
 1

Genetic Evolution of Machine Language Software

Ronald L. Crepeau
NCCOSC RDTE Division

San Diego, CA 92152-5000
e-mail: crepeau@nosc.mil

July 1995

Abstract
Genetic Programming (GP) has a proven
capability to routinely evolve software that
provides a solution function for the specified
problem. Prior work in this area has been based
upon the use of relatively small sets of pre-defined
operators and terminals germane to the problem
domain. This paper reports on GP experiments
involving a large set of general purpose operators
and terminals. Specifically, a microprocessor
architecture with 660 instructions and 255 bytes of
memory provides the operators and terminals for a
GP environment. Using this environment, GP is
applied to the beginning programmer problem of
generating a desired string output, e.g., "Hello
World". Results are presented on: the feasibility of
using this large operator set and architectural
representation; and, the computations required to
breed string outputting programs vs. the size of
the string and the GP parameters employed.

1 INTRODUCTION

Traditional Genetic Programming (GP) -- as invented by
[Koza 1992a, 1992b, 1994] -- is implemented through a
process that involves the specification and use of a small
set of operators and terminals germane to the problem. The
work of [Angeline 1993], [Angeline and Pollack 1994],
[Kinnear 1991], [Rosca and Ballard 1994], [Teller 1993,
1994] and [Nordin 1994] are typical of this approach.
Except for the work of Teller, the aforementioned GP
implementations have not involved the use of memory
elements beyond those implicit in the terminals. Nordin's
implementation is somewhat similar to the work reported
herein, in that he worked with various terminals and 24
assembly language instructions.

The use of a small set of problem specific operators and
terminals, all without explicit memory elements, has a
decided advantage: It limits the search space for potential

solutions, thereby making it computationally practical to
solve even complex problems. Contrarily, the use of
problem specific operators and terminals requires their re-
definition for each new problem. Moreover, traditional GP
is not Turing complete, and is thus limited in the problems
it can solve [Teller 1994].

It is commonly assumed that the use of a large set of
generalized operators and terminals would make the GP
process less efficient and potentially impractical. But if
this assumption were erroneous it would open GP to the
following advantages:

• The same GP environment could be applied to a variety
of problems without re-programming for the
fundamental operators or terminals.

• The addition of memory would provide the potential for
Turing completeness and the solution of a large set of
problems that traditional GP precludes.

• The use of evolutionary leveraging, i.e., the incremental
evolution of new agents (programs) from the products
of prior GP evolutions.

These advantages warrant investigation of GP using a large
and generic set of operators augmented with memory. The
remainder of this paper reports on such an investigation.

2 EXPERIMENTAL ARCHITECTURE

In lieu of developing an ad hoc set of operators and a
related architecture for experimental use, the author took a
more pragmatic approach, viz., the use of an existing
microprocessor architecture with its related set of operators
(instructions). This approach has the advantage of
providing a proven, well defined and well documented
architecture with a comprehensive and general purpose set
of operators proven to be suitable for virtually any
problem.

It was further decided to work at the machine language
(ML) level. Use of this level of representation precludes
the need to compile or assemble the programs involved.
Because the selected ML is not native to the computers

 2

used in testing, an ML emulator is required. An emulator or
some other execution control mechanism would have been
required in any event, as it would be neither prudent nor
practical to run programs in their native environment
without controls on progress, addressing, jumps, register
operations, stack operations, inputs, outputs, etc.

The overall design of the experimental architecture,
hereafter referred to as the Genetic Evolution of Machine-
language Software (GEMS) system, is comprised of three
parts: the microprocessor emulator; a pool of ML
programs; and, the Genetic Process Controller. These parts
are integrated as shown in the top level architecture of
Figure 1. The next two sections detail the characteristics
and implementations of these parts. All implementation is
in the C language. The current GEMS version runs under
the Sun OS 4.1.3 and Solaris 2.4.

Figure 1. Top Level GEMS System Architecture.

2.1 MICROPROCESSOR EMULATOR AND ML
PROGRAMS

A key and central element of the GEMS architecture is the
microprocessor emulator. The emulator is a relatively static
part of the GEMS system, in that it varies little from GP
problem to GP problem.

The function of the microprocessor emulator is to execute
the program (or a designated portion thereof) assigned to it
from the pool. This execution proceeds for a specific
number of instruction cycles as dynamically defined by the
Genetic Process Controller. When, during program
execution, the emulator encounters an input instruction, it

receives the appropriate value from the Genetic Process
Controller. Likewise, when an output instruction is
encountered, its value is trapped by the Genetic Process
Controller.

The microprocessor architecture emulated by GEMS is that
of the Z80TM. (Z80 is a registered trademark of ZILOG
Inc.) The Z80TM is a circa-1980 16-bit microprocessor that
was utilized as the central processing unit (CPU) for a
variety of personal computers and controllers. Its large, low
level instruction set, 64K addressing range and input-output
features allowed this microprocessor to power a diverse set
of applications including operating systems, word
processors, spread sheets, simple graphics, etc. The Z80TM
is of sufficient size and power for use on the planned GP
problems yet was not too large for the author to program
and check out its emulator within a three month period.

Figure 2 shows a typical system architecture for employing
the Z80TM. It is composed of:

• The Z80TM microprocessor itself
• Read Only Memory (ROM) - Not specifically emulated
• Random Access Memory (RAM)
• Input and output (I-O) ports
• Three buses

The threes buses are: data, address and control. The 8 bit
wide data bus carries the byte of information being moved
to or from memory or the I-O ports. The data is transferred
based upon the 16 bit address on the address bus. The
Control Bus provides synchronization signals needed in a
hardware implementation, e.g., clock, read, write, etc. The
data and address buses were implicitly implemented in the
GEMS emulator.

Figure 2. Typical Z80TM Architecture

2.1.1 Z80TM Characteristics and Emulation

The Z80TM does not include any internal cache or similar
temporary memory. It does have seven 8-bit wide registers
called the A (or accumulator), B, C, D, E, H and L. For
some instructions, the combination of the B-C, D-E and H-

 3

L registers are treated as effectively 16 bit registers. All of
these registers are emulated.
The Z80TM incorporates four 16-bit wide registers called
the IX, IY, SP (for Stack Pointer) and PC (for Program
Counter). All of these registers are explicitly implemented
except for the PC. Its function is implemented in a manner
more germane to the GEMS needs for controlling program
execution.

An 8-bit wide Flag (F) register is a part of the Z80TM and
implemented in GEMS. The Flag register has individual
bits assigned to be set or reset based on such things as an
operation with a zero result (verses non-zero), carry,
overflow, parity, etc.

The most significant aspect of the Z80TM is the instruction
set it is capable of executing. The Z80TM has 691 unique
instructions each of length 2, 4, 6 or 8 bytes, where each
byte is 8 bits long. These instructions can be classified as:

• Arithmetic: Add, subtract, increment and decrement.
The Z80TM has no hardware based multiply or divide
instructions.

• Boolean logic: AND, OR, XOR
• Bit: Set bit, restore bit, get bit, rotate bits right/left,

shift bits right/left.
• Load: direct, indirect, block
• Jump: Conditional, un-conditional; direct, relative
• Subroutine: Jump and return
• Stack: Push and pop
• Input and output
• Interrupt
• Halt

Of the 691 total, GEMS implements 660 instructions. It
made no sense to implement the interrupt instructions at
this time. Block input-output and block move instructions
are not implemented as their effects can be achieve via the
implemented instructions. The second (mirror) set of
registers are not implemented as not currently needed.

The individual instructions of the pool members are
implemented using a structure called "insts", which is
defined as:

 struct insts
 { int opCodeSize;
 Byte instHexValues[8];
 };

The opCodeSize specifies the number of bytes in the
instruction. The array instHexValues holds the actual
instruction bytes. A GEMS pool member's set of
instructions are stored as an array of the above structures.
By using this approach the emulator stays synchronized
with instruction boundaries during execution. Moreover,
breeding and mutation can be made to take place at clean

instruction boundaries, obviating a critical problem with
using assembly language for GP.

The GEMS pool members are composed of more than just
the program instructions. Rather, they consist of pseudo-
machine images. Thus, for each pool member, GEMS
stores not only the instructions of the program, but also
other relevant execution data. Figure 3 shows the data
structure, z80, used for the pool members. As may be seen,
the data structure holds the status of the:

• Registers, including the flag and stack pointer.
• The number of the last instruction executed.
• The most recent fitness value.
• An array of instruction structures (“codeList”) with

maxProgLength being the number of instructions in the
pool members.

• An array of values (“data”) representing the memory
contents, with critterDataSize being the amount of
memory allocated to the pool members.

• Cumulative subroutine calls and pushes to the stack.

struct z80 {
 Byte A; /* Accumulator */
 Byte B; /* B register */
 Byte C; /* C register */
 Byte D; /* D register */
 Byte E; /* E register */
 Byte H; /* H register */
 Byte L; /* L register */
 int IX; /* IX register */
 int IY; /* IY register */
 Byte F; /* Flag register */
 int SP; /* Stack pointer */
 int inst; /* Instruction # */
 long strength; /* Latest fitness */
 long age; /* Age since birth */

 struct insts codeList[maxProgLength];
 /* Program instructions */

 int data[critterDataSize];
 /* Memory contents */

 int callsMade;
 /* Net subroutine calls */

 int pushesMade;
 /* Net stack pushes */
};

Figure 3. Data Structure for Pool Members.

 4

When a pool member, i.e., z80 data structure, is processed
for its fitness, the registers, memory, last instruction, and
calls/pushes are dynamically updated as the instructions are
executed. Upon completion of a run, the fitness is
calculated and written into the structure. In this way, the
pool members’ states are constantly up to date.

2.1.2 Memory Implementation

The Z80TM has a 64K addressing capability. This value is
deemed larger than needed and somewhat impractical for
emulation. As such, the emulations of this paper are limited
to 255 instructions and 255 memory locations. While these
may seem exceptionally modest numbers in today's world
of megabyte memories, it should be noted that a good
programmer can create some rather powerful capabilities
with these few instructions, e.g., early machine boot-
strapping programs consisted of one to two dozen machine
language instructions.

The GEMS design deals with the incompatibility between
the 64K of addressing potential of its randomly generated
instructions and the upper limits of memory by using
modulo arithmetic in calculating addresses accessed. In this
manner, addressing circulates backward and forward
through memory as if the end of memory were adjacent to
the beginning. No detriment has been found in operating
GP under this expediency.

The reader may have noted that the z80 data structure of
Figure 3 segregates the program memory from the data
memory. This is not typical of a microprocessor
implementation. Normally, the instructions, stack and data
reside in a contiguous memory space and grow towards
each other, hopefully avoiding a collision and resultant
system crashes. Because of the addressing limitations and
the way instructions are implemented in GEMS it is
expedient to treat the two memories separately.

2.1.3 Input - Output

An important and highly useful aspect of the Z80TM
architecture is its input and output capabilities. The Z80TM
architecture can address up to 64K of input and output
ports via one of twelve input or output instructions (Only
ten are implemented. Block input and output are not
implemented.)

Seven of the input/output instructions execute a read
from/write-to the port address given by the eight bits of the
B register (MSBs) and the eight bits of the C register
(LSBs) and exchange the eight bits of data with the A, B,
C, D, E, H or L registers. An additional instruction reads
from/writes-to the port given by the last byte of the
instruction and exchanges the data with the A register.

In a Z80TM hardware implementation, doing input or output
would require the electronics to decode the address and
place the appropriate data on the I-O bus lines. It is much
more convenient to deal with the large number of ports in
software, thus resulting in a large number of ports being
easily accessible for entering and extracting information
from the Z80TM. These ports also provide a buffer between
the emulation process and the external world or Genetic
Process Controller as defined in the next section.

2.2 GENETIC PROCESS CONTROLLER

As shown in Figure 1, the Genetic Process Controller of the
GEMS system generates new pools of microprocessors,
links the pool of microprocessors with the emulator,
controls the inputs to the fitness tests, accepts the fitness
test outputs, evaluates pool members' fitnesses and controls
the breeding, mutation and survival (or otherwise) of the
pool members. All of this is managed by the user via an
interactive user control function.

2.2.1 Breeding Overview

GEMS employs the breeding approach the author calls
"asynchronous". This approach is similar to the Steady
State GP of [Reynolds 1993] and [Kinnear 1991], except
that there is no attempt to guarantee the uniqueness of each
individual in the population -- thus the difference in
nomenclature. This approach stands in contrast to
generational GP wherein simultaneous breeding
(conceptually, as the processes are actually implemented in
serial machines) takes place such that the n pool members
are pairwise bred, yielding n/2 off-spring and a new pool of
3n/2 members. These are pared back to n by some fitness
related selection process.

In the asynchronous breeding process employed by GEMS,
two parents are selected from the pool and bred one or
more times. As each off-spring is bred, it is evaluated for
insertion in the pool using a modification of the process
which [Altenberg 1994] calls "upward mobility” selection.
Thus, if the off-spring is more fit than both of its parents it
replaces the weaker of the parents in the pool. If an off-
spring fails to perform better than both parents, it does not
survive. The selected parents breed up to k off-spring (k a
small number, e.g., less than 12) or until one of the parents
is replaced. The rational for multiple off-spring is its
analogy to nature, wherein parents of high order creatures
typically have litters of numerous off-spring.

2.2.2 Breeding Process

The breeding process within GEMS involves a variant of
double cross-over with preference given to the most fit of
the parents. Figure 4 illustrates the process. It begins by
copying all of the code, memory and registers contents
from the stronger parent into the potential off-spring. Next,

 5

a random number is selected which is greater than 0 and
less than half the total number of instructions in the pool
programs (maxProgSize). This represents the size of the
code block to be removed from the weaker parent and

inserted into the stronger code initially in the off-spring. A
second random number is generated to define where to
begin removing the block of code from the weaker parent.

Figure 4. The GEMS Breeding and Mutation Process.

This latter number is selected so as to ensure that the whole
block of code can be removed without exceeding the end of
the weaker parent's code.

All of the selected block of code from the weaker parent is
randomly inserted into the off-spring to replace that from
the stronger parent. Thus, as shown in Figure 4,
instructions 160 through 164 have been randomly selected
to replace instructions 106 through 110 of the stronger
parent’s code that was given to the offspring.

In a manner similar to the above, a segment (less than half)
of the weaker parent's memory contents replaces a
comparable amount of the stronger parent’s memory
contents in the off-spring.

2.2.3 Mutation

GEMS employs mutation of two types. In one case,
mutation is used to replace a random amount of contiguous
program and memory values in the off-spring. For example,
in Figure 4 instructions 113 and 114 of the off-spring are

replaced by totally new instructions. This is done prior to
any fitness evaluation.

A second aspect of mutation is to randomly and totally
replace a weak pool member. Each of these measures
attempts to ensure that genetic diversity is maintained in
the pool.

2.2.4 Fitness Evaluation

The fitness evaluation process in GEMS depends upon the
specific problem. The following section elaborates how
fitness was evaluated for this initial GEMS experiment.

3 THE "Hello World" PROBLEM

The initial problem used to evaluate genetic programming
with machine language and memory was that typical of a
beginning programmer, viz., output a string -- specifically,
the eleven character string "Hello World".

 6

The approach employed in generating the "Hello World"
string was used to generate all of the results presented in
this paper. The approach required three adaptations of the
basic GEMS capability involving the INPUT and
OUTPUT instruction processing and the fitness evaluation.

3.1 THE PROBLEM AND CONDITIONS

Succinctly stated the goal of the "Hello World" Problem
(HWP) is to evolve a machine language agent which after
completion of one run will have output the ASCII codes for
the characters of "Hello World" to the virtual ports 1
through 11, respectively. Additional conditions on the
problem are:

• The agent may output more than one character to a
port, but the last character output to that port is the one
upon which fitness is based. Prior outputs cause no
penalties.

• The agent can output the characters in any order.
• The agent's run is always initiated at the first instruction

and runs until a HALT instruction is encountered or
255 instruction cycles have been executed.

• An agent's run always begins with the registers and
memory set at the states they were in at the completion
of that agent’s most recent run.

3.2 TREATMENT OF INPUT INSTRUCTIONS

Normally, the use of GEMS for a GP application would
require that the input instructions be modified to
accommodate training or situational data inputs. While the
HWP does not require any inputs, it can be expected that in
the course of evaluating a pool member the situation will
occur wherein the agent looks for an input at one of the
ports. When this happens in the HWP implementation, a
random eight bit value is provided, except for port number
1. When port 1 is accessed, one of the characters of the
desired string is randomly input. No testing was performed
to determine whether or not this had any positive effect.

3.3 TREATMENT OF OUTPUT INSTRUCTIONS

Normally, the use of GEMS for a GP application would
require that the output instructions be monitored in order to
simulate interaction with the environment. Additionally, at
least some of the outputs must be monitored in order to
evaluate the fitness of the run.

For the HWP, the GEMS program code is modified to
monitor the outputs of the agent and record the latest valid
output to each of ports 1 through 11. First, the output is
checked to see if it represents a printable ASCII character.
If so, the value is recorded (replacing any prior output to
that port) for use in the run's fitness evaluation. If the
output is not a printable ASCII character, it is ignored.

3.4 FITNESS EVALUATION

Two fitness phases, with related criteria and scores, are
employed for the HWP. They are:

• Phase 1: This fitness scoring is strictly based upon the
correctness of the output string.

• Phase 2: In so long as the ML agent is outputting the
correct string, the fitness score is augmented by a value
related to the shortness of the agent.

Phase 1 Fitness Scoring: The fitness score of a given
output from a pool member was heuristically derived from
some early tests. It is calculated from two parts:

1. The Hamming distance (i.e., number of bit mis-
matches) between the binary ASCII representation of
the goal string and the output from the run. Both the
output and goal strings are treated as 88 bit vectors
formed from concatenation of the 11 8-bit binary
representations of the ASCII characters.

2. The actual number of correct characters (max. = 11).

The fitness score for this phase is calculated as:

 3 * (88- Hamming_distance) + 8 * (# of correct
 characters outputted)

The maximum score for all letters correct is 352.

Phase 2. Agent Brevity Fitness Scoring: If a pool member
outputs the correct string and in less than 255 instructions,
it's fitness score is increased by a value of: 255 minus the
length of the agent in instructions.

Thus, the maximum possible fitness for the HWP occurs
when the shortest ML agent puts out a correct string. The
minimum length agent, including the HALT instruction, is
17 instructions so the best possible HWP fitness score is
590.

3.5 SAMPLE TEST RESULTS

The GEMS process did indeed generate an agent that
output "Hello World" within a practical amount of
computing time. For purposes of orientation and
illustration, the results of one HWP run are shown in
Figures 5 and 6. This run used a pool of 1500 members, a
20% mutation rate and uniform random selection of
parents.

Figure 5 illustrates the normal progression curve for the GP
process. As with most GP progression curves, the pool
average, best in pool and best-to-date fitness values are
plotted. In this case, because GEMS uses asynchronous
breeding, the x-axis progress number is "spawns" versus
the traditional GP “generation” number. A spawn
represents the selection of one set of parents which

 7

generate off-spring until one of the parents is replaced by a
more fit off-spring or a maximum litter is spawned. The
relationship between a spawn and a traditional GP
generation is not exact, as it depends upon the average
number of off-spring generated. Assume that litters average
r off-spring, then the equivalency of generations (G) to
spawns (S) is: G = (r*S)/P, where P is the pool size. For the
HWP problem, the maximum litter size was 12, so the
number of equivalent generations per spawn is somewhere
between G=S/1500 and G=S/125.

Figure 5. Graph of Fitness vs. Spawnings.

From Figure 5 it can be seen that this run achieved a
correct output (fitness = 352) at about 150,000 spawnings
(100 to 1200 generations). By about 450,000 spawnings,
the agent was composed of less than 100 instructions.
Ultimately, the agent size reduced to 58 instructions before
the process was terminated.

Figure 6 shows the 58 instructions of the Figure 5 run in
their assembly language format. The register contents are
also shown. The far right column gives the state of the
output ports (1-11 reading left to right) when they change.

Interestingly, the agent uses only the OUT instruction that
transfers the A register’s value to the port given in the OUT
instruction’s second byte. Section 5 discusses why.

The GP solution also took advantage of the latitude for
outputting the characters in any sequence. It should be
noted that the three l's and two o's are output before any
change is made to the A register. This has been noted in
other runs of different strings.

An analysis of the program indicates that it is clearly using
memory contents to get the appropriate A register values,
albeit in a very indirect manner. Thus, instruction 1 reads
memory location 0xAA into the DE register. At instruction
6, register D is subtracted from register A and the value left
in A. At instruction 11, DE is subtracted from HL (with
carry) and subsequently the H register is OR'd with register

A leaving the ASCII value for the letter l in register A,
which is output at instructions 14, 15 and 19.

Instruction 22 is another case where memory is used. Here
the content of memory location 0x8C is accessed to get a
value to subtract from the current A register content which
yields the ASCII value for the delimiting character. (Note:
A period was used as a word delimiter versus a space for
programming expediency.)
Inst Register Contents
 # Instruction A B C D E H L Output
0 LD SP, HL 65 5D 5D FA F5 1 24 "-----------"
1 LD DE, (0xAA) 65 5D 5D F3 6F 1 24
2 LD C to H 65 5D 5D F3 6F 5D 24
3 LD H to A 5D 5D 5D F3 6F 5D 24
4 SRA H 5D 5D 5D F3 6F 2E 24
5 DEC H 5D 5D 5D F3 6F 2D 24
6 SBC A, D 6A 5D 5D F3 6F 2D 24
7 RES 1, A 68 5D 5D F3 6F 2D 24
8 LD L to E 68 5D 5D F3 24 2D 24
9 POP IY 68 5D 5D F3 24 2D 24
10 RLC D 68 5D 5D E7 24 2D 24
11 SBC HL, DE 68 5D 5D E7 24 44 FF
12 RES 0, H 68 5D 5D E7 24 44 FF
13 OR H 6C 5D 5D E7 24 44 FF
14 OUT (N=0xA), A 6C 5D 5D E7 24 44 FF "---------l-"
15 OUT (N=0x4), A 6C 5D 5D E7 24 44 FF "---l-----l-"
16 POP DE 6C 5D 5D 6F 6A 44 FF
17 ADD IY, IX 6C 5D 5D 6F 6A 44 FF
18 LD C to B 6C 5D 5D 6F 6A 44 FF
19 OUT (N=0x3), A 6C 5D 5D 6F 6A 44 FF "--ll-----l-"
20 SUB A, B F 5D 5D 6F 6A 44 FF
21 LD D to C F 5D 6F 6F 6A 44 FF
22 SBC A, (IY+0x3E) 2E 5D 6F 6F 6A 44 FF
23 LD (HL=0x43) to D 2E 5D 6F F7 6A 44 FF
24 OUT (N=0x6), A 2E 5D 6F F7 6A 44 FF "--ll-.---l-"
25 SRA D 2E 5D 6F FB 6A 44 FF
26 AND B C 5D 6F FB 6A 44 FF
27 RES 0, D C 5D 6F FA 6A 44 FF
28 OR B 5D 5D 6F FA 6A 44 FF
29 ADD A,D 5D 5D 6F FA 6A 44 FF
30 OUT (N=0x7), A 57 5D 6F FA 6A 44 FF "--ll-.W--l-"
31 BIT 3,D 57 5D 6F FA 6A 44 FF
32 LD C to A 6F 5D 6F FA 6A 44 FF
33 OR B 7F 5D 6F FA 6A 44 FF
34 ADD A, n=0xE5 64 5D 6F FA 6A 44 FF
35 OUT (N=0xB), A 64 5D 6F FA 6A 44 FF "--ll-.W--ld"
36 SRL A 32 5D 6F FA 6A 44 FF
37 OR B 7F 5D 6F FA 6A 44 FF
38 SRA E 7F 5D 6F FA 35 44 FF
39 RES 4, A 6F 5D 6F FA 35 44 FF
40 OUT (N=0x8), A 6F 5D 6F FA 35 44 FF "--ll-.Wo-ld"
41 OUT (N=0x5), A 6F 5D 6F FA 35 44 FF "--llo.Wo-ld"
42 SBC A, A 0 5D 6F FA 35 44 FF
43 ADD A, n=0x48 48 5D 6F FA 35 44 FF
44 SET 6, E 48 5D 6F FA 75 44 FF
45 SLA E 48 5D 6F FA EA 44 FF
46 OUT (N=0x1), A 48 5D 6F FA EA 44 FF "H-llo.Wo-ld"
47 LD A, 0x39 39 5D 6F FA EA 44 FF
48 LD HL, nn=0x124 39 5D 6F FA EA 1 24
49 SLA A 72 5D 6F FA EA 1 24
50 OUT (N=0x9), A 72 5D 6F FA EA 1 24 "H-llo.World"
51 IN C, (C=Ox5D6F) 72 5D 3A FA EA 1 24
52 SRA E 72 5D 3A FA F5 1 24
53 LD B to C 72 5D 5D FA F5 1 24
54 ADD A,E 72 5D 5D FA F5 1 24
55 RES 1, A 65 5D 5D FA F5 1 24
56 RES 4, A 65 5D 5D FA F5 1 24

 8

57 OUT (N=0x2), A 65 5D 5D FA F5 1 24 "Hello.World"
58 HALT@ Inst 58 65 5D 5D FA F5 1 24
(Note: IX register was 0x14D for all 58 instructions.)

Figure 6. Code from Hello World Run.

Clearly, there is little that is elegant about the code that
evolved in this run. None the less, the agent is functional
and robust.
4 EXPERIMENTAL RESULTS

Performing GP with a large number of machine language
operators and memory, as reported herein, calls into
question the applicability of prior traditional GP results.
For this reason, experiments were performed in order to
determine how the GEMS GP computational requirements
are effected by the:

• Pool size.
• Length of the target string.
• Mutation rate
• Parent selection process.

The remainder of this section discusses the experiments
and their results.

4.1 PROTOCOL

A standard protocol was used in testing the effects of
various parameters. Firstly, the same GEMS version of
software was used for each GP run. Next, in order to get
statistically meaningful data for each set of parameters,
multiple runs -- called GPSets -- were made using those
parameters. Some of the GEMS GP runs required an
extensive amount of time, e.g., several days on a Sun
SPARC 20 for a single run of the HWP. [Kinnear 1994]
recommends twenty runs for meaningful statistical results -
more if the GPSets results aren't substantially different. As
a necessary comprise, the author elected to use GPSets
comprised of sixteen runs. Where more or less than 16
runs formed a GPSet, it is noted in the data below.

Each run of a GPSet began with the generation of a new
random pool. Additionally, a new and different random
number generator seed was used for each run.

GPSets were normally started as background processes on
a single machine. As the GP runs progressed, they
periodically recorded pool statistics to a disk file. When
each GP run reached its goal, it would spawn the next
process. For completed GP runs, the pool statistics files
were examined to obtain the desired figures concerning the
run. In this way, a GPSet could be processed with a
minimum of external control.

Not all GPSets (or even GP runs within a GPSet) were
necessarily run on the same machine or machine type.

Various Sun SPARC machines, from SPARC 1's to
SPARC 20's were used.

Three benchmark points were used for each GP run. These
are the number of spawnings at which:

1. A pool member first put out the correct string,
hereafter called “first seen”.

2. Correctly performing agents were considered stable in
the pool, hereafter called “stable-in-pool”.

3. The shortest agent in the pool was of less than 100
instructions, referred to herein as “<100 Insts”.

The resolution of the results was always the rate at which
the pool statistics were sampled and written to the disk.
This value varied from 100 spawnings (for short strings) to
1000 spawnings for long strings.

It is important to note that the appearance of a properly
functioning agent in the pool can occur as a spurious event.
In fact, pool members can produce the correct output string
numerous times and then fail to be able to do it again
correctly. For example, consider the following possible
code segment:

 DEC (IX+11) /* Decrement content of memory
 location with address = Contents
 of IX register+11. If result is
 zero, set Zero Flag */
 LD A, 6B /* Load A register with ASCII for
 'k' */
 JP NZ, nn /* Jump to instruction nn if Zero
 Flag not set */
 HALT /* End program execution */
 • • • /* Other miscellaneous code */
nn OUT 1, A /* Output A register to port 1 */
 • • • /* Code to print the remainder
 of the string */

The DEC instruction may be a code remnant from the
original randomly generated program and totally unrelated
to the current performance of the program. None the less, if
this agent is run enough times the DEC instruction will, at
some time, result in a zero in the memory location, the Zero
Flag will be set, the jump instruction (JP NZ, nn) will not
execute and the agent will halt pre-maturely.

While the above is a trivial example, examination of the
convoluted code of Figure 6 should convince the reader of
the potential for latent disasters.

It is for this reason, as much as esthetics, that code should
be evolved to the minimum size practical. While this won't
necessarily guarantee unerring performance, it will raise
confidence in the product.

GP runs were normally not terminated until they had
concluded all three benchmarks. On rare occasions, a run

 9

would pass benchmarks 1 and 2, but not reach 3.
Sometimes, GP runs were manually terminated if they got
to 2-3 million spawnings without any sign of shortening. In
other cases, the computer would (for a variety of reasons)
shut down or be re-booted. Whenever this happened, it is
noted below, but never effected more than one run of a
GPSet and only the benchmark 3 result.

4.2 POOL SIZE TEST AND RESULTS

In traditional GP processing, pool size represents a
compromise between computational requirements and
sufficient genetic diversity for having a good chance at
reaching the problem solution. [Kinnear 1994] states that
the population size must be larger than a critical minimum
size in order to generate a solution reliably and that this
size is different for each problem. Similar conditions
should apply to the GEMS process.

GEMS tests were conducted with pool sizes of 150, 250,
500, 1000, 1500 and 2000 members and using "Hello" as
the target string. All the tests involved GPSets of sixteen
runs, except for the 150 member pool which had 31 runs
and the 500 member pool which had 15 runs.

Figure 7 shows the results for the number of spawnings
required to get programs of less than 100 instructions. The
curves for the “first seen” and “stable-in-pool” benchmarks
are similarly shaped.

Figure 7. Spawnings to Generate “Hello” vs. Pool Size

The salient result shown in Figure 7 is that for pools of less
than 500, the standard deviation increases significantly.
This reflects the frequency and sizes of the outliers. For
pools over 500, the standard deviation levels out and the
median closely approaches the average, i.e., the GP process
is more well-behaved. These results confirm that GEMS
follows Kinnear's statement on pool size effects as given
above.

Figure 8 illustrates the median values for the three
benchmarks. The number of spawnings needed to get a
solution stable in the pool appears to be rising at a linear
rate or slightly faster. The cause of this rise is discussed in
Section 5.

4.3 COMPUTATIONS VS. STRING LENGTH
TESTS AND RESULTS

It should not be unexpected that as a GP problem becomes
more difficult, the computations to obtain its solution
increases. The rate of increase is an important issue. If the
GEMS computations rise too rapidly with problem
difficulty, e.g., exponentially or combinatorially, the
prospect for GEMS will be poor or -- at the least -- more
restricted or difficult to advance.

Figure 8. Median “First seen”, “Stable-in-Pool” and “<100
Insts” Values vs. Pool Size for “Hello” String.

The length of the string to be generated by the GEMS
process undoubtedly affects problem difficulty. An
indication of the growth in problem difficulty with string
length can be gained by examining what would be required
to solve this problem via a random process. Specifically,
how does the probability of obtaining the desired string via
random value selection vary with string length. To examine
this, let n be the number of characters in the string to be
generated. Assume that the string is to be produced by
randomly drawing (with replacement) from a uniformly
distributed pool of valid alpha-numeric characters. Assume
this pool is composed of the fifty-two upper and lower case
English characters, the ten digits and the space character
for a total of sixty-three characters. The probability of
drawing the correct characters in one set of n draws is 1 in
63n. If the string length is increased to m=(n+k), the
probability becomes 1 in 63(n+k). Thus, the problem
increases in difficulty by a factor of 63k, i.e., exponentially
with string length. Moreover, if all printable ASCII

 10

characters are included, the problem becomes about 2k
times harder yet. Clearly, the GEMS process must be much
better behaved than this to be viable.

The tests conducted involved the generation of strings of
various lengths from 2 through 11 characters. The specific
strings (including case) are: to, Ron, Marc, Hello, stored,
uniform, San Diego and Hello World.

In each case, a GPSet of sixteen GP runs was performed
and the three benchmark points previously defined were
measured. These runs all used the following conditions:

• Pool size of 1500 members
• Uniform parent selection
• 20% mutation rate.

Figure 9 shows a semi-logarithmic plot of the spawn count
median values for "first seen", "stable in pool" and "< 100
insts" bench marks for each string length. The dashed line
in this figure shows a plot of the equation 400c3+10000,
where c is the string length in characters. This latter curve
is presented in order to give some indication of the growth
rate over the range of the string lengths. It indicates that the
problem difficulty, over the range of the test and in terms
of required spawns, while increasing rapidly, does not
appear to be combinatorial or exponential.

Figure 9. Computational Requirements for Various String
Lengths (Pool Size = 1500, uniform parent selection and
20% mutation rate.)

4.5 PARENT SELECTION AND MUTATION
TESTS AND RESULTS

A limited amount of testing was performed to determine if
the parent selection criteria and mutation rate had any
significant influence on the computations required for
string generation. Due to the potential for interaction
between these factors, they are considered together.

The GEMS process allows the user to control how parents
are selected for breeding from the pool. Three selection
processes are available:

• Uniform selection where each pool member has an
equal probability for selection irrespective of its fitness
ranking.

• Selection probability based upon the member's fitness
rank to the 1.5 power.

• Selection probability based upon the square of the
member's fitness rank.

Early GEMS experiments involved a set of runs to examine
the effects of parent selection and mutation. The tests had a
target string of “Hello”, employed GPSets of sixteen runs,
measured the standard benchmarks and used a pool size of
150. The results are shown in Figure 10 as the median
values for each of the benchmarks vs. the test parameters.
In this case, a uniform selection and 20% mutation rate
(labeled “U-20%”) appears to be substantially better than
the other two parameter choices of: parent selection based
on rank to the 1.5 power and 20% mutation (1.5P-20%); or,
uniform parent selection and 2.5% mutation (U-2.5%). It
was noted that the high variance associated with this set of
runs made it unwise to dogmatically state a conclusion
based upon these results. None the less, because it could
not be demonstrated that uniform parent selection and a
20% mutation rate was any worse than the other options,
and might well be better, these factors were used in most of
the testing discussed on the foregoing sections.

Figure 10. Benchmarks Compared for Mutation Rates
(20% vs. 2.5%) and Parent Selection Criteria (uniform vs.
1.5 Power of rank) for “Hello” and pool size of 150.

It should be noted that the 20% mutation rate may not be as
large as it sounds considering the way in which GEMS
performs mutations. To wit, 20% of the time an off-spring
is selected for mutation. During mutation, a random amount
(up to 20%) of the off-spring’s instructions are randomly
regenerated. In that the latter 20% is uniformly distributed,
on the average only 10% of an off-spring’s code is

 11

changed. In the net, then, the mutation amounts to an
average of 2% of the population contents. An exact
comparison of GEMS mutation to traditional GP mutation
is made difficult by the differences in sizes of the
instruction/operation sets.

Further experiments were conducted on mutation and
parent selection factors using the string "Marc" and a pool
of 1500 members. Again GPSets of sixteen runs were used.
The results are summarized in Figure 11 which shows the
median benchmark values for each of the parameter sets.
These results appear to indicate that, for the values chosen,
neither the mutation rate nor the parent selection criteria
produce any significant computational advantages in
obtaining stable solutions in the pool. If anything, use of
parent selection based upon rank to the 1.5 power and 20%
mutation appears slightly better.

Figure 11. Benchmarks Comparison for Mutation Rates
(20% vs. 4%) and Parent Selection Criteria (uniform vs.
1.5 Power of ranking) for “Marc” and pool size of 1500.

5 DISCUSSION

5.1 BASIC CONSIDERATIONS

The experimental results given in Section 4 demonstrate
that a GP process employing a large set of general purpose
operators along with a relatively large memory can be used
to generate modest programs. While this contradicts
conventional views held on the matter, the author has a
potential explanation that involves the problem chosen, the
way GEMS is implemented and the flexibility of the GEMS
operator set.

The explanation for why GEMS produces results is in part
due to the fact that OUT instructions of the type needed to
get some fitness score, albeit small, are not extraordinarily
uncommon. To understand this, consider the fact that the
GEMS implementation has ten output instructions. Given
this number, if the instructions of the new pools and

mutations were all equally probable, then 1.5% of the
instructions (10 of the 660 implemented) will send some
output to some port.

The author recognized early on that the input and output
instructions were critical to the viability of any software
generated by GEMS. This stems from the fact that the only
way of interacting with the GEMS agents is via input and
output instructions. There is no other visibility into the
GEMS pool members’ behavior. As such, it was decided
that in new random pool generation 5% of the instructions
would be specifically and equiprobably generated as input
or output instructions. The remaining 95% contain the
normal 1.5% output instructions. Thus, output instructions
represent about 3.9% of all randomly generated instructions
in the new pools.

For nine of the ten output instruction types, the port
addresses for an 11 character string represent 11 of the 216
possible port values (or about 0.02%). The remaining
instruction is "OUT (n), A", where n is in the range of 0 to
255. For this instruction the 11 ports represent 11 of the
256 possible values or about 4.3%. (This high value
probably accounts for this instruction being the only OUT
instruction in the code of Figure 6. Other OUT instructions
have been observed in other GEMS generated programs, so
they do occur). In the net, the probability of a randomly
selected "OUT" instruction writing to ports 1 through 11 is
about 0.0045.

A pool of 1500 members, each having 255 instructions, has
a total of 382,500 instructions. On average 14,917 of these
are output instructions of which, on average, 67 write to a
desired output port.

Writes to the ports are always 8 bit values. Nearly half of
the 256 possible outputs are printable ASCII characters.
Thus, at initiation of the GP process, an average of 30
output instructions are available in the pool that can
generate a non-zero fitness value. These then become the
seeds for the evolution of the successful pool members.

The second element that may account for the GEMS
process' evolutionary successes is the low level, flexibility
and redundancy of the GEMS operators. Figure 6 shows
the code that evolved to generate "Hello World". It
illustrates some very convoluted ways of getting the A-
register loaded with the required values to be outputted.
This is possible because the GEMS operators are
numerous, diverse and low level in operation. Thus,
achieving a desired register value can derive from the
process of: accessing register or memory contents, adding,
subtracting, bit shifting, bit setting or re-setting, logical
ANDing or ORing, incrementing or decrementing or any
suitable combination of the above.

 12

The implication of the previous paragraph is that in lieu of
a single instruction or set of instructions, there exists many
functionally equivalent code blocks that can achieve the
requisite goal of getting a needed value in the A (or other
output) register. Moreover, these code blocks can be inter-
related in what they do in a manner no human programmer
would dream of doing (even if that person could conceive
of and implement such an approach).

It is impractical to enumerate the ways that the GEMS
operators can achieve any particular complex function. So
it is open to speculation as to the probability of achieving
that function. Yet, the results of this paper imply that, for
the string generation problem, there is a sufficiently large
number of ways of achieving the desired register contents
to make the problem tractable for GP.

5.2 MEMORY USAGE

It is clear from the code of Figure 6 that in solving the
string generation problem GEMS employed the available
memory, albeit awkwardly by human programming
standards. The relatively large amount of memory, vis-à-vis
the needs of this problem, did not preclude obtaining a
solution program. In fact, it may have enhanced the
process.

The string generation process requires the binary ASCII
values for each character to be outputted. With 255
memory locations initially filled with random 8 bit values,
it is highly probable that the needed values are somewhere
in memory. It is nearly certain that the values can be
obtained by some manipulation of one or more of the
values in memory.

5.3 PROGRAM LENGTH OPTIMIZATION

Section 4.1 discussed the importance of reducing the length
of a GEMS agent product for purposes of ensuring
enduring proper behavior. Figures 8 and 9 show that as
much computational power was required to get a 100
instruction agent as was required to obtain a stable agent in
the pool. Sometimes 2-3 times as much computational
power was required. Not infrequently, a GEMS run did not
reach this benchmark in 2-3 million spawnings and was
thus terminated.

The author conjectures that the problem with breeding for
shorter agents resulted from the use of sequential
evolutions, i.e., first breed for the correct output, then breed
for shorter programs. This conjecture is based upon the
following considerations. First, GEMS has only one
instruction that can be used to shorten an agent -- the
HALT instruction. The HALT instruction is one of 660.
Thus, the initial randomly generated pool members of 255
instructions each contain, on the average, approximately
0.4 HALT instructions. During the process of breeding the

correct output, it is conceivable that most of the HALT
instructions in the pool could, due to their lack of utility
and even potential detriment, be bred out or at the least
relegated to code locations that are not reached. This would
account for the difficulties with breeding short agents.

The author plans to investigate this matter further. One
solution is to increase the frequency of the mutational
generation of HALT instructions once agents generating
the proper output appear in the pool. Another solution is to
attempt to breed shorter agents at the same time as the
correct output is being bred. [Kinnear 1993] reports that
this approach may even result in more efficient agent
implementations. The author has encountered difficulties
with this dual fitness approach. Specifically, the process
tends to evolve short and poorly performing agents. Further
work is needed in this area.

5.4 POOL SIZE EFFECTS

The size of the pool is an important determining factor in
the computational requirements for achieving the breeding
goal. On one hand, small pool sizes have a low mean
computational requirement, i.e., spawnings, but a larger
variance. This implies that the process can sometimes
converge rapidly to the target agent, but at a significant risk
that periodically it won't converge for a large number of
spawnings.

With a large pool, there appears to be a smaller variance of
the computational requirements to achieve a target agent,
but with a higher mean as illustrated by Figure 8.

In order to explain the growth in mean computations
required for a larger pool size, especially with the GEMS
asynchronous breeding process, the author proposes the
following hypothesis: The probability that an off-spring
will have a fitness improvement of � over its best parent’s
fitness decreases as � increases. This hypothesis is not
unreasonable if one accepts the concept -- discussed in the
next paragraph -- of agents being composed, to some
extent, of functionality elements and related fitness.

The breeding of GEMS, as shown in Figure 4, takes code
blocks from two parents. Each code block represents some
amount of functionality which reflects its contribution to
the fitness of the parent from which the code block
originated. When the two code blocks are combined, their
respective functionality’s can complement, overlap or undo
each other. If they complement each other more than they
undo, the resultant functionality, and thus fitness, of the
off-spring is greater than either parent. The amount of new
functionality, or added fitness, of the off-spring over its
best parent would normally be small. Large jumps in fitness
improvement are unlikely. The reasons for this are that, on
the average:

 13

• Some percentage of the stronger parent’s functionality
(given to the off-spring) is being deleted to make room
for functionality from the weaker parent.

• Up to 50% of the weaker parent’s functionality is being
given to the off-spring.

• The incestuous nature of the cross breeding within the
pool mitigates against any radically different (or
better) members, so the spectrum of functionality of
the pool members is somewhat homogeneous.

• The probability of multiple “micro-functions” com-
plementing each other decreases as the number of
“micro-functions” increases. (Here “micro-functions”
are the pieces of code that form functions and are such
small program elements as register values, bit shifts,
useful jumps, etc.)

Clearly, there will be those serendipitous occasions when
the parents’ code blocks complement each other quite well
and generate a relatively large improvement in the off-
spring’s fitness. This though should be expected to be the
rare exception.

Assuming that the above hypothesis is true, then the rate of
improvement of the pool members is controlled by the
density of the most fit members and thus, indirectly, the
average of the pool members’ fitnesses.

Consider the initial pool. It contains only poorly fit
members. The selection of these early pool members for
breeding will occasionally produce an off-spring of slightly
improved fitness vis-à-vis the parents and per the above
hypothesis. At first, the pool will contain very few
improved members. The odds of two of these improved
members being selected to breed, and thereby potentially
generate an even more fit off-spring, is inversely
proportional to the pool size. As such, and most important,
breedings in number proportional to the pool size must
occur to raise the density of more fit pool members so that
these can breed to generate yet more fit off-spring. The net
result is that the number of spawnings to reach the target
agents increases with pool size irrespective of any other
factor.

Another way to view this is that in the aggregate the pool
members’ individual fitnesses ride on a tide of the average
fitness of all of the pool members with few being very far
above that average.

6 CONCLUSIONS

Agents of simple functionality can be generated with a GP
process that involves a large number of ML operators and
memory as implemented in GEMS. The growth in
computational requirements with problem complexity is
high, but not formidably so.

Further investigations into ML agent generation are
warranted. Specifically, GEMS should be applied to more
difficult problems, e.g., sorting numbers. Additional
research should be conducted to identify methods for
improving the computational efficiency of ML agent
generation. These improvements could come from changes
to the internal breeding process implemented within GEMS
and procedural approaches to the GP process.

GP processes are not smarter than humans. They are simply
more patient and tenacious in exploiting the opportunities
made available to them. They exhibit these characteristics
while churning away 24 hours a day at megaflop rates.
Therein lies their power to solve problems.

Bibliography

Altenberg, Lee (1994) "The Evolution of Evolvability in
Genetic Programming." In Advances in Genetic
Programming, K. Kinnear, Ed., Cambridge, MA: MIT
Press.

Angeline, Peter (1993) “Evolutionary Algorithms and
Emergent Intelligence.” PhD Thesis, Computer Sciences
Department, Ohio State University.

Angeline, Peter and Pollack, Jordan B. (1994) “Coevolving
High-Level Representations.” In Artificial Life III.
Proceedings of the Workshop in Artificial Life Held June
1993 in Sante Fe, New Mexico, Christopher G. Langton,
Ed., Reading, MA: Addison-Wesley.

Kinnear Jr., Kenneth E. (1991) "Generality and Difficulty
in Genetic Programming: Evolving a Sort." in Proceedings
of the Fifth International Conference on Genetic
Algorithms, S. Forrest, Ed., San Mateo, CA; Morgan
Kaufmann.

Kinnear Jr., Kenneth E. (1993) “Generality and Difficulty
in Genetic Programming: Evolving a Sort.” In Proceedings
of the Fifth International Conference on Genetic
Algorithms, S. Forrest, Ed., San Mateo, CA: Morgan
Kaufmann.

Kinnear Jr., Kenneth E. (1994) "A Perspective on the Work
in this Book." In Advances in Genetic Programming, K.
Kinnear, Ed., Cambridge, MA: MIT Press.

Koza, John R. (1992a) “Genetic Programming: On the
Programming of Computers by means of Natural
Selection.”, Cambridge, MA, MIT Press.

Koza, John R. (1992b) “The Genetic Programming
Paradigm: Genetically Breeding Populations of Computer
Programs to Solve Problems.” In Dynamic, Genetic and

 14

Chaotic Programming: the Sixth-Generation, Branko
Soucek, Ed. New York, NY, John Wiley & Sons.

Koza, John R. (1994) “Introduction to Genetic
Programming”, In Advances in Genetic Programming, K.
Kinnear, Ed., Cambridge, MA: MIT Press.

Nordin, Peter. (1994) “A Compiling Genetic Programming
System that Directly Manipulates the Machine Code.” In
Advances in Genetic Programming, K. Kinnear, Ed.,
Cambridge, MA: MIT Press.

Reynolds, C. W. (1993) "An Evolved, Vision-Based
Behavioral Model of Coordinated Group Motion," in From
Animals to Animats 2: Proceedings of the Second
International Conference on Simulation of Adaptive
Behavior, J. A. Meyer, H. L. Roitblat and S. W. Wilson,
Eds. Cambridge, MA: MIT Press.

Rosca, J. P. and Ballard, D. H. (1994) “Learning by
Adapting Representations in Genetic Programming.” In
Proceedings of the 1994 IEEE World Congress on
Computational Intelligence, IEEE Press.

Teller, Astro (1993) “Learning Mental Models”, in
Proceedings of the Fifth Workshop on Neural Networks:
An International Conference on Computational
Intelligence: Neural Networks, Fuzzy Systems,
Evolutionary Programming and Virtual Reality.

Teller, Astro (1994) "Turing Completeness in the
Language of Genetic Programming with Indexed Memory."
in Proceedings of the 1994 IEEE World Congress on
Computational Intelligence, IEEE Press.

Zaks, Rodnay [1980] “How To Program The Z80.”
Berkeley, CA: SYBEX Inc.

