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Abstract Automated innovization is an unsupervised machine legrtechnique
for extracting useful design knowledge from Pareto-optisoéutions in the form of
mathematical relationships of a certain structure. Thekgionships are known as
design principles. Past studies have shown the applitabflautomated innoviza-
tion on a number of engineering design optimization prolslersing a multiplica-
tive form for the design principles. In this paper, we gefieeghe structure of the
obtained principles using a tree-based genetic progragimamework. While the
underlying innovization algorithm remains the same, evghmultiple trees, each
representing a different design principle, is a challeggask. We also propose a
method for introducing dimensionality information in thesasch process to produce
design principles that are not just empirical in nature, dab meaningful to the
user. The procedure is illustrated for three engineerirgigeproblems: two-bar
truss design, welded-beam design and metal-cutting psa@smization.

1 Introduction

In recent years there has been a growing interest in the figldst-optimality anal-
ysis. In a single objective scenario, this usually concénesoptimality, sensitivity
and robustness studies on the obtained solution. Mulgative optimization on the
other hand, poses an additional challenge in that thereratdtaude of possible so-
lutions (when the objectives are conflicting) which are aitigo be Pareto-optimal.
The data-mining of Pareto-optimal solutions has receiatiqular attention as it
can reveal certain characteristic features exclusivedselsolutions, which can of-
ten be generalized to the entire Pareto-optimal front. &cfical problem solving,
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the knowledge of these features can give the designer a betlerstanding of the
problem structure. Most studies in this direction rely osual means of identify-
ing the features. For example, a heatmap of the Pareto-alptamiable values can
reveal the general distribution of these solutions in thegien space [18, 25]. The
use of parallel coordinate plots [8], ANOVA, decision tr¢2&] and clustering in

objective [22] and decision space has also been propose@xBmple, the use of
self-organizing maps (SOMs) to condense the informatiohezided in the multi-

dimensional objective and decision spaces a lower-diroeak{generally two) map
was proposed in [15]. A SOM preserves the topology of the driglimensional

space, meaning that nearby points in the input space areaddpmearby units in

SOM. Thus it can serve as a cluster analyzing tool for highedisional data [15].

The method though unsupervised still requires the usersdoak knowledge, such
as the role of design variables in trade-offs, visually tiglo these maps.

Deb and Srinivasan [7] describe the concepihobvization by defining the spe-
cial features as commonalities among the Pareto-optinhaigns. These common-
alities (or invariants) are given mathematical forms,axidlesign principles, by per-
forming regression between variables and/or objectivegeppropriate functions.
However, regression can only be performed when a correl&iobserved between
the regressed entities. Innovization, in its original forequired users to identify
this correlation visually through two and three dimenslgaats. Thismanual in-
novization task is therefore limited to features of Pareto-optimalisohs present
in humanly perceivable dimensions.

Automated innovization [2] is an unsupervised machineniegy technique that
can identify correlations in any multi-dimensional spacarfed by variables, ob-
jectives, etc. specified by the user and subsequently pesfarselective regression
on the correlated part of the Pareto-optimal dataset toirolth@ design principle
Y(x). The procedure was later extended [1] so that design ptexipdden in all
possible Euclidean spaces formed by the variables andtolgigsdand any other
user-defined functions) can be obtained simultaneouslyowitany human inter-
action. The regression assumes the following mathematinadture for the design
principle,

N
Yx) = [ o5, (1)
,Il j

where@;’'s areN basis functions (variables, objectives functions, camsts etc.)
specified by the user which can have Boolean expongntnd real-valued ex-
ponentsb;. It has been argued that since many natural, physical, dgizzb and
man-made processes are governed by formulae with the samtuige (power laws
[14]), most correlations are expected to be mathematicaptured by it. By def-
inition, Y(x) is a design principle if it is invariant, i.g7}L; ¢ (x)%® = c is true
for a majority of the Pareto-optimal solutions, for some stantc. However, due
to the approximate nature of Pareto-optimal datasets,ghaliéy relation may not
hold strictly and hence the extent of commonality of a degignciple ¢/(x) is ob-
tained by clustering the set ofvalues. The minimization of equal-weighted sum
of (i) number of clusters(), and (ii) percentage coefficient of varianog £ o /)
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within these clusters, has been proposed in [2] to obtailgdgsinciples. An opti-
mization problem that uses this weighted objective fumgtio
¢« k) O
Minimize C+ § o x 100% wherel = = vcekthcluster (2)
K=1

C

is formulated witha;’s represented by aN-bit binary variable string anbj’s asN
real variables. The algorithmic calculation of the objeeflunction requires the use
of a derivative-free optimization method like genetic altfons (GA). The popu-
lation based approach of GA also enables obtaining multipkgn principles si-
multaneously using a niching strategy [1]. Given enough @Aagations, the final
population will contain all possible design principlesttfisthe form in Eq. (1).

In this paper, we generalize the mathematical structuresoflesign principles in
Eq. (1) using parse tree representation. The overall augzhianovization problem
is solved using a system that integrates a GA with a genatigramming algorithm
for handling such parse trees. The rest of the paper is argdris follows. Sect. 2
introduces genetic programming in general and discusseargaevolutionary oper-
ators, namely initialization, fitness calculation, salattcrossover and mutation, in
the context of automated innovization. In Sect 3 we desc¢hibg@rocedure for intro-
ducing dimensional-awareness in the proposed system ainabeaningful design
principles. Results on three standard engineering desvigms are presented in
Sect.4.

2 Genetic Programming for Automated Innovization

At an abstract level, genetic programming (GP) iseak search algorithm for au-
tomatically generating computer programs to perform g$pecikasks [12]. Weak
search methods do not require the user to know or specifydim br structure
of the solution in advance [10]. Most GP implementations leynan evolutionary
algorithm as the main search engine. However, simulatedadimg, hill climbing
approaches and estimation of distribution algorithms (EP#ave also been used in
literature [17]. Like other evolutionary computation tedjues, a typical GP starts
with a population of randomly created individuals, whiclthis case are programs.
The fitness for each individual is determined by running tregpam. High fitness
individuals are selected to form the mating pool, on whicimpry genetic oper-
ations, namely crossover and mutation, are applied toematew population of
programs. The process is repeated until some stoppingicritflike maximum
number of generations) is met.

Most GP systems evolve programs in a domain-specific lareyspgcified by
primitives calledfunctions and terminals. The terminal set7) may consist of
the program’s external inputs, ephemeral random constani$ nullary (zero-
argument) functions/operators where as the function &gtriay contain opera-
tors (arithmetic, Boolean, conditional, etc.), mathew®tfunctions and constructs
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(loops, for example) that are defined in the language beied.@omputer programs
are traditionally represented in the memory as parse tregtemp of such primi-
tives. Other common ways of expressing programs includslimand graph-based
representations.

The most common application of GP has been to the procesddottion of
mathematical models based on observations. This procés®ien by the names
model induction, system identification and symbolic regi@s depending on the
purpose. The power of GP algorithms to evolve models in a sjimform without
assuming the functional form of the underlying relatiopstan also be applied to
automated innovization. In this paper, we generalize théhemaatical structure of
the design principles in Eq. (1) by representifigx) using parse trees composed
of the N basis functions and real-valued ephemeral constantsragtds, i.e7 =
{o,®,...,en, R} and a user-specified function sgt Fig. 1 shows two examples
of parse trees and their correspondip@k) expressions obtained by inorder depth-
first tree traversal. By starting with a population of su@es and using the objective
functionin (2), itis possible to evolve design principlés@eneric form using a GP
system. In the following sections we discuss each step ofGie+ SmallGP [16])
system used in this work. Some of these steps are standaleand described only
briefly, while others which have been modified to suit the ineuents of automated
innovization are explained in more detail.

2.1 Initialization

Two initialization methods are very common in GP, thd | method and th& ow
method [17]. TheFul | method always generates trees in which all leaves (end
nodes) are at the same user-speciiBdX DEPTH value. This is achieved by ran-
domly selecting nodes only from tiE set until the depth limit is reached, at which
nodes are selected from tiE set. On the other hand, tl& ow method creates
trees of varied sizes and shapes by randomly selecting riaaesghe full primitive
set (F + 7)) for all nodes until the depth limit is reached, at which nedee chosen
from 7 asin the case ¢ful | method. In Fig. 1, the tree on the left could have been
the result of either thEul | or theG- owmethod, but the one on the right can only
be created by the latter. SmallGP uses a mi¥wof| andG ow methods. When
selecting from the full primitive set the probability of abging from the terminal
setis,
_ T
| F+|T]

where|.| denotes the set size af# is the scaling factor which scales initialization
betweerFul | (whenSF = 0) andG ow (whenSF = 1). It is to be noted that the
ephemeral constants only contribute one virtual termiyaltsol to theZ set so that
|7'| =N+ 1. The initialization also takes into account the maximuwgpam (tree)
lengthMAXLEN which can also be specified by the user.

p(7T) S,
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Fig. 1: Two examples of parse trees obtained fromRbk! (left) andG ow (right) methods for
MAXDEPTH = 2. The correspondingy/(x) expressions and binary strings are also shown.

2.2 Fitness and Constraint Evaluation

This step involves the use of a grid-based clustering algorfor evaluating the fit-
ness function given in (2) for the trees created above. Haehit decoded to obtain
the design principley(x) that it represents. The resulting mathematical expression
is evaluated for alm trade-off solutions provided as input to the GP algorithm to
obtain the correspondingvalues. Grid-based clustering [2] involves sorting these
c-values into a se€ and dividing their range intd equal divisions (a parameter
of the clustering routine). Elements @ which belong to divisions with less than
|[m/d| c-values are categorized anclustered. Adjacent divisions with more than
|[m/d] c-values are merged to form clusters. Thus, the number ofethi§ and
the number of unclustered poirdscan be obtained and used in (2) to calculate the
fitness for any given tree. Instead of asking the user to @t parameter value
for d, it is evolved alongside the GP trees using a GA. Therefa@eh @opulation
member of the proposed system consists of a GP tree var@hlg %) and an inte-
ger variable fod, which is also initialized (in the rand&, m]) in the previous step.
This is the reason for integrating GA with SmallGP in this @ap

It has been suggested in [2] that for obtaining the most ateutesign principles,
the constraint

Uu=0, 3

should be imposed during clustering. This forces unclestewalues to form one-
element clusters by increasing the valualpivhich in turn cause§ andc, within
clusters to increase. The optimization of the weightedaibje compensates for this
by producing more accurate design principles.

A measure for the degree of commonalityyafx) is also calculated in this step.
This measure is called the significargef the design principle and is defined as,
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S (m—u')

x 100% (4)
Herel{' is the total number of elements @ which belong to divisions with less
than(|m/d| + ¢) c-values. By choosing a small integer value éorc-values which
barely formed clusters due to imposition of (3) can be idieti

2.3 Niched-Tournament Selection

In order to maintain multiple design principles in the paign, [1] proposes the
use of niched-tournament selection for creating the matoa. We adopt a similar
niching technique in the present paper. A binary string ofjt N is associated
with each GP tree. If thé-th basis function is present in a tree then thé bit
of the corresponding binary string is assigned a value ofsk i takes a value
of 0. Tournaments are only allowed between trees which hasetly the same
binary string. This allows differergpecies of design principles to co-exist in the
population, while still promoting the better individualtfess wise) when the trees
have exactly the same basis functions. Fig. 1 shows suchylstrangs for the two
trees. Since they are different, both individuals are dguaimpetent irrespective
of their fitness values and tournament selection is not peed between them.

2.4 Subtree Crossover and Discrete SBX

SmallGP uses a size-safe subtree crossover [17] to recentigies in the mating
pool. It ensures that the created children do not exceed thénmum tree length
MAXLEN. This is accomplished by first determining the number of sddewhich
the smaller parent tree can be extended. Then, a randonesgdattisfying this re-
quirement is cut from the larger parent tree. Similarly, ad@m subtree (whose
maximum size is determined by taking the new size of the targe into account)

is cut from the smaller tree. The two subtrees are exchanghe aut locations to
produce the offspring trees. Implementation details cdioted in the manual [16].

The GA variabled is recombined using the discrete version of simulated fginar

crossover (SBX) [5].

2.5 Point Mutation and Discrete Polynomial Mutation

Point mutation [17] is the simplest form of mutation in GP wéa random node is
selected and the primitive at that node is replaced withfargifit random primitive
of the same kind (function or terminal) and arity to mainttiie closure property
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[12]. Like the bit-flip mutation in GAs, point mutation is djmd on a per-node
basis, thus allowing multiple nodes to be mutated indepathde

The GA variablad is mutated using the discrete version of polynomial mutatio
suggested in [5].

3 Dimensional Awareness

GP systems are known to produce exceptionally good modedgnbolic regres-
sion applications, given that an appropriate set of priregtiis provided. This has
inspired the use of GP for scientific knowledge discoveryrnfrdatasets obtained
through physical processes, experiments, phenomenaCetsputer-aided scien-
tific knowledge discovery differs from standard symboligression in that the ob-
tained model, in addition to fitting the data well, is also exted to be novel, inter-
esting, plausible and understandable [24]. The key to gigehis is to incorporate
the semantic content that is encapsulated in the data ieteetirch process. Notable
examples are the hypothesis-led discovery process of Ratientist Adam [11],
the partial-derivative-pair metric based discoveries enayl Eureqa [20], and other
such discovery programs mentioned in [23].

The foremost application of automated innovization hasldee engineering
problems [2, 3]. It may be beneficial in these cases to exttasign principles
which are not just empirical in nature but also meaningfulh® designer. In GP
this is usually achieved by constraining the tree strust{it€]. For example, if a
model is known to be periodizpriori, then the search may be constrained to mod-
els that take the form x sin(b x t) through strong typing [13] or grammar-based
constraints [9]. When no such domain-specific informaticavelable, one can still
generate meaningful and syntactically correct tree sirastby taking into account
the most basic requirement for relationships governingtajsical systems, namely
dimensional consistency or commensurability, which states:

e Only commensurable quantities (quantities with the sameedsions) may be
compared, equated, added, or subtracted.

e One may take ratios of incommensurable quantities (questiwith different
dimensions), and multiply or divide them.

Previous work on dimensionally-aware genetic programngr@posed awveakly
typed or implicit casting approach [10] where dimensionality is not enforced, but
promoted through an additional objective. We incorporasandlar strategy in the
proposed (GA + SmallGP) system using constraints for pginglidimensional in-
consistency.

Datasets obtained from multi-objective optimization ofigreering systems con-
sist of Pareto-optimal values of variables, constraintsabjectives, for all of which
the dimensions are knovapriori. Each basis functiop(x) provided as input to the
proposed system can therefore also carry its dimensigmafdrmation. For a given
tree the dimensional consistencyp(x) is checked using the following procedure.
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Table 1: Transformed terminal operations for
calculating the exponeriE from the expo-
nentsg andej of two terminals. Note that
Z can be set to any value greater ttizgy.
Operatior Transformed Operation

: - |E=8, ife=¢g
Ti+Tj E =2Z, otherwise
- |[E=gq, ifg=¢
Ti—T, E = Z, otherwise
TxT, E=2, ifmax(|al,|€j|) > Emax

E=q+g, otherwise Fig. 2: Two-bar truss configura-

Ti E=2, ifmax(|el, |?j|) > BEmax tion showing the cross-sectional
Tj |[E=e—egj, otherwise areasx; andx and the vertical

1T |E=¢8T ifla| <Emx&€ =0 jengthy. A load of F = 100 kN
i E = Z, otherwise is applied.

Noting that the largest possible absolute value of the expbfor any funda-
mental dimension (mass, length, time, etc.) among all knptwsical quantities
is four, it can be established that in a tree of delddaAXDEPTH the maximum
absolute value that a dimension exponent can have in thesmondingy(x) is
Emax = 4 x 2WAXDEPTH "Eor two terminaldl; andT; having dimension exponengs
ande;, undergoing various operations, the resulting expogeistcalculated using
the transformed terminal operations shown in Table 1. Nag¢ when adding or
subtracting incommensurable quantitiEsis assigned an arbitrary valiegreater
thanEnax. This indicates to subsequent operations that the treg le®imuated (or
Y(x)) is already dimensionally inconsistent. The absoluteevaluithe exponenE
obtained after completely evaluating the tree is constihiio be at or beloviEax
for all basic dimensions, thus imposing dimensional cdestsy.

The optimization problem for (GA + SmallGP) based automatevization
can now be formulated as,

c
Minimize TS<C+ Y o x100%) where ¢} = %y ceketh cluster

{w(x),d} =} He

and c=¢(x) ¥m
Subject to{l <d<m U =0;S> Seqa; |E| < Emax ¥ basic dimension
(5)

The tree-sizd S(number of nodes in the tree) is multiplied to the weightejéciive
function in (2) in order to promote smaller trees. This hdlp®btaining simple
relationships. The minimum significance required by the issepecified bySeqq.
We recommend starting with a high valueSiy (say 90%) and gradually reducing
it until some design principles are obtained.
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4 Resaults

We now illustrate the working of the proposed algorithm aeéengineering design
problems. In all cases the design optimization problemligesbusing NSGA-II [6]
with the following parameters:

1. Population size = 500 (truss and welded-beam), 1000 (roeting)
2. Number of generations = 500,

3. SBX for real variables witlp; = 0.9 andn. = 10,

4. Polynomial mutation for real variables with, = 0.05 andn,, = 50,

4.1 Two-bar Truss Design

The two-bar truss design problem involves three variabteshawn in Fig. 2. The
bi-objective formulation is,

Minimize fi(x) = Volume (V) = x11/16+ Y2+ X2/ 1+ Y2,

Minimize fy(x) = Max. Stres$S) = max Oac, Osc), 6)

Subject to {Sg 10° kPa; 0< xq,% < 0.01mfand 1<y <3 m}

NSGA-II givesm = 500 non-dominated solutions at the end 500 generations. For
automated innovization we choose the functionBet {+,—, x,%," } where %
represents protected division afndepresents the power function. The objectives
and the variables are chosen as the basis functionspize{ @, @, @3, u, @, } =

{V, S x1,X%2,y}. and so the terminal set 5 = {V, S x1,x2,y, R }. The following pa-
rameters are used in the proposed (GA + SmallGP) algorithsulte@ the optimiza-

tion problem in (5):

Population size = 1000,

Number of generations = 100,

Discrete SBX for variabld with p. = 0.9 andn¢ = 10,

Discrete polynomial mutation for variabdewith p,, = 0.05 andnmy = 50,
SmallGP crossover probability = 0.9, mutation probab{iper node) = 0.2,
Maximum program deptiMAXDEPTH) = 10 and lengthNMIAXLEN) =10,
Ephemeral constant®, = {—10.0,—9.5,-9.0,...,9.0,9.5,10.0},

. Threshold significanc&eqq = 80%, Clustering constast= 3.

ONoGOrWNE

Table 2 shows the obtained design principles, their signifie values and the expo-
nents of their basic dimensions. A total of 26 principlesevebtained, which were
symbolically simplified in MATLAB and only the unique onesgsresented here.
The truss design problem can be mathematically solved ukimddentical re-
source allocation strategy in order to verify the obtainesigin principles. Increas-
ing the cross-sectional area of one member reduces the gtdksced in it and so
the second objective takes the other member into accounta point. But since
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Table 2: Design principles obtained using (GA + SmallGP) atbarifor truss design problem.

. Design Principle (DP) . Basic Dimensions
Notationy (x) = constant Significanc MasgLength/ Time
DP1 |y= congtant 86.60% | 0.0| 1.0 | 0.0
DP2 |SxV = congtant 87.00% | 1.0| 2.0 |-2.0
DP3 [Sx x; = constant 85.00% | 1.0| 1.0 |-2.0
DP4 [SxV xy=congant 87.00% | 1.0| 3.0 |-2.0
DP5 |(V xy)/x2 = congtant 86.20% | 0.0| 2.0 | 0.0
DP6 |(V xy)/xq = congtant 88.20% | 0.0| 2.0 | 0.0
DP7 |V /x1 = constant 86.40% | 0.0| 1.0 | 0.0
DP8 [V/(Sx X1 X Xp) = constant 87.20% |-1.0| 0.0 | 2.0
DP9 [V?/(x1 x X) = constant 87.40% | 0.0| 2.0 | 0.0
DP10 |y/(Sx x1) = constant 88.00% |-1.0| 0.0 | 2.0
DP11 |xp/x; = congtant 83.80% | 0.0| 0.0 | 0.0
DP12 [(SxV x X2 xYy)/x1 =consant| 88.00% | 1.0 | 3.0 |-2.0
DP13 |V /x; = constant 86.80% | 0.0| 1.0 | 0.0
DP14 |(Sx V2 xy)/x; = congtant 87.20% | 1.0| 4.0 |-2.0
DP15 |(x2 xy)/x1 = congtant 86.40% | 0.0| 1.0 | 0.0
DP16 |xp/(Sx x?) = congtant 86.40% |-1.0| -1.0 | 2.0
DP17 |V?/(x1 x X X y) = congtant 91.40% | 00| 1.0 | 0.0
DP18 |(SxV?)/x; = congtant 87.20% | 1.0| 3.0 |-2.0
DP19 |Sx xp x y = congtant 87.00% | 1.0| 2.0 |-2.0
DP20 |(x2 x y)/(Sx x3) = congant 86.80% |-1.0| 0.0 | 2.0

both the objectives are equally important, this cannot lmevald. A balance can be
obtained only when the stresses in both the members are equal

100\/16+y?  4x100+/1+y?
5 yqu 5 yXo

Following a similar argument for the volumes we get,

V =2xXxx1/164+y?> =2Xx2y/1+Yy2. (8)

Solving (7) and (8) gives the following relationships, dliehich must be true for
Pareto-optimality,

S=0pc = Ogc = S=

(7)

y=2, xo=2x1, V=4V5x;=2VBxs S =20V5 Sx=40/5 (9)

All design principles obtained by our approach conform @adbove relationships.
On the other hand, a dimensionallgaware GP produced relationships such as,

0.5— (x2 —S)Y = congtant, Sx (V —xp) = constant, (x; x S) +xp = constant, (10)

which, although numerically satisfy the requirements ofaign principle, are of
no practical value to the designer.

The next question to investigate is whether the 20 desigrciples can be re-
duced to the few shown in (9). To answer this, we first needa& kt thec-value
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cluster plots of all design principles. For illustration les consider DP3 and DP16.
In each casey(x) is evaluated for alm = 500 trade-off solutions. The resulting
c-values are sorted and plotted as shown in Figs. 3 and 4.

Fig. 5: GP tree for DP12 of truss design prob-Fig. 6: GP tree for DP16 of truss design prob-
lem. Tree depth = 3 and size (or length) =9. lem. Tree depth = 3 and size (or length) = 7.

The right side plot in each figure shows that both design pies are applicable
on (approximately) the same part of the trade-off front,idating that they can
be combined. Indeed reducing DP16 with DP3 resultgjix; = constant which in
itself is another design principle (DP11). By considering largest clusters of DP16
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and DP3, the approximate value of the constant in DP11 isdfdaarbe 00444 x
44.77=1.99~ 2, which agrees with the second relationship in (9). In falttesign
principles in Table 2 form clusters in the same part of thderaff front and hence
they can be combined in any way to eliminate the redundarg.one

For illustration, the tree structures of DP12 and DP16 aosvshin Figs. 5 and 6.

4.2 Welded Beam Design

As our next example, we consider the bi-objective weldealibelesign problem.
It involves the minimization of welding co€l and end deflectio of a welded

cantilever beam carrying an end load of 6000 Ib. The desigiai@s (in inches)
are: beam thickneds beam widtht, length of the weld and weld thicknesk. The

allowable bending stresg], shear stresg} and buckling forceR.) are limited by

constraints. The problem formulation [7] is:

Minimize f1(x) =C = 1.1047h2| +0.04811b(14.0+ 1),

Minimize fy(x)=D = 2.t139bsz’

7(X) < 13,600 psio(x) < 30,000 psip > h; P.(x) > 6,000 Ib
0.125<h,b<5.0in.;01<1,t <100in.

Subject to {
(11)

where 1(x) = \/(T’)Z + ()2 4+ (1T'1") /\/0.25(12+ (h+1)2),
/6 y_ 6,00014+0.51)4/0.25(12+(h+1)?)
U="m> U = "2070ma2/12+025h0)2)] °
504,000
G(X) t2p
P.(X) = 64,746022(1— 0.0282346)tb>.

The problem is solved using NSGA-II to obtam = 500 trade-off solutions.
For automated innovization, we choose the same parametdrsfare, except the
population size which is increased to 3000. The functionfeetGP remains the
same. The terminal set is choserfas- {C,D,b,t,l,h,0,7,P;,R}. An extra ‘Cost’
dimension is added to the basic dimensions’ set for progidie dimensional in-
formation ofC to the algorithm. Table 3 shows the obtained design priasijibr
Seeqd = 90%.

All relationships are found to be applicable over approxetyathe same part
of the trade-off front and therefore some of them are redondée independent
design principles DP2, DP3 and DP5 have previously beensihbowe true [7, 1].

DP1 requires special attention because it shows a limitaifathe current ap-
proach. The deflectioB is of the order of 10* whereas the cluster plot of DP2 in
Fig. 7 reveals that the value bfs clustered around 10 in. for most solutions. This
leads to an ambiguity whei2+t numerically satisfies the requirement of a design
principle. The current approach does not handle thesdisitisa A possible remedy
for future analysis could be to normalize each basis funcfig with its order of
magnitude.

o
o
o
o
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Table 3: Design principles obtained using (GA + SmallGP) atorifor welded-beam problem.
Design Principle (DH Basic Dimensions

)Significanc

Notation Y(x) = constant Masg Lengthl Time|Cost
DP1 |(D+t) = congtant 95.20% | 0.0| 1.0 | 0.0|0.0
DP2 |t = congtant 95.60% | 0.0 1.0 | 0.0|0.0
DP3 |D x b= constant 95.00% | 0.0 2.0 | 0.0|0.0
DP4 |Dxbxt=congtant | 95.60% | 0.0| 3.0 [ 0.0 0.0
DP5 |0 x b= constant 94.80% | 1.0 0.0 |-2.0|0.0
DP6 |0 xbxt=congant 95.60% | 1.0| 1.0 |-2.0|0.0
DP7 |D/o = congtant 95.60% |-1.0| 2.0 | 2.0|0.0
DP8 |D/(o xt)=consant| 95.60% |-1.0| 1.0 | 2.0 |0.0

10 0.01
g 0.009]
9.95| 0.008

Fig. 7 Cluster plot (left) and 0.007
the mapping of clusters in Sooos
the objective space (right) g o005
for DP2. 478 out of 500 o8 0004
(95.60%) c-values obtained 0009
from @(x) =t form a single
clusters with an average o

value of 9999. T Sohon e

©
©

c-value

9.8y 0.002]

0.001

400 500 0 10 30 40

20
Cost (C)

4.3 Metal-Cutting Process Optimization

Next, we consider the metal-cutting process optimizatiabfem described in [19].
A steel bar is to be machined using a carbide tool of nose sagie= 0.8 mm
on a lathe withP™ = 10 kW rated motor to remove 219912 rimf material. A
maximum cutting force oF{™ = 5000 N is allowed. The motor has a transmission
efficiencyn = 75%. The total operation timé ) and the used tool life&) are to
be minimized by optimizing the cutting speed,(the feed rate f() and the depth
of cut (@) while maintaining a surface roughnessR¥®* = 50um. The problem is
formulated as,
1+ 9288 .
= Tp(x) =0.15+ 219912(MRR(X)> +0.05 min
o] _ _ 219912
Minimize fa(x) =£&(x) = MRRT oo < 100%

Minimize f1(x)
)
P(x) < nP™ R, (x) < FM™; R(x) < R™&

Subject to { 250< v < 400 m/min: 015 < f < 0.55 mm/rev:05 < a < 6 mm
(12)
where T(x) = 7\/3»456}40359%23_460, MRR(x) = 1000v/fa
= . 03f0.917 1.10 f2
P(x) = \éoc(%%p Fe(x) = 656X1V07,286 —, R(x) = 12:

NSGA-II results in 1000 trade-off solutions. (GA + SmallGR)used with the
same parameters as for truss design problengfgg = 70% to obtain the design
principles shown in Table 4. A new dimension ‘Life’ is intnackd to denote used
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Table 4: Design principles obtained using (GA + SmallGP) atgarifor metal-cutting problem.
Design Principle (DP) Basic Dimensions

Notation Y(x) = constant Significanc Massg Length Time|Life
DP1 |v/(f?x &)= congant 72.70% | 0.0| -1.0 |-1.0|-1.0
DP2 |(axVv)/f = constant 74.60% | 0.0| 1.0 |-1.0/0.0
DP3 |v/(f2xTpx &) =constant | 73.40% | 0.0 | -1.0 |-2.0|-1.0
DP4 |f = constant 72.90% | 0.0| 1.0 | 0.0|0.0
DP5 |a/(f x Tp) = constant 72.90% | 0.0| 0.0 |-1.0/0.0

DP6 |[(a>°x f x&)/Ty=congtant| 77.50% | 0.0| 6.5 [-1.0|1.0
DP7 |(axTyxV)/f = congant 74.20% | 0.0| 1.0 | 0.0 |0.0

DP8 |a>5 x Tp x & = congtant 82.60% | 0.0| 55 | 1.0[1.0
DP9 |ax T, x v= congtant 74.10% | 0.0| 2.0 | 0.0|0.0
DP10 |(@®x Ty x &)/v=congtant | 74.40% | 0.0 | 1.0 | 2.0|1.0
DP11 |(a2 x &)/v = congtant 76.00% | 0.0| 1.0 | 1.0[1.0
DP12 |a®5 x f x & = congtant 76.80% | 0.0| 6.5 | 0.0|1.0

tool life which is expressed as a percentage of total toel Empirical (and more
accurate) forms of DP4 and DP9 have previously been repantét]. Here, we
sacrifice the accuracy of the design principle in favour cfeeaf interpretability
for the designer, by making use of a dimensionally-aware ThR. problem with
magnitudes of basis functions is again observed here whéi®FRduced using
DP4, giving rise to a relationship which does not agree wi8D

The tree structures of two of the design principles, DP6 aRdD are shown in
Figs. 8 and 9. Their cluster plots in Figs. 10 and 11 show than &vith such com-
plex structures, they are valid design principles foundg$ie proposed algorithm.

Fig. 8: GP tree for DP6 of metal-cutting prob- Fig. 9: GP tree for DP11 of metal-cutting prob-
lem. Tree depth = 4 and size (or length) =9. lem. Tree depth = 2 and size (or length) = 7.
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) 6000, 10
Fig. 10 Cluster plot (left) % .
gnd the r_nap_ping of clus_ters 5000 @ 6261 (738 point)| \
in the objective space (right) 4000 o ) -
for DP6. 775 out of 1000 . © 17737 5 poins) 2’
(77.50%) c-values obtained ~ §* @ 37 (o) g o
from w(x) — (a5_5 X f % 2000 X Unclustered g 5
&)/Tp form six clusters shown 4
in shades of gray. The largest ~ ** 3
cluster has 739 points and an 4 7

0 200 400 600 800 1000 .8 0.9 1 11 12

averagec-value of 8261. Soluion Index Operaton Time (T,)

Flg 11 Cluster pIOt (left) 0% @ 0.0531 (760 points)
and the mapping of clusters 02
in the objective space (right)
for DP11. 760 out of 1000

Used Tool Life €)
oo

(76.00%) c-values obtained i 4
from @(x) = (a2 x &) /v form o )
a single cluster with average 0
0 200 400 600 800 1000 0.8 0.9 1 11 12
C_value Of 00531 Solution Index Operation Time (Tp)

5 Conclusions

This paper introduced a generalization to the automatedvination framework

proposed previously by the authors. A tree-based repras@mtis used to evolve
generic design principles for extracting knowledge fromltivabjective trade-off

datasets. The underlying algorithm for automated inndidraremains the same,
but introduction of the parse tree representation requhieduse of a genetic pro-
gramming system. We integrated the SmallGP system withnaatd genetic algo-
rithm for evolving the design principles. In order to obtainly physically mean-

ingful design principles, we made the (GA + SmallGP) systamedsionally aware
by penalising operations performed between incommenkualantities. The di-

mensional consistency is checked at each step of tree @ealdiar all fundamental

dimensions. The proposed algorithm was tested on thre@esigng design prob-
lems. While syntactically correct principles were obtaiiredoth cases, a limitation
concerning different magnitudes of basis functions wastitied.
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