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ABSTRACT 

This paper describes various methods used to encode artificial 
neural networks to chromosomes to be used in evolutionary 
computation. The target of this review is to cover the main 
techniques of network encoding and make it easier to choose 
one when implementing a custom evolutionary algorithm for 
finding the network topology. Most of the encoding methods 
are mentioned in the context of neural networks; however all 
of them could be generalized to automata networks or even 
oriented graphs. We present direct and indirect encoding 
methods, and given examples of their genotypes. We also 
describe the possibilities of applying genetic operators of 
mutation and crossover to genotypes encoded by these 
methods. Also, the dependencies of using special evolutionary 
algorithms with some of the encodings were considered. 

I. INTRODUCTION 

Despite of frequent critics of artificial neural 
networks as a black-box method, they are with no doubt 
useful in various applications from signal processing and 
recognition to industrial control.  

There are various specialized topologies of networks 
used to solve different kinds of problems. But it can be 
assumed that there exist other topologies useful for the 
types of problems that are not primarily solved by neural 
networks at this time. But when a new topology is 
needed, thanks to the almost black-box structure of 
neural networks, it seems to be almost impossible to 
manage it by standard analytic or engineering methods. 
Even the task of finding the number of neurons in the 
hidden layer of a feed-forward neural network is often 
only a matter of trying different possibilities. Therefore 
this looks like an ideal situation to use the heuristics of 
an evolutionary algorithm. 

Evolutionary algorithms often work with direct 
representation of the solution. Example of this could be 
genetic programming (GP), which uses program trees as 
a genotype, but the trees are also solutions. When we try 
to apply a similar approach to graphs (as neural networks 
are), there will probably raise a problem in the 
application of genetic operators. The mutation operator 

seems easy to apply to any kind of structure, but crossing 
over two graphs is not so straightforward. Because of 
that, it seems to be an advantage to separate the genotype 
and the phenotype. That means to use a simplified 
representation of solution in chromosomes. This process 
of converting a network into genes will be called 
encoding in the rest of this paper. 

Encoding methods can be divided in three main 
groups according to the process of creating the network 
from the encoded genome: direct, parametric and 
indirect encoding. They are presented in the next 
subsections. At the end we present the conclusions. 

II. DIRECT ENCODING 

In direct encoding methods there exists a direct 
genotype-phenotype mapping for the network. That 
means that all parameters of the network are clearly 
understandable from the genes without any repeated 
process of transcription or growing. 

Some authors ([1]) differentiate between direct 
encoding and structural encoding, but in this paper we 
consider them being the same type of encodings. In [1], 
the main difference between direct and structural 
encoding is that direct encoding holds not only 
information about the presence of connections, but also 
about their weights. 

After deeper look at structural encodings, authors 
considered that all of them could be extended to hold 
also weight information, though should be quite simply 
interchangeable. However, the encoding of the 
connection topology is the main concern of this paper. 

A. Connection matrix 

Probably the simplest representation of a graph or a 
network is a connection matrix. It is a square matrix n x 
n, where n is equal to the number of nodes in the 
network. Then every number in the matrix at 
coordinates [i, j] is the weight of connection between 
node i and node j. It is obvious, that on the main 
diagonal lay the weights of the graph loops and under 
diagonal lay the weights of recurrent (backward) 
connections. So, if necessary, connection matrix can be 
limited to the upper triangular matrix to force the 
network to be feed-forward (i.e. without backward 
connections). 
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One of the possibilities when using a connection 
matrix is to use the numbers on diagonal as identifiers 
of node types instead of representing the loop weights. 
That would of course exclude loops, what is probably 
useful only when designing feed-forward networks. 

The numbers in the connection matrix can be of 
course limited to contain only numbers from set {0, 1}. 
This simplification does not take the weights into 
account; it only creates connection between nodes 
containing number 1 in the matrix. Figure 1 shows the 
process of transcription of a binary chromosome into a 
network phenotype. 

 
Figure 1.  Binary genotype (A) is rewritten into connection matrix 
row-by-row (B), from which the network is created directly (C). 

As can be seen on Figure 2, the genetic operator of 
mutation can be applied in the way of classical genetic 
algorithms, when a random bit in the genotype is flipped 
to its opposite value. 

 

 
Figure 2.  Application of mutation operator applied on connection 
matrix encoded network. Random bit in original bit string (A) is 

flipped to reach modified offspring (B). 

The crossover operator is also applied in the 
straightforward way of classical genetic algorithms, as 
can be seen on Figure 3, where crossover with one cut 
point can be seen. 

 

 
Figure 3.  Application of crossover operator on connection matrix 

encoded network. Parent bit string chromosomes (A) are crossed over 
at random position (B) to create offspring (C) like in classical genetic 

algorithm. 

B. Node-based encoding 

1) Schiffmann node-based encoding 
One of the attempts to extend the low flexibility of 

previous approach is node-based encoding. Instead of 
describing the network connections by a matrix of all 
possible connections, node-based encoding enumerates 
all nodes existing in the network only once, and for each 
node it enumerates all its inputs. This kind of encoding 
requires a unique identifier to be assigned to each node. 
Then these identifiers are used in gene transcription to 
clearly identify both node and its inputs. 

However, this intuitive encoding is only briefly 
described in [7]. Only the application of the crossover 
operator was described in detail. In this method, 
crossing over means swapping parts of the genotype 
delimited by the borders of node definitions. An 
example of the encoding and the application of the 
crossover operator are in Figure 4. 

The mutation operator then should be able to add 
new nodes and connections, or delete existing ones. 

 

 
Figure 4.  Example of node-based network encoding. Vertical lines in 

genotype transcription represent crossover points. 

2) Koza node-based encoding 
Another possibility of node-based encoding is to use 

genetic programming. Since GP is usually applied to 
evolve program trees in LISP language, the network in 
this method is represented as a tree, where the root is the 
output processing element (neuron) and the leaves 
represent the input signals. The tree structure contains 
all hidden nodes and connecting links with weights 
(Figure 5). When a network with more outputs is 
needed, then as a root of the genetic tree a LISP 
function LIST is used. This list should be holding all the 
outputs which are roots of their respective sub-trees. 
Details of this method and more possibilities of creating 
more complex topologies with “defined functions” are 
described in [6]. 

The genetic operators are  defined by applying the 
rules of genetic programming, as mentioned in [5]. 
Mutation is defined as a replacement of a sub-tree with 
a new randomly generated sub-tree. This random sub-
tree, as well as initial random population, has few 
constraints to produce a well-formed network. As can 
be seen in Figure 5, under any processing unit (P) there 
must be a variable amount of weights (W) that represent 
connections of processing units. Every W has two 
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arguments. The first of them is a number that represents 
the actual weight of created link. This can be a float 
number constant or a numerical expression tree. The 
second argument of W is the connection source element 
– input signal or another processing node. It can be 
easily derived that only float number constants and 
input signals are allowed as the leaves of a genetic tree. 

Crossover genetic operation is defined simply by 
swapping sub-trees of two genetic trees. The only 
constraint is that both sub-trees have to be cut at an 
element of the same type, e.g., the roots of both sub-
trees have to be P. 

 

 
Figure 5.  Example of node-based encoding by the means of genetic 
programming. LISP expression (A) is used as a tree (B) from which 
the network is constructed (C). 

C. Pathway-based encoding 

This approach can be used to evolve flexible and 
recurrent networks. It looks at the network as a set of 
paths from inputs to outputs. Every one of these paths 
begins in one of the inputs, continues through variable 
set of labeled nodes and ends in one of the output nodes. 
Of course, for one pair of a certain input and output, 
many possible paths could exist. 

There is a context-free grammar proposed in [10], 
which describes the correct form of the paths in the 
genotype. 

The process of the network construction begins with 
the input and the output nodes. Then it continues at the 
input node specified by the beginning of the current 
path. After that, for every node label in the path, a node 
with the same label in the network is found. If the node 
does not exist, it is created. This node is connected to 
the previous one in the path. Then another node label 
from the path is taken and the process repeats until the 
end of the path is reached (output). An example of this 
encoding can be seen in Figure 6.  

The genetic operator of mutation has four 
possibilities to change the genotype: creating a new 

path, deleting an existing path, adding a neuron or 
removing a neuron from an already existing path. 

The crossover operator is responsible for exchanging 
the paths between individuals and it cuts the 
chromosomes at two points between the path 
boundaries. Then, as usually, the paths between the cut 
points are exchanged. 

 
Figure 6.  Example of path-based encoding. Paths (A) merged together 
create the final network (B). Path P3 is displayed with wide gray lines 

in the network. 

D. Neuroevolution of augmenting topologies (NEAT) 

NEAT (described in [11]) is an evolutionary method 
on its own, not only a method of encoding. However, 
the encoding used by NEAT seems to be very useful 
and flexible. But due to some of its properties 
mentioned below, it is limited to be used with the 
NEAT evolutionary algorithm. 

The genetic encoding applied by NEAT uses two 
chromosomes – one of them holds the enumeration of 
all available nodes in the network; the other one holds 
the enumeration of edges between the nodes (Figure 7). 
Every gene in the “node chromosome” contains a 
unique identifier of the node and the type of the node – 
a node can be an input node (sensor, receptor), an output 
node (actuator) or a hidden node. Genes in “edge 
chromosome” contain information about begin and end 
nodes of the edge, weight of the edge, information about 
activation of the gene and a historical marker. 
Activation of a gene simply tells if the edge described 
by a gene should be created or not and its meaning will 
be mentioned later on. Historical marker is a global 
counter which tells which mutation in all history of 
evolution caused creation of that gene. 

 

 
Figure 7.  Example of NEAT network encoding. Genome of the 

individual contains node enumeration (A) and connections 
enumeration (B). Final network constructed from this genome can be 

seen in the bottom (C). 

The genetic operator of mutation can influence the 
genotype in many ways. One of the possibilities is 
adding of a new node. In that case, an existing edge is 
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“split” and the new node is inserted in the middle. That 
means deactivating the gene describing an existing edge 
(turn to DISABLED) and inserting two new edges 
connecting two existing nodes with a new one. Another 
possibility is to add a new edge, what means creating a 
new connection gene from one existing node to another. 
To fine-tune the weights of a created network, the 
algorithm can also mutate the weights in the “edge 
chromosome”. 

Crossover in NEAT uses the aforementioned 
historical markers to align genes. It improves the 
validity of the offspring, since only compatible 
modifications are crossed-over (Figure 8). 

 

 
Figure 8.  Aligned crossover of networks encoded by NEAT encoding. 

III. PARAMETRIC ENCODING 

The following approaches describe networks as 
genes with a set of parameters, from which the network 
is created by given rules. In this case, the topology of 
the network can be assumed from the problem domain, 
but the evolutionary algorithm is used to fine-tune the 
setting of the network. 

A. Simple feedforward network encoding 

Typical example of parametric encoding is a simple 
encoding of a feed-forward network with one hidden 
layer. When designing this kind of network, the back-
propagation learning algorithm is typically used. Inputs 
and outputs that define the problem are usually given, 
too. Then the search space for an ideal network solving 
the given problem consists of finding an acceptable 
number of neurons in the hidden layer and finding the 
learning algorithm parameters, which would not get 
stuck in local optima in the learning phase. 

Figure 9 shows an example of feed-forward neural 
network with one hidden layer, encoded simply in one 
gene (part A – number 5). Other two genes in the 
chromosome contain parameters of the back-
propagation learning algorithm used to train this 
network, so together with the size of the hidden layer, 
also the ideal type of learning algorithm could be 
evolved. 

 

 
Figure 9.  Simple encoding of feed-forward network with one hidden 
layer and the back-propagation learning algorithm. Chromosome (A) 
contains the number of hidden neurons and parameters of the learning 
algorithm. Final network (B) for the example genome has 5 neurons in 

the hidden layer. 

B. Layer-based encoding 

For some neural network applications it can be 
assumed that the optimal solution will be found as a 
multi-layer feed-forward network. In that case, it might 
be useful to apply the layer-based encoding. This 
encoding supposes a multi-layer feed-forward 
architecture and  the back-propagation learning 
algorithm. The genotype of this encoding contains back-
propagation learning parameters (learning rate and 
momentum) and parameters of a variable number of 
individual layers (Figure 10). Layer parameters contain 
information about the number of neurons in the layer 
and information about the output connections (to the 
following layer) and the input connections (from 
previous layers). 

An one-point crossover operator is used to exchange 
layers between individuals. A two-point crossover 
operator is used to exchange bigger parts of genotypes 
between individuals. To maintain the consistency of the 
chromosomes, they are cut at the layer level. 

This encoding uses relative mutation operator, which 
slowly changes genes of randomly chosen individuals. 
Besides the minimum and the maximum value, all genes 
contain also the maximum amount of change. 

 

 
Figure 10.  Scheme of a layer-encoded genotype. Genotype (A) 

includes common network learning parameters (B) and layer 
parameters (C). 

IV. INDIRECT ENCODING 

When trying to evolve networks able to solve 
complex problems, the complexity of the network is 
usually not big enough with the use of direct and 
parametric encoding of networks. Every method 
mentioned above (except connection matrix) supports 
adding new nodes and links to the network; however, 
there is only a little chance that any kind of regularity or 
modularity could evolve.  Searching the space of all 
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possibilities with direct encoding becomes very slow for 
very large networks. 

A. Lindenmayer systems 

Lindenmayer systems (L-systems) are used for 
describing many biological processes in computer 
environments. Their most common use is in the 
simulation of plants growth [3]. 

L-systems are based on formal grammars, that 
means, they use productions (rewrite rules) that are 
iteratively applied on the starting string (axiom). The 
main difference is that L-systems use parallel rewriting 
of the string, i.e., all occurrences of the left sides of the 
production rules are applied at once.  

In [2], context-sensitive L-systems are used to 
produce modular ANNs. The growth of the network 
starts with an axiom, on which the rewrite rules from 
chromosome are applied until the string contains only 
terminals. Context sensitivity of the system means that 
one symbol can be rewritten in different ways, 
according to its neighboring symbols. However, 
neighbors in this method are not considered as string 
neighbors, but final network neighbors. That means that 
in every stage of the rewriting there have to exist also 
network interpretation of the current string. Modules 
that are connected to the current module are considered 
to be the left-side neighbors, while the modules to 
whom the current module is connected are considered  
to be the right-side neighbors. 

Each node is represented by an alphabet letter in the 
string. Modules are defined as groups of nodes. As this 
encoding is designed for evolving feed-forward 
networks, all modules are connected from left to right. 
Nodes in the module are automatically connected, until 
they are separated by a comma in the genotype.  

An example of the network derivation from axiom 
through production rules can be seen on Figure 11. Part 
(A) displays the production rules; part (B) shows the 
iterations of the string rewriting process and on (C) the 
final network can be seen. In part (B.2) and (B.3), the 
brackets denote modules that are connected from left to 
right. Number “1” denotes a feed-forward connection 
skipping 1 module – so the node from first module is 
connected to the third module (which consists only of 
one node). 

 

 
Figure 11.  Example of L-system-based encoding. Rewrite rules (A) 

are applied to starting symbol (B.1) until the generated string contains 
only terminals (B.5). Then the network is constructed (C). 

The authors of this approach use another encoding to 
transform production rules to bit strings, on which the 
genetic operators are applied as in classical genetic 
algorithms ([4]). This seems to be an unnecessary 
overhead, since all production rules could be stored in 
dynamic data types, making the recognition of their 
meaning more clear. However, new genetic operators 
would have to be designed. 

B. Matrix rewriting 

According to [9], L-systems can be generalized and 
applied to matrices. That can be used to grow a 
connection matrix of a network, dynamically changing 
its size according to the problem. Figure 12 show the 
derivation of a connection matrix (B.4) from genotype 
(A). The derivation process starts with single symbol S 
(B.1) and the rewrite rules are iteratively applied until 
only terminals (1’s and 0’s) are left in the generated 
matrix. 
 

Mutation and crossover operators are not exactly 
specified in the literature, however looking at the 
rewrite rules, their design should be intuitive and 
straightforward. 

 

 
Figure 12.  Example of a matrix-rewriting encoding method. A set of 

rewrite rules (A) is repeatedly applied to the starting symbol (B.1) 
until the generated matrix contains only terminals (B.4). This matrix is 
used as connectivity matrix and the network (B.5) is created according 

to it. 

C. Cellular encoding 

Cellular encoding is inspired by the cell splitting in 
the process of a living organism growth and is proposed 
in [12]. This encoding is based on a simple graph 
grammar, which is represented by a grammar tree. This 
graph grammar tree encodes the growth process of 
whole network from one initial cell. This tree can also 
contain control commands to influence the growth of 
the network. Basic commands and instructions are: 

• Sequential division (SEQ) – splits the current 
cell in two, connected in series. 

• Parallel division (PAR) – splits the current cell 
in two, connected in parallel. 

• End program (END) – makes a neuron from the 
current cell and stops rewriting. 

• Recursive derivation (REC) – starts applying 
the rewrite rules from the root of the grammar 
tree, until a given recursion level is reached. 

• Increment/decrement the neuron threshold value 
(INCBIAS / DECBIAS). 
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• Create recursive link (CYC) – creates a link 
from the current cell’s outputs to its inputs. This 
instruction fulfills the need for a recursive 
network topology. 

• Increment/decrement link register (INCLR / 
DECLR). The link register stores current link 
from/to current cell, on which one of the 
following operation could be applied. 

• Set positive/negative weight (VAL+ / VAL-) – 
sets the link in the link register to +1 or -1. 

• Delete link (CUT) – deletes the link stored in 
the link register. 

Figure 13 shows the derivation of a network from a 
simple grammar tree. Only four cellular instructions are 
applied in this case, what is enough to create a simple 
feed-forward network. 

 

 
Figure 13.  Example of a cellular encoded network. Instructions of the 
genetic tree (A) are sequentially applied to the nodes of the growing 

network (B). Basic instructions include SEQ – serial splitting of node 
(B.2), PAR – parallel splitting of node (B.3), REC – repeated 

application of genetic tree instructions (B.4) and END – replacing 
node by terminal and finishing its growth (e.g. node 0 in B.2). 

Crossover and mutation operation are applied 
according to the common GP paradigm. That means that 
when mutating a chromosome tree, a random node of 
the tree is chosen and it is replaced by a different 
instruction of the same arity, or the whole sub-tree 
under it is replaced by a random sub-tree. Crossover is 
done by exchanging random sub-trees between 
chromosomes of two individuals. 

D. Cellular graph grammars 

The cellular graph grammar approach to evolve  
network topology proposed in [13] is also based on the 
similarity of the network growing with the biological 
processes of growth. However, instead of a fixed set of 
rules (like in the cellular encoding), also the grammar 
generating the networks evolves through generations. 
Another notable difference is the use of hyper-edge 
replacement instead of node replacement. That means 
that in the beginning of the growth process, there exist 
only one hyper-edge connecting inputs with outputs, 
instead of a cell connecting them. Then all of the rewrite 
rules are applied on hyper-edges and the final network 
nodes (neurons) are also created by replacing a hyper-
edge with a grammar terminal. 

 
Figure 14.  Basic elements of a cellular graph grammar encoding. (A) 
displays a general rewrite rule with non-terminal on the left side and a 
cellular graph on the right side with possible connections for source 
and target labels. When NB in the rewrite rule is replaced by another 
cellular graph, the embedded cellular graph is connected to the outer 

by similar source and target labes (B). 

To make the encoding flexible enough to handle the 
most possible situations during evolution, all rewrite 
rules evolved by grammar have added sets of labels. 
Then, when embedding a new sub-graph into actually 
growing network, all the connections are created by the 
similarity of the labels on appropriate positions. This 
embedding principle is shown on Figure 14. In the top 
part (A), there is a single cellular grammar production 
rule. NG on the left side is a label a hyper-edge to 
rewrite. The right side of the rule is a cellular graph, by 
which the hyper-edge will be replaced. In this graph, b 
denotes begin nodes, e denotes end nodes, TA is a 
terminal symbol and NB is a label of another non-
terminal hyper-edge (of course, the cellular graph can 
contain a different set of terminals and non-terminals). 
As mentioned above, after the replacement of a hyper-
edge, the embedded cellular graph is connected to the 
outer graph through its begin and end nodes by the 
similar source (s) and target (t) labels. Direction and 
available levels of connections are displayed by gray 
arrows in the cellular graph. Part (B) of the image 
shows the way of label matching in detail. Two labels 
are matched (and then connected), when their Euclidian 
distance is smaller than a given threshold. 

In this approach, only the genetic operator of 
mutation has been left. That is caused by using only a 
single grammar for the whole population and the 
individuals defined only by the label of the starting 
hyper-edge. Then the movement of genetic material 
caused by the crossover operator is also handled by the 
operator of mutation, because mutating one production 
rule modifies all individuals using that rule in their 
growth. 
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The operator of mutation operates on a single 
production rule, where it modifies one of the following 
lists: list of non-terminals, list of terminals, list of begin 
nodes and list of end nodes. It randomly removes an 
existing item from the list or adds a new item to it. 

V. CONCLUSIONS 

As can be seen along this paper , the differences in 
the three types of encoding methods are quite 
significant. Each of them is predetermined to solve 
different kind of problems. Among them, the most 
flexible one seems to be cellular encoding and cellular 
graph grammar-based encoding. However, the 
implementation of such sophisticated algorithms and 
their need for modularity might be a big overhead for 
real use in automation and control industry. For control 
purposes, well known topologies are typically used and 
their parameters can be found by an evolutionary 
algorithm using the parametric encoding. 

When a network designer does not design the 
network directly and he decides to use evolutionary 
heuristics, he is facing the problem of selecting the right 
method of encoding; what is still some kind of “black 
art” and has to be done intuitively. However, we believe 
that this paper will make the process of choosing the 
right method more straightforward. 

Presently we are working on a hybrid method of 
network encoding, combining the standard GP approach 
of the cellular encoding and the flexibility of the cellular 
graph grammar evolution to design large modular 
networks that could be described by a single compact 
genotype. 
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