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Abstract 
Genetic Programming (GP) has a proven 
capability to routinely evolve software that 
provides a solution function for the specified 
problem. Prior work in this area has been based 
upon the use of relatively small sets of pre-defined 
operators and terminals germane to the problem 
domain. This paper reports on GP experiments 
involving a large set of general purpose operators 
and terminals. Specifically, a microprocessor 
architecture with 660 instructions and 255 bytes of 
memory provides the operators and terminals for a 
GP environment. Using this environment, GP is 
applied to the beginning programmer problem of 
generating a desired string output, e.g., "Hello 
World". Results are presented on: the feasibility of 
using this large operator set and architectural 
representation; and, the computations required to 
breed string outputting programs vs. the size of 
the string and the GP parameters employed. 

 
 
1 INTRODUCTION 
 
Traditional Genetic Programming (GP) -- as invented  by 
[Koza 1992a, 1992b, 1994] --  is implemented through a 
process that involves the specification and use of a small 
set of operators and terminals germane to the problem. The 
work of [Angeline 1993], [Angeline and Pollack 1994], 
[Kinnear 1991], [Rosca and Ballard 1994], [Teller 1993, 
1994] and [Nordin 1994] are typical of this approach. 
Except for the work of Teller, the aforementioned GP 
implementations have not involved the use of memory 
elements beyond those implicit in the terminals. Nordin's 
implementation is somewhat similar to the work reported 
herein, in that he worked with various terminals and 24 
assembly language instructions. 
 
The use of a small set of problem specific operators and 
terminals, all without explicit memory elements, has a 
decided advantage: It limits the search space for potential 

solutions, thereby making it computationally practical to 
solve even complex problems. Contrarily, the use of 
problem specific operators and terminals requires their re-
definition for each new problem. Moreover, traditional GP 
is not Turing complete, and is thus limited in the problems 
it can solve [Teller 1994].  
 
It is commonly assumed that the use of a large set of 
generalized operators and terminals would make the GP 
process less efficient and potentially impractical. But if 
this assumption were erroneous it would open GP to the 
following advantages: 

• The same GP environment could be applied to a variety 
of problems without re-programming for the 
fundamental operators or terminals. 

• The addition of memory would provide the potential for 
Turing completeness and the solution of a large set of 
problems that traditional GP precludes. 

• The use of evolutionary leveraging, i.e., the incremental 
evolution of new agents (programs) from the products 
of prior GP evolutions.  

 
These advantages warrant investigation of GP using a large 
and generic set of operators augmented with memory. The 
remainder of this paper reports on such an investigation. 
 
2 EXPERIMENTAL ARCHITECTURE
  
In lieu of developing an ad hoc  set of operators and a 
related architecture for experimental use, the author took a 
more pragmatic approach, viz., the use of an existing 
microprocessor architecture with its related set of operators 
(instructions). This approach has the advantage of 
providing a proven, well defined and well documented 
architecture with a comprehensive and general purpose set 
of operators proven to be suitable for virtually any 
problem.  
 
It was further decided to work at the machine language 
(ML) level. Use of this level of representation precludes 
the need to compile or assemble the programs involved. 
Because the selected ML is not native to the computers 
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used in testing, an ML emulator is required. An emulator or 
some other execution control mechanism would have been 
required in any event, as it would be neither prudent nor 
practical to run programs in their native environment 
without controls on progress, addressing, jumps, register 
operations, stack operations, inputs, outputs, etc. 
 
The overall design of the experimental architecture, 
hereafter referred to as the Genetic Evolution of Machine-
language Software (GEMS) system, is comprised of three 
parts: the microprocessor emulator; a pool of ML 
programs; and, the Genetic Process Controller. These parts 
are integrated as shown in the top level architecture of 
Figure 1. The next two sections detail the characteristics 
and implementations of these parts. All implementation is 
in the C language. The current GEMS version runs under 
the Sun OS 4.1.3 and Solaris 2.4.  
 
 
 

 
 

Figure 1. Top Level GEMS System Architecture. 
 
 
2.1 MICROPROCESSOR EMULATOR AND ML 
PROGRAMS 
 
A key and central  element of the GEMS architecture is the 
microprocessor emulator. The emulator is a relatively static 
part of the GEMS system, in that it varies little from GP 
problem to GP problem.  
 
The function of the microprocessor emulator is to execute 
the  program (or a designated portion thereof) assigned to it 
from the pool. This execution proceeds for a specific 
number of instruction cycles as dynamically defined by the 
Genetic Process Controller. When, during program 
execution, the emulator encounters an input instruction, it 

receives the appropriate value from the Genetic Process 
Controller. Likewise, when an output instruction is 
encountered, its value is trapped by the Genetic Process 
Controller.  
 
The microprocessor architecture emulated by GEMS is that 
of the Z80TM. (Z80 is a registered trademark of ZILOG 
Inc.) The Z80TM is a circa-1980 16-bit microprocessor that 
was utilized as the central processing unit (CPU) for a 
variety of personal computers and controllers. Its large, low 
level instruction set, 64K addressing range and input-output 
features allowed this microprocessor to power a diverse set 
of applications including operating systems, word 
processors, spread sheets, simple graphics, etc. The Z80TM 
is of sufficient size and power for use on the planned GP 
problems yet was not too large for the author to program 
and check out its emulator within a three month period.  
 
Figure 2 shows a typical system architecture for employing 
the Z80TM. It is composed of: 

• The Z80TM microprocessor itself 
• Read Only Memory (ROM) - Not specifically emulated 
• Random Access Memory (RAM) 
• Input and output (I-O) ports 
• Three buses 

 
The threes buses are: data, address and control. The 8 bit 
wide data bus carries the byte of information being moved 
to or from memory or the I-O ports. The data is transferred 
based upon the 16 bit address on the address bus. The 
Control Bus provides synchronization signals needed in a 
hardware implementation, e.g., clock, read, write, etc. The 
data and address buses were implicitly implemented in the 
GEMS emulator. 
 
 

 
 

Figure 2. Typical Z80TM Architecture 
 
 
2.1.1 Z80TM Characteristics and Emulation  
 
The Z80TM does not include any internal cache or similar 
temporary memory. It does have seven 8-bit wide registers 
called the A (or accumulator), B, C, D, E, H and L. For 
some instructions, the combination of the B-C, D-E and H-
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L registers are treated as effectively 16 bit registers. All of 
these registers are emulated. 
The Z80TM incorporates four 16-bit wide registers called 
the IX, IY, SP (for Stack Pointer) and PC (for Program 
Counter). All of these registers are explicitly implemented 
except for the PC. Its function is implemented in a manner 
more germane to the GEMS needs for controlling program 
execution.  
 
An 8-bit wide Flag (F) register is a part of the Z80TM and 
implemented in GEMS. The Flag register has individual 
bits assigned to be set or reset based on such things as an 
operation with a zero result (verses non-zero), carry, 
overflow, parity, etc. 
 
The most significant aspect of the Z80TM is the instruction 
set it is capable of executing. The Z80TM has 691 unique 
instructions each of length 2, 4, 6 or 8 bytes, where each 
byte is 8 bits long. These instructions can be classified as: 

• Arithmetic: Add, subtract, increment and decrement. 
The Z80TM has no hardware based multiply or divide 
instructions.  

• Boolean logic: AND, OR, XOR 
• Bit: Set bit, restore bit, get bit, rotate bits right/left, 

shift bits right/left. 
• Load: direct, indirect, block 
• Jump: Conditional, un-conditional; direct, relative 
• Subroutine: Jump and return 
• Stack:  Push and pop 
• Input and output 
• Interrupt 
• Halt 

 
Of the 691 total, GEMS implements 660 instructions. It 
made no sense to implement the interrupt instructions at 
this time. Block input-output and block move instructions 
are not implemented as their effects can be achieve via the 
implemented instructions. The second (mirror) set of 
registers are not implemented as not currently needed. 
 
The individual instructions of the pool members are 
implemented using a structure called "insts", which is 
defined as: 
        
 struct insts 
            { int  opCodeSize; 
               Byte  instHexValues[8]; 
            }; 
 
The opCodeSize specifies the number of bytes in the 
instruction. The array instHexValues holds the actual 
instruction bytes. A GEMS pool member's set of 
instructions are stored as an array of the above structures. 
By using this approach the emulator stays synchronized 
with instruction boundaries during execution. Moreover, 
breeding and mutation can be made to take place at clean 

instruction boundaries, obviating a critical problem with 
using assembly language for GP. 
 
The GEMS pool members are composed of more than just 
the program instructions. Rather, they consist of pseudo-
machine images. Thus, for each pool member, GEMS 
stores not only the instructions of the program, but also 
other relevant execution data. Figure 3 shows the data 
structure, z80, used for the pool members. As may be seen, 
the data structure holds the status of the: 

• Registers, including the flag and stack pointer. 
• The number of the last instruction executed. 
• The most recent fitness value. 
• An array of instruction structures (“codeList”) with 

maxProgLength being the number of instructions in the 
pool members. 

• An array of values (“data”) representing the memory 
contents, with critterDataSize being the amount of 
memory allocated to the pool members. 

• Cumulative subroutine calls and pushes to the stack.   
 
 

   
struct z80  { 
 Byte      A; /* Accumulator */ 
 Byte      B; /* B register */ 
 Byte      C; /* C register */ 
 Byte      D; /* D register */ 
 Byte      E; /* E register */ 
 Byte      H; /* H register */ 
 Byte      L; /* L register */ 
 int       IX; /* IX register */ 
 int       IY; /* IY register */ 
 Byte      F;         /* Flag  register */ 
 int       SP; /* Stack pointer */ 
 int       inst;  /* Instruction # */ 
 long        strength;  /* Latest fitness */ 
 long        age;  /* Age since birth */ 
 
 struct insts   codeList[maxProgLength]; 
   /* Program instructions */ 
 
 int         data[critterDataSize]; 
                /* Memory contents */ 
 
 int      callsMade;  
     /* Net subroutine calls */ 
 
 int       pushesMade; 
     /* Net stack pushes */ 
}; 

 
 
 

Figure 3. Data Structure for Pool Members. 
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When a pool member, i.e., z80 data structure, is processed 
for its fitness, the registers, memory, last instruction, and 
calls/pushes are dynamically updated as the instructions are 
executed. Upon completion of a run, the fitness is 
calculated and written into the structure. In this way, the 
pool members’ states are constantly up to date. 
 
2.1.2 Memory Implementation 
 
The Z80TM has a 64K addressing capability. This value is 
deemed larger than needed and somewhat impractical for 
emulation. As such, the emulations of this paper are limited 
to 255 instructions and 255 memory locations. While these 
may seem exceptionally modest numbers in today's world 
of megabyte memories, it should be noted that a good 
programmer can create some rather powerful capabilities 
with these few instructions, e.g., early machine boot-
strapping programs consisted of one to two dozen machine 
language instructions. 
 
The GEMS design deals with the incompatibility between 
the 64K of addressing potential of its randomly generated 
instructions and the upper limits of memory by using 
modulo arithmetic in calculating addresses accessed. In this 
manner, addressing circulates backward and forward 
through memory as if the end of memory were adjacent to 
the beginning. No detriment has been found in operating 
GP under this expediency. 
 
The reader may have noted that the z80 data structure of 
Figure 3 segregates the program memory from the data 
memory. This is not typical of a microprocessor 
implementation. Normally, the instructions, stack and data 
reside in a contiguous memory space and grow towards 
each other, hopefully avoiding a collision and resultant 
system crashes. Because of the addressing limitations and 
the way instructions are implemented in GEMS it is 
expedient to treat the two memories separately. 
 
2.1.3 Input - Output  
 
An important and highly useful aspect of the Z80TM 
architecture is its input and output capabilities. The Z80TM 
architecture can address up to 64K of input and output 
ports via one of twelve input or output instructions (Only 
ten are implemented. Block input and output are not  
implemented.) 
 
Seven of the input/output instructions execute a read 
from/write-to the port address given by the eight bits of the 
B register (MSBs) and the eight bits of the C register 
(LSBs) and exchange the eight bits of data with the A, B, 
C, D, E, H or L registers. An additional instruction reads 
from/writes-to the port given by the last byte of the 
instruction and exchanges the data with the A register.  
 

In a Z80TM hardware implementation, doing input or output 
would require the electronics to decode the address and 
place the appropriate data on the I-O bus lines. It is much 
more convenient to deal with the large number of ports in 
software, thus resulting in a large number of ports being 
easily accessible for entering and extracting information 
from the Z80TM. These ports also provide a buffer between 
the emulation process and the external world or Genetic 
Process Controller as defined in the next section. 
 
2.2 GENETIC PROCESS CONTROLLER 
 
As shown in Figure 1, the Genetic Process Controller of the 
GEMS system generates new pools of microprocessors, 
links the pool of microprocessors with the emulator, 
controls the inputs to the fitness tests,  accepts the fitness 
test outputs, evaluates pool members' fitnesses and controls 
the breeding, mutation and survival (or otherwise) of the 
pool members. All of this is managed by the user via an 
interactive user control function. 
 
2.2.1  Breeding Overview 
 
GEMS employs the breeding approach the author calls 
"asynchronous". This approach is similar to the Steady 
State GP of [Reynolds 1993] and [Kinnear 1991], except 
that there is no attempt to guarantee the uniqueness of each 
individual in the population -- thus the difference in 
nomenclature. This  approach stands in contrast to 
generational GP wherein simultaneous breeding 
(conceptually, as the processes are actually implemented in 
serial machines) takes place such that the n pool members 
are pairwise bred, yielding n/2 off-spring and a new pool of  
3n/2 members. These are pared back to n by some fitness 
related selection process.  
 
In the asynchronous breeding process employed by GEMS, 
two parents are selected from the pool and bred one or 
more times. As each off-spring is bred, it is evaluated for 
insertion in the pool using a modification of the process 
which [Altenberg 1994] calls "upward mobility” selection. 
Thus, if the off-spring is more fit than both of its parents it 
replaces the weaker of the parents in the pool. If an off-
spring fails to perform better than both parents, it does not 
survive. The selected parents breed up to k off-spring (k a 
small number, e.g., less than 12) or until one of the parents 
is replaced. The rational for multiple off-spring is its 
analogy to nature, wherein parents of high order creatures 
typically have litters of numerous off-spring. 
 
2.2.2 Breeding Process 
 
The breeding process within GEMS involves a variant of 
double cross-over with preference given to the most fit of 
the parents. Figure 4 illustrates the process. It begins by 
copying all of the code, memory and registers contents 
from the stronger parent into the potential off-spring. Next, 
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a random number is selected which is greater than 0 and 
less than half the total number of instructions in the pool 
programs (maxProgSize). This represents the size of the 
code block to be removed from the weaker parent and 

inserted into the stronger code initially in the off-spring.  A 
second random number is generated to define where to 
begin removing the block of code from the weaker parent.

 
 

Figure 4. The GEMS Breeding and Mutation Process. 
 
 

This latter number is selected so as to ensure that the whole  
block of code can be removed without exceeding the end of 
the weaker parent's code. 
 
All of the selected block of code from the weaker parent is 
randomly inserted into the off-spring to replace that from 
the stronger parent. Thus, as shown in Figure 4, 
instructions 160 through 164 have been randomly selected 
to replace instructions 106 through 110 of the stronger 
parent’s code that was given to the offspring.   
 
In a manner similar to the above, a segment (less than half) 
of the weaker parent's memory contents replaces a 
comparable amount of the stronger parent’s memory 
contents in the off-spring. 
 
2.2.3 Mutation   
 
GEMS employs mutation of two types. In one case, 
mutation is used to replace a random amount of contiguous 
program and memory values in the off-spring. For example, 
in Figure 4 instructions 113 and 114 of the off-spring are 

replaced by totally new instructions. This is done prior to 
any fitness evaluation.  
 
A second aspect of mutation is to randomly and totally 
replace a weak pool member. Each of these measures 
attempts to ensure that genetic diversity is maintained in 
the pool. 
 
2.2.4 Fitness Evaluation 
 
The fitness evaluation process in GEMS depends upon the 
specific problem. The following section elaborates how 
fitness was evaluated for this initial GEMS experiment. 
 
3 THE "Hello World" PROBLEM 
 
The initial problem used to evaluate genetic programming 
with  machine language and memory was that typical of a 
beginning programmer, viz., output a string -- specifically, 
the eleven character string "Hello World".   
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The approach employed in generating the "Hello World" 
string was used to generate all of the results presented in 
this paper. The approach required three adaptations of the 
basic GEMS capability involving the INPUT and 
OUTPUT instruction processing and the fitness evaluation. 
 
 
 
3.1  THE PROBLEM AND CONDITIONS 
 
Succinctly stated the goal of the "Hello World" Problem 
(HWP) is to evolve a machine language agent which after 
completion of one run will have output the ASCII codes for 
the characters of "Hello World" to the virtual ports 1 
through 11, respectively.  Additional conditions on the 
problem are: 

• The agent may output more than one character to a 
port, but the last character output to that port is the one 
upon which fitness is based. Prior outputs cause no 
penalties. 

• The agent can output the characters in any order. 
• The agent's run is always initiated at the first instruction 

and runs until a HALT instruction is encountered or 
255 instruction cycles have been executed. 

• An agent's run always begins with the registers and 
memory set at the states they were in at the completion 
of that agent’s most recent run. 

 
3.2  TREATMENT OF INPUT INSTRUCTIONS 
 
Normally, the use of GEMS for a GP application would 
require that the input instructions be modified to 
accommodate training or situational data inputs. While the 
HWP does not require any inputs, it can be expected that in 
the course of evaluating a pool member the situation will 
occur wherein the agent looks for an input at one of the 
ports. When this happens in the HWP implementation,  a 
random eight bit value is provided, except for port number 
1. When port 1 is accessed, one of the characters of the 
desired string is randomly input. No testing was performed 
to determine whether or not this had any positive effect.  
 
3.3       TREATMENT OF OUTPUT INSTRUCTIONS 
 
Normally, the use of GEMS for a GP application would 
require that the output instructions be monitored in order to 
simulate interaction with the environment. Additionally, at 
least some of the outputs must be monitored in order to 
evaluate the fitness of the run.     
 
For the HWP, the GEMS program code is modified to 
monitor the outputs of the agent and record the latest valid 
output to each of ports 1 through 11. First, the output is 
checked to see if it represents a printable ASCII character. 
If so, the value is recorded (replacing any prior output to 
that port) for use in the run's fitness evaluation. If the 
output is not a printable ASCII character, it is ignored. 

 
3.4 FITNESS EVALUATION 
 
Two fitness phases, with related criteria and scores, are 
employed for the HWP. They are: 

• Phase 1: This fitness scoring is strictly based upon the 
correctness of the output string. 

•  Phase 2: In so long as the ML agent is outputting the 
correct string, the fitness score is augmented by a value 
related to the shortness of the agent. 

 
Phase 1 Fitness Scoring:  The fitness score of a given 
output from a pool member was heuristically derived from 
some early tests. It is calculated from two parts: 

1. The Hamming distance (i.e., number of bit mis-
matches) between the binary ASCII representation of 
the goal string and the output from the run. Both the 
output and goal strings are treated as 88 bit vectors 
formed from concatenation of the 11 8-bit binary 
representations of the  ASCII characters. 

2. The actual number of correct characters (max. = 11). 
 
The fitness score for this phase is calculated as: 
  
   3 * (88- Hamming_distance) + 8 *  (# of correct 
                        characters outputted) 
 
The maximum score for all letters correct is 352. 
 
Phase 2. Agent Brevity Fitness Scoring: If a pool member 
outputs the correct string and in less than 255 instructions, 
it's fitness score is increased by a value of: 255 minus the 
length of the agent in instructions. 
 
Thus, the maximum possible fitness for the HWP occurs 
when the shortest ML agent puts out a correct string. The 
minimum length agent, including the HALT instruction, is 
17 instructions so the best possible HWP fitness score is 
590. 
 
3.5 SAMPLE TEST RESULTS 
 
The GEMS process did indeed generate an agent that 
output "Hello World" within a practical amount of 
computing time. For purposes of orientation and 
illustration, the results of one HWP run are shown in 
Figures 5 and 6. This run used a pool of 1500 members, a 
20% mutation rate and uniform random selection of 
parents. 
 
Figure 5 illustrates the normal progression curve for the GP 
process. As with most GP progression curves, the pool 
average, best in pool and best-to-date fitness values are 
plotted. In this case, because GEMS uses asynchronous 
breeding, the x-axis progress number is "spawns" versus 
the traditional GP “generation” number. A spawn 
represents the selection of one set of parents which 
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generate off-spring until one of the parents is replaced by a 
more fit off-spring or a maximum litter is spawned.  The 
relationship between a spawn and a traditional GP 
generation is not exact, as it depends upon the average 
number of off-spring generated. Assume that litters average 
r off-spring, then the equivalency of generations (G) to 
spawns (S) is: G = (r*S)/P, where P is the pool size. For the 
HWP problem, the maximum litter size was 12, so the 
number of  equivalent generations per spawn is somewhere 
between G=S/1500 and G=S/125. 

  
Figure 5. Graph of Fitness vs. Spawnings. 

 
From Figure 5 it can be seen that this run achieved a 
correct output (fitness = 352) at about 150,000 spawnings 
(100 to 1200 generations). By about 450,000 spawnings, 
the agent was composed of less than 100 instructions. 
Ultimately, the agent size reduced to 58 instructions before 
the process was terminated. 
 
Figure 6 shows the 58 instructions of the Figure 5 run in 
their assembly language format. The register contents are 
also shown. The far right column gives the state of the 
output ports (1-11 reading left to right) when they change. 
 
Interestingly, the agent uses only the OUT instruction that 
transfers the A register’s value to the port given in the OUT 
instruction’s second byte. Section 5 discusses why. 
 
The GP solution also took advantage of the latitude for 
outputting the characters in any sequence. It should be 
noted that the three l's and two o's are output before any 
change is made to the A register. This has been noted in 
other runs of different strings. 
 
An analysis of the program indicates that it is clearly using 
memory contents to get the appropriate A register values, 
albeit in a very indirect manner. Thus, instruction 1 reads 
memory location 0xAA into the DE register. At instruction 
6, register D is subtracted from register A and the value left 
in A. At instruction 11, DE is subtracted from HL (with 
carry) and subsequently the H register is OR'd with register 

A leaving the ASCII value for the letter l in register A, 
which is output at instructions 14, 15 and 19.   
 
Instruction 22 is another case where memory is used. Here 
the content of memory location 0x8C is accessed to get a 
value to subtract from the current A register content which 
yields the ASCII value for the delimiting character. (Note: 
A period was used as a word delimiter versus a space for 
programming expediency.) 
Inst    Register Contents   
 #     Instruction  A B C D E H L     Output 
0 LD  SP, HL 65 5D 5D FA F5 1 24 "-----------" 
1 LD  DE, (0xAA) 65 5D 5D F3 6F 1 24   
2 LD  C to H 65 5D 5D F3 6F 5D 24   
3 LD  H to A 5D 5D 5D F3 6F 5D 24   
4 SRA H  5D 5D 5D F3 6F 2E 24   
5 DEC H  5D 5D 5D F3 6F 2D 24   
6 SBC A, D 6A 5D 5D F3 6F 2D 24   
7 RES 1, A 68 5D 5D F3 6F 2D 24   
8 LD  L to E 68 5D 5D F3 24 2D 24   
9 POP  IY  68 5D 5D F3 24 2D 24   
10 RLC D  68 5D 5D E7 24 2D 24   
11 SBC HL, DE 68 5D 5D E7 24 44 FF   
12 RES 0, H 68 5D 5D E7 24 44 FF   
13 OR  H  6C 5D 5D E7 24 44 FF   
14 OUT (N=0xA), A 6C 5D 5D E7 24 44 FF "---------l-" 
15 OUT (N=0x4), A 6C 5D 5D E7 24 44 FF "---l-----l-" 
16 POP DE  6C 5D 5D 6F 6A 44 FF   
17 ADD IY, IX 6C 5D 5D 6F 6A 44 FF   
18 LD  C to B 6C 5D 5D 6F 6A 44 FF   
19 OUT (N=0x3), A 6C 5D 5D 6F 6A 44 FF "--ll-----l-" 
20 SUB A, B F 5D 5D 6F 6A 44 FF   
21 LD D to C F 5D 6F 6F 6A 44 FF   
22 SBC A, (IY+0x3E) 2E 5D 6F 6F 6A 44 FF   
23 LD  (HL=0x43) to D 2E 5D 6F F7 6A 44 FF   
24 OUT (N=0x6), A 2E 5D 6F F7 6A 44 FF "--ll-.---l-" 
25 SRA D  2E 5D 6F FB 6A 44 FF   
26 AND B  C 5D 6F FB 6A 44 FF   
27 RES 0, D C 5D 6F FA 6A 44 FF   
28 OR B  5D 5D 6F FA 6A 44 FF   
29 ADD A,D  5D 5D 6F FA 6A 44 FF   
30 OUT (N=0x7), A 57 5D 6F FA 6A 44 FF "--ll-.W--l-" 
31 BIT 3,D  57 5D 6F FA 6A 44 FF   
32 LD  C to A 6F 5D 6F FA 6A 44 FF   
33 OR B  7F 5D 6F FA 6A 44 FF   
34 ADD A, n=0xE5 64 5D 6F FA 6A 44 FF   
35 OUT (N=0xB), A 64 5D 6F FA 6A 44 FF "--ll-.W--ld" 
36 SRL A  32 5D 6F FA 6A 44 FF   
37 OR B  7F 5D 6F FA 6A 44 FF   
38 SRA E  7F 5D 6F FA 35 44 FF   
39 RES 4, A 6F 5D 6F FA 35 44 FF   
40 OUT (N=0x8), A 6F 5D 6F FA 35 44 FF "--ll-.Wo-ld" 
41 OUT (N=0x5), A 6F 5D 6F FA 35 44 FF "--llo.Wo-ld" 
42 SBC A, A 0 5D 6F FA 35 44 FF   
43 ADD A, n=0x48 48 5D 6F FA 35 44 FF   
44 SET 6, E 48 5D 6F FA 75 44 FF   
45 SLA E  48 5D 6F FA EA 44 FF   
46 OUT (N=0x1), A 48 5D 6F FA EA 44 FF "H-llo.Wo-ld" 
47 LD  A, 0x39 39 5D 6F FA EA 44 FF   
48 LD  HL, nn=0x124 39 5D 6F FA EA 1 24   
49 SLA A  72 5D 6F FA EA 1 24   
50 OUT (N=0x9), A 72 5D 6F FA EA 1 24 "H-llo.World" 
51 IN  C, (C=Ox5D6F) 72 5D 3A FA EA 1 24   
52 SRA E  72 5D 3A FA F5 1 24   
53 LD B to C 72 5D 5D FA F5 1 24   
54 ADD A,E  72 5D 5D FA F5 1 24   
55 RES 1, A 65 5D 5D FA F5 1 24   
56 RES 4, A 65 5D 5D FA F5 1 24   
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57 OUT (N=0x2), A 65 5D 5D FA F5 1 24 "Hello.World" 
58 HALT@ Inst 58 65 5D 5D FA F5 1 24 
(Note: IX register was 0x14D for all 58 instructions.)   
 

Figure 6.  Code from Hello World Run. 
 
 
Clearly, there is little that is elegant about the code that 
evolved in this run. None the less, the agent is functional 
and robust. 
4 EXPERIMENTAL RESULTS 
 
Performing GP with a large number of machine language 
operators and memory, as reported herein, calls into 
question the applicability of prior traditional GP results. 
For this reason, experiments were performed in order to 
determine how the GEMS GP computational requirements 
are effected by the: 

• Pool size. 
• Length of the target string. 
• Mutation rate 
• Parent selection process. 

The remainder of this section discusses the experiments 
and their results. 
 
4.1 PROTOCOL 
 
A standard protocol was used in testing the effects of 
various parameters. Firstly, the same GEMS version of 
software was used for each GP run. Next, in order to get 
statistically meaningful data for each set of parameters, 
multiple runs -- called GPSets -- were made using those 
parameters. Some of the GEMS GP runs required an 
extensive amount of time, e.g., several days on a Sun 
SPARC 20 for a single run of the HWP. [Kinnear 1994]  
recommends twenty runs for meaningful statistical results -
more if the GPSets results aren't substantially different. As 
a necessary comprise, the author elected to use GPSets 
comprised of sixteen runs.  Where more or less than 16 
runs formed a GPSet, it is noted in the data below. 
 
Each run of a GPSet began with the generation of a new 
random pool. Additionally, a new and different random 
number generator seed was used for each run. 
 
GPSets were normally started as background processes on 
a single machine. As the GP runs progressed, they 
periodically recorded pool statistics to a disk file. When 
each GP run reached its goal, it would spawn the next 
process. For completed GP runs, the pool statistics files 
were examined to obtain the desired figures concerning the 
run. In this way, a GPSet could be processed with a 
minimum of external control.   
 
Not all GPSets (or even GP runs within a GPSet) were 
necessarily run on the same machine or machine type. 

Various Sun SPARC machines, from SPARC 1's to 
SPARC 20's were used. 
 
Three benchmark points were used for each GP run. These 
are the number of spawnings at which: 

1. A pool member first put out the correct string, 
hereafter called “first seen”.  

2. Correctly performing agents were considered stable in 
the pool, hereafter called “stable-in-pool”. 

3. The shortest agent in the pool was of less than 100 
instructions, referred to herein as “<100 Insts”. 

 
The resolution of the results was always the rate at which 
the pool statistics were sampled and written to the disk. 
This value varied from 100 spawnings (for short strings) to 
1000 spawnings for long strings. 
 
It is important to note that the appearance of a properly 
functioning agent in the pool can occur as a spurious event. 
In fact, pool members can produce the correct output string 
numerous times and then fail to be able to do it again 
correctly. For example, consider the following possible 
code segment: 
  
     DEC (IX+11)      /* Decrement content of memory 
           location with  address = Contents 
           of IX register+11. If result is 
           zero, set Zero Flag   */ 
     LD   A, 6B      /* Load A register with ASCII for 
           'k' */ 
     JP NZ, nn      /* Jump to instruction nn if Zero 
           Flag not set */  
     HALT      /* End program execution  */ 
      • • •       /* Other miscellaneous code  */ 
nn  OUT 1, A            /* Output A register to port 1 */ 
      • • •       /* Code to print the remainder  
          of the string */ 
 
The DEC instruction may be a code remnant from the 
original randomly generated program and totally unrelated 
to the current performance of the program. None the less, if 
this agent is run enough times the DEC instruction will, at 
some time, result in a zero in the memory location, the Zero 
Flag will be set, the jump instruction (JP NZ, nn) will not 
execute and the agent will halt pre-maturely.  
 
While the above is a trivial example, examination of the 
convoluted code of Figure 6 should convince the reader of 
the potential for latent disasters. 
 
It is for this reason, as much as esthetics, that code should 
be evolved to the minimum size practical. While this won't 
necessarily guarantee unerring performance, it will raise 
confidence in the product. 
 
GP runs were normally not terminated until they had 
concluded all three benchmarks. On rare occasions, a run 
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would pass benchmarks 1 and 2, but not reach 3. 
Sometimes, GP runs were manually terminated if they got 
to 2-3 million spawnings without any sign of shortening. In 
other cases, the computer would (for a variety of reasons) 
shut down or be re-booted. Whenever this happened, it is 
noted below, but never effected more than one run of a 
GPSet and only the benchmark 3 result. 
 
4.2  POOL SIZE TEST AND RESULTS 
 
In traditional GP processing, pool size represents a 
compromise between computational requirements and 
sufficient genetic diversity for having a good chance at 
reaching the problem solution. [Kinnear 1994] states that 
the population size must be larger than a critical minimum 
size in order to generate a solution reliably and that this 
size is different for each problem. Similar conditions 
should apply to the GEMS process. 
 
GEMS tests were conducted with pool sizes of 150, 250, 
500, 1000, 1500 and 2000 members and using "Hello" as 
the target string. All the tests involved GPSets of sixteen 
runs, except for the 150 member pool which had 31 runs 
and the 500 member pool which had 15 runs. 
 
Figure 7 shows the results for the number of spawnings 
required to get programs of less than 100 instructions. The 
curves for the “first seen” and “stable-in-pool” benchmarks 
are similarly shaped. 
 

 
 

Figure 7. Spawnings to Generate “Hello” vs. Pool Size 
 
The salient result shown in Figure 7 is that for pools of less 
than 500, the standard deviation increases significantly. 
This reflects the frequency and sizes of the outliers. For 
pools over 500, the standard deviation levels out and the 
median closely approaches the average, i.e., the GP process 
is more well-behaved. These results confirm that GEMS 
follows Kinnear's statement on pool size effects as given 
above.  
 

Figure 8 illustrates the median values for the three 
benchmarks. The number of spawnings needed to get a 
solution stable in the pool appears to be rising at a linear 
rate or slightly faster. The cause of this rise is discussed in 
Section 5.  
 
4.3 COMPUTATIONS VS. STRING LENGTH 
TESTS AND RESULTS 
 
It should not be unexpected that as a GP problem becomes 
more difficult, the computations to obtain its solution 
increases.  The rate of increase is an important issue. If the 
GEMS computations rise too rapidly with problem 
difficulty, e.g., exponentially or combinatorially, the 
prospect for GEMS will be poor or -- at the least -- more 
restricted or difficult to advance. 
 

 
 
Figure 8.  Median “First seen”, “Stable-in-Pool” and “<100 
Insts” Values vs. Pool Size for “Hello” String. 
 
 
The length of the string to be generated by the GEMS 
process undoubtedly affects problem difficulty. An 
indication of the growth in problem difficulty with string  
length can be gained by examining what would be required 
to solve this problem via a random process. Specifically, 
how does the probability of obtaining the desired string via 
random value selection vary with string length. To examine 
this, let n be the number of characters in the string to be 
generated. Assume that the string is to be produced by 
randomly drawing (with replacement) from a uniformly 
distributed pool of valid alpha-numeric characters. Assume 
this pool is composed of the fifty-two upper and lower case 
English characters, the ten digits and the space character 
for a total of sixty-three characters. The probability of 
drawing the correct characters in one set of n draws is 1 in 
63n. If the string length is increased to m=(n+k), the 
probability becomes 1 in 63(n+k). Thus, the problem 
increases in difficulty by a factor of 63k, i.e., exponentially 
with string length. Moreover, if all printable ASCII 
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characters are included, the problem becomes about 2k 
times harder yet. Clearly, the GEMS process must be much 
better behaved than this to be viable.  
 
The tests conducted involved the generation of strings of 
various lengths from 2 through 11 characters. The specific 
strings (including case) are: to, Ron, Marc, Hello, stored, 
uniform, San Diego and Hello World. 
 
In each case, a GPSet of sixteen GP runs was performed 
and the three benchmark points previously defined were 
measured. These runs all used the following conditions: 

• Pool size of 1500 members 
• Uniform parent selection 
• 20% mutation rate.    

Figure 9 shows a semi-logarithmic plot of the spawn count 
median values for "first seen", "stable in pool" and "< 100 
insts" bench marks for each string length. The dashed line 
in this figure shows a plot of the equation  400c3+10000, 
where c is the string length in characters. This latter curve 
is presented in order to give some indication of the growth 
rate over the range of the string lengths. It indicates that the 
problem difficulty, over the range of the test and in terms 
of required spawns, while increasing rapidly, does not 
appear to be combinatorial or exponential. 
 

 
 
Figure  9. Computational Requirements for Various String 
Lengths ( Pool Size = 1500, uniform parent selection and 
20% mutation rate.) 
 
 
4.5 PARENT SELECTION AND MUTATION 
TESTS AND RESULTS 
 
A limited amount of testing was performed to determine if 
the parent selection criteria and mutation rate had any 
significant influence on the computations required for 
string generation. Due to the potential for interaction 
between these factors, they are considered together. 
 

The GEMS process allows the user to control how parents 
are selected for breeding from the pool. Three selection 
processes are available: 

• Uniform selection where each pool member has an 
equal probability for selection irrespective of its fitness 
ranking. 

• Selection probability based upon the member's fitness 
rank to the 1.5 power. 

• Selection probability based upon the square of the 
member's fitness rank. 

 
Early GEMS experiments involved a set of runs to examine 
the effects of parent selection and mutation. The tests had a 
target string of “Hello”, employed GPSets of sixteen runs, 
measured the standard benchmarks and used a pool size of 
150. The results are shown in Figure 10 as the median 
values for each of the benchmarks vs. the test parameters. 
In this case, a uniform selection and 20% mutation rate 
(labeled “U-20%”) appears to be substantially better than 
the other two parameter choices of: parent selection based 
on rank to the 1.5 power and 20% mutation (1.5P-20%); or, 
uniform parent selection and 2.5% mutation (U-2.5%). It 
was noted that the high variance associated with this set of 
runs made it unwise to dogmatically state a conclusion 
based upon these results. None the less, because it could 
not be demonstrated that uniform parent selection and a 
20% mutation rate was any worse than the other options, 
and might well be better, these factors were used in most of 
the testing discussed on the foregoing sections. 
 

 
 
Figure 10. Benchmarks Compared for Mutation Rates 
(20% vs. 2.5%) and Parent Selection Criteria (uniform vs. 
1.5 Power of  rank) for “Hello” and pool size of 150. 
 
 
It should be noted that the 20% mutation rate may not be as 
large as it sounds considering the way in which GEMS 
performs mutations. To wit, 20% of the time an off-spring 
is selected for mutation. During mutation, a random amount 
(up to 20%) of the off-spring’s instructions are randomly 
regenerated. In that the latter 20% is uniformly distributed, 
on the average only 10% of an off-spring’s code is 
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changed. In the net, then, the mutation amounts to an 
average of 2% of the population contents. An exact 
comparison of GEMS mutation to traditional GP mutation 
is made difficult by the differences in sizes of the 
instruction/operation sets. 
 
Further experiments were conducted on mutation and 
parent selection factors using the string "Marc" and a pool 
of 1500 members. Again GPSets of sixteen runs were used. 
The results are summarized in Figure 11 which shows the 
median benchmark values for each of the parameter sets. 
These results appear to indicate that, for the values chosen, 
neither the mutation rate nor the parent selection criteria 
produce any significant computational advantages in 
obtaining stable solutions in the pool. If anything, use of 
parent selection based upon rank to the 1.5 power and 20% 
mutation appears slightly better. 
 

 
Figure 11. Benchmarks Comparison for Mutation Rates 
(20% vs. 4%) and Parent Selection Criteria (uniform vs. 
1.5 Power of  ranking) for “Marc” and pool size of 1500. 
 
 
5  DISCUSSION  
 
5.1 BASIC CONSIDERATIONS 
 
The experimental results given in Section 4 demonstrate 
that a GP process employing a large set of general purpose 
operators along with a relatively large memory can be used 
to generate modest programs. While this contradicts 
conventional views held on the matter, the author has a 
potential explanation that involves the problem chosen, the 
way GEMS is implemented and the flexibility of the GEMS 
operator set. 
 
The explanation for why GEMS produces results is in part 
due to the fact that OUT instructions of the type needed to 
get some fitness score, albeit small, are not extraordinarily 
uncommon. To understand this, consider the fact that the 
GEMS implementation has ten output instructions. Given 
this number, if the instructions of the new pools and 

mutations were all equally probable, then 1.5% of the 
instructions (10 of the 660 implemented) will send some 
output to some port.  
 
The author recognized early on that the input and output 
instructions were critical to the viability of any software 
generated by GEMS. This stems from the fact that the only 
way of interacting with the GEMS agents is via input and 
output instructions. There is no other visibility into the 
GEMS pool members’ behavior. As such, it was decided 
that in new random pool generation 5% of the instructions 
would be specifically and equiprobably generated as input 
or output instructions. The remaining 95% contain the 
normal 1.5% output instructions. Thus, output instructions 
represent about 3.9% of all randomly generated instructions 
in the new pools. 
 
For nine of the ten output instruction types, the port 
addresses for an 11 character string represent 11 of the 216 
possible port values (or about 0.02%).  The remaining 
instruction is "OUT (n), A", where n is in the range of 0 to 
255. For this instruction the 11 ports represent 11 of the 
256 possible values or about 4.3%. (This high value 
probably accounts for this instruction being the only OUT 
instruction in the code of Figure 6. Other OUT instructions 
have been observed in other GEMS generated programs, so 
they do occur). In the net, the probability of a randomly 
selected "OUT" instruction writing to ports 1 through 11 is 
about 0.0045.  
 
A pool of 1500 members, each having 255 instructions, has 
a total of 382,500 instructions. On average 14,917 of these 
are output instructions of which, on average, 67 write to a 
desired output port. 
 
Writes to the ports are always 8 bit values. Nearly half of 
the 256 possible outputs are printable ASCII characters. 
Thus, at initiation of the GP process, an average of 30 
output instructions are available in the pool that can 
generate a non-zero fitness value. These then become the 
seeds for the evolution of the successful pool members. 
 
The second element that may account for the GEMS 
process' evolutionary successes is the low level, flexibility 
and redundancy of the GEMS operators. Figure 6 shows 
the code that evolved to generate "Hello World". It 
illustrates some very convoluted ways of getting the A-
register loaded with the required values to be outputted.  
This is possible because the GEMS operators are 
numerous, diverse and low level in operation. Thus, 
achieving a desired register value can derive from the 
process of: accessing register or memory contents, adding, 
subtracting, bit shifting, bit setting or re-setting, logical 
ANDing or ORing, incrementing or decrementing or any 
suitable combination of the above.  
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The implication of the previous paragraph is that in lieu of 
a single instruction or set of instructions,  there exists many 
functionally equivalent code blocks that can achieve the 
requisite goal of getting a needed value in the A (or other 
output) register. Moreover, these code blocks can be inter-
related in what they do in a manner no human programmer 
would dream of doing (even if that person could conceive 
of and implement such an approach). 
 
It is impractical to enumerate the ways that the GEMS 
operators can achieve any particular complex function. So 
it is open to speculation as to the probability of achieving 
that function. Yet, the results of this paper imply that, for 
the string generation problem, there is a sufficiently large 
number of ways of achieving the desired register contents 
to make the problem tractable for GP. 
 
5.2 MEMORY USAGE 
 
It is clear from the code of Figure 6 that in solving the 
string generation problem GEMS employed the available 
memory, albeit awkwardly by human programming 
standards. The relatively large amount of memory, vis-à-vis 
the needs of this problem, did not preclude obtaining a 
solution program. In fact, it may have enhanced the 
process.  
 
The string generation process requires the binary ASCII 
values for each character to be outputted. With 255 
memory locations initially filled with random 8 bit values, 
it is highly probable that the needed values are somewhere 
in memory. It is nearly certain that the values can be 
obtained by some manipulation of one or more of the 
values in memory.  
 
5.3 PROGRAM LENGTH OPTIMIZATION 
 
Section 4.1 discussed the importance of reducing the length 
of a GEMS agent product for purposes of ensuring 
enduring proper behavior. Figures 8 and 9 show that as 
much computational power was required to get a 100 
instruction agent as was required to obtain a stable agent in 
the pool. Sometimes 2-3 times as much computational 
power was required. Not infrequently, a GEMS run did not 
reach this benchmark in 2-3 million spawnings and was 
thus terminated. 
 
The author conjectures that the problem with breeding for 
shorter agents resulted from the use of sequential 
evolutions, i.e., first breed for the correct output, then breed 
for shorter programs. This conjecture is based upon the 
following considerations. First, GEMS has only one 
instruction that can be used to shorten an agent -- the 
HALT instruction. The HALT instruction is one of 660. 
Thus, the initial randomly generated pool members of 255 
instructions each contain, on the average, approximately 
0.4 HALT instructions. During the process of breeding the 

correct output, it is conceivable that most of the HALT 
instructions in the pool could, due to their lack of utility 
and even potential detriment, be bred out or at the least 
relegated to code locations that are not reached. This would 
account for the difficulties with breeding short agents. 
 
The author plans to investigate this matter further. One 
solution is to increase the frequency of the mutational 
generation of HALT instructions once agents generating 
the proper output appear in the pool. Another solution is to 
attempt to breed shorter agents at the same time as the 
correct output is being bred. [Kinnear 1993] reports that 
this approach may even result in more efficient agent 
implementations. The author has encountered difficulties 
with this dual fitness approach. Specifically, the process 
tends to evolve short and poorly performing agents. Further 
work is needed in this area. 
 
5.4 POOL SIZE EFFECTS 
 
The size of the pool is an important determining factor in 
the computational requirements for achieving the breeding 
goal. On one hand, small pool sizes have a low mean 
computational requirement, i.e., spawnings, but a larger 
variance. This implies that the process can sometimes 
converge rapidly to the target agent, but at a significant risk 
that periodically it won't converge for a large number of 
spawnings.  
 
With a large pool, there appears to be a smaller variance of 
the computational requirements to achieve a target agent, 
but with a higher mean as illustrated by Figure 8.  
 
In order to explain the growth in mean computations 
required for a larger pool size, especially with the GEMS 
asynchronous breeding process, the author proposes the 
following hypothesis: The probability that an off-spring 
will have a fitness improvement of � over its best parent’s 
fitness decreases as � increases. This hypothesis is not 
unreasonable if one accepts the concept -- discussed in the 
next paragraph -- of agents being composed, to some 
extent, of  functionality elements and related fitness.  
 
The breeding of GEMS, as shown in Figure 4, takes code 
blocks from two parents. Each code block represents some 
amount of functionality which reflects its contribution to 
the fitness of the parent from which the code block 
originated. When the two code blocks are combined, their 
respective functionality’s can complement, overlap or undo 
each other. If they complement each other more than they 
undo, the resultant functionality, and thus fitness, of the 
off-spring is greater than either parent. The amount of new 
functionality, or added fitness, of the off-spring over its 
best parent would normally be small. Large jumps in fitness 
improvement are unlikely. The reasons for this are that, on 
the average: 
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• Some percentage of the stronger parent’s functionality 
(given to the off-spring) is being deleted to make room 
for functionality from the weaker parent. 

• Up to 50% of the weaker parent’s functionality is being 
given to the off-spring. 

• The incestuous nature of the cross breeding within the 
pool mitigates against any radically different (or 
better) members, so the spectrum of functionality of 
the pool members is somewhat homogeneous. 

• The probability of multiple “micro-functions” com-
plementing each other decreases as the number of 
“micro-functions” increases. (Here “micro-functions” 
are the pieces of code that form functions and are such 
small program elements as register values, bit shifts, 
useful jumps, etc.)  

 
Clearly, there will be those serendipitous occasions when 
the parents’ code blocks complement each other quite well 
and generate a relatively large improvement in the off-
spring’s fitness. This though should be expected to be the 
rare exception.  
 
Assuming that the above hypothesis is true, then the rate of 
improvement of the pool members is controlled by the 
density of the most fit members and thus, indirectly, the 
average of the pool members’ fitnesses.  
 
Consider the initial pool. It contains only poorly fit 
members. The selection of these early pool members for 
breeding will occasionally produce an off-spring of slightly 
improved fitness vis-à-vis the parents and per the above 
hypothesis. At first, the pool will contain very few 
improved members. The odds of two of these improved 
members being selected to breed, and thereby potentially 
generate an even more fit off-spring, is inversely 
proportional to the pool size. As such, and most important, 
breedings in number proportional to the pool size must 
occur to raise the density of more fit pool members so that 
these can breed to generate yet more fit off-spring. The net 
result is that the number of spawnings to reach the target 
agents increases with pool size irrespective of any other 
factor. 
 
Another way to view this is that in the aggregate the pool 
members’ individual fitnesses ride on a tide of the average 
fitness of all of the pool members with few being very far 
above that average. 
 
6 CONCLUSIONS 
 
Agents of simple functionality can be generated with a GP 
process that involves a large number of ML operators and 
memory as implemented in GEMS. The growth in 
computational requirements with problem complexity is 
high, but not formidably so. 
 

Further investigations into ML agent generation are 
warranted. Specifically, GEMS should be applied to more 
difficult problems, e.g., sorting numbers. Additional 
research should be conducted to identify methods for 
improving the computational efficiency of ML agent 
generation. These improvements could come from changes 
to the internal breeding process implemented within GEMS 
and procedural approaches to the GP process. 
 
GP processes are not smarter than humans. They are simply 
more patient and tenacious in exploiting the opportunities 
made available to them. They exhibit these characteristics 
while churning away 24 hours a day at megaflop rates. 
Therein lies their power to solve problems. 
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