
Constrained Dimensionally Aware Genetic
Programming for Evolving Interpretable
Dispatching Rules in Dynamic Job Shop

Scheduling

Yi Mei1, Su Nguyen1,2, and Mengjie Zhang1

1 Victoria University of Wellington, Wellington, New Zealand
2 Advanced Analytics Lab, La Trobe University, AU
{yi.mei, su.nguyen, mengjie.zhang}@ecs.vuw.ac.nz

Abstract. This paper investigates the interpretability of the Genetic
Programming (GP)-evolved dispatching rules for dynamic job shop schedul-
ing problems. We incorporate the physical dimension of the features used
in the terminal set of GP, and assume that the rules that aggregate the
features with the same physical dimension are more interpretable. Based
on this assumption, we define a new interpretability measure called di-
mension gap, and develop a Constrained Dimensionally Aware GP (C-
DAGP) that optimises the effectiveness and interpretability simultane-
ously. In C-DAGP, the fitness is defined as a penalty function with a
newly proposed penalty coefficient adaptation scheme. The experimen-
tal results show that the proposed C-DAGP can achieve better tradeoff
between effectiveness and interpretability compared against the baseline
GP and an existing DAGP.

1 Introduction

Job Shop Scheduling (JSS) [18] has applications in a variety of real-world do-
mains such as manufacturing [3], project scheduling [23] and cloud computing.
It aims to schedule the jobs arriving at a job shop (e.g. factory) subject to some
constraints (e.g. each job much follow a pre-specified routing, and each machine
can process no more than one job at one time) and optimise some criteria such
as flowtime and tardiness.

In the real world, the job arrival process is an ongoing process. Therefore,
it is more realistic to consider the Dynamic JSS (DJSS), in which there are
unpredicted job arrivals occurring in real time. More specifically, in DJSS, at
any given time point, only the information of the jobs that have arrived before
the current time is available, while the future jobs are still unknown. In this
paper, we focus on solving DJSS, which is closer to reality than the static JSS
counterpart.

For solving DJSS, traditional optimisation approaches such as mathematical
programming and genetic algorithms are not directly applicable since they are
trying to obtain a solution (schedule). When the environment changes, e.g. a new
job arrives, it is non-trivial to effectively adjust the current schedule to adapt to

2

the new environment. Dispatching Rules (DRs), on the other hand, are promising
heuristics for solving DJSS due to their low complexity, scalability and flexibility.
Instead of optimising the schedule as a whole, a DR gradually builds the schedule
step by step by taking the latest information into account. Specifically, a DR
uses a priority function to decide for each idle machine which job in its waiting
queue should be processed next. Common DRs include First-Come-First-Serve
(FCFS), Earliest Due Date (EDD), Shortest Processing Time (SPT), etc. A lot
of DRs have been designed manually (e.g. [22, 10, 20]) by considering job shop
attributes such as operation processing time, due date, work remaining and slack.
However, the existing manually designed DRs are normally not effective enough,
and restricted to the particular job shop scenario they are designed for.

The effectiveness of DRs depends on various factors such as objective, due
date tightness and job shop utilisation [22]. Therefore, it is hard to design effec-
tive DRs manually under a given job shop scenario. To address this issue, Genetic
Programming (GP) is a promising approach to automatically design DRs as a
hyper-heuristic. Evolving DRs with GP has achieved some success in scheduling
[2, 15], and the GP-evolved DRs have shown to be much more effective than the
manually designed rules.

Most existing related works focused on the effectiveness of DRs. However,
they ignored another important property of the GP-evolved DRs, which is in-
terpretability. As a result, the GP-evolved DRs are too complicated to be inter-
preted and understood. The practitioners may feel less confident of using the
DRs due to the lack of understanding of the inner mechanism, despite of their
effectivenesses shown on the training instances.

In this paper, we aim to consider both effectiveness and interpretability of the
DRs during the GP process. We employ the Dimensionally Aware GP (DAGP),
which considers the physical dimensions (time, count and weight) of the job shop
attributes, and favours the combinations between the attributes with the same
physical dimension. Specifically, we have the following research objectives:

– Develop a Constrained DAGP (C-DAGP) algorithm for DJSS based on the
physical dimensions of the job shop attributes.

– Propose a new penalty coefficient adaptation scheme for C-DAGP.
– Compare between the penalty adaptation schemes for C-DAGP, and compare

C-DAGP with an existing DAGP and the baseline GP.

The rest of the paper is organised as follows: Section 2 gives the background
introduction. Then, the proposed C-DAGP is described in Section 3. Experimen-
tal studies are carried out in Section 4. Finally, Section 5 gives the conclusions
and future work.

2 Background

2.1 Job Shop Scheduling

JSS is to process a set of jobs with a set of given machines subject to some
constraints. Each job has an arrival time, a due date, and a sequence of oper-
ations. Each operation has an eligible machine which is the only machine that

3

can process it, as well as a processing time. An operation cannot be processed
before the completion before its precedent operations. Each machine can pro-
cess at most one operation at a time. The commonly considered JSS objectives
include minimising the makespan (Cmax), total flowtime (

∑
Cj), total weighted

tardiness (
∑
wjTj), number of tardy jobs, etc [18].

2.2 Related Works

So far, there have been extensive studies [5, 9, 14, 17, 7]) in evolving DRs for
DJSS using GP, and successfully achieved much better DRs than the previously
man-made rules. Comprehensive reviews can be found in [2, 15].

Most existing works focused on the effectiveness (i.e. the test performance)
of the GP-evolved DRs. Only a few recent works tried to improve the inter-
pretability of the DRs. Nguyen et al. [14] investigated different representations
and proposed a grammar-based representation to evolve more meaningful rules.
Some studies tried to use feature selection to implicitly improve the interpretabil-
ity of the evolved rules, assuming that using fewer terminals tends to generate
more meaningful rules. Along this direction, Mei et al. [13] proposed to a feature
selection algorithm that obtained more compact terminal set for GP. Riley et
al. [21] proposed a similar feature selection approach.

To focus on more meaningful combinations of terminals, Hunt et al. [8] con-
sidered the physical dimensions of the job shop attributes (e.g. time, count and
weight), and developed a strongly-typed GP that evolves DRs that only allows
the “meaningful” combinations between the attributes with the same physical
dimension. Following similar ideas, Durasević et al. [4] developed a DAGP that
considers the compatibility between the physical dimensions of the terminals.
They designed initialisation and evolutionary operators so that no semantically
incorrect rule (e.g. adding time to weight) is generated.

However, it has been shown [8, 4] that when restricting the combination be-
tween terminals of GP, the rules obtained by the strongly-typed GP and DAGP
had worse test performance than the baseline GP. The main reason is that the
restrictions on the combinations of terminals make a huge part of the search
space infeasible, and the resultant search space consists of many isolated feasible
regions. It may be hard to jump from one feasible region to another. Thus, the
final rule largely depends on the initial rules, and the search gets stuck into poor
local optima easily.

Keizer and Babovic [11, 1] proposed a dimension-based brood selection scheme
for DAGP, which addressed the overly restricted search space to some extent.
The proposed algorithm allows dimensional inconsistent combinations, and uses
a culling function to measure the total dimensional inconsistency (i.e. dimen-
sional violations) of each individual. Then, each crossover/mutation operator
generates m(> 1) offsprings, and the best one in terms of dimensional inconsis-
tency is selected as the offspring produced by the operator.

However, the culling function is not flexible enough, and our preliminary
studies showed that in DJSS, even m = 2 can lead to a dramatic deterioration
in test performance. In this paper, we propose to improve the flexibility of DAGP
by considering the dimensional consistency as a constraint.

4

3 Constrained Dimensionally Aware Genetic
Programming

The framework of the proposed C-DAGP is given in Algorithm 1. There are
two important features in the framework, highlighted in lines 3 and 4. The first
feature is the dimension gap (line 3), which reflects the degree of dimension
inconsistency based on the physical dimensions (or units) of each terminal in-
troduced in DAGP [11]. The calculation of the dimension gap will be described
in detail in Section 3.1. The second feature is the constrained fitness function
defined by both the objective value and the dimension gap. The two terms are
aggregated by a penalty coefficient α on the dimension gap. Since the objective
value and dimension gap have significantly different scales, an open issue is to
set a proper α value to achieve good balance between the objective value and
dimension gap. We propose a new penalty coefficient adaptation scheme, which
will be described in Section 3.2.

Algorithm 1: The framework of C-DAGP.

1 Initialise a population using Grow method;
2 while Stopping criteria not met do
3 Calculate the objective value obj(x) and the dimension gap dimGap(x) for

each individual x in the population ;
4 Calculate the fitness of each individual using a penalty function

fit(x) = obj(x) + α · dimGap(x) ;
5 Generate a new population by selection and evolutionary operators;

6 end
7 return The best individual in the population;

3.1 Calculation of Dimension Gap

First, we introduce the physical dimensions of the terminals used in GP for
evolving DRs in DJSS. We define three physical dimensions as follows:

1. TIME: including terminals such as processing time, due date, slack, etc.
2. COUNT: including terminals such as number of operations remaining, number

of jobs in the queue, etc.
3. WEIGHT: the weight of a job.

Each node in the GP-tree is associated with a 3D vector θ = (T,C,W),
representing its exponentials of the three dimensions. For example, a terminal
PT (processing time) is associated with a vector (1, 0, 0), since it belongs to the
TIME dimension, that is, its dimension exponential is 1 in TIME, and 0 in all
the other dimensions. The dimension exponential values of a non-terminal node
depends on that of its children and the function that the node represents. Table
1 shows how the calculation is conducted for the functions used in the proposed
C-DAGP. For multiplication (division), the exponentials of the two children are
added (subtracted). For addition, subtraction, max and min operators, since
we allow children with inconsistent exponentials, we set the exponentials of the

5

result to be the average of that of the two children. If the two children have
the same dimension exponentials, then the result will have the same dimension
exponentials with the children as well.

Table 1. The calculation of the dimension vector values of a non-terminal node.

Function(s) Children Vector Values Result

+, −, max and min (T1, C1,W1), (T2, C2,W2)
(
T1+T2

2
, C1+C2

2
, W1+W2

2

)
× (T1, C1,W1), (T2, C2,W2) (T1 + T2, C1 + C2,W1 +W2)
/ (T1, C1,W1), (T2, C2,W2) (T1 − T2, C1 − C2,W1 −W2)

Then, we calculate the dimension gaps for each node and the entire GP-tree.
For multiplication and division, the dimension gap is always zero since these two
operators have no restriction on the dimensions of the children. For the other
operators, the dimension gap is the sum of the differences between the children
in all the dimensions. The dimension gaps are calculated as follows:

dimGap(node) =

{
0, if node = × or /

δ(θ(c1),θ(c2)), otherwise.
(1)

dimGap(tree) =
∑

node∈tree
dimGap(node), (2)

where δ(θ1,θ2) = |T1 − T2|+ |C1 − C2|+ |W1 −W2|.
Fig. 1 gives an example of the dimension gap calculation. In this example,

all the terminals have zero dimension gaps. Then, according to Eq. (1), the
dimension gaps of the “∗” and “/” non-terminal nodes are 0, and that of the
root “−” is 2.

Fig. 1. An example of the dimension gap calculation.

3.2 Penalty Coefficient Adaptation

It is a non-trivial task to set a proper penalty coefficient to achieve a good
balance between the test performance and interpretability (represented by di-
mension gap). Specifically, the penalty coefficient should be set according to the
distribution of the current population. If the current population is located in

6

regions with high dimension gap, then the coefficient should be high to push the
search towards the more interpretable areas. On the other hand, if most indi-
viduals in the current population have zero dimension gap, then the coefficient
should be low to encourage the search to jump out of the current region of zero
dimension gap (“feasible” region in terms of dimension consistency) through the
intermediate area with positive dimension gap (“infeasible” regions). Here, we
extend a mechanism proposed for bloating control in GP [19]. In that work, to
keep the average program size in the population staying at the same level during
the GP process, a parsimony pressure method is used and the adjusted fitness
of a solution x is defined as fit(x) = obj(x) +α · size(x), where the parsimony
coefficient α at generation t is determined by

α(t) = −cov(size, obj)

var(size)
(3)

where the covariance cov(size, obj) and variance var(size) are calculated em-
pirically using the program sizes and objective values of the individuals in the
current population [19].

In this paper, we borrow this idea and design the penalty coefficient adap-
tation so that the average dimension gap of the individuals in the population
stays at the same level during the GP process. To this end, we simply replace
size with dimGap in Eq. (3). Furthermore, to reduce the empirical estimation
bias of the covariance and variance, we propose the following two strategies:

1. Instead of using all the individuals in the population, we use the top 10%
individuals in terms of the objective value in the population for estimating
the covariance and variance measures. This way, we expect to reduce the
effect of the individuals with very poor objective values.

2. The penalty coefficient is updated by a moving average technique as follows:

α(0) = −cov(dimGap(pop0), obj(pop0))

var(dimGap(pop0))
, (4)

α(t+ 1) = α(t)− η
(

cov(dimGap(popt), obj(popt))

var(dimGap(popt))
+ α(t)

)
. (5)

where t is the generation index, and 0 ≤ η ≤ 1 is a user-defined step size
parameter. When η = 0, α(t + 1) = α(t) for all t ≥ 0, i.e. the coefficient is
fixed throughout the GP process. When η = 1, α is completely memoryless,
and α(t+ 1) is independent of α(t).

4 Experimental Studies

To evaluate the effectiveness of the proposed C-DAGP, we first conduct sensitiv-
ity analysis on the parameter η. Then, we compare C-DAGP with the baseline
GP (denoted as BaselineGP) and the GP with culling function [11] (denoted
as CullingGP). For CullingGP, each crossover/mutation operator generates 2
offsprings, and the one with least dimension gap is selected.

7

In the experiments, we consider 3 objectives: maximal tardiness (Tmax),
mean tardiness (Tmean) and total weighted tardiness (TWT). For each objec-
tive, we consider utilisation levels of 0.85 and 0.95. This results in 3× 2 = 6 dif-
ferent job shop scenarios. The configuration parameters of the simulation model
are given in Table 2, which has been used in previous studies [16, 6, 12]. The
parameter setting of the compared GP algorithms is given in Table 3.

Table 2. The DJSS simulation configuration.

Parameter Value Parameter Value

#machines 10 #jobs 5000
#warmup jobs 1000 #operations/job Random from 2 to 10

Job arrival Poisson process Utilisation level {0.85, 0.95}
Due date 4×total processing time Processing time U [1, 99]

Table 3. The parameter setting of the compared GP algorithms.

Parameter Value Parameter Value

Terminal set See Table 4 Function set {+,−, ∗, /,min,max}
Population size 1024 Maximal depth 8
Crossover rate 80% Mutation rate 15%

Reproduction rate 5% #generations 51

Table 4. The terminals used in the GP algorithms.

Notation Description Dimension

WIQ Work In Queue TIME

MWT Machine Waiting Time TIME

PT Processing Time TIME

NPT Next Processing Time TIME

OWT Operation Waiting Time TIME

NWT Next Machine Waiting Time TIME

WKR Work Remaining TIME

WINQ Work In Next Queue. TIME

rFDD Relative FDD TIME

rDD Relative DD TIME

TIS Time In System TIME

SL Slack TIME

NIQ Number of operations In Queue COUNT

NOR Number of Operations Remaining COUNT

NINQ Number of operations In Next Queue COUNT

W Weight WEIGHT

8

During the training process, an individual is evaluated using a randomly gen-
erated simulation. To improve generalisation, the random seed for generating the
training simulation changes per generation. In addition, the fitness is normalised
by the objective value of the reference rule. The reference rule is set to EDD,
ATC and WATC for Tmax, Tmean and TWT, respectively. Finally, the best
individual in the last generation is selected as the best individual of the GP run.

For testing, a test set of 50 simulation replications is randomly generated for
each scenario. The test fitness of a rule x is defined as the normalised total ob-
jective value over the test replications, i.e. Γ (x,Π, F) =

∑
π∈Π F (x,π)∑

π∈Π F (RefRule(Obj),π) ,

where F ∈ {Tmax,Tmean,TWT}.
All the compared GP approaches were implemented in Java using the ECJ

library. The experiments were run on desktops with Intel(R) Core(TM) i7 CPU
@3.60GHz. Both algorithms were run 30 times independently for each scenario.

4.1 Parameter Sensitivity Analysis

First, we conducted the sensitivity analysis to study the effect of the step size η on
the performance of the algorithm. To this end, we compared the test performance
and the dimension gap of the rules obtained by the C-DAGP with η = 1, 0.1
and 0.01, as shown in Tables 5 and 6. We conducted Wilcoxon’s rank sum test
with significance level of 0.05, and found no statistical significance between the
compared η values in terms of both test performance and dimension gap. Table
6 shows that η = 0.1 tends to achieve smaller (although not significant due to
the high standard deviation) dimension gap than η = 1 and η = 0.01. Therefore,
we choose η = 0.01 in the subsequent experiments.

Table 5. The mean and standard deviation (in brackets) of the test performance
obtained by the C-DAGP with η = 1, 0.1 and 0.01.

Scenario Dimension Gap

η = 1 η = 0.1 η = 0.01

〈Tmax, 0.85, 4〉 0.49(0.02) 0.49(0.01) 0.49(0.01)
〈Tmean, 0.85, 4〉 0.51(0.06) 0.51(0.06) 0.51(0.05)
〈TWT, 0.85, 4〉 0.59(0.10) 0.57(0.08) 0.59(0.09)
〈Tmax, 0.95, 4〉 0.72(0.02) 0.71(0.02) 0.70(0.02)
〈Tmean, 0.95, 4〉 0.69(0.02) 0.68(0.02) 0.69(0.03)
〈TWT, 0.95, 4〉 0.80(0.04) 0.81(0.04) 0.80(0.04)

4.2 Results and Discussions

The proposed C-DAGP is compared with BaselineGP and CullingGP [11]. Base-
lineGP does not consider dimension gap at all. CullingGP is a DAGP that re-
duces the dimension gap by repeatedly generating several (2 in the experiment)
offsprings in each crossover and mutation, and selecting the one with the minimal

9

Table 6. The mean and standard deviation (in brackets) of the dimension gap
obtained by the C-DAGP with η = 1, 0.1 and 0.01.

Scenario Dimension Gap

η = 1 η = 0.1 η = 0.01

〈Tmax, 0.85, 4〉 9.11(6.89) 5.35(6.07) 11.54(9.54)
〈Tmean, 0.85, 4〉 15.42(8.11) 12.69(7.36) 15.61(7.59)
〈TWT, 0.85, 4〉 13.12(6.31) 11.92(6.45) 14.31(7.88)
〈Tmax, 0.95, 4〉 10.31(9.97) 9.10(7.91) 13.69(8.79)
〈Tmean, 0.95, 4〉 16.10(8.95) 15.29(7.83) 15.21(6.27)
〈TWT, 0.95, 4〉 16.77(8.03) 15.27(6.09) 16.95(6.63)

dimension gap. It is not flexible in adjusting the balance between test perfor-
mance and dimension gap.

Figs. 2 and 3 show the convergences curves of the compared BaselineGP,
CullingGP [11] and C-DAGP in terms of test performance and dimension gap.
For each curve, the center is the mean value, and the ribbon is the standard
error In Fig. 2, the curves for the last 5 generations are zoomed in and shown in
the blocks inside.

From Fig. 2, one can see that in terms of performance of C-DAGP (blue)
was generally better than CullingGP (green). It outperformed CullingGP in
〈Tmean, 0.85, 4〉, 〈TWT, 0.85, 4〉, 〈Tmean, 0.95, 4〉 and 〈TWT, 0.95, 4〉, and almost the
same as CullingGP in other cases. C-DAGP was slightly worse than BaselineGP
(red). It was outperformed by BaselinGP in 〈Tmean, 0.95, 4〉 and 〈TWT, 0.95, 4〉,
performed better in 〈Tmean, 0.85, 4〉, and achieved comparable performance as
BaselineGP in other cases.

Fig. 3 clearly shows that the dimension gap obtained by C-DAGP is be-
tween the dimension gaps of BaselineGP and CullingGP. BaselineGP ignores
the dimension gap during the evolutionary process, and thus obtained very high
dimension gaps. CullingGP, on the other hand, focused too much on the dimen-
sion gap. As a result, it achieved very low dimension gap (close to zero) at the
cost of significantly worse test performance than BaselineGP (the green curves
v.s. red curves in Fig. 2).

Overall, C-DAGP sat in the middle of BaselineGP and CullingGP. It achieved
better test performance than CullingGP and smaller dimension gap than Base-
lineGP. Although the current results do not clearly show the advantage of C-
DAGP, the new constrained optimisation framework enables a finer control on
the balance between the test performance and dimension gap than CullingGP
(it is reduced to BaselineGP when m = 1).

4.3 Further Analysis

As a further analysis, we investigated the structure of a rule obtained by C-
DAGP for 〈TWT, 0.85, 4〉, which obtained both promising test performance (0.47
versus the mean of 0.57 over 30 runs) and dimension gap (dimGap = 2). The

10

0.50

0.55

0.60

0.65

0 10 20 30 40 50

Generation

T
e

s
t

F
it

n
e

s
s

BaselineGP CullingGP C-DAGP

<Tmax, 0.85, 4>

0.6

0.8

1.0

1.2

0 10 20 30 40 50

Generation

T
e

s
t

F
it

n
e

s
s

BaselineGP CullingGP C-DAGP

<Tmean, 0.85, 4>

1.0

1.5

0 10 20 30 40 50

Generation

T
e

s
t

F
it

n
e

s
s

BaselineGP CullingGP C-DAGP

<TWT, 0.85, 4>

0.70

0.75

0.80

0.85

0 10 20 30 40 50

Generation

T
e

s
t

F
it

n
e

s
s

BaselineGP CullingGP C-DAGP

<Tmax, 0.95, 4>

0.7

0.8

0.9

0 10 20 30 40 50

Generation

T
e

s
t

F
it

n
e

s
s

BaselineGP CullingGP C-DAGP

<Tmean, 0.95, 4>

0.8

1.0

1.2

1.4

0 10 20 30 40 50

Generation

T
e

s
t

F
it

n
e

s
s

BaselineGP CullingGP C-DAGP

<TWT, 0.95, 4>

Fig. 2. The convergence curves (mean and standard error) of the test performance
of BaselineGP, CullingGP and C-DAGP, with the last 5 generations zoomed in.

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●●
●

●

●

●
●

●

●

●●

●

●

●●
●

●
●

●●

●

●

●
●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●
●

●●
●

●●

●

●
●●

●
●●

●
●

●

●

●●
●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●●
●

●
●

●
●

●●
●

●

●●

●●

●

●

●
●

●

●●

●

●

●●●
●

●

●
●

●

●

●
●

●

●

●

●
●●●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●
●●

●
●●●●

●

●

●

●

●

●

●

●

●●
●

●●
●

●●

●

●●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●●
●

●

●●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●●

●●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●

●●

●
●

●
●

●
●

●●

<Tmax, 0.95, 4> <Tmean, 0.95, 4> <TWT, 0.95, 4>

<Tmax, 0.85, 4> <Tmean, 0.85, 4> <TWT, 0.85, 4>

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

5

10

15

20

25

5

10

15

20

5

10

15

20

5

10

15

20

0

5

10

15

0

5

10

15

20

Generation

D
im

en
si

on
 G

ap

● BaselineGP CullingGP C−DAGP

Fig. 3. The convergence curves (mean and standard error) of the dimension gap of
BaselineGP, CullingGP and C-DAGP.

11

structure of the rule is as follows.

rule = B1/B2,

B1 = max((SL + PT) ∗ max(min(SL, WINQ), PT)/WKR, PT),

B2 = W ∗ WKR/(max((SL + PT), WKR) ∗max(W,PT))

One can see that the rule contains important features for the weighted tardiness
(PT, W, SL, WINQ, WKR), and similar patterns to the WSPT rule (PT/W), which
is a promising rule for minimising the weighted tardiness. The only dimension
inconsistency occurred in max(W, PT) in B2.

5 Conclusions and Future Work

In this paper, we propose a Constrained Dimensionally Aware GP (C-DAGP) to
optimise both test performance and interpretability of job shop scheduling rules.
Based on the physical dimension of the job shop attributes, we define a dimension
gap measure to reflect the degree of interpretability of the evolved rules. Then, we
develop a new penalty coefficient adaptation scheme to achieve a good balance
between the performance and dimension gap during the GP search process. The
experimental results show that the proposed C-DAGP sits between the baseline
GP and an existing DAGP (CullingGP [11]) in terms of test performance and
dimension gap. Although C-DAGP did not show consistent outperformance in
both test performance and dimension gap, the new constrained optimisation
framework enables a finer control on the balance between test performance and
dimension gap.

In the future, we will investigate more penalty adaptation schemes to fur-
ther improve the performance of C-DAGP. In addition, we will consider multi-
objective frameworks and treat dimension gap as an objective rather than a
constraint.

References

1. Babovic, V., Keijzer, M.: Genetic programming as a model induction engine. Jour-
nal of Hydroinformatics 2(1), 35–60 (2000)

2. Branke, J., Nguyen, S., Pickardt, C., Zhang, M.: Automated design of production
scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation
20(1), 110–124 (2016)

3. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A distance-based ranking
model estimation of distribution algorithm for the flowshop scheduling problem.
IEEE Transactions on Evolutionary Computation 18(2), 286–300 (2014)

4. Durasević, M., Jakobović, D., Knežević, K.: Adaptive scheduling on unrelated ma-
chines with genetic programming. Applied Soft Computing 48, 419–430 (2016)

5. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios: a genetic programming approach. In: Proceedings
of Genetic and Evolutionary Computation Conference. pp. 257–264. ACM (2010)

6. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evo-
lutionary computation 23(3), 343–367 (2015)

12

7. Hunt, R., Johnston, M., Zhang, M.: Evolving less-myopic scheduling rules for dy-
namic job shop scheduling with genetic programming. In: Proceedings of the 2014
conference on Genetic and evolutionary computation. pp. 927–934. ACM (2014)

8. Hunt, R., Johnston, M., Zhang, M.: Evolving dispatching rules with greater un-
derstandability for dynamic job shop scheduling. Tech. rep., Victoria University of
Wellington, Wellington, NZ, Technical Report, ECSTR-15-6 (2015)

9. Jakobović, D., Budin, L.: Dynamic scheduling with genetic programming. In: Ge-
netic Programming, pp. 73–84. Springer (2006)

10. Jayamohan, M., Rajendran, C.: New dispatching rules for shop scheduling: a step
forward. International Journal of Production Research 38(3), 563–586 (2000)

11. Keijzer, M., Babovic, V.: Dimensionally aware genetic programming. In: Proceed-
ings of the 1st Annual Conference on Genetic and Evolutionary Computation-
Volume 2. pp. 1069–1076. Morgan Kaufmann Publishers Inc. (1999)

12. Mei, Y., Nguyen, S., Zhang, M.: Evolving time-invariant dispatching rules in job
shop scheduling with genetic programming. In: European Conference on Genetic
Programming. pp. 147–163. Springer (2017)

13. Mei, Y., Zhang, M., Nyugen, S.: Feature selection in evolving job shop dispatch-
ing rules with genetic programming. In: Proceedings of Genetic and Evolutionary
Computation Conference. pp. 365–372. ACM (2016)

14. Nguyen, S., Zhang, M., Johnston, M., Tan, K.: A computational study of repre-
sentations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. IEEE Transactions on Evolutionary Computation 17(5), 621–
639 (2013)

15. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling:
a survey with a unified framework. Complex & Intelligent Systems pp. 1–26 (2017)

16. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: Dynamic multi-objective job
shop scheduling: A genetic programming approach. In: Automated Scheduling and
Planning, pp. 251–282. Springer (2013)

17. Pickardt, C., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolution-
ary generation of dispatching rule sets for complex dynamic scheduling problems.
International Journal of Production Economics 145(1), 67–77 (2013)

18. Pinedo, M.L.: Scheduling: theory, algorithms, and systems. Springer Science &
Business Media (2012)

19. Poli, R., McPhee, N.F.: Parsimony pressure made easy. In: Proceedings of the 10th
annual conference on Genetic and evolutionary computation. pp. 1267–1274. ACM
(2008)

20. Rajendran, C., Holthaus, O.: A comparative study of dispatching rules in dynamic
flowshops and jobshops. European Journal of Operational Research 116(1), 156–
170 (1999)

21. Riley, M., Mei, Y., Zhang, M.: Feature selection in evolving job shop dispatching
rules with genetic programming. In: IEEE Congress on Evolutionary Computation.
pp. 3362–3369. IEEE (2016)

22. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job
shop scheduling problem under different flow time-and tardiness-related objective
functions. International Journal of Production Research 50(15), 4255–4270 (2012)

23. Xiong, J., Liu, J., Chen, Y., Abbass, H.A.: A knowledge-based evolutionary multi-
objective approach for stochastic extended resource investment project scheduling
problems. IEEE Transactions on Evolutionary Computation 18(5), 742–763 (2014)

