
A Pac-Man bot based on Grammatical
Evolution?

Héctor Laria Mantecón, Jorge Sánchez Cremades, José Miguel Tajuelo
Garrigós, Jorge Vieira Luna, Carlos Cervigon Rückauer, Antonio A.

Sánchez-Ruiz

Dep. Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid (Spain)

{hlaria, jorsan06, jtajuelo, jovieira, ccervigon, antsanch}@ucm.es

Abstract. In this article, we propose the development of a bot for play-
ing the video game Ms. Pac-Man vs. Ghosts using a grammatical evo-
lution based evolutionary algorithm. This technique evolves programs
that are evaluated by executing them in the game. The program encodes
the strategy that the bot plays and is obtained through the derivation
of grammar rules in a particular order, which is defined by the algo-
rithm. We experimented with two different grammars: The first one in-
cludes high-level actions and the second one involves medium-level ac-
tions. Both grammars include state providers. To make the evolutionary
process more efficient, we perform a series of optimizations on the evolu-
tionary algorithm, including parallelization of the fitness evaluation and
multi-objective optimization. Experimental results using the two gram-
mars and two different ghost controllers are presented. We report better
results with our bots than the baseline controllers and other controllers
based on grammatical evolution.

Keywords: Genetic programming, grammatical evolution, multi-objective op-
timization, decision trees, Pac-Man

1 Introduction

Ever since the birth of video-games we’ve seen artificial intelligence techniques
applied to them: Character behaviour, enemy strategies, path-finding, etc. We
want to explore Grammatical Evolution (a Genetic Programming variant) to
evolve game strategies generated from the derivation of defined grammar rules.
For this purpose, we experimented with the evolution of a bot for Ms. Pac-Man,
a well-known game which can have many sub-goals, like surviving the most time
possible, eating the most pills, killing as many ghosts as it can, or go through a
lot of levels before dying to the ghosts.

? Supported by Spanish Ministry of Economy, Industry and Competitiveness under
grants TIN2014-55006-R and TIN2014-57028-R

Particularly, we experimented with controllers based on two different gram-
mars, with high and medium level actions respectively. Due to the complexity
of video-games and how useful it could be for an artificial intelligence to mod-
ify its behaviour in real time, we want to check the results of multi-objective
optimization in grammatical evolution, and how we can achieve the sub-goals
we consider more important in a situation by simply changing the evaluation
functions we use in the grammatical evolution algorithm.

We will show that this approach based on Grammatical Evolution gets ex-
cellent results and we will see that the bots produced can obtain high scores
and complete several levels, even better results than the coded bots included, or
other known evolutionary bots.

The rest of the article is structured as follows: Section 2 describes the tech-
niques and the work we’ve found related to our project. Section 3 gives infor-
mation on the Pac-Man framework we use and the bots we experiment with.
Section 4 explain our bot in detail showing some results and comparatives. Sec-
tion 5 describes multi-objective optimization and its results, and we will compare
them to the previous ones. Finally, in section 6, we discuss the conclusions of
this study and the future work.

2 Related Work

2.1 Genetic Programming

Genetic Programming (GP) [16] is one of the many different branches of algo-
rithms that exist in the field of Evolutionary Algorithms. The goal in GP is to
produce the best program, in a determined programming language, to solve a
particular problem. The programs are usually encoded using a tree structure
(genotype) in which each node represents a token of the chosen programming
language. Certain individuals in the population will be selected, recombined and
transformed slightly by different types of selection, crossover and mutation op-
erators. In order to evaluate the performance of each individual, its genome will
be transformed into the final program (phenotype) that will be executed in the
context of the particular problem to solve. This process is repeated several times,
and the final solution will be the individual representing the program with the
best score of the whole population [3].

The main drawback of GP is that the use of trees to encode the genotype is
very demanding in terms of memory, especially when bloating occurs [15], and
that the selection, crossover and mutation operators are relatively slow because
they work with recursive tree structures.

GP has been used previously to evolve AI controllers for the Pac-Man game.
In particular, Koza [9] used a set of high level operators for maze information re-
trieval (DISF-Distance to Fruit) and Pac-Man direct control (AFRUIT-Advance
to Fruit) to develop a bot for a custom version of the game. Alhejali and Lu-
cas [2] also used GP with even more abstract operators (isInDanger, IsToEn-
ergizerSafe or toSafety) to automatically evolve Pac-Man players. Brandstetter

And Ahmadi [5], on the other hand, used low level action operators for Pac-Man
movement (UP, DOWN...), obtaining better results (score) compared with the
previous controllers.

2.2 Grammatical Evolution

Grammatical Evolution (GE) [13] is similar to Genetic Programming in that
both evolve programs to find the best one to solve a particular problem, but
they differ on the encoding (genotype). While GP uses trees, GE uses an array
of integers where each integer represents the rule of the grammar (in BNF)
that will be chosen to produce the program (phenotype) when the genotype is
decoded. That is, instead of storing the syntactic tree, in GE each individual
stores information to derive the program from the language grammar. This way,
the process of crossover and mutation works with integer arrays, it is much faster
and consumes less memory. The algorithm is also independent of the domain, so
we can solve different problems just changing the grammar to define the space
of valid programs.

Although classical crossover operators, like the single-point crossover, and
classical mutation operators, like integer flip mutation, can be used in GE al-
gorithms, they tend to produce too much noise in the phenotype, especially
crossover which generates chaotic populations. For this reason, new operators
were been developed to try to avoid this destructive behaviour, like LHS re-
placement crossover, which tries to do the crossover less destructive by taking
into account the phenotype structure and not just the genotype [7] and Neutral
Mutation for improving population’s diversity [12].

Grammatical Evolution (GE) has also been previously used to evolve Pac-
Man controllers. Galván-López [6] used a similar approach to Koza’s using high
level operators for movement (ANG - Avoid Nearest Ghost) and information
retrieval (avgDistBetGhosts). They used a grammar with if-else statements to
achieve determined outputs based on some game conditions. With this approach,
they achieved similar results to GP controllers with the advantage that the BNF
could be changed easily adding restrictions or features easily.

Liberatore [10] proposed another interesting approach using GE and Flock-
ing strategies to develop a Swarm-type intelligent for the Pac-Man ghost’s con-
trollers.

3 Ms. Pac-Man vs. Ghosts

Ms. Pac-Man vs. Ghosts (Figure 1) is a very popular arcade video game. In
the version that we use [18], there is a set of four pre-generated toroidal 2D
labyrinths, in which the ghosts and Pac-Man move. The ghosts always start in
the “Lair”, a rectangle in the middle of the map in which Pac-Man cannot enter,
while Pac-Man starts in the bottom of the map.

Each labyrinth is composed of corridors and junctions filled with a lot of pills
and four power pills. Both give points to Pac-Man as he walks over them, and

Fig. 1: Ms. Pac-Man vs. Ghosts videogame.

power pills make him able to eat the ghosts for a short period of time, while also
slowing them. Eating ghosts will give Pac-Man points, earning some extra ones
if he eats various ghosts in a row during the same power pill buff duration.

Pac-Man will try to eat all the pills and power pills to advance levels, while
avoiding the ghosts, which will try to hunt him, making him lose a live when
they walk over him. A level is completed when there are no pills and power
pills left, and there are an infinite number of levels, repeating the same set of 4
labyrinths consecutively.

Pac-Man will strive to eat all the pills and power pills in the map to advance
levels, while trying to get as many points as possible (eating any ghosts he can),
since each 10.000 points achieved he gets an extra life. The game ends either
when Pac-Man loses his three lives or after 24.000 turns, considering a turn
passes every time both Pac-Man and the ghosts make a movement.

Ms. Pac-Man vs. Ghosts has been used in different competitions in which
participants have used several different AI techniques in order to create the best
automatic player. The most important competitions are cha. Pac-Man Compe-
tition [11] and Ms. Pac-Man Vs. Ghost Team Competition [1] [14]

Both the ghosts and Pac-Man use controllers to determine which movement
is the best to make every turn. These controllers are the ones that must be
implemented to participate in the competitions, which can be done using any
technique available.

Every turn the game provides the controllers with its current state, so that
the controller can seek relevant information it needs to choose a movement.
Such information includes the pre-calculated distance from a point of the map

if (dist_closest_NE_ghost < 10) { escape }
else { seekFood }

Fig. 2: Example of a simple controller based on a decision tree.

to another (useful to check distances between Pac-Man and the ghosts), which is
the movement that puts you further away from any other position (useful to run
away from the ghosts), which movements are possible given a position, testing
if a position is a junction or not, etc.

The original code of Ms.Pac-man vs. Ghosts also provides various examples
of controllers like random movements for Pac-Man and the ghosts, aggressive
behavioural ghosts, or a basic one for Pac-Man that considers whether the sur-
rounding ghosts are edible or not. In particular, we use two different ghost’s
controllers in our experiments:

– Random: ghosts make random decisions.
– Legacy : it tries to reproduce the behaviour in the original game where each

ghost used different heuristics to move.

4 A bot based on grammatical evolution

We use Grammatical Evolution (GE) to evolve Pac-Man controllers which play
the game automatically. The types of programs that we consider valid Pac-Man
controllers are defined using a context-free grammar. This way, we can reduce
and refine the search space the evolutionary algorithm will explore, and focus on
a certain type of programs that we think more promising. In particular, we are
going to evolve decision trees in which the internal nodes check game conditions,
and the leaves describe specific actions to execute in the game.

For example, the program in Figure 2 describes a very simple bot that run
when there is a ghost near, and moves towards the closest pill in other cases.

In the general case, conditional statements can have other conditional state-
ments inside and, therefore, the bot can take decisions based on more complex
analysis of the game state. Note that, although decisions trees only allow to
define reactive bots (we cannot encode explicitly advanced strategies consisting
of action sequences), the evaluation of these decision’s trees at every game turn
can produce very complex behaviours.

In order to implement a Pac-Man bot based on GE, we use the JECO frame-
work [17] (Java Evolutionary COmputation library) which supports different evo-
lutionary computation techniques, including simple and multi-objective gram-
matical evolution.

4.1 Grammar design

We use two different types of terminals in our grammars:

<grammar > ::= <sel -stat >
<sel -stat > ::= if(_<cond >_){_<stat >_}_else{_<stat >_}

| if(_<cond >_){_<stat >_}
<stat > ::= <action > | <sel -stat >
<action > ::= escape | attack | seekFood
<cond > ::= <num -st >_<num -op >_<num >
<num -st > ::= dist_closest_NE_ghost

| dist_closest_E_ghost
<num -op > ::= EQ | NE | LT | GT | LE | GE
<numb > ::= 0 | 5 | 10 | ... | 40

Fig. 3: High-level grammar.

– Actions. They represent Java methods that return a concrete move for the
bot to execute. This way, we can use both abstract behaviours like escape
or concrete moves like left.

– State providers. They represent Java methods that return information of
the current game state either as boolean or numeric values. For example,
dist closest NE ghost returns the distance to the closest non-edible ghost.

We decided to design two grammars. The first one includes high level actions
(strategies coded in Java) and state providers, while the second one includes
medium-level actions and state providers. Both grammars contain conditional
statements (if / if-else), numeric constants and numeric operators (==, !=, >,

>=, <, <=). Our goal is to work at different levels of abstraction and study the
effect in both the search space and the optimality of the resulting program.

Figure 3 shows the high-level grammar that contains 3 high-level actions:
escape (run from the closest ghost), attack (go to the closest ghost) and seekFood
(go to the closest pill). It only contains 2 state providers: distances to the closest
edible and non-edible ghost.

Figure 4 shows the medium-level grammar that contains 4 actions to run to
the closest pill, power pill, edible ghost and run away from the closest non-edible
ghost. This grammar has several more state providers in order to create more
complex conditions.

Medium-level state providers: Distance to the closest non-edible ghost,
distance to the closest edible ghost, number of active power pills, distance to the
closest pill, distance to the closest power pill, geometric mean of the distances to
all non-edible ghost, geometric mean of the distances to all edible ghost

Medium-level actions: Run to the closest pill, run to the closest power
pill, run away from the closest non-edible ghost, run to the closest edible ghost

High-level actions: escape, attack, seekFood

– escape: Pac-Man moves towards the closest pill if he can reach it before
any ghost, or runs away from the closest ghost if he can’t (Also runs away
if there are no power pills left).

<gram > ::= <sel -stat >
<sel -stat > ::= if(_<cond >_){_<stat >_}_else{_<stat >_}

| if(_<cond >_){_<stat >_}
<stat > ::= <action > | <sel -stat >
<action > ::= run_to_closest_pill

| run_to_closest_ppill
| run_to_closest_E_ghost
| run_from_closest_NE_ghost

<cond > ::= <bool -st >
| <num -st>_<num -op>_<num >

<bool -st > ::= <bool -api > | not _<bool -api >
<bool -api > ::= is_junction
<num -st > ::= dist_closest_NE_ghost

| dist_closest_NE_ghost
| dist_closest_pill
| ...

<num -op > ::= EQ | NE | LT | GT | LE | GE
<numb > ::= 0 | 5 | 10 | ... | 40

Fig. 4: Medium-level grammar.

– attack : Pac-Man moves towards the closest edible ghost if no other
ghost can reach the edible one before him. If there are no edible ghosts,
Pac-Man moves in the same direction as he did in the previous turn.

– seekFood : Pac-Man moves towards the closest pill if he can reach it
before any ghost does. If there are no more pills, moves towards the closest
power pill.

4.2 Operators and Fitness function

After several tests comparing selection, elite, crossover and mutation operators
as well as their hyper-parameters, we obtained the best results using: Binary
Tournament selection[4] with 5% elite, LHS crossover [7] with 60% probability
and Integer Flip mutation with 10% probability and using Neutral mutation [12].

To maximize the score of the controller, we minimize the following fitness
function (it will be reviewed in later experiments in section 5.1):

f = 100000− score

Pac-Man obtains points every time he eats a pill (10 points), a power pill
(50 points) or an edible ghost (200 points). When Pac-Man eats more than one
ghost in a row, he gets extra points (400 for the second ghost, 800 for the third,
...). The fitness function will be reviewed in later experiments in section 5.1.

Fig. 5: Fitness evolution vs. generation (less is better) with different controllers.

4.3 Results

We performed four experiments evolving bots with the previous two grammars
and using two different ghost controllers: Random and legacy. Note that the
legacy ghosts are much more challenging than the random ghosts. We also com-
pared our bots with the UCD Dublin bot [6], another bot trained using Gram-
matical Evolution and high-level actions and state providers.

All the experiments were run using the same configuration: Population size
100, Generations 100, 30 games played per individual evaluation, Binary Tour-
nament selection, LSH crossover (60%), Integer Flip mutation (10%), Neutral
mutation and elitism (5%).

Figure 5 shows the evolution of the fitness function as we produce new gen-
erations of individuals in each experiment. Table 1 displays the results of the
experiments. In each experiment, we measure the final score, the level reached
and the time played showing the maximum, average and standard deviation val-
ues of 1000 games. As we were expecting, the Legacy ghosts are more challenging
opponents than the Random ghosts, and all the values are smaller because the
games are much shorter.

Both our grammars can produce bots that play better than the baseline con-
trollers (a random controller and other one that always go towards the closest
pill). Besides, our bots play better than the UCD Dublin bot, and that is inter-
esting because all of them are created using Grammatical Evolution. This seems
to happen due to the usage of excessively specific functions, which limit its be-
haviour, i.e. forcing Pac-Man to wait next to a power pill. Their bot also uses

Table 1: Pac-Man vs Ghost controllers’ comparison.

Pac-Man Ghosts
score level time (game ticks)

max avg std max avg std max avg std

Random

Random

1380 501 213 1 0.036 0.186 5635 1943 887.5
NearestPill 18910 4471 2654 5 1 0.9 7216 1795 1018
UCD Dublin bot[6] 11640 4288 - - - - - - -
Medium-level 64600 48558 10780 18 15 3.4 24000 21579 4470
High-level 55480 32704 13237 18 10.4 4.3 24000 17457 6784

Random

Legacy

1840 197 107 0 0 0 877 465 61.3
NearestPill 7190 3531 638 1 0.4 0.5 1881 1152 143.7
UCD Dublin bot[6] 12350 3945 - - - - - - -
Medium-level 15960 6358 2883 3 0.9 0.7 4973 1916 730
High-level 20040 5972 2832 4 1 0.6 8364 2026 1020

large amount of parameters like dimensions of a frame (centered on Pac-Man)
to evaluate certain conditions. Conversely, we make use of path distances and
numeric operators, resulting in a less complex game status analysis.

Using the medium-level grammar, we obtain better results than using the
high-level grammar in average, probably because the actions and state providers
make possible to create controllers that exploit scenarios that cannot be ex-
ploited using the high-level grammar. However, the high-level grammar obtains
better results in some particularly good games (max. values). The best evolved
controller using the medium-level grammar playing against the Legacy ghosts is
able to obtain 6358 points and complete almost 1 level in average. In the best
games, this same controller is able to obtain 15960 points and complete 3 levels.

When we analysed the behaviour of the evolved controllers, we discovered
that the bots generated by the high-level grammar share almost always the same
code, and achieve slightly lower scores, eating pills conservatively by avoiding
ghosts. However, the medium-level grammar tends to generate bots which man-
age to get stuck next to power pills (stopping themselves), wait for the ghosts
to be close and proceeding to eat first the power pill and then the ghosts. This
hunter behaviour allows Pac-Man bots to achieve notable scores, because there
is a multiplicative bonus when Pac-Man eats several ghosts in a row.

We also made experiments playing against the Starter ghosts controller, an
implementation that run away when the ghosts are edible and chase Pac-Man
with certain probability when they are not edible. Most of the executions using
the medium-level grammar evolved controllers able to exploit a bug in the code.
They went in circles forever in a corner of the board completing levels (a level
can be completed just waiting for enough turns) and not being chased by the
ghosts.

Regarding the type of generated programs, Figure 6 shows an example of the
controller evolved using the medium-level grammar against the random ghosts.
Basically, Pac-Man runs away from non-edible ghosts when they are very close,
goes towards the closest power pill when the ghosts are close (but not very close),
and eat pills in other cases.

if (dist_closest_NE_ghost > 10) {
if (dist_closest_NE_ghost < 20) {

run_to_closest_ppill
} else { run_to_closest_pill }

} else { run_from_closest_NE_ghost }

Fig. 6: Controller evolved using the medium-level grammar with random ghosts.

5 Multi-objective optimization

Multi-objective optimization arises when a single objective may not adequately
represent the problem being faced, so modelling it with several objectives is pre-
ferred. In multi-objective optimization, there are therefore n different objectives
each one with its own fitness function fi:

fi(X)|i = 1, ..., n

The difficulty of this kind of problems lies on determining which individual
optimizes all the objectives better. We say that a solution is a Pareto optimal
if none of the objective functions can be improved in value without degrading
some of the other objective values [3].

Exist a wide variety of methods when implementing a multi-objective al-
gorithm. The easiest consists in creating a fitness function which is a linear
combination of all other functions to optimize. The main problem concerns the
difficulty to find the adequate weights.

Another popular approach that we will use in this work is the NSGA-II [8]
algorithm, which delivers very good results yet is computationally expensive,
especially for large populations.

5.1 Why to apply it

Using a single objective function that maximizes the score, inevitably leads to
bots that keep moving around a power pill until one or more ghosts approach,
at which point Pac-Man eats the power pill and proceeds to eat as many ghost
as possible, exploiting the ghost score multiplier.

This strategy only works when there are still power pills available. With no
power pills left Pac-Man keeps rambling until a ghost eats it, and the game is
over. The consequence is that the controller usually is not able to complete more
than one level. In order to complete more, we tried to model a multi-objective
problem with two different fitness functions:

f1 = 100000− score

f2 = 100− last level reached

With this functions, we create a set F = [f1, f2] that will be used by NSGA-II
to evolve the population.

Table 2: Pac-Man vs Ghost controllers’ comparison including Multi-Objective.

Pac-Man Ghosts
score level time (game steps)

max avg std max avg std max avg std

Medium-level 1

Random

64600 48558 10780 18 15 3.4 24000 21579 4470
Medium-level (MO) 62050 46922 1243 18 15 4 24000 20868 5094.5
High-level 1 55480 32704 13237 18 10.4 4.3 24000 17457 6784
High-level (MO) 57370 32441 12712 17 10 4.1 24000 17536 6604.7

Medium-level 1

Legacy

15960 6358 2883 3 0.9 0.7 4973 1916 730
Medium-level (MO) 18020 6229 2832 3 0.9 0.7 5041 1905 725
High-level 1 20040 5972 2832 4 1 0.6 8364 2026 1020
High-level (MO) 20040 5972 2832 4 1 0.6 8364 2026 1020

5.2 Results

Table 2 shows the results with and without multi-objective. 1 refers to f1 and
MO to F=[f1,f2] . Unfortunately, multi-objective optimization does not seem to
obtain better results in our problem in terms of the number of completed lev-
els. Since both our objectives depend directly or indirectly on the score multi-
objective evolving doesn’t produce a diversity of behaviours in our programs,
making us believe that multi-objective optimization works at its best in situa-
tions where goals are not directly related.

Our results also show that even if we force the objective of reaching more
levels, the controllers obtain similar scores since Pac-Man advances levels by
eating all pills in the board (hence getting high scores). The same happens in
the opposite way: if we focus on points, Pac-Man will complete as many levels
as possible, because it aims to eat all pills.

6 Conclusions and future work

In this article, we have presented a grammatical evolution based evolutionary
algorithm to generate Pac-Man bots using some different levels grammars. The
bots produced are capable of acquiring high scores and completing several levels.
Those results are better than the included hand-coded bots as well as other
known evolutionary bots[6].

After investigating the effects of multi-objective optimization on Pac-Man,
we can conclude that it is not very useful in this context. Since every sub-goal we
can think of is dependant on the score, multi-objective evolving doesn’t produce
a diversity of behaviours in our programs, making us believe that works at its
best in situations where goals are not directly related.

Nevertheless, there is always the advantage of guiding the search process
with multi-objective, the same way we do with a well-designed grammar. It can
provide the bot desirable supplementary behaviour through the pursue of side
objectives. For example, staying as far as possible from the ghost, which grants
higher survivability.

We used JECO (Java Evolutionary Computation Library) as a base frame-
work. All the code base is located within a git repository1. Future work is fo-
cused on adding more advanced Artificial Intelligence techniques to the current
comparison, namely Behaviour Trees, NEAT algorithm or Grammatical Swarm,
maybe with some kind of hybridization.

References

1. Ms. Pac-Man Vs. Ghosts Tournament, http://www.pacmanvghosts.co.uk/
2. Alhejali, A.M., Lucas, S.M.: Evolving diverse Ms. Pac-Man playing agents using

Genetic Programming. In: Computational Intelligence (UKCI), UK Workshop on.
pp. 1–6. IEEE (2010)

3. Araujo, L., Carlos, C.: Algoritmos evolutivos: Un enfoque práctico. RA-MA (2009)
4. Blickle, T., Thiele, L.: A mathematical analysis of Tournament Selection, pp. 9–16.

Morgan Kaufmann (1995)
5. Brandstetter, M.F., Ahmadi, S.: Reactive control of Ms. Pac Man using informa-

tion retrieval based on Genetic Programming. In: Computational Intelligence and
Games (CIG), IEEE Conference on. pp. 250–256 (2012)

6. Galván-López, E., Swafford, J.M., O’Neill, M., Brabazon, A.: Evolving a Ms. Pac-
Man controller Using Grammatical Evolution, pp. 161–170. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2010)

7. Harper, R., Blair, A.: A Structure Preserving Crossover in Grammatical Evolution.
IEEE Congress on Evolutionary Computation (Sep 2005)

8. Kalyanmoy Deb, Associate Member, I.A.P.S.A.T.M.: A Fast and Elitist Multiob-
jective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Compu-
tation, Vol. 6, No. 2, April (2002)

9. Koza, J.R.: Genetic Programming: On the programming of computers by means
of Natural Selection, vol. 1. MIT press (1992)

10. Liberatore, F., Mora, A.M., Castillo, P.A., Guervós, J.J.M.: Evolving Evil: Opti-
mizing Flocking Strategies Through Genetic Algorithms for the Ghost Team in the
Game of Ms. Pac-Man, pp. 313–324. Springer Berlin Heidelberg, Berlin, Heidelberg
(2014)

11. Lucas, S.M.: Ms. Pac-Man Competition (2007-2011). http://dces.essex.ac.uk/
staff/sml/pacman/PacManContest.html

12. Oesch, C., Maringer, D.: A Neutral Mutation Operator in Grammatical Evolution.
Advances in Intelligent Systems and Computing Intelligent Systems p. 439–449
(Sep 2014)

13. O’Neill, M., Ryan, C.: Grammatical Evolution Evolutionary Automatic Program-
ming in an Arbitrary Language. Springer-Verlag New York Inc (2012)

14. Piers R. Williams, Diego Perez-Liebana, S.M.L.: Ms. Pac-Man Versus Ghost Team
CIG Competition. IEEE Computational Intelligence and Games (2016)

15. Poli, R.: A Simple but Theoretically-Motivated Method to Control Bloat in Genetic
Programming, pp. 204–217. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

16. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A field guide to Genetic Pro-
gramming. Lulu Press (2008)

17. Risco, J.L.: JECO Library, https://github.com/jlrisco/jeco
18. Robles, D.: Pacman vs ghosts simulator, https://github.com/davidrobles/

pacman-vs-ghosts

1 https://github.com/hecoding/Pac-Man

http://www.pacmanvghosts.co.uk/
http://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html
http://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html
https://github.com/jlrisco/jeco
https://github.com/davidrobles/pacman-vs-ghosts
https://github.com/davidrobles/pacman-vs-ghosts
https://github.com/hecoding/Pac-Man

	A Pac-Man bot based on Grammatical Evolution

