
Proceedings of the 1996 IEEE International
Symposium on Intelligent Control
Dearborn, MI • September15-18, 1996 pp. 127-132

EVOLUTIONARY DESIGN OF FUZZY LOGIC CONTROLLERS

Carlos Cotta, Enrique Alba and José Mª Troya

Dpto. de Lenguajes y Ciencias de la Computación
E.T.S.I. Informática, Universidad de Málaga

Campus de Teatinos (2.2.A.6), 29071-Málaga (SPAIN)
ccottap@lcc.uma.es

Abstract

An evolutionary approach to fuzzy logic controller design
is presented in this paper. We propose the use of a class of
genetic algorithms to produce suboptimal fuzzy rule-bases
(internally represented as constrained syntactic trees). This
model has been applied to the cart centering problem. The
obtained results show that a good parameterization of the
algorithm and an appropriate evaluation function lead to
near-optimal solutions.

1. Introduction

Genetic Algorithms (GAs) [1] are heuristic optimization
procedures based on the principles of natural evolution.
They combine the concepts of adaptation and survival of
the fittest to produce suboptimal solutions for an arbitrary
problem. This is achieved by means of the repeated
application of mating and reproduction operators onto a
population representing potential solutions. Genetic
Programming (GP) [2] is a subset of the GA paradigm in
which each individual in the population is a computer
program (usually represented as a syntactically correct
tree). These programs try to solve a certain task, given as a
set of examples expressing the desired behavior. Programs
are built up by the composition of some functions (internal
nodes of the tree) operating on a set of terminal symbols
(leaves).

This work presents an approach in which individuals (trees)
do not represent traditional computer programs but fuzzy
rule-bases intended to solve a control problem (the cart
centering problem, described further in this paper). A fuzzy
interpreter is used to test the resulting fuzzy rules on the
target problem.

This paper is organized as follows: a brief review of fuzzy
logic controllers and a description of the cart centering
problem is first outlined, followed by the GP model used
for the experiments. Finally, we present a comparative
performance analysis of our approach and extract some
important conclusions regarding the reproductive policy
and the evaluation function.

2. Fuzzy Logic Controllers

Fuzzy Logic Controllers (FLCs) are rule-based systems
that successfully incorporate the flexibility of human-
decision making by means of the use of fuzzy set theory
[3]. Natural-language terms (e.g. pressure is low) are used

in fuzzy rules. Their ambiguity is modeled by membership
functions, intended to represent human expert's conception
of the linguistic terms. A membership function gives a
measure of the confidence with which a precise numeric
value is described by a linguistic label.

Rules take the form IF [conditions] THEN [actions],
where conditions and actions are linguistic terms
describing the values of input and output variables (e.g. IF
pressure IS low THEN valve-opening IS small). The
fuzzy rule-base of the FLC is composed of a number of
such fuzzy rules. This rule-base is used to produce precise
output values according to actual input values. This control
process is divided into three stages (Figure 1):

a) fuzzification: calculate fuzzy input, i.e. evaluate input
variables with respect to the corresponding linguistic terms
in the condition side.

b) fuzzy inference: calculate fuzzy output, i.e. evaluate
activation strength of every rule and combine their action
sides.

c) defuzzification: calculate actual output, i.e. convert
fuzzy output into a precise numerical value.

Figure 1. The Fuzzy Control Process.

The fuzzy interpreter used in this work performs
fuzzification via triangular membership functions, uses the
min intersection operator, the maxmin method for fuzzy
inference and the centroid procedure for defuzzification.

3. The Cart Centering Problem

In this section a description of the cart centering problem
will be made. Next, it will be shown how the principles of

} Fuzzification Fuzzy
inferenc

Defuzzification {

 fuzzy sets fuzzy rules

precise inputs precise

fuzzy control can be applied to this problem, outlining an
ad-hoc solution.

3.1. Description of the Problem
The cart centering problem definition involves a cart with
mass m moving along an infinite one-dimensional
frictionless track. The problem consists in centering the
cart, in minimal time, by applying an external time-variant
force (of maximal magnitude F) so as to accelerate the cart
in either the positive or the negative direction of the track.
Given the values for the position x(t) and velocity v(t) of
the cart at time t, this problem can be further formulated as
calculating a force F(t) = F[x(t), v(t)] in order to place the
cart in position x(tf)=0 with velocity v(tf)=0 in minimal tf.

[]

F t

F x t
v t v t

F

m

F

()

()
() sgn ()

=

+ − >

−










if

otherwise

2

2

Figure 2. The Cart Centering Problem and its optimal solution.

Though simple, this is a typical optimal control problem
and has a well-known solution (the bang-bang rule [2]).

This system is simulated using Euler's method, i.e. taking
time steps of τ sec. and applying Newton's Laws:

x t x t v t() () ()+ = + ⋅τ τ

v t v t
F t

m
() ()

()
+ = +τ τ

As in [4] and [5], we consider τ=0.02 sec. and m=2.0 kg.

3.2. Designing a Fuzzy Logic Controller
As an optimal control problem, the cart centering problem
is well-suited for fuzzy control. The development of an
FLC for this system involves the following three steps [6]:

a) Determine condition (input) variables and specify the
fuzzy sets describing them.

b) Determine action (output) variables and specify the
fuzzy sets describing them.

c) Produce the rule-base.

It is clear that position x(t) and velocity v(t) of the cart are
the input variables, and the force F(t) applied to the cart is
the only output variable in this problem. The membership
functions defining the fuzzy sets over these variables are

shown in Figure 3: five partitions representing the
linguistic terms negative large (NL), negative small (NS),
zero (ZE), positive small (PS) and positive large (PL).

Figure 3. Fuzzy sets for position, velocity and force.

The third step (production of the rule-base) may be
accomplished by a human expert. The use of fuzzy
linguistic terms allows an easier incorporation of human
knowledge. For example, it seems intuitive in this problem
that the applied force must almost always be directed
towards the origin (since we want to place the cart in the 0
position) and, just when we are close to that point, we must
reverse the force to stop the cart. The following fuzzy rules
express these rules-of-thumb:

IF pos IS PL THEN for IS NL
IF pos IS PS THEN for IS NL
IF pos IS ZE AND vel IS PL THEN for IS NL
IF pos IS ZE AND vel IS PS THEN for IS NL
IF pos IS ZE AND vel IS NS THEN for IS PL
IF pos IS ZE AND vel IS NL THEN for IS PL
IF pos IS NS THEN for IS PL
IF pos IS NL THEN for IS PL

where pos, vel and for stand for position, velocity and force
respectively.

The FLC described above is not the optimal one.
Improvements in the rule-base or in the interpretation of
the linguistic terms may be done by means of GAs (see [4],
[5], [6], [7]). We propose the use of GP to produce rule-
bases that can be used as a starting point for further
refinements by a human expert or even as a final solution.

4. Evolutionary Approach

The genetic programming model is exposed in this section.
First, the encoding is described. Next, the necessity of a
type system is shown. Finally, some general details about
the evaluation function are outlined.

4.1. Two Ways of Encoding a Rule-Base
There are two approaches when trying to encode a rule-
base, the Pitt approach and the Michigan approach [9]. In
the former, every individual in the population represents a
whole rule-base that competes with the other ones. In the
latter, a single rule is contained in each individual; the
behavior of the FLC is determined by the cooperation
between all individuals. It must be taken into account that
selecting any of these two schemes conditionates other
aspects of the algorithms (e.g. fitness assignation).

ZE PS PL NL NS

 0.0 1.0 2.0 -2.0 -1.0

 x(t)
0

F(t)
v(t)

m

A Pitt approach has been chosen following a simplicity
criterion: fitness can be calculated via a short simulation
and no advanced genetic mechanism (like sharing or
crowding) is needed.

4.2. Encoding Rule-Bases
Given that every individual contains a list of rules, an
encoding for single rules and subsequently a mechanism to
join them is needed.

A single rule can be easily represented as a binary tree: the
root being an IF node, and left and right branches
representing the condition and the action sides respectively.
Likewise, both conditions and actions can be expressed as
trees. On the one hand, a variable paired with a fuzzy set
can be represented as a tree with an IS root-node: the
variable name in the left branch and the fuzzy set in the
right branch. On the other hand, a conjunction of such
terms can be expressed as a tree with an AND root-node and
two branches representing nested conjunctions or pairs
(variable, fuzzy set). Figure 4 shows an example.

IF pos IS NL AND vel IS NL THEN for IS PL

Figure 4. A syntactic tree and the rule it represents.

A list of rules might be represented as a list of trees.
However, it is more appropriate to use a single tree
representation because it allows rules to be tightly
connected and therefore facilitates the propagation of good
functional blocks. Two additional symbols are required.
The EL symbol represents an empty list. The RLIST
symbol combines rules in the same fashion that the AND
symbol joins terms, i.e. a list of rules is a tree with an
RLIST root-node and two branches representing single
rules or analogous lists of rules.

This is a very flexible and powerful representation of FLC
rule-bases. It deals well with the fact that an FLC may have
rules with very different structures among them as well as a
variable number of rules. This aspect contrasts with other
GA-based approaches in which the structure [4] [7] or the
number of rules in the FLC [5] is arbitrarily prefixed.

4.3. Necessity of a Type-System
The flexibility of this tree representation makes crossover a
very powerful tool since it allows interchange at several
levels: rules, terms or even variable names. However, the
traditional GP crossover operator may produce nonsense
rules. For example, consider the case in which a variable
name is substituted by a whole rule. There are three
possible solutions for that problem:

a) Define closed functions, so those ill-defined rules are
reinterpreted in some predefined way [2].

b) Repair the tree, deleting incorrect subtrees and adding
new subtrees if necessary.

c) Select crossover points in such a way that the resulting
trees be correct [9].

The third option has been chosen in order to avoid the
creation of a high number of useless trees and the
production of very non-causal changes [10] in offspring
due to the repairing mechanism.

Every symbol has a type attribute, determined by means of
the partitions defined by the equivalency relationship "is
interchangeable with". For example, since an EL node may
be swapped with an RLIST node, they have the same type.
Figure 5 shows all types.

Figure 5. Basic types.

The crossover operator first selects a random node in one
parent; then, a node of the same type is randomly selected in
the other parent and the corresponding subtrees are
swapped, thus producing two valid offspring. However,
considering just the types above leads to the creation of
syntactically correct but semantically incorrect trees with
output variables appearing in the condition side and/or
input variables appearing in the action side (e.g. IF for
IS NL THEN pos IS ZE). These situations must be
avoided to make a good use of computational resources.
To achieve this, two subtypes for both type II and III are
defined.

Every subtype can be seen as the variety of the
corresponding type that appears in either the condition side
or the action side. For example, for type VBLE (type III),
we define the subtypes VBLEIN and VBLEOUT,
representing input and output variables respectively. See
Figure 6 for a complete taxonomy of types and subtypes.

Figure 6. Types and symbols used.

IF

AND IS

IS IS FOR PL

 POS NL VEL NL

Type I

Type II

Type III

Type IV

SYMBOL

SET VBLE

VBLEIN VBLEOUT

NL
NS
ZE
PS
PL

ACTION

LIST

RLIST
IF
EL

COND_ACT

CONDITION

LEFT_AND
LEFT_IS

RIGHT_AND
RIGHT_IS

FOR POS
VEL

I II III IV

NL NL

PL

VEL POS

FOR

AND

IF

IS IS

EL

RLIST

IS

4.4. Generating Rule-Bases
Trees are bounded to have a maximum depth of 6 levels in
the initial generation and 15 in subsequent generations.
Initially, the population is generated using a half-ramping
mechanism [2]. We follow the BNF grammar shown in
Figure 7 to produce correct trees. Notice that only the last
two rules (describing input and output variables of the
problem) are problem-dependent. The rest of rules can be
used in any other fuzzy problem.

 <TREE> ::= EL | <IF> | <RLIST>
 <RLIST> ::= <TREE> <TREE> RLIST
 <IF> ::= <COND> <ACT> IF
 <COND> ::= <L_IS> | <L_AND>
 <L_IS> ::= <VBLEIN> <SET> LEFT_IS
 <L_AND> ::= <COND> <COND> LEFT_AND
 <ACT> ::= <R_IS> | <R_AND>
 <R_IS> ::= <VBLEOUT> <SET> RIGHT_IS
 <R_AND> ::= <ACT> <ACT> RIGHT_AND
 <SET> ::= NL | NS | ZE | PS | PL
 <VBLEIN> ::= VEL | POS
 <VBLEOUT> ::= FOR

Figure 7. BNF grammar of correct trees (described in
postorder).

Every tree is generated in a top-down fashion, i.e. choosing
a root-node and then producing appropriate subtrees in a
similar way. To generate a node, a random type is chosen
and subsequently a random symbol belonging to that type is
assigned to that node. The selection of this random symbol
depends on the level of the node (e.g. an IF node cannot
appear in levels below 3 because its branches must hang
two levels down -an IS subtree- at least). Figure 8 shows
which symbols may be root of a subtree according to its
parent and the maximal depth of the tree. The root node of
the whole tree may be only one of the thick nodes.

Figure 8. This graph shows which symbols may be arguments
of another one and the minimal level at which they
may appear in a complete tree.

4.5. Evaluating Rule-Bases
Individuals are trained through 16 simulations of the
problem in which the initial conditions are equally spaced
points in the input surface. Fitness is assigned according to
the performance on these test cases. This evaluation
technique is preferred to selecting random starting points
because it is less noisy and assures a better coverage of all
possible cases. However, there may be situations in which
the computational complexity of a simulation makes it too

expensive to perform such a complete sampling and
performing random tests may be a good tradeoff.

The simulations are executed for a maximum number of
500 time steps. The cart is considered to be centered if the
distance to the goal state in the input surface is small
enough. Notice that considering a particular distance
function notably influences the final results, as shown in
the next section. If the cart could not be centered, the
maximum number of steps is taken. The mean time of all
simulations is subtracted from 500 to obtain a fitness value
(to be maximized).

5. Results

In this section we show the results the GP model has
produced. For comparison purposes, we also include the
results of the intuitive solution described in section 3.2.
and some results from related works.

5.1. Optimal and Intuitive Solutions
To measure the performance of a given FLC, the mean time
to center the cart throughout 100 simulations of the
problem, starting from random initial points in the domain
[-2.5, 2.5] is used. Situations in which the initial state is
also a solution state are excluded. As stated in section 3.1.,
the parameters of the simulations were τ = 0.02 sec, m =
2.0 kg. Force has a cut-off value of 2.5 N. Simulations are
executed for a maximum number of 500 time steps. The
cart is considered centered when max(|pos|, |vel|)<0.5.

Whilst the optimal solution averaged 129 time steps to
center the cart, our naive solution took 249 time steps,
timing-out 14 times. In Figure 9, the control surfaces of
both solutions are shown.

Figure 9. Optimal (left) and naive (right) control surfaces.

The 18 rule-FLC described in [4] is tested too. Its
performance is better than our naive solution. The mean
time to center the cart is 149 time steps (for the parameters
of our simulator).

5.2. The GP solution
10 runs of the GP system were performed. Following [2], a
population size of 500, for a maximum number of 51
generations (the initial one plus 50 additional generations)
was chosen. The reproductive policy was generational and
elitist. Selection was 50% fitness-proportionate, 50%
random. This mechanism was used as a tradeoff between
the exploration of the search space and the exploitation of
known solutions. Figure 10 shows the best and the mean
fitness in every generation, averaged for the 10 runs.

RLIST

EL

IF AN
D

IS

<vble>

<set>

level 1

level 2

level 3

level 4

* not allowed in complete trees

level 1*

Figure 10. Best and mean fitness averaged for 10 runs.

The best generated individual obtained a fitness value of
321 (averaging 158 time steps to dock the cart), and
corresponded to the following 9 rule-FLC:

1) IF pos IS PL THEN for IS NL
2) IF pos IS PS THEN for IS NL
3) IF pos IS NL THEN for IS PL
4) IF vel IS PL THEN for IS NL
5) IF vel IS NS THEN for IS PL
6) IF vel IS NL THEN for IS PL
7) IF pos IS ZE AND vel IS PS THEN for IS NL
8) IF pos IS NS AND vel IS ZE THEN for IS PL
9) IF pos IS PS AND pos IS PL AND vel IS ZE AND

vel IS NS THEN for IS NL AND for IS NS AND
for IS PL

The rule-base above was obtained after deleting duplicated
rules. Rules #2, #3 and #6 appeared twice and rules #1 and
#4 were repeated three times. This indicates they are
important functional blocks for the FLC. The best
individual also contained two dummy rules whose
condition side is equivalent to an empty fuzzy set, so they
carry no influence on the output.

Figure 11 shows the control surface of this solution. It can
be seen that it is a rather poor approximation of the optimal
solution (Figure 9). Since it is well-known that the optimal
output for this problem is always saturated, a wrapper
converting positive values of F(t) to +F and negative
values to -F was added. The average time to center the cart
is then reduced down to 131 time steps. However, this FLC
did not evolve under that condition and therefore the
evolutionary process did not optimize it for that purpose.
Consequently, a new set of 10 runs was performed adding
this wrapper to the evaluation function. Figure 12 shows
how the quality of the solutions is very notably improved.

Figure 11. Control surfaces of the evolved FLC (left) and its
saturated counterpart (right).

Figure 12. Improvement in fitness adding a wrapper.

The best evolved FLC has 13 rules. Its control surface is
show in Figure 13.

Figure 13. Control surface of the best FLC evolved using a
wrapper in the evaluation function.

The average time it takes to center the cart is 120 time
steps. Though it may seem that this FLC performs better
than the optimal solution (129 time steps), it is only a
consequence of the distance function that has been used.
The max function considers as a goal state any point within
a square centered in the origin. The GA learned that
reaching a corner of the target zone is faster, in some
situations, than approaching any other point of its
perimeter. Figure 14 shows an example.

Figure 14. Example for x(0)=-2.5 and v(0) = 1 of the optimal

solution (dotted line) and the evolved FLC (solid line).

If an Euclidean distance function is taken, the average time
to dock the cart increases up to 133 time steps. To test the
effect of this new stopping criterion, another set of 10
experiments were done. A best FLC with 21 rules was
obtained. Its control surface is show in Figure 15.

mean

best

mean without wrapper

mean with wrapper

best with wrapper

best without wrapper

velocity

positio

goal
zone

Figure 15. Control surface of the best FLC evolved with a
wrapper and Euclidean stopping criterion.

It represents a very good approximation to the optimal
solution. This FLC averages 127 time steps to dock the
cart. This small improvement with respect to the optimal
solution reflects the fact that the analytical solution is
optimal to place the cart exactly in the origin, but not for
moving it to an area around it.

Finally, a set of experiments were performed using a
steady-state reproduction policy (i.e., generating just 2
individuals in every iteration and inserting them into the
population substituting the worst ones). Figure 16 shows a
comparison of this model with the generational one. Notice
how the steady-state GA has a much higher convergence
rate and therefore good solutions may be obtained earlier.

Figure 16. Comparison of convergence rates in the

generational and the steady-state models.

6. Conclusions

A GP approach to FLC design has been presented. This
class of genetic algorithms is more appropriate than other
more traditional evolutionary models due to the use of
high-level data structures; complex rule-bases may be
easily represented using trees. This encoding is much more
flexible than the fixed-length binary encoding of simple
genetic algorithms since there may be any number of rules
in an FLC. Moreover, rules may have any structure as long
as they are syntactically and semantically correct.
Therefore any good underlying (known or unknown)
structure can evolve to improve the GP result.

This model has an additional advantage: its extensibility.
Some GA-based systems work on encodings in which the
rules are constrained to have a determined structure or even
the number of rules is fixed. In such models, increasing the
number of variables involved in the test problem implies a
growth in chromosome length, and therefore large
populations are required to keep diversity. Since most

computational effort is devoted to simulate the system to
obtain a fitness measure, a large population leads to very
long runs of the GA. In the GP system, it would be
necessary to increase the maximum depth of trees, thus
allowing more complex rules and FLCs to evolve.
However, since loss of diversity is not a main issue in GP
[2], the population size could be kept constant (or just
slightly increased).

The results are very promising. FLCs have been generated
clearly outperforming an intuitive solution and other
evolutionary approaches. Their quality is comparable with
the optimal solution.

Advanced GP techniques (like Automatically Defined
Functions [11]) will be tried in future work. More difficult
test problems (e.g. the cart-pole balancing) may be used as
a touch-stone for that purpose.

References

[1] Holland, J.H. Adaptation in Natural and Artificial
Systems, University of Michigan Press, Ann Arbor, 1975.

[2] Koza, J.R. Genetic Programming, MIT Press,
Cambridge MA, 1992.

[3] Lee, C.C. Fuzzy Logic in Control Systems: Fuzzy
Logic Controller-Parts I & II, IEEE Transacts. on Systems,
Man and Cybernetics. 20:2. Pages 404-435, 1990.

[4] Thrift, P. Fuzzy Logic Synthesis with Genetic
Algorithms. In Belew R.K., Booker L.B. (Eds.), Procs. of
the Fourth International Conference on Genetic
Algorithms, Morgan Kaufmann Pub., San Mateo CA. Pages
509-513, 1991.

[5] Feldman, D.S. Fuzzy Network Synthesis with Genetic
Algorithms. In Forrest S. (Ed.), Procs. of the Fifth
International Conference on Genetic Algorithms, Morgan
Kaufmann Pub., San Mateo CA. Pages 312-317, 1993.

[6] Karr, C.L. Design of an Adaptive Fuzzy Logic
Controller using a Genetic Algorithm. In Belew R.K.,
Booker L.B. (Eds.), Procs. of the Fourth International
Conference on Genetic Algorithms, Morgan Kaufmann
Pub., San Mateo CA. Pages 450-457, 1991.

[7] Lee, M.A. Takagi, H. Dynamic Control of Genetic
Algorithms using Fuzzy Logic Techniques. In Forrest S.
(Ed.), Procs. of the Fifth International Conference on
Genetic Algorithms, Morgan Kaufmann Publ., San Mateo
CA. Pages 76-83, 1993.

[8] Bonarini A. Evolutionary Learning of Fuzzy Rules:
Competition and Cooperation. In Pedrycz W. Fuzzy
Modelling: Paradigms and Practice, Kluwer Academic
Press, Norwell MA, 1995.

[9] Montana, D.J. Strongly Typed Genetic Programming,
Bolt Beranek & Newman, Inc. Technical Report #7866,
1993.

[10] Rosca J.P., Ballard D.H. Causality in Genetic
Programming. In the Procs. of the Sixth International
Conference on Genetic Algorithms, Morgan Kaufmann
Publ., San Francisco CA, 1995.

[11] Kinnear, K.E. Advances in Genetic Programming,
Chapters 5-6, MIT Press, Cambridge MA, 1994.

generational

 steady-state

