Skip to main content

Genetic Programming Algorithms for Dynamic Environments

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9598))

Abstract

Evolutionary algorithms are a family of stochastic search heuristics that include Genetic Algorithms (GA) and Genetic Programming (GP). Both GAs and GPs have been successful in many applications, mainly with static scenarios. However, many real world applications involve dynamic environments (DE). Many work has been made to adapt GAs to DEs, but only a few efforts in adapting GPs for this kind of environments. In this paper we present novel GP algorithms for dynamic environments and study their performance using three dynamic benchmark problems, from the areas of Symbolic Regression, Classification and Path Planning. Furthermore, we apply the best algorithm we found in the navigation of an Erratic Robot through a dynamic Santa Fe Ant Trail and compare its performance to the standard GP algorithm. The results, statistically validated, are very promising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Norwell (2001)

    MATH  Google Scholar 

  2. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. Technical report, DTIC Document (1990)

    Google Scholar 

  3. Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments. Technical report, DTIC Document (1993)

    Google Scholar 

  4. Doucette, J., Heywood, M.I.: Novelty-based fitness: an evaluation under the Santa Fe Trail. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 50–61. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Fioriti, V., Fratichini, F., Chiesa, S., Moriconi, C.: Lévy foraging in a dynamic environment-extending the Lévy search. Int. J. Adv. Robot Syst. 12(98) (2015)

    Google Scholar 

  6. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference On Advanced Robotics (ICAR ), pp. 317–323 (2003)

    Google Scholar 

  7. Goldberg, D.E., Smith, R.E.: Nonstationary function optimization using genetic algorithms with dominance and diploidy. In: ICGA, pp. 59–68 (1987)

    Google Scholar 

  8. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)

    MATH  Google Scholar 

  9. Liu, C., Liu, H., Yang, J.: A path planning method based on adaptive genetic algorithm for mobile robot. J. Inf. Comput. Sci. 8(5), 808–814 (2011)

    Google Scholar 

  10. Macedo, J.: Genetic programming algorithms for dynamic environments. Master’s thesis, University of Coimbra, Portugal, September 2015

    Google Scholar 

  11. Ng, K.P., Wong, K.C.: A new diploid scheme and dominance change mechanism for non-stationary function optimization. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 159–166. Morgan Kaufmann Publishers Inc (1995)

    Google Scholar 

  12. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

    Article  Google Scholar 

  13. O’Neill, M., Nicolau, M., Brabazon, A.: Dynamic environments can speed up evolution with genetic programming. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 191–192. ACM (2011)

    Google Scholar 

  14. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software (2009)

    Google Scholar 

  15. Riekert, M., Malan, K.M., Engelbrect, A.P.: Adaptive genetic programming for dynamic classification problems. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 674–681. IEEE (2009)

    Google Scholar 

  16. Shengxiang, Y., Yao, X.: Evolutionary Computation for Dynamic Optimization Problems, vol. 1. Springer, Berlin (2013)

    MATH  Google Scholar 

  17. Simões, A.: Improving memory-based evolutionary algorithms for dynamic environments. Ph.D. thesis, University of Coimbra (2010)

    Google Scholar 

  18. Simões, A., Costa, E.: On biologically inspired genetic operators: transformation in the standard genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 584–591 (2001)

    Google Scholar 

  19. Simões, A., Costa, E.: Using genetic algorithms to deal with dynamic environments: a comparative study of several approaches based on promoting diversity. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO, vol. 2 (2002)

    Google Scholar 

  20. Sugawara, K., Kazama, T., Watanabe, T.: Foraging behavior of interacting robots with virtual pheromone. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2004), vol. 3, pp. 3074–3079. IEEE (2004)

    Google Scholar 

  21. Teuscher, C., Sanchez, E., Sipper, M.: Romero’s Odyssey to Santa Fe: from simulation to real life. Robot. Manufact. Syst. Recent Results Res. Dev. Appl. 10, 262–267 (2000)

    Google Scholar 

  22. Vanneschi, L., Cuccu, G.: A study of genetic programming variable population size for dynamic optimization problems. In: IJCCI, pp. 119–126 (2009)

    Google Scholar 

  23. Vavak, F., Fogarty, T.C., Jukes, K.: A genetic algorithm with variable range of local search for tracking changing environments. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, Hans-Paul (eds.) PPSN 1996. LNCS, vol. 1141, pp. 376–385. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  24. Wagner, N., Michalewicz, Z., Khouja, M., McGregor, R.R.: Time series forecasting for dynamic environments: the DyFor genetic program model. IEEE Trans. Evol. Comput. 11(4), 433–452 (2007)

    Article  Google Scholar 

  25. David, R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G., Jaśkowski, W., O’Reilly, U.-M., Luke, S.: Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)

    Article  Google Scholar 

  26. Yang, S., Tinós, R.: A hybrid immigrants scheme for genetic algorithms in dynamic environments. Int. J. Autom. Comput. 4(3), 243–254 (2007)

    Article  Google Scholar 

  27. Yin, Z., Brabazon, A., O’Sullivan, C., O’Neil, M.: Genetic programming for dynamic environments. In: Proceedings of the International Multiconference on Computer Science and Information Technology, pp. 437–446 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the TIRAMISU project (www.fp7-tiramisu.eu) under grant agreement FP7/SEC/284747 and the MassGP project (www.novaims.unl.pt/massgp) under grant agreement PTDC/EEI-CTP/2975/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Macedo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Macedo, J., Costa, E., Marques, L. (2016). Genetic Programming Algorithms for Dynamic Environments. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9598. Springer, Cham. https://doi.org/10.1007/978-3-319-31153-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31153-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31152-4

  • Online ISBN: 978-3-319-31153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics