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Abstract Automated innovization is an unsupervised machine learning technique
for extracting useful design knowledge from Pareto-optimal solutions in the form of
mathematical relationships of a certain structure. These relationships are known as
design principles. Past studies have shown the applicability of automated innoviza-
tion on a number of engineering design optimization problems using a multiplica-
tive form for the design principles. In this paper, we generalize the structure of the
obtained principles using a tree-based genetic programming framework. While the
underlying innovization algorithm remains the same, evolving multiple trees, each
representing a different design principle, is a challenging task. We also propose a
method for introducing dimensionality information in the search process to produce
design principles that are not just empirical in nature, butalso meaningful to the
user. The procedure is illustrated for three engineering design problems: two-bar
truss design, welded-beam design and metal-cutting process optimization.

1 Introduction

In recent years there has been a growing interest in the field of post-optimality anal-
ysis. In a single objective scenario, this usually concernsthe optimality, sensitivity
and robustness studies on the obtained solution. Multi-objective optimization on the
other hand, poses an additional challenge in that there are amultitude of possible so-
lutions (when the objectives are conflicting) which are all said to be Pareto-optimal.
The data-mining of Pareto-optimal solutions has received particular attention as it
can reveal certain characteristic features exclusive to these solutions, which can of-
ten be generalized to the entire Pareto-optimal front. In practical problem solving,
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the knowledge of these features can give the designer a better understanding of the
problem structure. Most studies in this direction rely on visual means of identify-
ing the features. For example, a heatmap of the Pareto-optimal variable values can
reveal the general distribution of these solutions in the decision space [18, 25]. The
use of parallel coordinate plots [8], ANOVA, decision trees[21] and clustering in
objective [22] and decision space has also been proposed. For example, the use of
self-organizing maps (SOMs) to condense the information embedded in the multi-
dimensional objective and decision spaces a lower-dimensional (generally two) map
was proposed in [15]. A SOM preserves the topology of the higher-dimensional
space, meaning that nearby points in the input space are mapped to nearby units in
SOM. Thus it can serve as a cluster analyzing tool for high-dimensional data [15].
The method though unsupervised still requires the users to deduce knowledge, such
as the role of design variables in trade-offs, visually through these maps.

Deb and Srinivasan [7] describe the concept ofinnovization by defining the spe-
cial features as commonalities among the Pareto-optimal solutions. These common-
alities (or invariants) are given mathematical forms, calleddesign principles, by per-
forming regression between variables and/or objectives using appropriate functions.
However, regression can only be performed when a correlation is observed between
the regressed entities. Innovization, in its original form, required users to identify
this correlation visually through two and three dimensional plots. Thismanual in-
novization task is therefore limited to features of Pareto-optimal solutions present
in humanly perceivable dimensions.

Automated innovization [2] is an unsupervised machine learning technique that
can identify correlations in any multi-dimensional space formed by variables, ob-
jectives, etc. specified by the user and subsequently performs a selective regression
on the correlated part of the Pareto-optimal dataset to obtain the design principle
ψ(x). The procedure was later extended [1] so that design principles hidden in all
possible Euclidean spaces formed by the variables and objectives (and any other
user-defined functions) can be obtained simultaneously without any human inter-
action. The regression assumes the following mathematicalstructure for the design
principle,

ψ(x) =
N

∏
j=1

φ j(x)a jb j , (1)

whereφ j ’s areN basis functions (variables, objectives functions, constraints etc.)
specified by the user which can have Boolean exponentsa j and real-valued ex-
ponentsb j. It has been argued that since many natural, physical, biological and
man-made processes are governed by formulae with the same structure (power laws
[14]), most correlations are expected to be mathematicallycaptured by it. By def-
inition, ψ(x) is a design principle if it is invariant, i.e.∏N

j=1 φ j(x)a jb j = c is true
for a majority of the Pareto-optimal solutions, for some constantc. However, due
to the approximate nature of Pareto-optimal datasets, the equality relation may not
hold strictly and hence the extent of commonality of a designprincipleψ(x) is ob-
tained by clustering the set ofc-values. The minimization of equal-weighted sum
of (i) number of clusters (C), and (ii) percentage coefficient of variance (cv = σ/µ)
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within these clusters, has been proposed in [2] to obtain design principles. An opti-
mization problem that uses this weighted objective function,

Minimize C+
C

∑
k=1

c(k)
v ×100% wherec(k)

v =
σc

µc
∀ c ∈ k-th cluster, (2)

is formulated witha j ’s represented by anN-bit binary variable string andb j ’s asN
real variables. The algorithmic calculation of the objective function requires the use
of a derivative-free optimization method like genetic algorithms (GA). The popu-
lation based approach of GA also enables obtaining multipledesign principles si-
multaneously using a niching strategy [1]. Given enough GA generations, the final
population will contain all possible design principles that fit the form in Eq. (1).

In this paper, we generalize the mathematical structure of the design principles in
Eq. (1) using parse tree representation. The overall automated innovization problem
is solved using a system that integrates a GA with a genetic programming algorithm
for handling such parse trees. The rest of the paper is organized as follows. Sect. 2
introduces genetic programming in general and discusses various evolutionary oper-
ators, namely initialization, fitness calculation, selection, crossover and mutation, in
the context of automated innovization. In Sect 3 we describethe procedure for intro-
ducing dimensional-awareness in the proposed system to obtain meaningful design
principles. Results on three standard engineering design problems are presented in
Sect.4.

2 Genetic Programming for Automated Innovization

At an abstract level, genetic programming (GP) is aweak search algorithm for au-
tomatically generating computer programs to perform specified tasks [12]. Weak
search methods do not require the user to know or specify the form or structure
of the solution in advance [10]. Most GP implementations employ an evolutionary
algorithm as the main search engine. However, simulated annealing, hill climbing
approaches and estimation of distribution algorithms (EDAs) have also been used in
literature [17]. Like other evolutionary computation techniques, a typical GP starts
with a population of randomly created individuals, which inthis case are programs.
The fitness for each individual is determined by running the program. High fitness
individuals are selected to form the mating pool, on which primary genetic oper-
ations, namely crossover and mutation, are applied to create a new population of
programs. The process is repeated until some stopping criterion (like maximum
number of generations) is met.

Most GP systems evolve programs in a domain-specific language specified by
primitives calledfunctions and terminals. The terminal set (T ) may consist of
the program’s external inputs, ephemeral random constants, and nullary (zero-
argument) functions/operators where as the function set (F ) may contain opera-
tors (arithmetic, Boolean, conditional, etc.), mathematical functions and constructs
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(loops, for example) that are defined in the language being used. Computer programs
are traditionally represented in the memory as parse trees made up of such primi-
tives. Other common ways of expressing programs include linear and graph-based
representations.

The most common application of GP has been to the process of induction of
mathematical models based on observations. This process isknown by the names
model induction, system identification and symbolic regression depending on the
purpose. The power of GP algorithms to evolve models in a symbolic form without
assuming the functional form of the underlying relationship can also be applied to
automated innovization. In this paper, we generalize the mathematical structure of
the design principles in Eq. (1) by representingψ(x) using parse trees composed
of theN basis functions and real-valued ephemeral constants as terminals, i.eT =
{φ1,φ2, . . . ,φN ,R} and a user-specified function setF . Fig. 1 shows two examples
of parse trees and their correspondingψ(x) expressions obtained by inorder depth-
first tree traversal. By starting with a population of such trees and using the objective
function in (2), it is possible to evolve design principles of a generic form using a GP
system. In the following sections we discuss each step of the(GA + SmallGP [16])
system used in this work. Some of these steps are standard andhence described only
briefly, while others which have been modified to suit the requirements of automated
innovization are explained in more detail.

2.1 Initialization

Two initialization methods are very common in GP, theFullmethod and theGrow
method [17]. TheFull method always generates trees in which all leaves (end
nodes) are at the same user-specifiedMAXDEPT H value. This is achieved by ran-
domly selecting nodes only from theF set until the depth limit is reached, at which
nodes are selected from theT set. On the other hand, theGrow method creates
trees of varied sizes and shapes by randomly selecting nodesfrom the full primitive
set (F +T ) for all nodes until the depth limit is reached, at which nodes are chosen
from T as in the case ofFullmethod. In Fig. 1, the tree on the left could have been
the result of either theFull or theGrow method, but the one on the right can only
be created by the latter. SmallGP uses a mix ofFull andGrow methods. When
selecting from the full primitive set the probability of choosing from the terminal
set is,

p(T ) =
|T |

|F |+ |T | ×SF,

where|.| denotes the set size andSF is the scaling factor which scales initialization
betweenFull (whenSF = 0) andGrow (whenSF = 1). It is to be noted that the
ephemeral constants only contribute one virtual terminal symbol to theT set so that
|T | = N +1. The initialization also takes into account the maximum program (tree)
lengthMAXLEN which can also be specified by the user.
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Fig. 1: Two examples of parse trees obtained from theFull (left) andGrow (right) methods for
MAXDEPT H = 2. The correspondingψ(x) expressions and binary strings are also shown.

2.2 Fitness and Constraint Evaluation

This step involves the use of a grid-based clustering algorithm for evaluating the fit-
ness function given in (2) for the trees created above. Each tree is decoded to obtain
the design principleψ(x) that it represents. The resulting mathematical expression
is evaluated for allm trade-off solutions provided as input to the GP algorithm to
obtain the correspondingc-values. Grid-based clustering [2] involves sorting these
c-values into a setC and dividing their range intod equal divisions (a parameter
of the clustering routine). Elements inC which belong to divisions with less than
⌊m/d⌋ c-values are categorized asunclustered. Adjacent divisions with more than
⌊m/d⌋ c-values are merged to form clusters. Thus, the number of clustersC and
the number of unclustered pointsU can be obtained and used in (2) to calculate the
fitness for any given tree. Instead of asking the user to choose the parameter value
for d, it is evolved alongside the GP trees using a GA. Therefore, each population
member of the proposed system consists of a GP tree variable for ψ(x) and an inte-
ger variable ford, which is also initialized (in the range[1,m]) in the previous step.
This is the reason for integrating GA with SmallGP in this paper.

It has been suggested in [2] that for obtaining the most accurate design principles,
the constraint

U = 0, (3)

should be imposed during clustering. This forces unclusteredc-values to form one-
element clusters by increasing the value ofd, which in turn causesC andcv within
clusters to increase. The optimization of the weighted objective compensates for this
by producing more accurate design principles.

A measure for the degree of commonality ofψ(x) is also calculated in this step.
This measure is called the significanceS of the design principle and is defined as,
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S =
(m−U ′)

m
×100%. (4)

HereU ′ is the total number of elements inC which belong to divisions with less
than(⌊m/d⌋+ ε) c-values. By choosing a small integer value forε, c-values which
barely formed clusters due to imposition of (3) can be identified.

2.3 Niched-Tournament Selection

In order to maintain multiple design principles in the population, [1] proposes the
use of niched-tournament selection for creating the matingpool. We adopt a similar
niching technique in the present paper. A binary string of length N is associated
with each GP tree. If thel-th basis function is present in a tree then thel-th bit
of the corresponding binary string is assigned a value of 1, else it takes a value
of 0. Tournaments are only allowed between trees which have exactly the same
binary string. This allows differentspecies of design principles to co-exist in the
population, while still promoting the better individual (fitness wise) when the trees
have exactly the same basis functions. Fig. 1 shows such binary strings for the two
trees. Since they are different, both individuals are equally competent irrespective
of their fitness values and tournament selection is not performed between them.

2.4 Subtree Crossover and Discrete SBX

SmallGP uses a size-safe subtree crossover [17] to recombine trees in the mating
pool. It ensures that the created children do not exceed the maximum tree length
MAXLEN. This is accomplished by first determining the number of nodes by which
the smaller parent tree can be extended. Then, a random subtree satisfying this re-
quirement is cut from the larger parent tree. Similarly, a random subtree (whose
maximum size is determined by taking the new size of the larger tree into account)
is cut from the smaller tree. The two subtrees are exchanged at the cut locations to
produce the offspring trees. Implementation details can befound in the manual [16].

The GA variabled is recombined using the discrete version of simulated binary
crossover (SBX) [5].

2.5 Point Mutation and Discrete Polynomial Mutation

Point mutation [17] is the simplest form of mutation in GP where a random node is
selected and the primitive at that node is replaced with a different random primitive
of the same kind (function or terminal) and arity to maintainthe closure property
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[12]. Like the bit-flip mutation in GAs, point mutation is applied on a per-node
basis, thus allowing multiple nodes to be mutated independently.

The GA variabled is mutated using the discrete version of polynomial mutation
suggested in [5].

3 Dimensional Awareness

GP systems are known to produce exceptionally good models insymbolic regres-
sion applications, given that an appropriate set of primitives is provided. This has
inspired the use of GP for scientific knowledge discovery from datasets obtained
through physical processes, experiments, phenomena, etc.Computer-aided scien-
tific knowledge discovery differs from standard symbolic regression in that the ob-
tained model, in addition to fitting the data well, is also expected to be novel, inter-
esting, plausible and understandable [24]. The key to achieving this is to incorporate
the semantic content that is encapsulated in the data into the search process. Notable
examples are the hypothesis-led discovery process of RobotScientist Adam [11],
the partial-derivative-pair metric based discoveries made by Eureqa [20], and other
such discovery programs mentioned in [23].

The foremost application of automated innovization has been for engineering
problems [2, 3]. It may be beneficial in these cases to extractdesign principles
which are not just empirical in nature but also meaningful tothe designer. In GP
this is usually achieved by constraining the tree structures [17]. For example, if a
model is known to be periodica priori, then the search may be constrained to mod-
els that take the forma× sin(b× t) through strong typing [13] or grammar-based
constraints [9]. When no such domain-specific information isavailable, one can still
generate meaningful and syntactically correct tree structures by taking into account
the most basic requirement for relationships governing allphysical systems, namely
dimensional consistency or commensurability, which states:

• Only commensurable quantities (quantities with the same dimensions) may be
compared, equated, added, or subtracted.

• One may take ratios of incommensurable quantities (quantities with different
dimensions), and multiply or divide them.

Previous work on dimensionally-aware genetic programmingproposed aweakly
typed or implicit casting approach [10] where dimensionality is not enforced, but
promoted through an additional objective. We incorporate asimilar strategy in the
proposed (GA + SmallGP) system using constraints for penalising dimensional in-
consistency.

Datasets obtained from multi-objective optimization of engineering systems con-
sist of Pareto-optimal values of variables, constraints and objectives, for all of which
the dimensions are knowna priori. Each basis functionφ(x) provided as input to the
proposed system can therefore also carry its dimensionality information. For a given
tree the dimensional consistency ofψ(x) is checked using the following procedure.
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Table 1: Transformed terminal operations for
calculating the exponentE from the expo-
nentsei and e j of two terminals. Note that
Z can be set to any value greater thanEmax.
Operation Transformed Operation

Ti +Tj
E = ei, if ei = e j

E = Z, otherwise

Ti −Tj
E = ei, if ei = e j

E = Z, otherwise

Ti ×Tj
E = Z, if max(|ei|, |e j|) > Emax

E = ei + e j, otherwise
Ti

Tj

E = Z, if max(|ei|, |e j|) > Emax

E = ei − e j, otherwise

T
Tj

i

E = eiTj, if |ei| ≤ Emax & e j = 0
E = Z, otherwise

Fig. 2: Two-bar truss configura-
tion showing the cross-sectional
areasx1 and x2 and the vertical
lengthy. A load of F = 100 kN
is applied.

Noting that the largest possible absolute value of the exponent for any funda-
mental dimension (mass, length, time, etc.) among all knownphysical quantities
is four, it can be established that in a tree of depthMAXDEPT H the maximum
absolute value that a dimension exponent can have in the correspondingψ(x) is
Emax = 4×2MAXDEPT H . For two terminalsTi andTj having dimension exponentsei

ande j, undergoing various operations, the resulting exponentE is calculated using
the transformed terminal operations shown in Table 1. Note that when adding or
subtracting incommensurable quantities,E is assigned an arbitrary valueZ greater
thanEmax. This indicates to subsequent operations that the tree being evaluated (or
ψ(x)) is already dimensionally inconsistent. The absolute value of the exponentE
obtained after completely evaluating the tree is constrained to be at or belowEmax

for all basic dimensions, thus imposing dimensional consistency.
The optimization problem for (GA + SmallGP) based automatedinnovization

can now be formulated as,

Minimize
{ψ(x),d}

T S

(

C+
C

∑
k=1

c(k)
v ×100%

)

where c(k)
v =

σc

µc
∀ c ∈ k-th cluster,

and c = ψ(x) ∀ m

Subject to
{

1≤ d ≤ m; U = 0;S ≥ Sreqd ; |E| ≤ Emax ∀ basic dimensions
}

(5)
The tree-sizeT S (number of nodes in the tree) is multiplied to the weighted objective
function in (2) in order to promote smaller trees. This helpsin obtaining simple
relationships. The minimum significance required by the user is specified bySreqd .
We recommend starting with a high value ofSreqd (say 90%) and gradually reducing
it until some design principles are obtained.
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4 Results

We now illustrate the working of the proposed algorithm on three engineering design
problems. In all cases the design optimization problem is solved using NSGA-II [6]
with the following parameters:

1. Population size = 500 (truss and welded-beam), 1000 (metal-cutting)
2. Number of generations = 500,
3. SBX for real variables withpc = 0.9 andηc = 10,
4. Polynomial mutation for real variables withpm = 0.05 andηm = 50,

4.1 Two-bar Truss Design

The two-bar truss design problem involves three variables as shown in Fig. 2. The
bi-objective formulation is,

Minimize f1(x) = Volume(V ) = x1

√

16+ y2 + x2

√

1+ y2,
Minimize f2(x) = Max. Stress(S) = max(σAC,σBC),

Subject to

{

S ≤ 105 kPa;0≤ x1,x2 ≤ 0.01 m2 and 1≤ y ≤ 3 m

} (6)

NSGA-II givesm = 500 non-dominated solutions at the end 500 generations. For
automated innovization we choose the function setF = {+,−,×,%,∧ } where %
represents protected division and∧ represents the power function. The objectives
and the variables are chosen as the basis functions, i.e,Φ = {φ1,φ2,φ3,φ4,φ5,} =
{V,S,x1,x2,y}. and so the terminal set isT = {V,S,x1,x2,y,R}. The following pa-
rameters are used in the proposed (GA + SmallGP) algorithm tosolve the optimiza-
tion problem in (5):

1. Population size = 1000,
2. Number of generations = 100,
3. Discrete SBX for variabled with pc = 0.9 andηc = 10,
4. Discrete polynomial mutation for variabled with pm = 0.05 andηm = 50,
5. SmallGP crossover probability = 0.9, mutation probability (per node) = 0.2,
6. Maximum program depth (MAXDEPT H) = 10 and length (MAXLEN) =10,
7. Ephemeral constants,R = {−10.0,−9.5,−9.0, . . . ,9.0,9.5,10.0},
8. Threshold significanceSreqd = 80%, Clustering constantε = 3.

Table 2 shows the obtained design principles, their significance values and the expo-
nents of their basic dimensions. A total of 26 principles were obtained, which were
symbolically simplified in MATLAB and only the unique ones are presented here.

The truss design problem can be mathematically solved usingthe identical re-
source allocation strategy in order to verify the obtained design principles. Increas-
ing the cross-sectional area of one member reduces the stress induced in it and so
the second objective takes the other member into account at some point. But since
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Table 2: Design principles obtained using (GA + SmallGP) algorithm for truss design problem.

Notation
Design Principle (DP)

Significance
Basic Dimensions

ψ(x) = constant MassLength Time
DP1 y = constant 86.60% 0.0 1.0 0.0
DP2 S×V = constant 87.00% 1.0 2.0 -2.0
DP3 S× x1 = constant 85.00% 1.0 1.0 -2.0
DP4 S×V × y = constant 87.00% 1.0 3.0 -2.0
DP5 (V × y)/x2 = constant 86.20% 0.0 2.0 0.0
DP6 (V × y)/x1 = constant 88.20% 0.0 2.0 0.0
DP7 V/x1 = constant 86.40% 0.0 1.0 0.0
DP8 V/(S× x1× x2) = constant 87.20% -1.0 0.0 2.0
DP9 V 2/(x1× x2) = constant 87.40% 0.0 2.0 0.0
DP10 y/(S× x1) = constant 88.00% -1.0 0.0 2.0
DP11 x2/x1 = constant 83.80% 0.0 0.0 0.0
DP12 (S×V × x2× y)/x1 = constant 88.00% 1.0 3.0 -2.0
DP13 V/x2 = constant 86.80% 0.0 1.0 0.0
DP14 (S×V 2× y)/x1 = constant 87.20% 1.0 4.0 -2.0
DP15 (x2× y)/x1 = constant 86.40% 0.0 1.0 0.0
DP16 x2/(S× x2

1) = constant 86.40% -1.0 -1.0 2.0
DP17 V 2/(x1× x2× y) = constant 91.40% 0.0 1.0 0.0
DP18 (S×V 2)/x2 = constant 87.20% 1.0 3.0 -2.0
DP19 S× x2× y = constant 87.00% 1.0 2.0 -2.0
DP20 (x2× y)/(S× x2

1) = constant 86.80% -1.0 0.0 2.0

both the objectives are equally important, this cannot be allowed. A balance can be
obtained only when the stresses in both the members are equal.

S = σAC = σBC ⇒ S =
100
5

√

16+ y2

yx1
=

4×100
5

√

1+ y2

yx2
. (7)

Following a similar argument for the volumes we get,

V = 2× x1

√

16+ y2 = 2× x2

√

1+ y2. (8)

Solving (7) and (8) gives the following relationships, all of which must be true for
Pareto-optimality,

y = 2, x2 = 2x1, V = 4
√

5x1 = 2
√

5x2 Sx1 = 20
√

5, Sx2 = 40
√

5. (9)

All design principles obtained by our approach conform to the above relationships.
On the other hand, a dimensionallyunaware GP produced relationships such as,

0.5−(x2−S)y = constant,S×(V −x2) = constant,(x1×S)+x2 = constant, (10)

which, although numerically satisfy the requirements of a design principle, are of
no practical value to the designer.

The next question to investigate is whether the 20 design principles can be re-
duced to the few shown in (9). To answer this, we first need to look at thec-value
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Fig. 3 Cluster plot (left) and
the mapping of clusters in
the objective space (right)
for DP3. 425 out of 500
(85.00%) c-values obtained
from ψ(x) = S × x1 form
eight clusters shown in shades
of gray. The largest cluster
has 307 points and an average
c-value of 44.77.
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Fig. 4 Cluster plot (left) and
the mapping of clusters in
the objective space (right)
for DP16. 432 out of 500
(86.40%) c-values obtained
from ψ(x) = x2/(S×x2

1) form
five clusters shown in shades
of gray. The largest cluster
has 406 points and an average
c-value of 0.0444.
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cluster plots of all design principles. For illustration let us consider DP3 and DP16.
In each case,ψ(x) is evaluated for allm = 500 trade-off solutions. The resulting
c-values are sorted and plotted as shown in Figs. 3 and 4.
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×

Fig. 5: GP tree for DP12 of truss design prob-
lem. Tree depth = 3 and size (or length) = 9.

×

x1

x1

S

x2

/

/

Fig. 6: GP tree for DP16 of truss design prob-
lem. Tree depth = 3 and size (or length) = 7.

The right side plot in each figure shows that both design principles are applicable
on (approximately) the same part of the trade-off front, indicating that they can
be combined. Indeed reducing DP16 with DP3 results inx2/x1 = constant which in
itself is another design principle (DP11). By considering the largest clusters of DP16
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and DP3, the approximate value of the constant in DP11 is found to be 0.0444×
44.77= 1.99≈ 2, which agrees with the second relationship in (9). In fact,all design
principles in Table 2 form clusters in the same part of the trade-off front and hence
they can be combined in any way to eliminate the redundant ones.

For illustration, the tree structures of DP12 and DP16 are shown in Figs. 5 and 6.

4.2 Welded Beam Design

As our next example, we consider the bi-objective welded-beam design problem.
It involves the minimization of welding costC and end deflectionD of a welded
cantilever beam carrying an end load of 6000 lb. The design variables (in inches)
are: beam thicknessb, beam widtht, length of the weldl and weld thicknessh. The
allowable bending stress (σ ), shear stress (τ) and buckling force (Pc) are limited by
constraints. The problem formulation [7] is:

Minimize f1(x) = C = 1.10471h2l +0.04811tb(14.0+ l),
Minimize f2(x) = D = 2.1952

t3b
,

Subject to

{

τ(x) ≤ 13,600 psi;σ(x) ≤ 30,000 psi;b ≥ h;Pc(x) ≥ 6,000 lb
0.125≤ h,b ≤ 5.0 in.;0.1≤ l, t ≤ 10.0 in.

}

(11)

where τ(x) =
√

(τ ′)2 +(τ ′′)2 +(lτ ′τ ′′)/
√

0.25(l2 +(h+ t)2),

τ ′ = 6,000√
2hl

, τ ′′ = 6,000(14+0.5l)
√

0.25(l2+(h+t)2)

2[0.707hl(l2/12+0.25(h+t)2)]
,

σ(x) = 504,000
t2b

,

Pc(x) = 64,746.022(1−0.0282346t)tb3.

The problem is solved using NSGA-II to obtainm = 500 trade-off solutions.
For automated innovization, we choose the same parameters as before, except the
population size which is increased to 3000. The function setfor GP remains the
same. The terminal set is chosen asT = {C,D,b, t, l,h,σ ,τ,Pc,R}. An extra ‘Cost’
dimension is added to the basic dimensions’ set for providing the dimensional in-
formation ofC to the algorithm. Table 3 shows the obtained design principles for
Sreqd = 90%.

All relationships are found to be applicable over approximately the same part
of the trade-off front and therefore some of them are redundant. The independent
design principles DP2, DP3 and DP5 have previously been shown to be true [7, 1].

DP1 requires special attention because it shows a limitation of the current ap-
proach. The deflectionD is of the order of 10−4 whereas the cluster plot of DP2 in
Fig. 7 reveals that the value oft is clustered around 10 in. for most solutions. This
leads to an ambiguity whereD+ t numerically satisfies the requirement of a design
principle. The current approach does not handle these situations. A possible remedy
for future analysis could be to normalize each basis function (φ ) with its order of
magnitude.
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Table 3: Design principles obtained using (GA + SmallGP) algorithm for welded-beam problem.

Notation
Design Principle (DP)

Significance
Basic Dimensions

ψ(x) = constant MassLength Time Cost
DP1 (D+ t) = constant 95.20% 0.0 1.0 0.0 0.0
DP2 t = constant 95.60% 0.0 1.0 0.0 0.0
DP3 D×b = constant 95.00% 0.0 2.0 0.0 0.0
DP4 D×b× t = constant 95.60% 0.0 3.0 0.0 0.0
DP5 σ ×b = constant 94.80% 1.0 0.0 -2.0 0.0
DP6 σ ×b× t = constant 95.60% 1.0 1.0 -2.0 0.0
DP7 D/σ = constant 95.60% -1.0 2.0 2.0 0.0
DP8 D/(σ × t) = constant 95.60% -1.0 1.0 2.0 0.0

Fig. 7 Cluster plot (left) and
the mapping of clusters in
the objective space (right)
for DP2. 478 out of 500
(95.60%) c-values obtained
from ψ(x) = t form a single
clusters with an averagec-
value of 9.999.
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4.3 Metal-Cutting Process Optimization

Next, we consider the metal-cutting process optimization problem described in [19].
A steel bar is to be machined using a carbide tool of nose radius rn = 0.8 mm
on a lathe withPmax = 10 kW rated motor to remove 219912 mm3 of material. A
maximum cutting force ofFmax

c = 5000 N is allowed. The motor has a transmission
efficiencyη = 75%. The total operation time (Tp) and the used tool life (ξ ) are to
be minimized by optimizing the cutting speed (v), the feed rate (f ) and the depth
of cut (a) while maintaining a surface roughness ofRmax = 50µm. The problem is
formulated as,

Minimize f1(x) = Tp(x) = 0.15+219912

(

1+ 0.20
T (x)

MRR(x)

)

+0.05 min

Minimize f2(x) = ξ (x) = 219912
MRR(x)T (x) ×100%

Subject to

{

P(x) ≤ ηPmax;Fc(x) ≤ Fmax
c ;R(x) ≤ Rmax

250≤ v ≤ 400 m/min;0.15≤ f ≤ 0.55 mm/rev;0.5≤ a ≤ 6 mm

}

(12)
where T (x) = 5.48×109

v3.46 f 0.696a0.460, MRR(x) = 1000v f a

P(x) = vFc(x)
60000, Fc(x) = 6.56×103 f 0.917a1.10

v0.286 , R(x) = 125f 2

rn
.

NSGA-II results in 1000 trade-off solutions. (GA + SmallGP)is used with the
same parameters as for truss design problem forSreqd = 70% to obtain the design
principles shown in Table 4. A new dimension ‘Life’ is introduced to denote used
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Table 4: Design principles obtained using (GA + SmallGP) algorithm for metal-cutting problem.

Notation
Design Principle (DP)

Significance
Basic Dimensions

ψ(x) = constant MassLength Time Life
DP1 v/( f 2×ξ ) = constant 72.70% 0.0 -1.0 -1.0 -1.0
DP2 (a× v)/ f = constant 74.60% 0.0 1.0 -1.0 0.0
DP3 v/( f 2×Tp ×ξ ) = constant 73.40% 0.0 -1.0 -2.0 -1.0
DP4 f = constant 72.90% 0.0 1.0 0.0 0.0
DP5 a/( f ×Tp) = constant 72.90% 0.0 0.0 -1.0 0.0
DP6 (a5.5× f ×ξ )/Tp = constant 77.50% 0.0 6.5 -1.0 1.0
DP7 (a×Tp × v)/ f = constant 74.20% 0.0 1.0 0.0 0.0
DP8 a5.5×Tp ×ξ = constant 82.60% 0.0 5.5 1.0 1.0
DP9 a×Tp × v = constant 74.10% 0.0 2.0 0.0 0.0
DP10 (a2×Tp ×ξ )/v = constant 74.40% 0.0 1.0 2.0 1.0
DP11 (a2×ξ )/v = constant 76.00% 0.0 1.0 1.0 1.0
DP12 a5.5× f ×ξ = constant 76.80% 0.0 6.5 0.0 1.0

tool life which is expressed as a percentage of total tool life. Empirical (and more
accurate) forms of DP4 and DP9 have previously been reportedin [4]. Here, we
sacrifice the accuracy of the design principle in favour of ease of interpretability
for the designer, by making use of a dimensionally-aware GP.The problem with
magnitudes of basis functions is again observed here when DP6 is reduced using
DP4, giving rise to a relationship which does not agree with DP8.

The tree structures of two of the design principles, DP6 and DP11, are shown in
Figs. 8 and 9. Their cluster plots in Figs. 10 and 11 show that even with such com-
plex structures, they are valid design principles found using the proposed algorithm.

/

f

Tp

a

ξ×

5.5

∧

×

Fig. 8: GP tree for DP6 of metal-cutting prob-
lem. Tree depth = 4 and size (or length) = 9.

ξ v

×

/

a a

×

Fig. 9: GP tree for DP11 of metal-cutting prob-
lem. Tree depth = 2 and size (or length) = 7.
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Fig. 10 Cluster plot (left)
and the mapping of clusters
in the objective space (right)
for DP6. 775 out of 1000
(77.50%) c-values obtained
from ψ(x) = (a5.5 × f ×
ξ )/Tp form six clusters shown
in shades of gray. The largest
cluster has 739 points and an
averagec-value of 82.61.
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Fig. 11 Cluster plot (left)
and the mapping of clusters
in the objective space (right)
for DP11. 760 out of 1000
(76.00%) c-values obtained
from ψ(x) = (a2×ξ )/v form
a single cluster with average
c-value of 0.0531.
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5 Conclusions

This paper introduced a generalization to the automated innovization framework
proposed previously by the authors. A tree-based representation is used to evolve
generic design principles for extracting knowledge from multi-objective trade-off
datasets. The underlying algorithm for automated innovization remains the same,
but introduction of the parse tree representation requiredthe use of a genetic pro-
gramming system. We integrated the SmallGP system with a standard genetic algo-
rithm for evolving the design principles. In order to obtainonly physically mean-
ingful design principles, we made the (GA + SmallGP) system dimensionally aware
by penalising operations performed between incommensurable quantities. The di-
mensional consistency is checked at each step of tree evaluation for all fundamental
dimensions. The proposed algorithm was tested on three engineering design prob-
lems. While syntactically correct principles were obtainedin both cases, a limitation
concerning different magnitudes of basis functions was identified.
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24. Vald́es-Ṕerez, R.: Principles of humancomputer collaboration for knowledge discovery in sci-
ence. Artificial Intelligence107(2), 335–346 (1999)

25. Walker, D., Everson, R., Fieldsend, J.: Visualisation and ordering of many-objective popula-
tions. In: 2010 IEEE Congress on Evolutionary Computation (IEEE-CEC), pp. 1–8 (2010)


