
Chapter 1

Behavioral Program Synthesis:
Insights and Prospects

Krzysztof Krawiec, Jerry Swan, and Una-May O’Reilly

Abstract Genetic programming (GP) is a stochastic, iterative generate-and-
test approach to synthesizing programs from tests, i.e. examples of the desired
input-output mapping. The number of passed tests, or the total error in con-
tinuous domains, is a natural objective measure of a program’s performance
and a common yardstick when experimentally comparing algorithms. In GP,
it is also by default used to guide the evolutionary search process. An as-
sumption that an objective function should also be an efficient ‘search driver’
is common for all metaheuristics, such as the evolutionary algorithms which
GP is a member of. Programs are complex combinatorial structures that
exhibit even more complex input-output behavior, and in this chapter we
discuss why this complexity cannot be effectively reflected by a single scalar
objective. In consequence, GP algorithms are systemically ‘underinformed’
about the characteristics of programs they operate on, and pay for this with
unsatisfactory performance and limited scalability. This chapter advocates
behavioral program synthesis, where programs are characterized by informa-
tive execution traces that enable multifaceted evaluation and substantially
change the roles of components in an evolutionary infrastructure. We provide
a unified perspective on past work in this area, discuss the consequences of
the behavioral viewpoint, outlining the future avenues for program synthesis
and the wider application areas that lie beyond.
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1.1 Introduction and motivations

Program synthesis is a challenging task due to the size of the search space,
its multimodality, externalized semantics of instructions, and complex con-
textual interactions between them. These characteristics are intrinsic to the
nature of this task and cannot be evaded. However, some difficulties faced by
contemporary genetic programming (GP), in particular the far from satisfac-
tory scalability, result from the particular model of evaluation of candidate
solutions adopted in this generative, trial-and-error metaheuristic.

As in the majority of genres of evolutionary computation (EC), the can-
didate solutions (programs) in GP are conventionally evaluated using scalar,
generic performance measures. Such a measure will usually capture program
error, e.g. represented either as the number of failed tests (for discrete do-
mains) or the total error committed on them (for the continuous domains).

The practice of measuring the quality of candidate programs using a scalar
performance measure has several merits. It allows for strict and elegant for-
mulation of program synthesis task as an optimization problem, and is thus
compatible with the conventional way of posing problems in artificial intelli-
gence, operational research, and machine learning. It also eases the separa-
tion of generic search algorithms from a domain-specific evaluation function,
which is so vital for metaheuristics. No wonder that this ‘design pattern’ is
so common that we rarely ponder its other consequences.

Unfortunately, there is a price to pay for all these conveniences, which
arises from the inevitable loss of information that accompanies the process of
scalar evaluation. That loss is particularly high in generate-and-test program
synthesis like GP, where not only a program itself is a complex combinatorial
entity, but also its execution is an intricate iterative process. In consequence,
the spectrum of possible behaviors exhibited by programs is enormously rich.
For example, even when looking only at program output, the number of all
possible behaviors of programs that attempt to solve the (trivial for con-
temporary GP) problem of 6-bit multiplexer is the staggering 264. Yet, in
conventional GP all that is left of that process is a single number (in the
interval [0, 64] for the above example). The conventional scalar evaluation
denies a search algorithm access to the more detailed information on pro-
gram’s behavioral characteristics, while that information could help to drive
the search process more efficiently.

This observation can be alternatively phrased using the message-passing
metaphor typical in information theory. A search algorithm and an evaluation
function can be likened to two parties that exchange messages. The message
the algorithm sends to the evaluation function encodes the candidate solu-
tion to be evaluated. In response, the algorithm receives a return message –
the evaluation. In a sense, the evaluation function compresses a candidate
solution into its evaluation. If one insists on compressing all the information
about program behavior into a scalar fitness that aggregates various aspects
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of that behavior, then one also has to accept the fact that such compression
is inevitably lossy.

This evaluation bottleneck has detrimental consequences. The outcomes
on particular tests compensate each other and may render programs indis-
tinguishable in a selection phase, leading to loss of diversity and premature
convergence. Also, tests may vary with respect to objective difficulty (the
probability of a random program passing a test), subjective difficulty (mea-
sured by search algorithm’s likelihood to find a program that passes the
test), or both. In consequence, evolution often tends to greedily synthesize
programs that pass the easiest tests, and such programs may correspond to
local minima in the search space. These and other properties of conventional
evaluation cause it to exhibit low fitness-distance correlation (Tomassini et al,
2005), i.e. to not reflect well the number of search steps required to reach the
optimal solution. As a result, guiding search by a fitness function defined in
this way may be not particularly efficient. In other words, the fitness function,
despite embodying the objective quality of candidate solutions (considered
as prospective outcomes of program synthesis process), is not necessarily the
best driver to guide the search.

The parsimony of conventional evaluation is also awkward in architec-
tural terms, i.e. when looking at a program synthesis system as a network
of interconnected components. Why would one component (fitness function)
compress the evaluation outcomes and then force another component (search
algorithm) to reverse-engineer them, knowing that this incurs loss of infor-
mation? There are no reasons for this other than the convention inherited
from metaheuristic optimization algorithms and evolutionary metaphor.

Arguably, there are domains where an evaluation function is by definition
‘opaque’ and makes this bottleneck inevitable. For instance, in Black Box Op-
timization, fitness is the only information on a candidate solution available to
a search algorithm. However, it might be the case that the need of such sepa-
ration is more an exception than a rule when considering the whole gamut of
problems we tackle with metaheuristics. In many domains, there are no prin-
cipal reasons to conceal the details of evaluation, which is often complex and
an abundant source of potentially useful information. This is particularly true
for program synthesis, where the act of evaluating a candidate program is rich
at least in two respects. Firstly, a program interacts with multiple tests, and
will often perform differently on each. Secondly, a program’s confrontation
with a single test involves executing multiple instructions.

The main motivation for this chapter is the observation that the habit of
driving search using a conventional, scalar evaluation function cripples the
performance of stochastic program synthesis as implemented by GP. In re-
sponse, we posit the necessity of broadening the evaluation bottleneck and
providing search algorithms with more detailed information on program be-
havior. This leads to a new paradigm of behavioral program synthesis. In this
chapter, we demonstrate a particular means to this end, presented earlier in
preliminary forms in (Krawiec and Swan, 2013) and (Krawiec and O’Reilly,
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2014), which relies on the concept of information-rich search drivers, alter-
native quasi-objectives that may be capable of guiding program synthesis
process more efficiently than the conventional objective function.

1.2 Behavioral program synthesis

In this section we sketch the vision of behavioral program synthesis, a method-
ology for program synthesis that prioritizes program behavior.

Several existing extensions of the traditional GP paradigm involve broad-
ening of evaluation bottleneck, in a more or less explicit way. For instance,
program semantics in GP is the vector of program outputs for particular tests
(Moraglio et al, 2012) and thus provides more information about program be-
havior than the conventional scalar fitness. Behavioral characterizations like
program semantics are tailored to the needs of a particular approach: a se-
mantics of a program holds program output for every test, because this is
the information required by (most) semantic-aware search operators.

Contrary to this model, we propose that evaluation provides a complete
account of program behavior, and to leave it up to the other components of
a search algorithm to decide which pieces of that information to use. The
means for this are program trace, which reports the detailed, instruction-
by-instruction effects of program execution for a given input, and execution
record that gathers and aligns such traces for all considered tests.

Both these concepts can be conveniently explained with an example. Fig-
ure 1.1 presents an integer-valued symbolic regression task (‘Problem’) de-
fined by four tests, each of them comprising two input variables x1 and x2 and
the desired output y. Assume the tree-based GP program p shown there (‘GP
Individual’) needs to be evaluated. The colored lists present the outcomes of
intermediate execution stages, produced by p at particular instructions for
consecutive tests. When gathered together, they form the execution record
(labeled ‘ML dataset’ in Fig. 1.1, for the reasons explained later). A single
row in an execution record captures the behavior of p on the correspond-
ing test in the set of tests; for instance, the first row does so for x1 = 2
and x2 = 3. For this input, the intermediate values generated by p at con-
secutive instructions are 2, 2, 3, 2, 4, 5, when executing p in the bottom-top,
left-to-right manner (the ordering could be different for this side effect-free
programming language). The corresponding first row of the execution record
presents this in an abridged form, where the duplicates are omitted: 2, 3, 4, 5
(the second and the fourth leaf in the tree refer to the input variable x1 that
has been already recorded in the first element of the trace).

A trace is thus a sequence of intermediate computation states, and can
be harvested from a running program by interrupting its execution after ev-
ery instruction, and taking a ‘snapshot’ of the execution environment. In the
above example with functional tree-based GP, a state is simply the working
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Fig. 1.1 The workflow of behavioral evaluation in Pattern-guided Program Synthesis
(PANGEA, (Krawiec and Swan, 2013)), valid also for behavioral programming presented

in (Krawiec and O’Reilly, 2014).

value returned by the currently executed node of an expression tree. Other
representations used in GP require different implementations of this con-
cept. In linear GP (Brameier and Banzhaf, 2007), statements operate via
side-effects i.e. by changing the values stored in registers; the environment
there would be the states of all registers. In the PushGP system (Spector
and Robinson, 2002), where the working memory is the code stacks and data
stacks, all these data structures taken together form the execution environ-
ment. Nevertheless, in both these cases recording traces is straightforward,
as demonstrated by our use of PushGP in (Krawiec and Swan, 2013).

Differences between program representations notwithstanding, an execu-
tion record captures the entirety of effects of program’s interactions with the
input data provided in tests. As such, it is obviously possible to derive from
it the conventional fitness (by comparing the last column with the vector of
desired outputs), the outcomes of interactions with individual tests (which
opens the door to posing a program synthesis task as a test-based problem
(Popovici et al, 2011)), or program semantics (in the sense of semantic GP
(Moraglio et al, 2012)). The arguably most exciting possibility (which has
been little explored to date) lies in investigating ‘internal’ program behavior,
which we attempt in the following.

For expressions like the one in the above example, the execution record is
by definition aligned, i.e. the states recorded in the same column correspond
to the same instruction in the program. For programs containing loops, con-
ditional statements, or involving recursion, traces may have different length
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and alignment is not guaranteed. Nevertheless, this does not invalidate our
hypothesis that certain regularities present in an execution record can be
valuable telltales of program’s actual or prospective performance. The par-
ticular approach presented in the next section exemplifies this claim.

1.3 Pattern-guided program synthesis

In conventional GP (and other conceivable generate-and-test program syn-
thesis techniques), candidate programs are normally judged by their outputs.
However in GP, arguably more than in many other domains, the ultimate pro-
gram output is an effect of collective effort of constituent instructions. One
reason for this state of affairs is the sequential nature of programs. The other
is the particularly complex mapping from program code to behavior: a minute
modification of the former may cause a dramatic change in the latter. On the
other hand, a major change in a program can turn out to be behaviorally
neutral, due to the multimodality mentioned above.

It is thus likely that programs emerge in an evolving population that fea-
ture potentially useful components (subprograms, code fragments) yet that
usefulness is not leveraged by the final instructions. Such programs will usu-
ally perform poorly in terms of conventional fitness and likely get lost in selec-
tion phase. Conventional GP has no means to counteract that loss. However,
traces and execution records introduced in the previous section may reveal
such intermediate behavioral patterns. Given that, it seems tempting to look
for them in order to identify the subprograms that ‘relate’ to the task in
question. Programs that feature such subprograms could be then promoted,
to allow the search operators to turn them into better-performing candidate
solutions. For instance, a fortunate crossover may mate such a promising sub-
program with a piece of code that together leads to optimal solution. This
acquired knowledge could be alternatively used more explicitly, for instance
by archiving the subprograms and then reusing them via search operators.

A skilled human programmer may discover behavioral patterns and exploit
them to design a program that meets the specification of a program synthesis
task. Humans in general are known to be incredibly good at spotting and
thinking in patterns when solving all sorts of problems — for this reason
they have been termed informavores (Miller, 1983). A sizeable part of AI
research is about mimicking such capabilities (Hofstadter, 1979). Moreover,
humans can anticipate the patterns that are desirable in a given problem and
often use domain and commonsense knowledge for that purpose. Consider the
task of synthesizing a program that calculates the median of a list of numbers.
The background knowledge tells us that a reasonable first stage of solving this
task is to sort the list. In terms of execution records, reaching an intermediate
execution state that contains the sorted elements of the list is desirable in
this task.
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To realize these opportunities, an efficient detector of ‘interesting’ (rele-
vant for a given program synthesis task) behavioral patterns is necessary. One
may for instance analyze how execution traces converge between tests, be-
cause this to some extent determines program output — if two or more traces
arrive at the same execution state, their further courses must be the same,
assuming that an execution state captures everything about the execution
environment (by including, for instance, instruction pointer). In (Krawiec
and Solar-Lezama, 2014), we proposed an approach that quantified program
quality with respect to such convergences of traces, using concepts from in-
formation theory.

Nevertheless there exists a wider class of behavioral patterns of potentially
greater interest, namely the patterns that are detectable by conventional
knowledge discovery and machine learning (ML) algorithms. Such patterns
are perused by the method described in the following, termed PANGEA (PAt-
terN Guided Evolutionary Algorithms), originally proposed in (Krawiec and
Swan, 2013) and then extended in (Krawiec and O’Reilly, 2014). Technically,
behavioral patterns are being revealed there by a ML algorithm trained on
execution traces. Information on the resulting classifier is then used to aug-
ment the fitness function. By relying on generic ML tools, this process does
not rely on domain knowledge (as is common for humans). Rather, it seeks
abstract regularities that can be used to predict the correct output of a pro-
gram. If this approach is able to reveal meaningful dependencies between
partial outcomes and the desired output, we may hope to thereby promote
programs with the potential to produce good results in future, even if at the
moment of evaluation the output they produce is incorrect.

The ML perspective on behavioral program synthesis originates in the
observation that an execution trace bears some similarity to an example in
ML. Assuming the execution record resulting from applying p to all tests
is aligned, i.e., the states in particular traces correspond to each other, the
columns of the record can be likened to attributes in ML. The desired program
output y corresponds in this context to the desired response of a classifier
(or regressor, depending on the nature of the task). And crucially, a ML
induction algorithm (inducer for short), given a set of such examples, can be
used to produce a classifier that predicts the desired output of the program
based on the attributes describing execution traces.

The method proceeds in the following steps, exemplified in Fig. 1.1:

1. An execution record is built by running the program on the tests.
2. The execution record is transformed into a conventional ML dataset D.
3. A ML induction algorithm is applied to D, resulting in a classifier C.
4. Program evaluation is calculated from the properties of C.

The record built in Step 1, as explained in the example in Sect. 1.2 (Fig.
1.1), is subsequently transformed in Step 2, resulting in the training set la-
beled as ‘ML dataset’ in the figure. In this case of simple tree-based GP,
the attributes correspond one-to-one to the columns of the execution record,
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so the only essential change is the addition of the program output y as a
dependent variable (class label) in the dataset. Transformation of an exe-
cution record into a ML dataset could be more sophisticated, for instance
if states represent compound rather than elementary data types. More ad-
vanced transformation could facilitate discovery of behavioral patterns, for
instance when representation biases of a ML classifier prevent it from cap-
turing certain classes of pattern. Yet another motivation is to allow discovery
of higher-order patterns that are unobservable when each attribute reflects a
single execution state. Though these options deserve future research, here we
focus on tree-based GP and the straightforward, one-to-one transformation
of the columns of execution record into ML attributes.

Given the training set D, in Step 3 we train a ML classifier C on it. In
(Krawiec and Swan, 2013) and (Krawiec and O’Reilly, 2014), we used the
decision tree inducers (C4.5 (Quinlan, 1992) and REP-tree, respectively).
For the example in Fig. 1.1, a decision tree induction algorithm produced
the classifier labeled ‘Decision tree’, considering attributes xi as well as the
decision class y as nominal variables. The tree comprises five nodes, uses
attributes x4 and x1 to predict the output of the program, and commits no
errors on D.

1.3.1 Search drivers

The classifier maps the attributes derived from intermediate execution states
onto the desired output of the program. In a sense, it attempts to complement
the program’s capability for solving the problem (i.e. producing the desired
output value). This observation motivates the design of specific evaluation
functions. If the traces reveal regularities that are relevant for predicting
the desired output, then the induction algorithm should be able to build
a classifier that is (i) compact and (ii) commits relatively few classification
errors. These aspects are strongly related to each other, which we illustrate
in the following.

Consider first the case of an optimal program p. p solves the task, i.e.
produces the desired output yi = p(xi) for all tests (xi, yi) ∈ T . Since each
trace ends with a final execution state, and the attributes are collected from
all states, then the last attribute in D will be among them. Because p solves
the task, that attribute will be identical to the desired output. In such a case,
the induction algorithm may produce a classifier of C that involves only that
attribute, e.g. a decision tree composed of a single decision node and k leaves
corresponding to the k unique desired outputs. Such a decision tree is thus
quite compact and commits no classification errors.

Now consider a non-optimal program. Assume its output diverges so much
from the desired output that the corresponding attribute is useless for predic-
tion. In such a case, it is likely for the induced classifier to rely on the other
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attributes, derived from the intermediate execution states. Individually, such
attributes have usually limited predictive power, unless the corresponding
column in an execution record happens to capture some key aspect of the
task. In consequence, the resulting classifier of C needs to rely on many such
attributes and thus may be quite complex. In the case of decision trees, the
tree will feature many decision nodes. In general, the size and predictive ac-
curacy of the classifier depend on the degree to which the intermediate states
relate to the desired output.

These examples illustrate that complexity and predictive capability of a
classifier are related to each other in a nontrivial manner. Aggregating them
would involve unnecessary loss of information, as we argued earlier. This
motivated us to define two evaluation functions: the classification error and
classifier complexity. The technical definition of the latter depends on clas-
sifier representation; for decision trees, it will be the number of tree nodes.
Clearly, neither of these evaluation functions alone captures fully the relat-
edness of attributes to the desired output. It becomes natural to use them
side-by-side. In (Krawiec and Swan, 2013), we aggregated them into a single
evaluation function. In (Krawiec and O’Reilly, 2014), we kept them sepa-
rate and relied on multiobjective approach, employing the Non-dominated
Selection Genetic Algorithm (NSGA-II, (Deb et al, 2002)). NSGA-II relies
on tournament selection on Pareto ranks to make the choices. To break the
ties on ranks, it employs sparsity, a measure that rewards the candidate so-
lutions that feature less common scores on criteria. The method is also elitist
in selecting from the combined set of parents and offspring (rather than from
parents alone).

We postulate that quantities like classifier error and classifier complexity
(as well as the information-theoretical measures we proposed in (Krawiec and
Solar-Lezama, 2014)) share certain features in common and exemplify a new
class of evaluation functions, which we refer to as search drivers. A search
driver can be considered as a ‘quasi’ evaluation function. It is expected to pro-
vide a certain search gradient towards the global optima, but not necessarily
a strong one — we posit that what matters is the direction of that gradient
rather than its magnitude. We are particularly interested in search drivers
that are uncorrelated with the original objective function, as this opens the
possibility of using them (or multiple search drivers) together, preferably in
a multiobjective setup. Also, we do not expect search drivers to be mini-
mized at the optima — we find this requirement unnecessarily constraining
when designing search drivers, while in GP program correctness can be easily
verified in abstraction from evaluation function.

In EC, the concept that arguably most resembles that of search driver
is surrogate fitness. Also known as approximate fitness function or response
surface (Jin et al, 2002), a surrogate function provides a computationally
cheaper approximation of the original objective function that comes with a
given problem. Search drivers diverge however from surrogate fitness in sev-
eral respects. Firstly, surrogate functions are by definition meant to approxi-
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Fig. 1.2 As a side-effect of behavioral evaluation, evaluation can identify useful subpro-

grams in programs being evaluated. Such subprograms can be gathered in an archive,

maintained throughout the entire evolutionary run, and reused by search operators (here:
archive-based mutation). Empirical evidence shows that such code reuse can substantially

improve search performance (Krawiec and O’Reilly, 2014).

mate the original objective function. Search drivers lack this intent. Given the
challenges plaguing conventional objective functions (see Introduction), why
would one want to approximate them? Secondly, search drivers are intended
to aid GP meant as a search, not optimization problem. This leaves more
freedom in their design, which do not have to ‘mimic’ the objective function
across the entire search space. Thirdly, in a program synthesis task, a search
driver is not required to be consistent with the objective function in attain-
ing minimal values at global optima. In surrogate fitness, such consistency
is essential. And last but not least, a primary rationale for surrogate fitness
is high computational cost of original objective function, while the role of
search drivers is to help navigate more effectively in the search space.

These differences justify the conceptual distinctness of search drivers. In an
ongoing work, we hope to provide a more sound formalization of this concept
and come up with guidelines for principled design of search drivers.

1.3.2 Experimental evidence

In (Krawiec and Swan, 2013) and (Krawiec and O’Reilly, 2014) we ap-
plied PANGEA to PushGP (Spector and Robinson, 2002) and tree-based
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GP respectively. In both cases, the behavioral approach systematically out-
performed the configurations driven by conventional fitness functions and
control configurations devised to test more specific hypotheses (e.g., which
of the abovementioned search drivers is more essential for performance). In
the case of tree-based GP, we also extended the approach with code reuse:
the subprograms indicated as potentially valuable in the process (i.e., cor-
responding to the attributes used by a decision tree) were retrieved from
the evaluated programs, stored in a carefully maintained archive, and reused
by an appropriately designed mutation operator. Code reuse lead to further
dramatic boosts of performance, measured in terms of success rate, error
rate, predictive accuracy, and, interestingly, program size. For instance, on
the suite of 35 benchmarks used in (Krawiec and O’Reilly, 2014), the average
rank on success rate was 2.43 for PANGEA with code reuse, compared to 3.10
for conventional GP working with 10 times larger population, and 3.86 for
GP working with same-sized population (100). Two other PANGEA-based
setups, one of them using only two objectives and the other one without
archive, ranked 3rd and 4th with average ranks of 3.36 and 3.43, respectively.
Two-objective GP working with program error and program size as objec-
tives came last, with the average rank of 4.83. Other performance indicators,
like program error and predictive accuracy, were also in favor of behavioral
approach. For detailed account on experimental results, see (Krawiec and
Swan, 2013) and (Krawiec and O’Reilly, 2014).

1.4 Consequences of behavioral perspective

Complete characterization of program behavior can be a natural means for
assessing and controlling the diversity of programs. For instance, a selection
operator can be easily designed that, given two programs that pass the same
number of tests but vary in execution record, allows them co-exist in an
evolving population (by, e.g., selecting them both). No dedicated mechanism
for controlling or inducing diversity may be necessary – behavioral evalu-
ation implicitly provides for phenotypic diversity. This property may help
mitigate the risk of premature convergence and overfocusing on local optima.
The positive experimental evidence on the performance of behavioral ap-
proaches (Section 1.3.2) can be in part attributed to this characteristic. The
importance of behavioral diversity has been also corroborated by methods
like implicit fitness sharing (Smith et al, 1993; McKay, 2000), co-solvability
(Krawiec and Lichocki, 2010), or more recently lexicase selection (Helmuth
et al, 2014), where the last one seems to be particularly effective at trading-
off diversity maintenance and selective pressure on an evolving population
(Liskowski et al, 2015).

Behavioral characterization of programs may also facilitate task decompo-
sition. Automatic detection of a task’s internal modularity and performing
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appropriate decomposition has been for long considered one of the main chal-
lenges in designing intelligent systems, and is an important area of research in
computational and artificial intelligence (Watson, 2006). In behavioral pro-
gram synthesis, there are at least two alternative avenues to decomposition,
both of which can be conveniently explained by means of the execution record.

Firstly, by providing a separate account of program execution for every
test, execution records open the door to ‘horizontal’, ‘test-wise’ task decom-
position. This capability is essential also for semantic GP (and indeed other
traditional approaches), where some crossover operators combine the behav-
iors of parents on particular tests. This is most evident for exact geometric
semantic crossover (Moraglio et al, 2012), especially for the Boolean domain.
That operator, when applied to parent programs p1, p2, generates a random
Boolean subprogram pr and produces an offspring that combines p1, p2 with
pr in a straightforward expression (p1 ∧ pr) ∨ (p2 ∧ pr). In the offspring, pr
works as a mask: it ‘mixes’ parents’ behaviors by deciding, for each test in-
dividually, which parent to copy the output from. For the tests for which pr
returns true, the offspring behaves like p1, and if pr returns false, it behaves
like p2.

The presence of complete execution traces in an execution record facili-
tates also the less obvious ‘vertical’ task decomposition. What we mean here
is the stage-wise structure of a task, as explained on the example of calcu-
lating the median in Section 1.3. In that example, the desired decomposition
consists of splitting the original programming task into two separate subtasks
of (i) sorting the list and (ii) retrieving the central element of the sorted list.
Arguably, solving each of these subtasks separately can be expected to be
easier than synthesizing a complete program that calculates the median. We
posit that such desired decompositions can be, at least for some programming
tasks, automatically derived from a working population of programs by ana-
lyzing execution records. In (Krawiec, 2012), we provided some experimental
evidence for this hypothesis: ‘behavioral trajectories’ tend to cluster, thereby
revealing the internal structure of a task.

In this chapter, we considered methods that use behavioral information
primarily to drive the selection process: an alternative evaluation function
characterizes (possibly in a multi-objective fashion) the candidate solutions,
and that information is used to select the most promising of them. The
above remarks on task decomposition point to the alternative ways of ex-
ploiting behavioral information, in particular by redefining search operators.
The code reuse mutation operator described in Section 1.3.2 and in (Kraw-
iec and O’Reilly, 2014) is an example of such functionality. However, that
operator implants the valuable code fragments in the offspring at random
locations. Given execution records of mutated/recombined programs, search
operators can be even more sophisticated in behavioral terms. For instance,
a behaviorally-aware crossover operator could recombine the parents so as to
achieve the desired behavioral effect (e.g. by combining a list-sorting subpro-



1 Behavioral Program Synthesis: Insights and Prospects 13

gram with a subprogram that retrieves the central element from a list in the
median problem mentioned earlier).

The behavioral perspective adopted in this chapter in the context of GP
has interesting implications beyond program synthesis. One can draw imme-
diate parallels between the trace of stepwise execution of a GP program on
a fitness case and the search trajectory of a metaheuristic solver acting on a
problem instance. The ‘state’ of a metaheuristic could of course also include
other variables of relevance. For example, the state of Simulated Anneal-
ing would include current temperature. In the PANGEA approach described
above, a search driver is induced (via a decision tree) from the executable
structure. The essential difference in the extension to metaheuristics is that
with the GP approach, the executable structure is the candidate solution,
whereas in this extended approach it is the means by which solutions are
found (i.e. the particular way in which temperature is modified throughout
a Simulated Annealing run). It may nonetheless be possible to obtain search
drivers in this more general context by correlating solver state against the
candidate solutions representing its current search progress, using any of the
gamut of ML techniques mentioned above.

There is much emphasis in the optimization research community on pro-
viding solutions for individual problem instances which are ‘good enough,
quickly enough’. It must not be forgotten that the most significant improve-
ments have arisen from analytical and scientific activity, rather than the
engineering activity of ‘manual tweaking’ of operators and parameters. It is
therefore vital to build tools to help distinguish ‘universal’ features of solvers
from ‘parochial’ ones. The primary strength of GP above other regression
techniques is as a model-agnostic mechanism for knowledge discovery. A
wider research agenda towards ‘robot scientists’ (Sparkes et al, 2010) that
actively seek correlates between their effectors (e.g. generated metaheuris-
tic search operators) and their observed effects allows these strengths to be
directed back into the optimization process itself. This wider agenda of an
autonomous search agent capable of metacognitive activity invites contribu-
tion from areas such as developmental robotics (Lungarella et al, 2003) and
pattern theory (Grenander, 1989). This is of course a different class of activ-
ity from optimizing an individual problem instance, but architectures of this
general nature (e.g. (Swan et al, 2014)) are necessary in order to automate
that which currently requires the labour of skilled researchers.

1.5 Conclusions

The behavioral perspective on program synthesis urges us to rethink the
structure and workflow of typical GP algorithm and generic evolutionary
methods. A typical iterative optimization algorithm can be visualized as a
loop of evaluation phase, selection phase, and the phase of applying search
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operators (‘variation’ in evolutionary terms). An evaluation function is typ-
ically externalized as a separate component, and communicates only with
selected stages of the loop. For behavioral approach ‘in the large’, it may be
more appropriate to visualize the workflow as a network of interconnected
components that exchange information about the search process. By having
access to behavioral characteristics of candidate solutions, the components
in such an architecture would be more empowered when making decisions
about the fate of particular candidate solutions.

To an extent, the behavioral approach can be seen as a means for making
search process more ‘intelligent’ while keeping it relatively ignorant about the
domain-specific aspects. By observing program behavior as captured in an ex-
ecution record, a search algorithm gains better insight into program specifics,
while abstracting from characteristics of the underlying program representa-
tion, programming language, etc. For instance, PANGEA may observe similar
or even the same execution records whether the evolving programs implement
imperative or functional programming paradigms.

The fascinating realization is that there are probably many potentially
useful search drivers beyond the conventional ones, and beyond the ones
discussed in this chapter. It is even possible to that some of them may provide
better performance of search algorithms than anything known to date. In this
chapter and previous works on this topic, we have only scratched the surface
of how search drivers can be defined (or automatically derived from a problem
(Kocsis and Swan, 2014)). In a longer-term research perspective, it would be
highly desirable to come up with a principled approach to the design of search
drivers.
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