
A REVIEW OF METHODS FOR ENCODING NEURAL NETWORK
TOPOLOGIES IN EVOLUTIONARY COMPUTATION

Jozef Fekiač
Tomas Bata University in Zlin,
Faculty of Applied Informatics,

nám. T.G.Masaryka 5555,
760 01- Zlín (Czech Republic)

Email: fekiac@fai.utb.cz

Ivan Zelinka
Faculty of Electrical Engineering

and Computer Science
Technical University in Ostrava

17. listopadu 15
70833- Ostrava-Poruba (Czech Rep.)

Email: ivan.zelinka@vsb.cz

Juan C. Burguillo
E.T.S.E. Telecomunicación

Universidad de Vigo
Campus Universitario de Vigo

36310-Vigo (Spain)
Email: jrial@det.uvigo.es

KEYWORDS

artificial neural network, automata network, evolutionary
computation, genetic programming, genetic algorithm,
network encoding, graph grammar

ABSTRACT

This paper describes various methods used to encode artificial
neural networks to chromosomes to be used in evolutionary
computation. The target of this review is to cover the main
techniques of network encoding and make it easier to choose
one when implementing a custom evolutionary algorithm for
finding the network topology. Most of the encoding methods
are mentioned in the context of neural networks; however all
of them could be generalized to automata networks or even
oriented graphs. We present direct and indirect encoding
methods, and given examples of their genotypes. We also
describe the possibilities of applying genetic operators of
mutation and crossover to genotypes encoded by these
methods. Also, the dependencies of using special evolutionary
algorithms with some of the encodings were considered.

I. INTRODUCTION

Despite of frequent critics of artificial neural
networks as a black-box method, they are with no doubt
useful in various applications from signal processing and
recognition to industrial control.

There are various specialized topologies of networks
used to solve different kinds of problems. But it can be
assumed that there exist other topologies useful for the
types of problems that are not primarily solved by neural
networks at this time. But when a new topology is
needed, thanks to the almost black-box structure of
neural networks, it seems to be almost impossible to
manage it by standard analytic or engineering methods.
Even the task of finding the number of neurons in the
hidden layer of a feed-forward neural network is often
only a matter of trying different possibilities. Therefore
this looks like an ideal situation to use the heuristics of
an evolutionary algorithm.

Evolutionary algorithms often work with direct
representation of the solution. Example of this could be
genetic programming (GP), which uses program trees as
a genotype, but the trees are also solutions. When we try
to apply a similar approach to graphs (as neural networks
are), there will probably raise a problem in the
application of genetic operators. The mutation operator

seems easy to apply to any kind of structure, but crossing
over two graphs is not so straightforward. Because of
that, it seems to be an advantage to separate the genotype
and the phenotype. That means to use a simplified
representation of solution in chromosomes. This process
of converting a network into genes will be called
encoding in the rest of this paper.

Encoding methods can be divided in three main
groups according to the process of creating the network
from the encoded genome: direct, parametric and
indirect encoding. They are presented in the next
subsections. At the end we present the conclusions.

II. DIRECT ENCODING

In direct encoding methods there exists a direct
genotype-phenotype mapping for the network. That
means that all parameters of the network are clearly
understandable from the genes without any repeated
process of transcription or growing.

Some authors ([1]) differentiate between direct
encoding and structural encoding, but in this paper we
consider them being the same type of encodings. In [1],
the main difference between direct and structural
encoding is that direct encoding holds not only
information about the presence of connections, but also
about their weights.

After deeper look at structural encodings, authors
considered that all of them could be extended to hold
also weight information, though should be quite simply
interchangeable. However, the encoding of the
connection topology is the main concern of this paper.

A. Connection matrix

Probably the simplest representation of a graph or a
network is a connection matrix. It is a square matrix n x
n, where n is equal to the number of nodes in the
network. Then every number in the matrix at
coordinates [i, j] is the weight of connection between
node i and node j. It is obvious, that on the main
diagonal lay the weights of the graph loops and under
diagonal lay the weights of recurrent (backward)
connections. So, if necessary, connection matrix can be
limited to the upper triangular matrix to force the
network to be feed-forward (i.e. without backward
connections).

Proceedings 25th European Conference on Modelling and
Simulation ©ECMS Tadeusz Burczynski, Joanna Kolodziej
Aleksander Byrski, Marco Carvalho (Editors)
ISBN: 978-0-9564944-2-9 / ISBN: 978-0-9564944-3-6 (CD)

One of the possibilities when using a connection
matrix is to use the numbers on diagonal as identifiers
of node types instead of representing the loop weights.
That would of course exclude loops, what is probably
useful only when designing feed-forward networks.

The numbers in the connection matrix can be of
course limited to contain only numbers from set {0, 1}.
This simplification does not take the weights into
account; it only creates connection between nodes
containing number 1 in the matrix. Figure 1 shows the
process of transcription of a binary chromosome into a
network phenotype.

Figure 1. Binary genotype (A) is rewritten into connection matrix
row-by-row (B), from which the network is created directly (C).

As can be seen on Figure 2, the genetic operator of
mutation can be applied in the way of classical genetic
algorithms, when a random bit in the genotype is flipped
to its opposite value.

Figure 2. Application of mutation operator applied on connection
matrix encoded network. Random bit in original bit string (A) is

flipped to reach modified offspring (B).

The crossover operator is also applied in the
straightforward way of classical genetic algorithms, as
can be seen on Figure 3, where crossover with one cut
point can be seen.

Figure 3. Application of crossover operator on connection matrix

encoded network. Parent bit string chromosomes (A) are crossed over
at random position (B) to create offspring (C) like in classical genetic

algorithm.

B. Node-based encoding

1) Schiffmann node-based encoding
One of the attempts to extend the low flexibility of

previous approach is node-based encoding. Instead of
describing the network connections by a matrix of all
possible connections, node-based encoding enumerates
all nodes existing in the network only once, and for each
node it enumerates all its inputs. This kind of encoding
requires a unique identifier to be assigned to each node.
Then these identifiers are used in gene transcription to
clearly identify both node and its inputs.

However, this intuitive encoding is only briefly
described in [7]. Only the application of the crossover
operator was described in detail. In this method,
crossing over means swapping parts of the genotype
delimited by the borders of node definitions. An
example of the encoding and the application of the
crossover operator are in Figure 4.

The mutation operator then should be able to add
new nodes and connections, or delete existing ones.

Figure 4. Example of node-based network encoding. Vertical lines in

genotype transcription represent crossover points.

2) Koza node-based encoding
Another possibility of node-based encoding is to use

genetic programming. Since GP is usually applied to
evolve program trees in LISP language, the network in
this method is represented as a tree, where the root is the
output processing element (neuron) and the leaves
represent the input signals. The tree structure contains
all hidden nodes and connecting links with weights
(Figure 5). When a network with more outputs is
needed, then as a root of the genetic tree a LISP
function LIST is used. This list should be holding all the
outputs which are roots of their respective sub-trees.
Details of this method and more possibilities of creating
more complex topologies with “defined functions” are
described in [6].

The genetic operators are defined by applying the
rules of genetic programming, as mentioned in [5].
Mutation is defined as a replacement of a sub-tree with
a new randomly generated sub-tree. This random sub-
tree, as well as initial random population, has few
constraints to produce a well-formed network. As can
be seen in Figure 5, under any processing unit (P) there
must be a variable amount of weights (W) that represent
connections of processing units. Every W has two

1

2

3A) 001101010 B) C)[]0 0 1
1 0 1
0 1 0

1

2

3A) 001101010 []0 0 1
1 0 1
0 1 0

1

2

3B) 011101010 []0 1 1
1 0 1
0 1 0

1

2

3Parent 1 001101010 []0 0 1
1 0 1
0 1 0

1

2

3Parent 2 011011101 []0 1 1
0 1 1
1 0 1

1

2

3Offspring 1 001111101 []0 0 1
1 1 1
1 0 1

1

2

3Offspring 2 011001010 []0 1 1
0 0 1
0 1 0

Crossover
Parent 1

Parent 2 0110 11101

0011 01010 Offspring 1

Offspring 2 0110 01010

0011 11101

A)

B)

C)

1

2

3
5

4

N1: N2: N3: N4: 1, 2 | N5: 1, 2, 3

Parent A Parent B

Child A Child B

N1: 4 N2: N3: N4: 2 | N5: 1, 3 N6: 2, 4, 5

N1: N2: N3: N4: 1, 2 | N5: 1, 3 N6: 2, 4, 5 N1: 4 N2: N3: N4: 2 | N5: 1, 2, 3

1

2

3
5

4
6

1

2

3
5

6
4

1

2

3
5

4

Crossover

arguments. The first of them is a number that represents
the actual weight of created link. This can be a float
number constant or a numerical expression tree. The
second argument of W is the connection source element
– input signal or another processing node. It can be
easily derived that only float number constants and
input signals are allowed as the leaves of a genetic tree.

Crossover genetic operation is defined simply by
swapping sub-trees of two genetic trees. The only
constraint is that both sub-trees have to be cut at an
element of the same type, e.g., the roots of both sub-
trees have to be P.

Figure 5. Example of node-based encoding by the means of genetic
programming. LISP expression (A) is used as a tree (B) from which
the network is constructed (C).

C. Pathway-based encoding

This approach can be used to evolve flexible and
recurrent networks. It looks at the network as a set of
paths from inputs to outputs. Every one of these paths
begins in one of the inputs, continues through variable
set of labeled nodes and ends in one of the output nodes.
Of course, for one pair of a certain input and output,
many possible paths could exist.

There is a context-free grammar proposed in [10],
which describes the correct form of the paths in the
genotype.

The process of the network construction begins with
the input and the output nodes. Then it continues at the
input node specified by the beginning of the current
path. After that, for every node label in the path, a node
with the same label in the network is found. If the node
does not exist, it is created. This node is connected to
the previous one in the path. Then another node label
from the path is taken and the process repeats until the
end of the path is reached (output). An example of this
encoding can be seen in Figure 6.

The genetic operator of mutation has four
possibilities to change the genotype: creating a new

path, deleting an existing path, adding a neuron or
removing a neuron from an already existing path.

The crossover operator is responsible for exchanging
the paths between individuals and it cuts the
chromosomes at two points between the path
boundaries. Then, as usually, the paths between the cut
points are exchanged.

Figure 6. Example of path-based encoding. Paths (A) merged together
create the final network (B). Path P3 is displayed with wide gray lines

in the network.

D. Neuroevolution of augmenting topologies (NEAT)

NEAT (described in [11]) is an evolutionary method
on its own, not only a method of encoding. However,
the encoding used by NEAT seems to be very useful
and flexible. But due to some of its properties
mentioned below, it is limited to be used with the
NEAT evolutionary algorithm.

The genetic encoding applied by NEAT uses two
chromosomes – one of them holds the enumeration of
all available nodes in the network; the other one holds
the enumeration of edges between the nodes (Figure 7).
Every gene in the “node chromosome” contains a
unique identifier of the node and the type of the node –
a node can be an input node (sensor, receptor), an output
node (actuator) or a hidden node. Genes in “edge
chromosome” contain information about begin and end
nodes of the edge, weight of the edge, information about
activation of the gene and a historical marker.
Activation of a gene simply tells if the edge described
by a gene should be created or not and its meaning will
be mentioned later on. Historical marker is a global
counter which tells which mutation in all history of
evolution caused creation of that gene.

Figure 7. Example of NEAT network encoding. Genome of the

individual contains node enumeration (A) and connections
enumeration (B). Final network constructed from this genome can be

seen in the bottom (C).

The genetic operator of mutation can influence the
genotype in many ways. One of the possibilities is
adding of a new node. In that case, an existing edge is

(P (W (* 1.8 0.1) (P (W 1.1 D1)))
(W (- 1.1 0.3) (P (W -1.3 D1) (W 0.3 D0))))A)

B)

C)

P

P P- *

W W

W W W

D0 D1D1

1.1

-1.3 0.3 1.1

0.3 1.8 0.1

P

P

P

D1

D0 0.8

0.18
1.1

0.3

-1.3

P
1

= i
1

- 2 - 1 - o
2

P
2

= i
2

- 1 - 3 - o
1

P
3

= i
1

- 3 - 2 - 1 - o
1

A) B)

3

2

1 o
2

o
1

i
1

i
2

Node 1
Input

Node 2
Input

Node 3
Input

Node 4
Output

Node 5
Hidden

A)

In 1
Out 4
Weight 0.7
Enabled
Innov 1

In 2
Out 4
Weight 0.2
DISABLED
Innov 2

In 3
Out 4
Weight 0.2
Enabled
Innov 3

In 2
Out 5
Weight 0.1
Enabled
Innov 4

In 5
Out 4
Weight 0.9
Enabled
Innov 5

In 4
Out 5
Weight 0.4
Enabled
Innov 6

B)

C) 45

1

2

3

“split” and the new node is inserted in the middle. That
means deactivating the gene describing an existing edge
(turn to DISABLED) and inserting two new edges
connecting two existing nodes with a new one. Another
possibility is to add a new edge, what means creating a
new connection gene from one existing node to another.
To fine-tune the weights of a created network, the
algorithm can also mutate the weights in the “edge
chromosome”.

Crossover in NEAT uses the aforementioned
historical markers to align genes. It improves the
validity of the offspring, since only compatible
modifications are crossed-over (Figure 8).

Figure 8. Aligned crossover of networks encoded by NEAT encoding.

III. PARAMETRIC ENCODING

The following approaches describe networks as
genes with a set of parameters, from which the network
is created by given rules. In this case, the topology of
the network can be assumed from the problem domain,
but the evolutionary algorithm is used to fine-tune the
setting of the network.

A. Simple feedforward network encoding

Typical example of parametric encoding is a simple
encoding of a feed-forward network with one hidden
layer. When designing this kind of network, the back-
propagation learning algorithm is typically used. Inputs
and outputs that define the problem are usually given,
too. Then the search space for an ideal network solving
the given problem consists of finding an acceptable
number of neurons in the hidden layer and finding the
learning algorithm parameters, which would not get
stuck in local optima in the learning phase.

Figure 9 shows an example of feed-forward neural
network with one hidden layer, encoded simply in one
gene (part A – number 5). Other two genes in the
chromosome contain parameters of the back-
propagation learning algorithm used to train this
network, so together with the size of the hidden layer,
also the ideal type of learning algorithm could be
evolved.

Figure 9. Simple encoding of feed-forward network with one hidden
layer and the back-propagation learning algorithm. Chromosome (A)
contains the number of hidden neurons and parameters of the learning
algorithm. Final network (B) for the example genome has 5 neurons in

the hidden layer.

B. Layer-based encoding

For some neural network applications it can be
assumed that the optimal solution will be found as a
multi-layer feed-forward network. In that case, it might
be useful to apply the layer-based encoding. This
encoding supposes a multi-layer feed-forward
architecture and the back-propagation learning
algorithm. The genotype of this encoding contains back-
propagation learning parameters (learning rate and
momentum) and parameters of a variable number of
individual layers (Figure 10). Layer parameters contain
information about the number of neurons in the layer
and information about the output connections (to the
following layer) and the input connections (from
previous layers).

An one-point crossover operator is used to exchange
layers between individuals. A two-point crossover
operator is used to exchange bigger parts of genotypes
between individuals. To maintain the consistency of the
chromosomes, they are cut at the layer level.

This encoding uses relative mutation operator, which
slowly changes genes of randomly chosen individuals.
Besides the minimum and the maximum value, all genes
contain also the maximum amount of change.

Figure 10. Scheme of a layer-encoded genotype. Genotype (A)

includes common network learning parameters (B) and layer
parameters (C).

IV. INDIRECT ENCODING

When trying to evolve networks able to solve
complex problems, the complexity of the network is
usually not big enough with the use of direct and
parametric encoding of networks. Every method
mentioned above (except connection matrix) supports
adding new nodes and links to the network; however,
there is only a little chance that any kind of regularity or
modularity could evolve. Searching the space of all

1 => 4
Innov 1

2 => 4

DISAB
Innov 2

3 => 4
Innov 3

2 => 5
Innov 4

5 => 4
Innov 5

1 => 5
Innov 8

1 => 4
Innov 1

1 => 4
Innov 1

2 => 4

DISAB
Innov 2

2 => 4

DISAB
Innov 2

3 => 4
Innov 3

2 => 5
Innov 4

2 => 5
Innov 4

5 => 4
Innov 5

1 => 5
Innov 8

1 => 5
Innov 8

1 => 4
Innov 1

2 => 4

DISAB
Innov 2

3 => 4
Innov 3

2 => 5
Innov 4

5 => 4

DISAB
Innov 5

5 => 6
Innov 6

6 => 4
Innov 7

3 => 5
Innov 9

1 => 6
Innov 10

1 => 4
Innov 1

2 => 4

DISAB
Innov 2

3 => 4
Innov 3

3 => 4
Innov 3

2 => 5
Innov 4

5 => 4

DISAB
Innov 5

5 => 4

DISAB
Innov 5

5 => 6
Innov 6

6 => 4
Innov 7

5 => 6
Innov 6

6 => 4
Innov 7

3 => 5
Innov 9

1 => 6
Innov 10

3 => 5
Innov 9

1 => 6
Innov 10

(disjoint) (excess) (excess)(disjoint)

Parent 1
(aligned)

Parent 1

Parent 2

Offspring

Parent 2
(aligned)

A) B)5 0.2 0.1

o
2

o
1

i
1

i
2

1

2

3

4

5

Number of
hidden neurons

Learning rate

Momentum

Network
Parameters

Layer 1 Layer N

Learning Rate Momentum

Layer Size Output Connections Input Connections

Destination DensityRadius

Destination DensityRadius

DensityRadius

A)

B)

C)

possibilities with direct encoding becomes very slow for
very large networks.

A. Lindenmayer systems

Lindenmayer systems (L-systems) are used for
describing many biological processes in computer
environments. Their most common use is in the
simulation of plants growth [3].

L-systems are based on formal grammars, that
means, they use productions (rewrite rules) that are
iteratively applied on the starting string (axiom). The
main difference is that L-systems use parallel rewriting
of the string, i.e., all occurrences of the left sides of the
production rules are applied at once.

In [2], context-sensitive L-systems are used to
produce modular ANNs. The growth of the network
starts with an axiom, on which the rewrite rules from
chromosome are applied until the string contains only
terminals. Context sensitivity of the system means that
one symbol can be rewritten in different ways,
according to its neighboring symbols. However,
neighbors in this method are not considered as string
neighbors, but final network neighbors. That means that
in every stage of the rewriting there have to exist also
network interpretation of the current string. Modules
that are connected to the current module are considered
to be the left-side neighbors, while the modules to
whom the current module is connected are considered
to be the right-side neighbors.

Each node is represented by an alphabet letter in the
string. Modules are defined as groups of nodes. As this
encoding is designed for evolving feed-forward
networks, all modules are connected from left to right.
Nodes in the module are automatically connected, until
they are separated by a comma in the genotype.

An example of the network derivation from axiom
through production rules can be seen on Figure 11. Part
(A) displays the production rules; part (B) shows the
iterations of the string rewriting process and on (C) the
final network can be seen. In part (B.2) and (B.3), the
brackets denote modules that are connected from left to
right. Number “1” denotes a feed-forward connection
skipping 1 module – so the node from first module is
connected to the third module (which consists only of
one node).

Figure 11. Example of L-system-based encoding. Rewrite rules (A)

are applied to starting symbol (B.1) until the generated string contains
only terminals (B.5). Then the network is constructed (C).

The authors of this approach use another encoding to
transform production rules to bit strings, on which the
genetic operators are applied as in classical genetic
algorithms ([4]). This seems to be an unnecessary
overhead, since all production rules could be stored in
dynamic data types, making the recognition of their
meaning more clear. However, new genetic operators
would have to be designed.

B. Matrix rewriting

According to [9], L-systems can be generalized and
applied to matrices. That can be used to grow a
connection matrix of a network, dynamically changing
its size according to the problem. Figure 12 show the
derivation of a connection matrix (B.4) from genotype
(A). The derivation process starts with single symbol S
(B.1) and the rewrite rules are iteratively applied until
only terminals (1’s and 0’s) are left in the generated
matrix.

Mutation and crossover operators are not exactly
specified in the literature, however looking at the
rewrite rules, their design should be intuitive and
straightforward.

Figure 12. Example of a matrix-rewriting encoding method. A set of

rewrite rules (A) is repeatedly applied to the starting symbol (B.1)
until the generated matrix contains only terminals (B.4). This matrix is
used as connectivity matrix and the network (B.5) is created according

to it.

C. Cellular encoding

Cellular encoding is inspired by the cell splitting in
the process of a living organism growth and is proposed
in [12]. This encoding is based on a simple graph
grammar, which is represented by a grammar tree. This
graph grammar tree encodes the growth process of
whole network from one initial cell. This tree can also
contain control commands to influence the growth of
the network. Basic commands and instructions are:

• Sequential division (SEQ) – splits the current
cell in two, connected in series.

• Parallel division (PAR) – splits the current cell
in two, connected in parallel.

• End program (END) – makes a neuron from the
current cell and stops rewriting.

• Recursive derivation (REC) – starts applying
the rewrite rules from the root of the grammar
tree, until a given recursion level is reached.

• Increment/decrement the neuron threshold value
(INCBIAS / DECBIAS).

B) C)A)

A BBB
B > B [C,D]
B C
D > C C1

C < D C

0) A
1) BBB
2) [C,D][C,D]C
3) [C,C1][C,C]C

C

C

C

C

C

B)
1) S 2) A B

C D
3) c p a a

a c a e
a a a a
a a a b

4) 1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

5)

A)

0

1

2

3

7

[]S
A B
C D []A

c p
a c []B

a a
a e []C

a a
a a []D

a a
a d

[]a
0 0
0 0 []b

0 0
0 1 []c

1 0
0 0 []e

0 1
0 1 []p

1 1
1 1

• Create recursive link (CYC) – creates a link
from the current cell’s outputs to its inputs. This
instruction fulfills the need for a recursive
network topology.

• Increment/decrement link register (INCLR /
DECLR). The link register stores current link
from/to current cell, on which one of the
following operation could be applied.

• Set positive/negative weight (VAL+ / VAL-) –
sets the link in the link register to +1 or -1.

• Delete link (CUT) – deletes the link stored in
the link register.

Figure 13 shows the derivation of a network from a
simple grammar tree. Only four cellular instructions are
applied in this case, what is enough to create a simple
feed-forward network.

Figure 13. Example of a cellular encoded network. Instructions of the
genetic tree (A) are sequentially applied to the nodes of the growing

network (B). Basic instructions include SEQ – serial splitting of node
(B.2), PAR – parallel splitting of node (B.3), REC – repeated

application of genetic tree instructions (B.4) and END – replacing
node by terminal and finishing its growth (e.g. node 0 in B.2).

Crossover and mutation operation are applied
according to the common GP paradigm. That means that
when mutating a chromosome tree, a random node of
the tree is chosen and it is replaced by a different
instruction of the same arity, or the whole sub-tree
under it is replaced by a random sub-tree. Crossover is
done by exchanging random sub-trees between
chromosomes of two individuals.

D. Cellular graph grammars

The cellular graph grammar approach to evolve
network topology proposed in [13] is also based on the
similarity of the network growing with the biological
processes of growth. However, instead of a fixed set of
rules (like in the cellular encoding), also the grammar
generating the networks evolves through generations.
Another notable difference is the use of hyper-edge
replacement instead of node replacement. That means
that in the beginning of the growth process, there exist
only one hyper-edge connecting inputs with outputs,
instead of a cell connecting them. Then all of the rewrite
rules are applied on hyper-edges and the final network
nodes (neurons) are also created by replacing a hyper-
edge with a grammar terminal.

Figure 14. Basic elements of a cellular graph grammar encoding. (A)
displays a general rewrite rule with non-terminal on the left side and a
cellular graph on the right side with possible connections for source
and target labels. When NB in the rewrite rule is replaced by another
cellular graph, the embedded cellular graph is connected to the outer

by similar source and target labes (B).

To make the encoding flexible enough to handle the
most possible situations during evolution, all rewrite
rules evolved by grammar have added sets of labels.
Then, when embedding a new sub-graph into actually
growing network, all the connections are created by the
similarity of the labels on appropriate positions. This
embedding principle is shown on Figure 14. In the top
part (A), there is a single cellular grammar production
rule. NG on the left side is a label a hyper-edge to
rewrite. The right side of the rule is a cellular graph, by
which the hyper-edge will be replaced. In this graph, b
denotes begin nodes, e denotes end nodes, TA is a
terminal symbol and NB is a label of another non-
terminal hyper-edge (of course, the cellular graph can
contain a different set of terminals and non-terminals).
As mentioned above, after the replacement of a hyper-
edge, the embedded cellular graph is connected to the
outer graph through its begin and end nodes by the
similar source (s) and target (t) labels. Direction and
available levels of connections are displayed by gray
arrows in the cellular graph. Part (B) of the image
shows the way of label matching in detail. Two labels
are matched (and then connected), when their Euclidian
distance is smaller than a given threshold.

In this approach, only the genetic operator of
mutation has been left. That is caused by using only a
single grammar for the whole population and the
individuals defined only by the label of the starting
hyper-edge. Then the movement of genetic material
caused by the crossover operator is also handled by the
operator of mutation, because mutating one production
rule modifies all individuals using that rule in their
growth.

A)

SEQ

PAR END

REC END

B)

1) 2) 3) 4)

Input

Output

0

Input

Output

0

1

Input

Output

1 2

0

Input

Output

1

3

4 2

0
SEQ PAR REC

A)

B)

N
G

s

b

N
B

T
A

e ee

bb

s s

s s s

t t t

t t t

s s

tt

0.74 0.48 0.22
0.11

0.16 0.06 0.62
0.23 0.39

Target Labels

Source Labels

Outter
Cellular
Graph

Embedded Cellular Graph

The operator of mutation operates on a single
production rule, where it modifies one of the following
lists: list of non-terminals, list of terminals, list of begin
nodes and list of end nodes. It randomly removes an
existing item from the list or adds a new item to it.

V. CONCLUSIONS

As can be seen along this paper , the differences in
the three types of encoding methods are quite
significant. Each of them is predetermined to solve
different kind of problems. Among them, the most
flexible one seems to be cellular encoding and cellular
graph grammar-based encoding. However, the
implementation of such sophisticated algorithms and
their need for modularity might be a big overhead for
real use in automation and control industry. For control
purposes, well known topologies are typically used and
their parameters can be found by an evolutionary
algorithm using the parametric encoding.

When a network designer does not design the
network directly and he decides to use evolutionary
heuristics, he is facing the problem of selecting the right
method of encoding; what is still some kind of “black
art” and has to be done intuitively. However, we believe
that this paper will make the process of choosing the
right method more straightforward.

Presently we are working on a hybrid method of
network encoding, combining the standard GP approach
of the cellular encoding and the flexibility of the cellular
graph grammar evolution to design large modular
networks that could be described by a single compact
genotype.

ACKNOWLEDGMENT

This research is supported by the Internal Grant
Agency of Tomas Bata University under the project
Artificial Life in Optimization No. IGA/28/FAI/10/D
and by the European Regional Development Fund under
the Project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089.

REFERENCES
[1] Hussain T. S. and Browse R. A. “Genetic Encoding of Neural

Networks using Attribute Grammars,”

[2] Boers, E. J. W. and Kuiper H. 1992. “Biological metaphors and
the design of modular artificial neural networks.” Mater’s thesis,
Leiden University, the Netherlands, 104p.

[3] Lindenmayer, A. and Prusinkiewicz P. “The algorithmic beauty
of plants.” New York: Springer-Verlag, 1990, 240 p.

[4] Holland, J. H. “Adaptation in natural and artificial systems.”
Ann Arbor: University of Michigan Press, 1975, 228 p.

[5] Koza, J. R. “Genetic programming: A paradigm for genetically
breeding populations of computer programs to solve problems.”
Stanford: Stanford University, 1990, 131 p.

[6] Koza, J. R. and Rice, J. P. “Genetic generation of both the
weights and architecture for a neural network,” in Seattle
International Joint Conference on Neural Networks, vol. 2, pp.
397-404, Jule 1991.

[7] Schiffmann, W. “Encoding Feedforward Networks for Topology
Optimization by Simulated Evolution,” Fourth International
Conference on Knowledge-Based Intelligent Information
Engineering Systems & Allied Technologies, pp. 361-364, 2000.

[8] Mandischer, M. “Representation and Evolution of Neural
Networks,” Proceedings of the International Joint Conference on
Neural Networks and Genetic Algorithms, pp. 643-694, 1993.

[9] Kitano, H. “Designing neural networks using genetic algorithms
with graph generation systems,” Complex Systems, vol. 4, issue
4, pp. 461-476, 1990.

[10] Jacob Ch. and Rehder J. “Evolution of neural net architectures
by a hierarchical grammar-based genetic system,” Proc.
International Conference on Artificial Neural Networks and
Genetic Algorithms, pp. 72-79, 1993.

[11] Stanley K. O.and Miikkulainen R. “Evolving neural networks
through augmenting topologies,” Evolutionary Computation,
MIT Press, vol. 10, number 2, pp. 99-127, 2002.

[12] Gruau F. 1994. “Neural network synthesis using cellular
encoding and the genetic algorithm.” Dissertation, l’Ecole
Normale Superieure de Lyon , France, 159 p.

[13] Luerssen M. “Experimental Investigations into Graph Grammar
Evolution : A Novel Approach to Evolutionary Design.
Saarbrucken.” Saarbrucken : VDM Verlag Dr. Müller, 2009,
204 p.

AUTHOR BIOGRAPHIES

JOZEF FEKIAČ is a postgraduate
student at Tomas Bata University in
Zlin. Topic of his thesis is the use of
artificial life methods in optimisation.
His research is concerned in modular

neural network evolution for inteligent agent control
and synthesis of networks used in stegoanalysis. His e-
mail address is: jfekiac@fai.utb.cz

IVAN ZELINKA was born in Czech
Republic, and went to the Technical
University of Brno, where he studied
technical cybernetics and obtained his
degree in 1995. He obtained his Ph.D.
degree in Technical Cybernetics in 2001

at Tomas Bata University in Zlin, He is now a Professor
at the Technical University in Ostrava, Czech Republic.
His specialization is artificial intelligence and its
interdisciplinary use and applications. His e-mail
address is: ivan.zelinka@vsb.cz and his Web-site is
at: http://ivanzelinka.eu

JUAN C. BURGUILLO received the
M.Sc. degree in Telecommunication
Engineering in 1995, and the Ph.D.
degree in Telematics (cum laude) in
2001; both at the University of Vigo,
Spain. He is currently an associate

professor at the Department of Telematic Engineering at
the same university. He has participated in several R&D
projects in the areas of Telecommunications and
Software Engineering, and has published more than one
hundred papers in journals and conference proceedings.
His research interests include game theory,
optimization, telematic services, autonomous agents and
multi-agent systems. His e-mail address is:
jrial@det.uvigo.es and his Web-site is at:
http://www.det.uvigo.es/~jrial

