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Abstract 

An evolutionary approach to fuzzy logic controller design 
is presented in this paper. We propose the use of a class of 
genetic algorithms to produce suboptimal fuzzy rule-bases 
(internally represented as constrained syntactic trees). This 
model has been applied to the cart centering problem. The 
obtained results show that a good parameterization of the 
algorithm and an appropriate evaluation function lead to 
near-optimal solutions. 

1. Introduction 

Genetic Algorithms (GAs) [1] are heuristic optimization 
procedures based on the principles of natural evolution. 
They combine the concepts of adaptation and survival of 
the fittest to produce suboptimal solutions for an arbitrary 
problem. This is achieved by means of the repeated 
application of mating and reproduction operators onto a 
population representing potential solutions. Genetic 
Programming (GP) [2] is a subset of the GA paradigm in 
which each individual in the population is a computer 
program (usually represented as a syntactically correct 
tree). These programs try to solve a certain task, given as a 
set of examples expressing the desired behavior. Programs 
are built up by the composition of some functions (internal 
nodes of the tree) operating on a set of terminal symbols 
(leaves). 

This work presents an approach in which individuals (trees) 
do not represent traditional computer programs but fuzzy 
rule-bases intended to solve a control problem (the cart 
centering problem, described further in this paper). A fuzzy 
interpreter is used to test the resulting fuzzy rules on the 
target problem.  

This paper is organized as follows: a brief review of fuzzy 
logic controllers and a description of the cart centering 
problem is first outlined, followed by the GP model used 
for the experiments. Finally, we present a comparative 
performance analysis of our approach and extract some 
important conclusions regarding the reproductive policy 
and the evaluation function. 

2. Fuzzy Logic Controllers 

Fuzzy Logic Controllers (FLCs) are rule-based systems 
that successfully incorporate the flexibility of human-
decision making by means of the use of fuzzy set theory 
[3]. Natural-language terms (e.g. pressure is low) are used 

in fuzzy rules. Their ambiguity is modeled by membership 
functions, intended to represent human expert's conception 
of the linguistic terms. A membership function gives a 
measure of the confidence with which a precise numeric 
value is described by a linguistic label. 

Rules take the form IF [conditions] THEN [actions], 
where conditions and actions are linguistic terms 
describing the values of input and output variables (e.g. IF 
pressure IS low THEN valve-opening IS small). The 
fuzzy rule-base of the FLC is composed of a number of 
such fuzzy rules. This rule-base is used to produce precise 
output values according to actual input values. This control 
process is divided into three stages (Figure 1):  

a) fuzzification: calculate fuzzy input, i.e. evaluate input 
variables with respect to the corresponding linguistic terms 
in the condition side. 

b) fuzzy inference: calculate fuzzy output, i.e. evaluate 
activation strength of every rule and combine their action 
sides. 

c) defuzzification: calculate actual output, i.e. convert 
fuzzy output into a precise numerical value. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. The Fuzzy Control Process. 

The fuzzy interpreter used in this work performs 
fuzzification via triangular membership functions, uses the 
min intersection operator, the maxmin method for fuzzy 
inference and the centroid procedure for defuzzification. 

3. The Cart Centering Problem 

In this section a description of the cart centering problem 
will be made. Next, it will be shown how the principles of 
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fuzzy control can be applied to this problem, outlining an 
ad-hoc solution. 

3.1. Description of the Problem 
The cart centering problem definition involves a cart with 
mass m moving along an infinite one-dimensional 
frictionless track. The problem consists in centering the 
cart, in minimal time, by applying an external time-variant 
force (of maximal magnitude F) so as to accelerate the cart 
in either the positive or the negative direction of the track. 
Given the values for the position x(t) and velocity v(t) of 
the cart at time t, this problem can be further formulated as 
calculating a force F(t) = F[x(t), v(t)] in order to place the 
cart in position x(tf)=0 with velocity v(tf)=0 in minimal tf. 
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Figure 2. The Cart Centering Problem and its optimal solution. 

Though simple, this is a typical optimal control problem 
and has a well-known solution (the bang-bang rule [2]). 

This system is simulated using Euler's method, i.e. taking 
time steps of  τ sec. and applying Newton's Laws: 

x t x t v t( ) ( ) ( )+ = + ⋅τ τ  

v t v t
F t

m
( ) ( )

( )
+ = +τ τ  

As in [4] and [5], we consider τ=0.02 sec. and m=2.0 kg. 

3.2. Designing a Fuzzy Logic Controller 
As an optimal control problem, the cart centering problem 
is well-suited for fuzzy control. The development of an 
FLC for this system involves the following three steps [6]: 

a) Determine condition (input) variables and specify the 
fuzzy sets describing them. 

b) Determine action (output) variables and specify the 
fuzzy sets describing them. 

c) Produce the rule-base. 

It is clear that position x(t) and velocity v(t) of the cart are 
the input variables, and the force F(t) applied to the cart is 
the only output variable in this problem. The membership 
functions defining the fuzzy sets over these variables are 

shown in Figure 3: five partitions representing the 
linguistic terms negative large (NL), negative small (NS), 
zero (ZE), positive small (PS) and positive large (PL). 

 

 

 

 

 

 

 

 
 

Figure 3. Fuzzy sets for position, velocity and force. 

The third step (production of the rule-base) may be 
accomplished by a human expert. The use of fuzzy 
linguistic terms allows an easier incorporation of human 
knowledge. For example, it seems intuitive in this problem 
that the applied force must almost always be directed 
towards the origin (since we want to place the cart in the 0 
position) and, just when we are close to that point, we must 
reverse the force to stop the cart. The following fuzzy rules 
express these rules-of-thumb: 

IF pos IS PL THEN for IS NL 
IF pos IS PS THEN for IS NL 
IF pos IS ZE AND vel IS PL THEN for IS NL 
IF pos IS ZE AND vel IS PS THEN for IS NL 
IF pos IS ZE AND vel IS NS THEN for IS PL 
IF pos IS ZE AND vel IS NL THEN for IS PL 
IF pos IS NS THEN for IS PL 
IF pos IS NL THEN for IS PL 

where pos, vel and for stand for position, velocity and force 
respectively. 

The FLC described above is not the optimal one. 
Improvements in the rule-base or in the interpretation of 
the linguistic terms may be done by means of GAs (see [4], 
[5], [6], [7]). We propose the use of GP to produce rule-
bases that can be used as a starting point for further 
refinements by a human expert or even as a final solution. 

4. Evolutionary Approach 

The genetic programming model is exposed in this section. 
First, the encoding is described. Next, the necessity of a 
type system is shown. Finally, some general details about 
the evaluation function are outlined. 

4.1. Two Ways of Encoding a Rule-Base 
There are two approaches when trying to encode a rule-
base, the Pitt approach and the Michigan approach [9].  In 
the former, every individual in the population represents a 
whole rule-base that competes with the other ones. In the 
latter, a single rule is contained in each individual; the 
behavior of the FLC is determined by the cooperation 
between all individuals. It must be taken into account that 
selecting any of these two schemes conditionates other 
aspects of the algorithms (e.g. fitness assignation). 
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A Pitt approach has been chosen following a simplicity 
criterion: fitness can be calculated via a short simulation 
and no advanced genetic mechanism (like sharing or 
crowding) is needed. 
 

4.2. Encoding Rule-Bases 
Given that every individual contains a list of rules, an 
encoding for single rules and subsequently a mechanism to 
join them is needed. 

A single rule can be easily represented as a binary tree: the 
root being an IF node, and left and right branches 
representing the condition and the action sides respectively. 
Likewise, both conditions and actions can be expressed as 
trees. On the one hand, a variable paired with a fuzzy set 
can be represented as a tree with an IS root-node: the 
variable name in the left branch and the fuzzy set in the 
right branch. On the other hand, a conjunction of such 
terms can be expressed as a tree with an AND root-node and 
two branches representing nested conjunctions or pairs 
(variable, fuzzy set). Figure 4 shows an example. 

 
 
 
 
 
 
 
 
 
 

IF pos IS NL AND vel IS NL THEN for IS PL 

Figure 4. A syntactic tree and the rule it represents. 

A list of rules might be represented as a list of trees. 
However, it is more appropriate to use a single tree 
representation because it allows rules to be tightly 
connected and therefore facilitates the propagation of good 
functional blocks. Two additional symbols are required. 
The EL symbol represents an empty list. The RLIST 
symbol combines rules in the same fashion that the AND 
symbol joins terms, i.e. a list of rules is a tree with an 
RLIST root-node and two branches representing single 
rules or analogous lists of rules. 

This is a very flexible and powerful representation of FLC 
rule-bases. It deals well with the fact that an FLC may have 
rules with very different structures among them as well as a 
variable number of rules. This aspect contrasts with other 
GA-based approaches in which the structure [4] [7] or the 
number of rules in the FLC [5] is arbitrarily prefixed.  

4.3. Necessity of a Type-System 
The flexibility of this tree representation makes crossover a 
very powerful tool since it allows interchange at several 
levels: rules, terms or even variable names. However, the 
traditional GP crossover operator may produce nonsense 
rules. For example, consider the case in which a variable 
name is substituted by a whole rule. There are three 
possible solutions for that problem:  

 

a) Define closed functions, so those ill-defined rules are 
reinterpreted in some predefined way [2]. 

b) Repair the tree, deleting incorrect subtrees and adding 
new subtrees if necessary. 

c) Select crossover points in such a way that the resulting 
trees be correct [9]. 

The third option has been chosen in order to avoid the 
creation of a high number of useless trees and the 
production of very non-causal changes [10] in offspring 
due to the repairing mechanism. 

Every symbol has a type attribute, determined by means of 
the partitions defined by the equivalency relationship "is 
interchangeable with". For example, since an EL node may 
be swapped with an RLIST node, they have the same type. 
Figure 5 shows all types. 

 

 

 

 

 

Figure 5. Basic types. 

The crossover operator first selects a random node in one 
parent; then, a node of the same type is randomly selected in 
the other parent and the corresponding subtrees are 
swapped, thus producing two valid offspring. However, 
considering just the types above leads to the creation of 
syntactically correct but semantically incorrect trees with 
output variables appearing in the condition side and/or 
input variables appearing in the action side (e.g. IF for 
IS NL THEN pos IS ZE). These situations must be 
avoided to make a good use of computational resources. 
To achieve this, two subtypes for both type II and III are 
defined. 

Every subtype can be seen as the variety of the 
corresponding type that appears in either the condition side 
or the action side. For example, for type VBLE (type III), 
we define the subtypes VBLEIN and VBLEOUT, 
representing input and output variables respectively. See 
Figure 6 for a complete taxonomy of types and subtypes. 

 
 
 
 
 
 
 
 
 
 

Figure 6. Types and symbols used. 
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4.4. Generating Rule-Bases 
Trees are bounded to have a maximum depth of 6 levels in 
the initial generation and 15 in subsequent generations. 
Initially, the population is generated using a half-ramping 
mechanism [2]. We follow the BNF grammar shown in 
Figure 7 to produce correct trees. Notice that only the last 
two rules (describing input and output variables of the 
problem) are problem-dependent. The rest of rules can be 
used in any other fuzzy problem.  

 <TREE> ::= EL | <IF> | <RLIST> 
 <RLIST> ::= <TREE> <TREE>  RLIST 
 <IF>  ::= <COND> <ACT> IF 
 <COND> ::= <L_IS> | <L_AND> 
 <L_IS> ::= <VBLEIN> <SET> LEFT_IS 
 <L_AND> ::= <COND> <COND> LEFT_AND 
 <ACT> ::= <R_IS> | <R_AND> 
 <R_IS> ::= <VBLEOUT> <SET> RIGHT_IS 
 <R_AND> ::= <ACT> <ACT> RIGHT_AND 
 <SET> ::= NL | NS | ZE | PS | PL 
 <VBLEIN> ::= VEL | POS 
 <VBLEOUT> ::= FOR 

Figure 7. BNF grammar of correct trees (described in 
postorder). 

Every tree is generated in a top-down fashion, i.e. choosing 
a root-node and then producing appropriate subtrees in a 
similar way. To generate a node, a random type is chosen 
and subsequently a random symbol belonging to that type is 
assigned to that node. The selection of this random symbol 
depends on the level of the node (e.g. an IF node cannot 
appear in levels below 3 because its branches must hang 
two levels down -an IS subtree- at least). Figure 8 shows 
which symbols may be root of a subtree according to its 
parent and the maximal depth of the tree. The root node of 
the whole tree may be only one of the thick nodes.  

 

 

 

 

Figure 8. This graph shows which symbols may be arguments 
of another one and the minimal level at which they 
may appear in a complete tree.  

4.5. Evaluating Rule-Bases 
Individuals are trained through 16 simulations of the 
problem in which the initial conditions are equally spaced 
points in the input surface. Fitness is assigned according to 
the performance on these test cases. This evaluation 
technique is preferred to selecting random starting points 
because it is less noisy and assures a better coverage of all 
possible cases.  However, there may be situations in which 
the computational complexity of a simulation makes it too 

expensive to perform such a complete sampling and 
performing random tests may be a good tradeoff. 

The simulations are executed for a maximum number of 
500 time steps. The cart is considered to be centered if the 
distance to the goal state in the input surface is small 
enough. Notice that considering a particular distance 
function notably influences the final results, as shown in 
the next section. If the cart could not be centered, the 
maximum number of steps is taken. The mean time of all 
simulations is subtracted from 500 to obtain a fitness value 
(to be maximized). 

5. Results 

In this section we show the results the GP model has 
produced. For comparison purposes, we also include the 
results of the intuitive solution described in section 3.2. 
and some results from related works. 

5.1. Optimal and Intuitive Solutions 
To measure the performance of a given FLC, the mean time 
to center the cart throughout 100 simulations of the 
problem, starting from random initial points in the domain 
[-2.5, 2.5] is used. Situations in which the initial state is 
also a solution state are excluded. As stated in section 3.1., 
the parameters of the simulations were τ = 0.02 sec, m = 
2.0 kg. Force has a cut-off value of 2.5 N. Simulations are 
executed for a maximum number of 500 time steps. The 
cart is considered centered when max(|pos|, |vel|)<0.5. 

Whilst the optimal solution averaged 129 time steps to 
center the cart, our naive solution took 249 time steps, 
timing-out 14 times. In Figure 9, the control surfaces of 
both solutions are shown. 

  
Figure 9. Optimal (left) and naive (right) control surfaces. 

The 18 rule-FLC described in [4] is tested too. Its 
performance is better than our naive solution. The mean 
time to center the cart is 149 time steps (for the parameters 
of our simulator).  

5.2. The GP solution 
10 runs of the GP system were performed. Following [2], a 
population size of 500, for a maximum number of 51 
generations (the initial one plus 50 additional generations) 
was chosen. The reproductive policy was generational and 
elitist. Selection was 50% fitness-proportionate, 50% 
random. This mechanism was used as a tradeoff between 
the exploration of the search space and the exploitation of 
known solutions. Figure 10 shows the best and the mean 
fitness in every generation, averaged for the 10 runs. 
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Figure 10. Best and mean fitness averaged for 10 runs. 

The best generated individual obtained a fitness value of 
321 (averaging 158 time steps to dock the cart), and 
corresponded to the following 9 rule-FLC: 

1) IF pos IS PL THEN for IS NL 
2) IF pos IS PS THEN for IS NL 
3) IF pos IS NL THEN for IS PL 
4) IF vel IS PL THEN for IS NL 
5) IF vel IS NS THEN for IS PL 
6) IF vel IS NL THEN for IS PL 
7) IF pos IS ZE AND vel IS PS THEN for IS NL 
8) IF pos IS NS AND vel IS ZE THEN for IS PL 
9) IF pos IS PS AND pos IS PL AND vel IS ZE AND 

vel IS NS THEN for IS NL AND for IS NS AND 
for IS PL 

The rule-base above was obtained after deleting duplicated 
rules. Rules #2, #3 and #6 appeared twice and rules #1 and 
#4 were repeated three times. This indicates they are 
important functional blocks for the FLC. The best 
individual also contained two dummy rules whose 
condition side is equivalent to an empty fuzzy set, so they 
carry no influence on the output. 

Figure 11 shows the control surface of this solution. It can 
be seen that it is a rather poor approximation of the optimal 
solution (Figure 9). Since it is well-known that the optimal 
output for this problem is always saturated, a wrapper 
converting positive values of F(t) to +F and negative 
values to -F was added. The average time to center the cart 
is then reduced down to 131 time steps. However, this FLC 
did not evolve under that condition and therefore the 
evolutionary process did not optimize it for that purpose. 
Consequently, a new set of 10 runs was performed adding 
this wrapper to the evaluation function. Figure 12 shows 
how the quality of the solutions is very notably improved.  

   

Figure 11.  Control surfaces of the evolved FLC (left) and its 
saturated counterpart (right). 

 
Figure 12.  Improvement in fitness adding a wrapper. 

The best evolved FLC has 13 rules. Its control surface is 
show in Figure 13.  

  

Figure 13.  Control surface of the best FLC evolved using a 
wrapper in the evaluation function. 

The average time it takes to center the cart is 120 time 
steps. Though it may seem that this FLC performs better 
than the optimal solution (129 time steps), it is only a 
consequence of the distance function that has been used. 
The max function considers as a goal state any point within 
a square centered in the origin. The GA learned that 
reaching a corner of the target zone is faster, in some 
situations, than approaching any other point of its 
perimeter. Figure 14 shows an example.  

 
Figure 14.  Example for x(0)=-2.5 and v(0) = 1 of the optimal 

solution (dotted line) and the evolved FLC (solid line). 

If an Euclidean distance function is taken, the average time 
to dock the cart increases up to 133 time steps. To test the 
effect of this new stopping criterion, another set of 10 
experiments were done. A best FLC with 21 rules was 
obtained. Its control surface is show in Figure 15.  
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Figure 15.  Control surface of the best FLC evolved with a 
wrapper and Euclidean stopping criterion. 

It represents a very good approximation to the optimal 
solution. This FLC averages 127 time steps to dock the 
cart. This small improvement with respect to the optimal 
solution reflects the fact that the analytical solution is 
optimal to place the cart exactly in the origin, but not for 
moving it to an area around it.  

Finally, a set of experiments were performed using a 
steady-state reproduction policy (i.e., generating just 2 
individuals in every iteration and inserting them into the 
population substituting the worst ones). Figure 16 shows a 
comparison of this model with the generational one. Notice 
how the steady-state GA has a much higher convergence 
rate and therefore good solutions may be obtained earlier. 

 
Figure 16.  Comparison of convergence rates in the 

generational and the steady-state models. 

6. Conclusions 

A GP approach to FLC design has been presented. This 
class of genetic algorithms is more appropriate than other 
more traditional evolutionary models due to the use of 
high-level data structures; complex rule-bases may be 
easily represented using trees. This encoding is much more 
flexible than the fixed-length binary encoding of simple 
genetic algorithms since there may be any number of rules 
in an FLC. Moreover, rules may have any structure as long 
as they are syntactically and semantically correct.  
Therefore any good underlying (known or unknown) 
structure can evolve to improve the GP result.  

This model has an additional advantage: its extensibility. 
Some GA-based systems work on encodings in which the 
rules are constrained to have a determined structure or even 
the number of rules is fixed. In such models, increasing the 
number of variables involved in the test problem implies a 
growth in chromosome length, and therefore large 
populations are required to keep diversity.  Since most 

computational effort is devoted to simulate the system to 
obtain a fitness measure, a large population leads to very 
long runs of the GA. In the GP system, it would be 
necessary to increase the maximum depth of trees, thus 
allowing more complex rules and FLCs to evolve. 
However, since loss of diversity is not a main issue in GP 
[2], the population size could be kept constant (or just 
slightly increased). 

The results are very promising. FLCs have been generated 
clearly outperforming an intuitive solution and other 
evolutionary approaches. Their quality is comparable with 
the optimal solution. 

Advanced GP techniques (like Automatically Defined 
Functions [11]) will be tried in future work. More difficult 
test problems (e.g. the cart-pole balancing) may be used as 
a touch-stone for that purpose. 
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