
the evolved values.

3.1 Results
For each grammar on every problem instance 30 runs

were conducted using population sizes of 500, running for
50 generations on the static and dynamic constant prob-
lems, adopting one point crossover at a probability of 0.9
and bit mutation at 0.1, along with roulette selection and
a generational rank replacement strategy of 25% where the
weakest performers were replaced by the newly generated
offspring.

3.1.1 Finding a Static Constant
Fig. 1 presents the results for evolving 20021.11501. Here

the ERC method is seen to grow to dominate the population
with 226 members against 136 and 23 for the Concatenation
and Traditional methods. However Concatenation is the
method used for 100% of the best individuals yielding an
average best performance of 547.217.

3.1.2 Finding Dynamic Real Constants.
In Fig. 2 graphs are presented for the experiments where

the set of numbers to be evolved over the course of a run
are: 192.47, 71.84, 71.83, 173.59 and 192.47. This time the
Ephemeral constants gain a stronger foothold in the popu-
lation over the course of the run, overtaking Concatenation
before generation 20 at the same time presenting good fit-
ness. However at generation 30, where the target changes to
173.59, this fitness deteriorates significantly. This suggests
that while the target was within the range of the Ephemeral
constants it was able to quickly attain a high fitness and

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35 40 45 50

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - 20021.11501

Trad
Cat

ERC

Figure 1: The number of individuals that use each
of the three constant generation methods.

a strong position in the population but was unable to suc-
cessfully evolve from this position once the target left its
range.

4. FURTHER ANALYSIS OF DIGIT CON-
CATENATION

Section 3 demonstrated the superiority of both the Con-
catenation and Ephemeral random constant methods over
the Traditional approach. In order to gain a more accurate
understanding of the relative advantages of these two meth-
ods, and the merits of a combination of these approaches,
a further series of experiments was undertaken. This sec-
tion compares the two methods using a grammar similar to
the previous section. However the Concatenation method is
additionally provided with the ability to form expressions.
The grammar used here is provided below.

<exp> ::= <number>
<number> ::= <catE> | <ephemeral>
<op> ::= + | - | / | *
<catE> ::= <catE> <op> <catE> | <catR>
<catR> ::= <cat> . <cat> | <cat>
<cat> ::= <cat> <catT> | <catT>
<catT> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<ephemeral> ::= <ephemeral> <op> <ephemeral> | <ephemeralT>
<ephemeralT> ::= ‘‘150 randomly generated real constants’’

The experiments performed here are the same as in 3
which focus on the creation of a large complex number out-
side the range of the ERC and on the flexibility of the meth-
ods in a dynamic environment. This approach also allows a
direct comparison of results.

4.1 Results
For every problem instance the parameters used and num-

ber of runs conducted were the same as in section 3.

4.1.1 Finding a Static Constant.
In this case Concatenation and grammatical ERC occupy

similar portions of the population up until generation 13.
From this point a strong divergence occurs which continues
until the final generation. This leads to Concatenation tak-
ing the lions share of the population at 318 versus 94 for
the ERC method. Of the best performers only 1 of the 30
runs provided a solution using the ERC method with the
best Concatenation solution producing an expression which
came to within 18.3872 of the solution. By the final gen-
eration the best performer on average produced a fitness of
607.968.

4.1.2 Finding Dynamic Real Constants
Fig. 3 displays the results for the dynamic experiments.

Again the Ephemeral random constants method gains a stronger
position within the population while the target is within its
range. The difference here is that once the target leaves
this range at generation 30 the Concatenation method be-
gins to gain a bigger share of the population and ends up
with a slight majority at 218 to 203. It can also be noted
that a higher rate of evolution occurs in these experiments
when the target goes outside the ERC range. This com-
bined with the higher frequency of Concatenation individ-
uals would suggest that the ability for the Concatenation
method to create expressions is directly responsible for the
improvement in the rate of evolution across both grammars.

Comparative analysis of the grammars at generations 10,
20, 30, 40 and 50 using a t-test and bootstrap t-test reveal
a statistical significance in the difference in results at gen-
erations 10 and 40. No other transition generations showed
a statistically significant difference.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40 45 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Dynamic

Avg Mean Best

Figure 3: Mean best fitness values (lower values are
better) plotted against generations (left), the num-
ber of individuals that use each the constant gener-
ation methods (right).

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50

M
ea

n
B

es
t F

itn
es

s
(3

0
R

un
s)

Generation

Grammatical Evolution - Dynamic

Avg Mean Best

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 10 20 30 40 50

N
o.

 O
f I

nd
iv

id
ua

ls

Generation

Grammatical Evolution - Dynamic

Trad
Cat

ERC

Figure 2: Mean best fitness values (lower values are better) plotted against generations (left) for the dynamic
problem, the number of individuals that use each of the three constant generation methods (right).

5. CONCLUSION & FUTURE WORK
This study was undertaken with the aim of exploring Digit

Concatenation as a solution to the problem of creating pa-
rameters and constants for use in technical expressions for
the financial domain. In examining its performance across
a series of benchmark problems in comparison with gram-
matical ERC, it was seen that Concatenation consistently
produced more best final solutions and when combined with
the ability to form expressions displayed a strong ability to
quickly evolve towards a target in the dynamic experiments.
This evidence demonstrates a generality of the Concatena-
tion method create new numbers and quickly evolve to new
targets are utilities sought across all problems embedded in
dynamic environments and not just the financial one.

Initial work has been conducted in using Digit Concate-
nation with Grammatical Evolution by Grammatical Evolu-
tion [12]. Future work in this area will focus on the applica-
tion of Digit Concatenation in the financial domain along
with the use of Grammatical Evolution by Grammatical
Evolution.

6. REFERENCES
[1] O’Neill, M., Ryan, C. (1999). Automatic Generation of

Caching Algorithms, In K. Miettinen and M.M. Mäkelä
and J. Toivanen (Eds.) Proceedings of EUROGEN99,
Jyväskylä, Finland, pp.127-134, University of Jyväskylä.

[2] Dempsey, I., O’Neill, M., Brabazon, T. (2002).
Investigations into Market Index Trading Models Using
Evolutionary Automatic Programming, In Lecture Notes

in Artificial Intelligence, 2464,Proceedings of the 13th
Irish AICS Conference, pp.165-170,Springer-Verlag.

[3] O’Neill, M., Dempsey, I., Brabazon, A., Ryan, C.
(2003). Analysis of a Digit Concatenation Approach to
Constant Creation. In LNCS 2610 Proceedings of the
6th EuroGP 2003, pp.173-182. Springer-Verlag.

[4] Koza, J.R. (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press.

[5] Spencer, G. (1994). Automatic Generation of Programs
for Crawling and Walking. In Kenneth E. Kinnear, Jr.
(Ed), Advances in Genetic Programming, Chapter 15,
pp. 335-353, MIT Press.

[6] Angeline, Peter J. (1996). Two Self-Adaptive Crossover
Operators for Genetic Programming. Advances in
Genetic Programming 2, Chpt 5, pp.89-110, MIT Press.

[7] Evett, Matthew and Fernandez, Thomas. (1998).
Numeric Mutation Improves the Discovery of Numeric
Constants in Genetic Programming, Genetic
Programming 1998: Proceedings of 3rd Annual
Conference, U. of Wisconsin, Madison, Wisconsin, USA,
pp.66-71, Morgan Kaufmann.

[8] Iba, H and Nikolaev, N. Genetic programming

polynomial models of financial data series, Proceedings
of CEC 2000, IEEE Press, pp. 1459–1466.

[9] Nikolaev Nikoaev, N. and Iba, H. Regularization

Approach to Inductive Genetic Programming,
IEEETransactions on Evolutionary Computing 54
(2001), no. 4, pp. 359–375.

[10] Keijzer, M. Improving Symbolic Regression with

Interval Arithmetic and Linear Scaling. In LNCS 2610
Proceedings of the 6th EuroGP 2003, pp. 70–82.

[11] Ryan, C. and Keijzer, M. An Analysis of Diversity of

Constants of Genetic Programming. In LNCS 2610
Proceedings of the 6th European Conference on Genetic
Programming, EuroGP 2003, pp. 404–413.

[12] Dempsey, I., O’Neill, M., Brabazon, A.
meta-Grammar Constant Creation with Grammatical
Evolution by Grammatical Evolution. In the proceedings
of GECCO 2005.

