Skip to main content

A New Approach to Estimate the Discharge Coefficient in Sharp-Crested Rectangular Side Orifices Using Gene Expression Programming

  • Conference paper
  • First Online:
Book cover Intelligent Computing (SAI 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1230))

Included in the following conference series:

Abstract

Structures, such as side orifices are used for controlling the flow within a diversion channel or for directing the flow into one. In this study, an equation for estimating discharge coefficient is introduced using “gene expression programming” (GEP). In order to estimate the discharge coefficient, four dimensionless parameters including ratio of depth of flow in main channel to the width of rectangular orifice (Ym/L), Froude number (Fr), the ratio of sill height to the width of rectangular orifice (W/L) and the ratio of the width of the main channel to the width of the rectangular orifice (B/L) are used to present five different models. Therefore, the lacks of effect of each dimensionless parameter on the discharge coefficient predictions are reviewed. The results obtained from the carried out studies indicated that the best model presented in this study estimated the discharge coefficient fairly well with a relative error of 3% against experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramamurthy, A.S., Tim, U.S., Sarraf, S.: Rectangular lateral orifices in open channels. J. Environ. Eng. 112(2), 292–300 (1986)

    Google Scholar 

  2. Oliveto, G., Biggiero, V., Hager, W.H.: Bottom outlet for sewers. J. Irrig. Drainage Eng. 123(4), 246–252 (1997)

    Google Scholar 

  3. Ghodsian, M.: Flow through side sluice gate. J. Irrig. Drainage Eng. 129(6), 458–463 (2003)

    Google Scholar 

  4. Kra, E.Y., Merkley, G.P.: Mathematical modeling of open-channel velocity profiles for float method calibration. Agric. Water Manag. 70(3), 229–244 (2004)

    Google Scholar 

  5. Amaral, L.G., Righes, A.A., Filho, P.S.S., Costa, R.D.: Automatic regulator for channel flow control on flooded rice. Agric. Water Manag. 75(3), 184–193 (2005)

    Google Scholar 

  6. Lewis, J.W., Wright, S.J., Pribak, M., Sherrill, J.: Bottom slot discharge outlet for combined sewer diversion structure. J. Hydraul. Eng. 137(2), 248–253 (2010)

    Google Scholar 

  7. Gill, M.A.: Flow through side slots. J. Environ. Eng. 113(5), 1047–1057 (1987)

    Google Scholar 

  8. Swamee, P.K., Pathak, S.K., Ali, M.S.: Weir orifice units for uniform flow distribution. ASCE J. Irrig. Drainage Eng. 119(6), 1026–1035 (1993)

    Google Scholar 

  9. Ojha, C.S.P., Subbaiah, D.: Analysis of flow through lateral slot. J. Irrig. Drainage Eng. 123(5), 402–405 (1997)

    Google Scholar 

  10. Prohaska, P.D., Khan, A.A., Kaye, N.B.: Investigation of flow through orifices in riser pipes. J. Irrig. Drainage Eng. 136(5), 340–347 (2010)

    Google Scholar 

  11. Hussain, A., Ahmad, Z., Asawa, G.L.: Discharge characteristics of sharp-crested circular side orifices in open channels. Flow Meas. Instrum. 21(3), 418–424 (2010)

    Google Scholar 

  12. Hussain, A., Ahmad, Z., Asawa, G.L.: Flow through sharp-crested rectangular side orifices under free flow condition in open channels. Agric. Water Manag. 98(10), 1536–1544 (2011)

    Google Scholar 

  13. Ebtehaj, I., Bonakdari, H.: Evaluation of sediment transport in sewer using artificial neural network. Eng. Appl. Comput. Fluid Mech. 7(3), 382–392 (2013)

    Google Scholar 

  14. Ebtehaj, I., Bonakdari, H., Zaji, A.H.: A new hybrid decision tree method based on two artificial neural networks for predicting sediment transport in clean pipes. Alexandria Eng. J. 57(3), 1783–1795 (2018)

    Google Scholar 

  15. Ebtehaj, I., Bonakdari, H., Zaji, A.H.: An expert system with radial basis function neural network based on decision trees for predicting sediment transport in sewers. Water Sci. Technol. 74(1), 176–183 (2016)

    Google Scholar 

  16. Ebtehaj, I., Bonakdari, H., Zaji, A.H., Bong, C.H.J., Ab Ghani, A.: Design of a new hybrid artificial neural network method based on decision trees for calculating the Froude number in rigid rectangular channels. J. Hydrol. Hydromechanics 64(3), 252–260 (2016)

    Google Scholar 

  17. Ebtehaj, I., Bonakdari, H.: Performance evaluation of adaptive neural fuzzy inference system for sediment transport in sewers. Water Resour. Manage 28(13), 4765–4779 (2014)

    Google Scholar 

  18. Khoshbin, F., Bonakdari, H., Ashraf Talesh, S.H., Ebtehaj, I., Zaji, A.H., Azimi, H.: Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs. Eng. Optim. 48(6), 933–948 (2016)

    Google Scholar 

  19. Sharifipour, M., Bonakdari, H., Zaji, A.H.: Comparison of genetic programming and radial basis function neural network for open-channel junction velocity field prediction. Neural Comput. Appl. 30(3), 855–864 (2016)

    Google Scholar 

  20. Bonakdari, H., Ebtehaj, I., Samui, P., Gharabaghi, B.: Lake water-level fluctuations forecasting using minimax probability machine regression, relevance vector machine, gaussian process regression, and extreme learning machine. Water Resour. Manage 33(11), 3965–3984 (2019)

    Google Scholar 

  21. Shaghaghi, S., Bonakdari, H., Gholami, A., Ebtehaj, I., Zeinolabedini, M.: Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design. Appl. Math. Comput. 313, 271–286 (2017)

    Google Scholar 

  22. Bonakdari, H., Ebtehaj, I., Gharabaghi, B., Vafaeifard, M., Akhbari, A.: Calculating the energy consumption of electrocoagulation using a generalized structure group method of data handling integrated with a genetic algorithm and singular value decomposition. Clean Technol. Environ. Policy 21(2), 379–393 (2018)

    Google Scholar 

  23. Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Khoshbin, F.: GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Eng. Sci. Technol. Int. J. 18(4), 746–757 (2015)

    Google Scholar 

  24. Ebtehaj, I., Bonakdari, H.: Comparison of genetic algorithm and imperialist competitive algorithms in predicting bed load transport in clean pipe. Water Sci. Technol. 70(10), 1695–1701 (2014)

    Google Scholar 

  25. Ebtehaj, I., Bonakdari, H., Khoshbin, F., Azimi, H.: Pareto genetic design of group method of data handling type neural network for prediction discharge coefficient in rectangular side orifices. Flow Meas. Instrum. 41, 67–74 (2015)

    Google Scholar 

  26. Ebtehaj, I., Bonakdari, H., Zaji, A.H., Azimi, H., Sharifi, A.: Gene expression programming to predict the discharge coefficient in rectangular side weirs. Appl. Soft Comput. 35, 618–628 (2015)

    Google Scholar 

  27. Azamathulla, H.M.: Gene expression programming for prediction of scour depth downstream of sills. J. Hydrol. 460, 156–159 (2012)

    Google Scholar 

  28. Azamathulla, H.M.: Gene-expression programming to predict friction factor for Southern Italian rivers. Neural Comput. Appl. 23(5), 1421–1426 (2013)

    Google Scholar 

  29. Azamathulla, H.M., Ahmad, Z.: Gene-expression programming for transverse mixing coefficient. J. Hydrol. 434, 142–148 (2012)

    Google Scholar 

  30. Guven, A., Azamathulla, H.M.: Gene-expression programming for flip-bucket spillway scour. Water Sci. Technol. 65(11), 1982–1987 (2012)

    Google Scholar 

  31. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  32. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 13(2), 87–129 (2001)

    MathSciNet  MATH  Google Scholar 

  33. Legates, D.R., McCabe Jr., G.J.: Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35(1), 233–241 (1999)

    Google Scholar 

  34. Sudheer, K.P., Jain, S.K.: Radial basis function neural network for modeling rating curves. J. Hydrol. Eng. 8(3), 161–164 (2003)

    Google Scholar 

  35. Garrick, M., Cunnane, C., Nash, J.E.: A criterion of efficiency for rainfall-runoff models. J. Hydrol. 36(3–4), 375–381 (1978)

    Google Scholar 

  36. Hsu, K.L., Gupta, H.V., Sorooshian, S.: Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 31(10), 2517–2530 (1995)

    Google Scholar 

  37. Jain, A., Varshney, A.K., Joshi, U.C.: Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks. Water Resour. Manag. 15(5), 299–321 (2001)

    Google Scholar 

  38. Jain, A., Ormsbee, L.E.: Short-term water demand forecast modeling techniques—conventional methods versus AI. J. Am. Water Works Assoc. 94(7), 64–72 (2002)

    Google Scholar 

  39. Rajurkar, M.P., Kothyari, U.C., Chaube, U.C.: Modeling of the daily rainfall-runoff relationship with artificial neural network. J. Hydrol. 285(1–4), 96–113 (2004)

    Google Scholar 

  40. Eghbalzadeh, A., Javan, M., Hayati, M., Amini, A.: Discharge prediction of circular and rectangular side orifices using artificial neural networks. KSCE J. Civ. Eng. 20(2), 990–996 (2016)

    Google Scholar 

  41. Azimi, H., Shabanlou, S., Ebtehaj, I., Bonakdari, H., Kardar, S.: Combination of computational fluid dynamics, adaptive neuro-fuzzy inference system, and genetic algorithm for predicting discharge coefficient of rectangular side orifices. J. Irrig. Drainage Eng. 143(7), 04017015 (2017)

    Google Scholar 

  42. Azimi, A.H., Rajabi, A., Shabanlu, S.: Optimized ANFIS-Genetic algorithm-particle swarm optimization model for estimation of side orifices discharge coefficient. J. Numer. Methods Civ. Eng. 2(4), 27–38 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Bonakdari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonakdari, H., Gharabaghi, B., Ebtehaj, I., Sharifi, A. (2020). A New Approach to Estimate the Discharge Coefficient in Sharp-Crested Rectangular Side Orifices Using Gene Expression Programming. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Computing. SAI 2020. Advances in Intelligent Systems and Computing, vol 1230. Springer, Cham. https://doi.org/10.1007/978-3-030-52243-8_7

Download citation

Publish with us

Policies and ethics