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Abstract
Nowadays there is an increased pressure on mobile app developers to take non-functional
properties into account. An app that is too slow or uses much bandwidth will decrease user
satisfaction, and thus can lead to users simply abandoning the app. Although automated
software improvement techniques exist for traditional software, these are not as prevalent
in the mobile domain. Moreover, it is yet unknown if the same software changes would be
as effective. With that in mind, we mined overall 100 Android repositories to find out how
developers improve execution time, memory consumption, bandwidth usage and frame rate
of mobile apps. We categorised non-functional property (NFP) improving commits related
to performance to see how existing automated software improvement techniques can be
improved. Our results show that although NFP improving commits related to performance
are rare, such improvements appear throughout the development lifecycle. We found alto-
gether 560 NFP commits out of a total of 74,408 commits analysed. Memory consumption
is sacrificed most often when improving execution time or bandwidth usage, although sim-
ilar types of changes can improve multiple non-functional properties at once. Code deletion
is the most frequently utilised strategy except for frame rate, where increase in concur-
rency is the dominant strategy. We find that automated software improvement techniques
for mobile domain can benefit from addition of SQL query improvement, caching and asset
manipulation. Moreover, we provide a classifier which can drastically reduce manual effort
to analyse NFP improving commits.
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Weiyi Shang

This article belongs to the Topical Collection: Software Performance

� James Callan
james.callan.19@ucl.ac.uk

Extended author information available on the last page of the article.

Empirical Software Engineering (2022) 27: 113

Accepted: 11 February 2022 /Published online: 30 May 2022    

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10137-2&domain=pdf
http://orcid.org/0000-0002-5692-6203
mailto: james.callan.19@ucl.ac.uk


1 Introduction

Several studies have shown that non-functional performance characteristics have a strong
impact on user satisfaction (Inukollu et al. 2014; Lim et al. 2014; Khalid et al. 2014; Liu
et al. 2014; Ferrucci et al. 2015; Kim et al. 2015; Martins et al. 2018; Gao et al. 2018, 2020).

Performance issues are especially important in the mobile, resource constrained domain.
Banerjee and Roychoudhury (2017) analysed 170,000 user reviews of mobile applications,
and classified reasons for user downvotes. Three out of five identified categories related to
non-functional properties. Khalid et al. (2014)’s study of iOS applications also showed that
unresponsive, resource heavy applications, and those with network related issued were among
the top most frequent sources of complaints. Issues related to non-functional software prop-
erties lead not only to downvotes, but also large number of uninstallations (Banerjee and
Roychoudhury 2017) rendering them a priority in the mobile software development process.

Most of the aforementioned work provides analysis on what the issues are, rather than
how these can be solved. Only recently Hort et al. (2021) carried out a comprehensive survey
of existing research on performance optimisation for mobile applications. These included
offloading, antipattern detection, refactoring, prefetching, choice of a different program-
ming language, reordering of I/O calls and changes to hardware components (Hort et al.
2021). Their survey shows that tool support for automated improvement of non-functional
properties has been scarce, mainly targeting energy consumption, and if available, targeting
one property of choice, sometimes having adverse effects on the others (Hort et al. 2021).

Among automated approaches for improvement of non-functional properties for tradi-
tional software, search-based approaches have gained popularity in the last few years. For
example, Wu et al. (2015) automatically applied changes directly to source code to pro-
duce a Pareto front of program variants that improve memory consumption and runtime
efficiency. Basios et al. (2018) and Burles et al. (2015) both modified the data structures
used by software to improve non-functional properties by finding less resource-demanding
combinations. These and other techniques have been successful at optimising traditional
software, though these are yet to be applied more widely in the mobile domain. The advan-
tage of using search-based tools, is that they are well-suited for multi-objective optimisation,
something that is missing in the mobile application improvement field (Hort et al. 2021).

We pose that software repositories offer researchers a wealth of information about the
behaviour and techniques used by actual developers. These can be used to find patterns that
can be mimicked by search-based software engineering approaches for optimisation of non-
functional software properties (Harman and Jones 2001). Although several previous studies
focus on performance bugs in traditional software, such as the study by Jin et al. (2012a),
only a few studies on mining performance improving commits in the Android domain exist
(e.g., Das et al. 2016; Moura et al. 2015). Moreover, those do not provide fine-grained
enough information to guide developers of search-based software development tooling. Pre-
vious studies were also concerned with finding general patterns across as many projects as
possible, thus employed a sampling strategy that would alleviate the expensive manual anal-
ysis cost. This leads to under-approximation of the true number of non-functional property
improving changes.

To fill this gap we mined the most popular Android repositories, using single-keyword
search and analyse all returned results, to find patterns that could be utilised in search-
based automated software improvement tooling. We focus on four non-functional properties
in particular: execution time, memory consumption, bandwidth usage, and frame rate. We
chose these as they are most related to mobile app performance, key issue for users, as
previous studies show Banerjee and Roychoudhury (2016) and Hort et al. (2021).
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First, we mined the repositories of the 20 most popularly downloaded mobile applica-
tions, according to Fossdroid, and manually examine the resultant 3,132 commits,finding
229 were actually NFP improving ones.1 Although this process should give us a good
overview of non-functional property improving strategies for performance, it only allows
for analysis of a relatively small number of repositories. However, the detailed analysis pro-
vides us with a corpus of data on which we can train a classifier that could help gather and
analyse more data. Therefore, we devised such a classifier and analysed a further randomly
selected set of 80 repositories, manually analysing 495 commits found, which added 331
non-functional property improving commits to our dataset. We categorised all the commits
found, to help us identify emerging patterns. We also report on whether current auto-
mated improvement tools already allow for such transformations to be found, and if not, if
such tools could be extended to provide new, useful software transformations. Finally, we
examined features of the repositories we analysed. This is to provide recommendations for
software developers, for what types of mobile applications non-functional improvements
are likely to be found.

Our results show that non-functional property improvements to app performance are rare:
from 74,408 commits mined across 100 repositories, only 560 were deemed to improve
execution time, memory consumption, frame rate or bandwidth (229 identified by manual
search and 331 by using a classifier). However, we can still draw interesting conclusions
about their nature. In particular:

– In 10.7% of cases, developers were willing to sacrifice one non-functional property
over another, while in 6.5% of cases developers were able to improve upon multiple
properties at once. This shows the need for tooling that can handle multi-objective
optimisation.

– The strongest indicators for the number of non-functional property improving commits
in a repository was the total number of commits, number of contributors and number of
stars.

– Current search-based improvement tooling mimics 5 out of 23 non-functional improve-
ment strategies found.

– Future automated techniques for improvement of non-functional properties could be
enhanced by incorporating automated caching, SQL query, and image transformations.
We propose detailed transformation patterns to aid researchers and developers in the
design and adoption of such strategies.

Overall our results provide recommendations for software engineers, aiming to provide
better tooling for automated software improvement; and for researchers, providing patterns
of how developers improve mobile applications’ non-functional properties related to mobile
app performance, as well as a classifier that can help with future mining studies in this domain.

All our data and scripts are freely available to allow for reproduction (github.com/
SOLAR-group/NonFunctionalAndroidCommits), replication and extension of our work.

The rest of this paper is organised as follows: Section 2 describes our methodology;
Section 3 presents our results; in Section 4 we discuss implications of our study in software
engineering research and practice; Section 6 presents threats to validity; while Section 5 pre-
sents related work; Section 7 concludes the paper. Appendix A contains additional materials.

1In comparison, Moura et al. (2015) found 371 energy-aware commits from a sample of 2,189 curated com-
mits. It should be noted these span different numbers of repositories, and different keywords, corresponding
to relevant non-functional software properties.
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2 Methodology

In order to answer how Android developers improve the performance-related non-functional
properties of software (performance NFPs), and how we can use this knowledge to poten-
tially devise new software transformations for tools for automated software improvement,
we mine open-source Android projects for commits that improve four non-functional soft-
ware properties (NFPs): execution time, memory consumption, bandwidth usage, and frame
rate. Along with energy efficiency, previous research shows these are often found in
user reviews (Banerjee and Roychoudhury 2017; Khalid et al. 2014), yet have not been
extensively tackled in the literature (Hort et al. 2021).2

We aim to answer the following research questions:

RQ1 With what prevalence do developers improve performance NFPs of Android apps?
NFPs of mobile applications impact user satisfaction, however it is not clear

to what extent Android developers change their code to improve performance
NFPs. The aim of this question is twofold: understanding if there exist NFP com-
mits in Android open-source repositories to extract general patterns from, and
understanding their characteristics.

RQ2 How and when do Android developers improve app’s performance NFPs?
We want to know at which stage in software development do performance NFP

improving commits occur, whether these are considered as standalone improve-
ments, and whether these improve multiple NFPs or prioritise one whilst possibly
sacrificing another. These should give us an overview of the current Android
development practice with respect to performance NFP improvement.

RQ3 What type of code changes do Android developers make to improve app’s perfor-
mance NFPs?
We want to also investigate what sort of changes developers make to source code

to improve its performance NFPs. Examining these changes will allow us to com-
pare current search-based improvement techniques to real-world commits and make
suggestions for how these techniques can be improved.

To answer these research questions we have manually curated a corpus of 560 non-
functional property improving commits, which were collected by analysing a total of
74,408 commits mined from 100 open-source Android repositories. In the following
section we explain in detail our collection procedure. We have made this corpus publicly
available to allow for replication and extension of our work (github.com/SOLAR-group/
NonFunctionalAndroidCommits).

2.1 Overview of Methodology

Below we present the methodology used to create our corpus. It consists of three steps:

Keyword mining: In this step we collect a set of performance NFP improving commits
by filtering them first based on keywords and then manual analysis.

Classifier mining: In this step we expand this set by using a classifier trained on the
commit messages gathered in the previous step.

2We omit energy commits, as very similar studies targetting these have already been conducted (e.g., Moura
et al. 2015), with Banerjee and Roychoudhury (2016) already implementing a refactoring tool for energy
bugs.
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Categorisation: In this step we attempt to manually group the commits into categories.
These categories allow us to find common patterns used to improve the four non-
functional properties of interest: runtime, memory consumption, bandwidth and frame
rate.

2.2 Corpus

In the first step, we mined the twenty most popularly downloaded Android applications
according to Fossdroid,3 and extracted a total of of 28,028 commits. As it would have been
infeasible to manually inspect such a large set to identify NFP improving commits, we have
adopted a semi-automatic approach that examines every commit message based on keyword
search (as detailed in Section 2.3). This lead us to a total of 3,132 commits, which were
then manually analysed in order to label them as performance NFP improving commits or
not. A final set of 229 NFP improving commits was deemed to improve one of the four
non-functional properties of interest. We note that in previous work Moura et al. (2015)
opted for two-word key-phrases rather than keywords to massively narrow down the number
of commits to manually analyse. Das et al. (2016) only mined commits from the main
modules of applications, missing any changes to back-end modules. We opted not to take
these actions, and avoid missing possible useful software transformations by mining all
commits with generic keywords.

In the second step, we leverage this curated set of NFP improving commits, to train a
classifier to be able to automatically identify such commits. This allowed us to automatically
analyse a much larger set of commits (46,378), mined from 80 randomly selected F-droid
repositories, and filter out irrelevant (i.e., not NFP improving) commits with a precision of
95%, as detailed in Section 2.4. Specifically, we used the classifier to automatically identify
331 additional NFP improving commits by randomly sampling F-droid. We initially found
a total of 495 commits, which were then manually validated by two of the authors to make
sure they improve any of the four non-functional properties of interest. This manual check
led to the identification of 331 performance NFP improving commits.

The final size of our manually curated corpus thus consists of 560 NFP improving com-
mits (229 from the first and 331 from the second step). We then manually categorised these
commits by the type of change which was made to improve the NFP, by analysing their
commit messages and diffs. This resulted in 23 categories of improvement types being
found.

Next, we detail how we mine NFP improving commits by using keyword search
(Section 2.3) and the classifier (Section 2.4), as well as how we manually validate the NFP
improving commits and categorise them (Section 2.5).

2.3 Step 1: Identifying NFP Improving Commits Based on Keyword Search

We mined 28,028 commits from the twenty most popularly downloaded applications
according to Fossdroid (as of 18/03/2020), a website which offers an alternative user inter-
face to the standard F-Droid web page. These applications are diverse in nature (e.g., gaming
applications, streaming applications, browsers) and size, having between 13 and 6,157 com-
mits. Details of each application repository can be found in Tables 1 and 5. Whilst the
repositories of these applications are hosted on a variety of platforms (GitHub, GitLab, etc.),

3https://fossdroid.com/
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Table 1 Properties of repositories mined based on keyword search

Repository Type of App Comm. Stars Age (days) Contrib. Forks KLoC

Aeons End Game 26 5 963 1 5 3.0

AFH Downloader Network. 69 18 1407 2 7 2.4

Android CUPS Print Printing 274 142 1802 14 45 4.9

ANNO 1404 Game 13 1 1127 2 2 5.0

Apple Flinger Game 463 22 972 37 – 11.8

Calculator Calculator 1142 190 4220 18 286 32.8

Call Recorder Audio 1590 97 1523 10 – 6.1

DNS66 Network. 341 1400 1304 15 153 7.8

Editor Text Editor 405 110 1038 14 38 5.3

F-Droid App Store 6157 1382 3492 99 – 85.1

Firefox Browser 2592 1500 1249 82 585 309.2

FOSS Browser Browser 927 427 1292 22 165 15.9

Frozen Bubble Game 157 71 3829 4 64 38.4

G-Droid App Store 625 78 557 60 – 17.2

Gadgetbridge Network. 5163 74 1587 298 40 103.9

Gloomy Dungeons Game 2 46 73 2006 4 38 91.2

MaterialOS Themes 139 117 1834 7 37 14.5

Mi Mangu Nu Books 1827 230 1839 23 60 33.3

Mighty Knight Game 18 11 1250 2 12 1.0

NewPipe Video Stream. 6054 8000 1711 439 1200 82.9

all repositories use the git version control system. The git log command was used to
generate a list of commit messages, which was then parsed and searched for sets of relevant
commits, that suggest improvements to the following four non-functional properties:

1. Execution Time: Decreasing the amount of time needed for computation.
2. Memory Consumption: Decreasing the amount of RAM used.
3. Bandwidth Usage: Reduction of the load on the network.
4. Frame Rate: Decreasing frame rendering and display rate.

In order to identify relevant performance NFP improving commits, each repository was
mined by searching every commit message for a series of keywords (or parts of words in
some cases, e.g. “effic” to capture all words similar to “efficient”, “inefficient”, etc.) asso-
ciated with the particular property, by following a three-step process, as described below,
and then manually validated.

Initial Selection An initial set of keywords was generated by a combination of our knowl-
edge of relevant terminology (which we have gained by writing NFP improving commits
ourselves) and the examination of the language used in commit messages written by others.
We then augmented this set with 15 keywords4 used in previous work conducting simi-
lar analysis (Jin et al. 2012b; Mazuera-Rozo et al. 2020; Das et al. 2016; Linares-Vásquez

4The keywords taken from previous work were: ‘wait’, ‘tim’, ‘stuck’, ‘react’, ‘latenc’, ‘throughput’,
‘suboptimal’, ‘bloat’, ‘utilization’, ‘ANR’, ‘OOM’, ‘bottleneck’, ‘hot-spot’, ‘length’, ‘consumption’
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et al. 2015; Chen et al. 2019b). Any commit containing any of these keywords was selected
for manual evaluation. Every selected commit message was manually evaluated to see if it
actually suggests that an NFP has been improved or not. This approach aims to highlight as
many commits as possible that could improve non-functional properties and therefore result
in many false positives being manually evaluated. This helps to reduce the number of false
negatives and allows us to detect as many relevant commits as possible.

Keyword Expansion Synonyms for all keywords were searched for using the SEThesaurus
(Chen et al. 2019a), a natural language processing (NLP) tool for finding synonyms in
an SE context. Terminology found during manual evaluation of commits which suggests
improvement but not present in the initial keyword set was added to a new keyword set.
Another search took place with the new keywords in the same way as the original search.
The keywords used can be found in Table 2.

Keyword Validation To validate the keywords we conducted a text analysis by tokenising
and lemmatising all words over all commit messages. The resulting 12,230 tokens were
grouped according to the commits relevant (229), irrelevant (3132 - 229), and filtered out
(27028 - 3132), based on the keywords used. These tokens were then ranked by how often
they occur in each group. From these rankings we attempted to identify possible keywords
that we may have missed. First we removed all tokens that occur less than 10 times in
the commits identified as improving performance NFPs: This resulted in the identification
of 76 tokens, which could potentially be used as keywords. Then we further filtered out
tokens by focusing only those that occur in the relevant group more or as often than those
occurring in the irrelevant group. This step allowed us to filter out words such as ‘and’,
which are common in all commits. Of the 6 remaining tokens, three were already included
as keywords (i.e., memory, faster, and leak). The remaining three were save, reduce and
low. These three terms may be considered as additional keywords to identify additional
NFP commits, yet their use could increase the already high manual effort needed to inspect
the selected commits. In fact, in our study, these three keywords (save, reduce, low) relate
to 111 filtered out commits. After manual inspection, we found that of these 111 commits
only a single one could be identified as relevant; this commit also contains the word ‘mem’
instead of ‘memory’, suggesting that using keyword search may miss those commits that
use abbreviations like this or contain misspellings of keywords. However, as most commits
contain more than one keyword, the keyword set used herein can capture the majority of
those commits too. As only three more relevant keywords were identified out of the 12,230
unique tokens present in the relevant commits, and they led to the identification of only one
additional relevant commit out of 111, we are confident that the set of keywords used to
conduct our study is comprehensive and effective.

Table 2 Keywords used to search for commit types, from initial selection and Keyword Expansion stages.
Note that extensions of keywords are also captured during search, e.g., speeding, performance, and other

Property Keywords

Execution Time speed, time, perform, slow, fast, optimi, wait, tim, stuck, react,

suboptimal, utilization, ANR, bottleneck, hot-spot, length, effic

Memory memory, leak, size, cache, buffer, bloat, consumption, OOM space, storage

Bandwidth network, bandwidth, size, download, upload, socket latenc, throughput,

Frame Rate frame, lag, respons, latenc, hang
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Table 3 Decision tree classification of NFP improving commits allows an accurate classification (0.80 recall)
with a tolerable level of irrelevant commits mixed in (0.73 precision)

Precision Recall F1-score

Relevant 0.73 0.80 0.76

Irrelevant 0.95 0.92 0.93

Furthermore, the first author of this paper manually analysed the resultant commit set.
Some commit messages were found ambiguous as to whether or not they offer any improve-
ment. Developers sometimes write commit messages about what they have done but not
why they have done it. Such commits were also independently analysed by another author.
If the second author also found the commit to be ambiguous and not explicitly labelled as
and improvement, it was discarded. We also discarded those commits which were merges
with a single child commit as they were considered duplicates. We refer to the final set of
manually curated commits gathered in this step as the “manual set”.

2.4 Step 2: Identifying NFP Improving Commits Based on Automated Classification

While in the previous step we use keyword search to narrow-down the number of commits
for manual investigation, in this step we explore the use of an automated classifier, which
leverages on the manual set obtained from Step 1.

The classifier we propose has been trained with the classified data from Step 1, i.e., all
commits manually excluded after the keyword search are labelled as irrelevant, while all
commits included are labelled as relevant.5 In addition, we have included 368 commits man-
ually identified as relevant towards execution time in previous work (Mazuera-Rozo et al.
2020) to the relevant commit set. We train the classifier using only the commit messages of
the commit.6

In order to search for an accurate prediction model, we have investigated a total of 20
classification algorithms exploiting 6 different settings for feature selection. The settings
were derived from the featurization of text tokens via TF/IDF, Bag of Words (Yamauchi
et al. 2014), and an adapted version of Bag of Words where only words occurring with a dis-
criminative significance in either the irrelevant or relevant groups were used in the feature
vector. Next, we present only the best result of these attempts, while more information about
the training of the classifier can be found in Appendix A. The best classifier was achieved
via stemming as pre-processing step, TF/IDF for featurization using a Decision Tree clas-
sifier. We assessed its effectiveness via cross-validation by using 10 hold-out repetitions
(80%/20% train/test split), each time using a different seed. The results show a good level of
classification with a precision of 73% and recall of 80% in the relevant class (see Table 3).

In order to show the reduction in manual effort required when using our classifier we
run it on two datasets. Table 4 shows a comparison of commits identified via keyword

5We decided to group all relevant commits into one single group, as preliminary analysis showed that attempt-
ing to classify the commits into multiple classes (i.e., execution time, memory, bandwidth and frame rate)
produces classes that are too small for building an accurate classification model (the Recall in all groups was
less than 0.1).
6We considered also using issue messages to identity commits. However the analysis of our KM data set
showed that only 13% of commits had associated issues. Most (52%) of those issues were associated with
10 or more commits, meaning that only a small fraction of their messages and comments would be related to
the commit that we are interested in.
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Table 4 Comparing our keyword search to our classification based approach on two datasets. The 368 num-
ber of relevant commits for the Mazuera-Rozo et al. dataset was taken from their work https://github.com/
amazuerar/perf-bugs-mobile/blob/master/bug-fixing-commits-performance.csv. We note that authors report
380 in their paper, but 11 commits don’t exist anymore

Our dataset Mazuera-Rozo et al. (2020)

Total commits 28,028 420,352

Our Keyword Search Identified 3,132 32,308

Relevant 229 368

Classifier Identified 669 3477

Relevant 219 355

Missed 10 13

Additional 440 3109

search or via the classifier. For the dataset from Mazuera-Rozo et al. (2020) we applied the
keywords from Table 2, after compiling the git logs from the repositories used in the dataset
by Mazuera-Rozo et al. (2020). The table shows that keyword search requires a much higher
manual effort as the search returns several thousand keywords (3,132 our dataset and 32,308
from Mazuera-Rozo et al.) containing only a few relevant commits (229 and 368). The
classifier returns only 669 commits, with 219 from the manual identified ones contained
(only 10 missed), and an additional 440 commits that may be relevant, but were filtered by
the keyword search.

As the cross-validation confirms the effectiveness of the classifier, we re-train it on the
entire available dataset in order to classify performance NFP improving commits on unseen
data, thus further validating our classifier in a real usage scenario, and extending our corpus
of NFP improving commits with the commits correctly classified as such.

To this end, we randomly selected 80 repositories from F-Droid and used the classi-
fier to automatically classify all 46,378 commits extracted from these repositories.7 Details
of the repositories are provided in Table 5. The classifier identified 475 commits relevant
commits. Two of the authors manually analysed these commits, as they did in Step 1, to
check whether the commits classified as relevant are actually NFP improving commits, i.e.,
true positives. They found that only 164 commits were false positives, giving a manually
evaluated precision of 66.87% for this classifier, and 331 commits added to our corpus.8

To further verify our classifier, we evaluated its performance on 5 randomly selected
repositories from the set that was mined with the classifier. We perform keyword mining on
these repositories in order to identify the false negatives of the classifier. Of the 5 reposito-
ries selected, 3 were found in both CM and KM to contain no performance NFP improving
commits. In the repositories where commits were found, one was found to have 5 perfor-
mance NFP improving commits compared to 3 found by the classifier, and in the other the
same 3 commits were found by both approaches. These repositories are all small yet repre-
sentative of many of the repositories which were mined. In order to evaluate the classifier on
a larger repository with many commits, we also run it on the Koreader repository where the
most CM commits were found (147 overall, see Table 7). We manually analyse all commits

7We had to set a limit on the number of repositories due the manual effort required to analyse the precision
of the classifier.
8We note that a lot of these were small repositories, as the 40 repositories in which NFP improving commits
were found had altogether 39,420 commits, while the other 39 had altogether 6,958 commits.
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Table 5 Properties of classifier mined repositories

Name Commits Stars Age (days) Contrib. Forks KLoC

Alwayson 362 75 882 5 13 10.0

Android-inventory-agent 982 41 3584 14 25 12.2

Android-usb-serial-monitor-lite 50 140 3237 2 77 2.2

Anewjkuapp 1332 12 2423 14 6 27.4

Ankieditor 47 21 1226 2 6 41.6

Atmospherelogger 65 14 3354 1 4 3.0

Audioanchor 243 109 662 12 21 8.3

Audiometer 61 20 1493 3 7 1.3

Ausweisapp2 52 275 1311 9 42 137.6

Autoairplanemode 20 15 1398 3 8 1.9

Avare 1790 114 2940 28 116 55.2

Blexplorer 92 46 2080 4 23 1.7

Boogdroid 189 9 1819 5 3 4.0

Botbrew-gui 135 49 3141 1 15 5.10

Changedetection 219 584 938 11 72 14.9

Cmus-android-remote 45 11 2512 1 5 4.4

Controlloid-client 95 62 683 2 8 15.1

Covid19stats 81 139 273 4 39 2.0

Dailypill 251 5 401 2 2 1.10

Dandelion 651 102 1753 16 36 21.2

Droid48 96 59 3747 2 22 19.2

Easytoken 102 44 2364 1 13 4.2

Easywatermark 125 596 153 5 60 7.10

Gears2 63 17 3521 1 11 3.6

Gigaget 128 205 2219 2 52 5.5

Glesquake 14 15 2312 1 6 150.3

Glt-companion 482 9 2106 5 3 11276.9

Gpodroid 69 25 3523 2 3 3.2

Http-shortcuts 1144 354 2067 8 66 59.10

Headingcalculator 38 1.2 2329 1 1 1.2

Holokenmod 90 10 2083 3 2 5.2

Kerneladiutor 1347 21 1335 60 6 55.6

Koreader 7908 8104 2828 164 857 119.3

Languagepack 609 112 3147 31 189 1833.10

Lifecounter 2.2 17 2647 1 5 2.2

Lightning-browser 2125 1726 2879 72 744 23.10

Listmyaps 112 60 2670 2 21 2.3

Logmein-android 270 13 2394 7 11 1.10

Mlauncher 6 7 1968 1 2 0.2

Media-button-router 93 25 1949 1 6 1.3

Memento 82 142 1474 8 55 9.4

Memopad 61 7 3503 2 1 1.8

Openbikesharing 388 61 2327 28 52 4.10
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Table 5 (continued)

Name Commits Stars Age (days) Contrib. Forks KLoC

Open-money-tracker 559 13 457 8 3 11.10

Openfoodfacts-androidapp 7218 576 2055 113 401 417.2

Openmw-android 862 192 1071 6 25 12.4

Permissionsmanager 54 4 1063 2 2 1.4

Pi-hole-droid 53 111 1400 4 15 147.6

Pixivformuzei3 870 90 603 11 11 5.0

Portauthority 1004 181 2200 14 53 4.10

Privacy-friendly-netmonitor 393 117 1510 14 30 8.1

Privacy-friendly-passwordgenerator 290 23 1497 4 12 8.3

Privacy-friendly-reckoning-skills 72 10 1326 5 2 4.9

Proexpense 276 40 188 3 12 16.2

Qbittorrent Client 930 211 2483 5 21481 29.0

Qrscan 96 25 1076 2 8 0.4

Rbb 2347 34 3150 1 4 27.6

search based launcher 257 40 2905 3 18 2.0

Smssync 1816 926 3608 21 468 42.7

Siteswap-generator 193 10 1174 2 4 8.2

Synctool 142 22 941 2 10 8.8

Tvhguide 364 44 3518 2 25 5.8

Taxiandroidopen 127 87 2573 1 115 8.0

Towercollector 561 97 1756 3 17 28.4

Trickytripper 301 43 3264 6 13 25.8

Ushahidi-android 949 205 4240 10 156 0.5

Vitosha-blackjack 16 7 1968 1 3 3.0

Voipms-sms-client 451 148 2283 4 49 12.9

Votar 65 14 2538 3 6 3.10

Weather 142 40 1753 7 13 22

Wulkanowy 1119 114 1351 23 18 100.2

Yashlang 161 23 473 1 1 26.10

Zeus 920 187 673 12 34 40.0

found using keyword search. In this project we found 2 additional relevant execution time
commits, 2 additional memory commits, 1 additional frame rate improving commit and the
same set of bandwidth improving commits with the keyword search. This means that the
classifier only missed 5 relevant commits.

Our final manually curated corpus of performance NFP commits thus contains a total of
560 commits, which we use to answer our RQs.

2.5 Step 3: Categorisation of Mined Performance NFP Improving Commits

To gain a greater understanding of the set of commits, we manually classified them by the
type of change that was made. For each performance NFP (i.e., execution time, memory
consumption, bandwidth, and frame rate) the set of extracted commits was examined and
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Table 6 Comparison between
categories identified by keyword
search vs. classifier. Percentages
from total cumulate to >100% as
some commits address multiple
NFP

Keyword Classifier Discrepancy

Total 229 (100%) 331(100%) –

Execution Time 125 (54.5%) 211(64.2%) 9.7%

Memory Usage 73 (31.9%) 115(34.3%) 2.3%

Bandwidth 26 (11.4%) 5 (1.5%) 9.9%

Framerate 15 (6.6%) 15 (4.6%) 2%

categories were generated, based on commit type. Commits were inserted into relevant cat-
egories or into new categories if they could not be classified inside current ones. Commits
which could be classified into more than one category due to multiple changes were added
to both categories. If two categories had a large shared membership or it became difficult
to place a commit into either category, the categories were combined into a single category
encompassing the traits of both.

Some commits were unclassifiable, e.g., due to improvements being buried in a large
list of changes, or changes requiring domain specific knowledge that is not explained in the
commit message. If many commits were left without a category, the uncategorised com-
mits were re-examined to determine if any categories had not been uncovered in the first
class. Next another author examined the categorised commits to analyse whether or not
they belonged to a given category. In case of disagreement the commit was placed in the
unknown category, this occurred in 15 instances. The two authors also independently exam-
ined the issues associated with these commits in order to gather any extra information that
could aid us in categorising them. In the case of non-classifiable commits we had to rely
on the description of the optimisation written by the developer in the commit message as
evidence that there was an improvement.9

Table 6 summarizes the categories of the two separate datasets of found commits via
keyword and classifier search respectively. The results show only around two percent dis-
crepancy in the memory usage and framerate categories. The Execution time is represented
9.7% stronger via the classifier, and the bandwith around 9.9% less via the classifier. The
reason for this may be a slight bias towards run time performance, but may also be simply
because bandwidth is not as relevant for many projects. 19 out of 26 bandwidth commits
we identified via keyword search are only from two repositories (see Table 7), and thus
may simply be overrepresented in the keyword dataset. The analysis implies that the clas-
sifier can produce datasets that reflect the real-world considerations of Android developers
towards NFP.

3 Results

In this section we present the results of our mining for commits improving execution
time, memory consumption, bandwidth usage, and frame rate. We report on these non-
functional property improving (NFP) commits returned from our keyword search (KM) and
those returned using our classifier (CM) separately. We investigate how developers improve

9An example of a commit which could not be classified can be found at https://github.com/ar-/apple-flinger/
commit/bbc70cdc0a8190153195f46fe8c873def6ca3e98
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Table 7 RQ1: Number of NFP improving commits in each repository (% of total commits in repository).
Repositories with zero NFP-improving commits are not listed. The “Total NFP Commits” column does not
count duplicates (as some commits could have improved multiple properties at once)

App name Execution time Memory Bandwidth Frame rate Total NFP

commits commits commits commits commits

Android CUPS Print 1 (0.36%) 1 (0.36%) 1 (0.36%) 0 3 (1.09%)

Apple Flinger 1 (0.22%) 0 0 0 1 (0.22%)

Calculator 11 (0.96%) 1 (0.09%) 0 1 (0.09%) 13 (1.14%)

Call Recorder 0 2 (0.13%) 0 1 (0.06%) 3 (0.19%)

DNS66 4 (1.17%) 8 (2.34%) 1 (0.29%) 0 10 (2.93%)

F-Droid 56 (0.89%) 15 (0.24%) 9 (0.15%) 6 (0.10%) 85 (1.38%)

Firefox 10 (0.35%) 4 (0.15%) 2 (0.08%) 2 (0.08%) 18(0.66%)

Frozen Bubble 1 (0.64%) 3 (1.91%) 1 (0.64%) 0 3(1.91%)

G-Droid 2 (0.32%) 0 2 (0.32%) 0 3(0.48%)

Gadgetbridge 9 (0.17%) 17 (0.33%) 0 2 (0.04%) 28 (0.62%)

Mi Mangu Nu 6 (0.33%) 6 (0.33%) 0 0 12 (0.66%)

NewPipe 24 (0.41%) 16 (0.26%) 10 (0.17%) 3 (0.05%) 50 (0.82%)

KM Total 125 73 26 15 229

Alwayson 9 (2.48%) 1 (0.27%) 0 1 (0.27%) 11 (3.03%)

Android-inventory-agent 1 (0.10%) 1 (0.10%) 0 0 2 (0.20%)

Android-usb-serial-monitor-lite 1 (2.0%) 0 0 0 1 (2.0%)

Anewjkuapp 5 (0.37%) 0 0 0 5 (0.37%)

Atmospherelogger 2 (3.07%) 0 0 0 2 (3.07%)

Audioanchor 1 (0.41%) 0 0 0 1 (0.41%)

Avare 15 (0.83%) 8 (0.55%) 0 2 (0.11%) 22 (1.34%)

Changedetection 2 (0.91%) 0 0 1 (0.45%) 3 (1.36%)

Cmus-android-remote 1 (2.22%) 0 0 1 (2.22%) 1 (2.22%)

Controlloid-client 3 (3.15%) 0 2 (2.10%) 0 3 (3.15%)

Easytoken 0 1 (0.98%) 0 0 1 (0.98%)

Easywatermark 1 (0.8%) 0 0 0 1 (0.8%)

Gigaget 2 (1.56%) 1 (0.78%) 0 0 3 (2.34%)

Glt-companion 6 (1.24%) 4 (0.82%) 0 0 10 (2.07%)

Http-shortcuts 2 (0.17%) 0 0 0 2 (0.17%)

Kerneladiutor 1 (0.07%) 5 (0.29%) 0 0 6 (0.37%)

Koreader 54 (0.67%) 23 (0.25%) 0 3 (0.03%) 71 (0.89%)

Lightning-browser 26 (1.22%) 21 (0.98%) 0 2 (0.09%) 45 (2.11%)

Listmyaps 1 (0.89%) 1 (0.89%) 0 1 (0.89%) 2 (1.78%)

Media-button-router 1 (1.07%) 0 0 0 1 (1.07%)

Open money tracker 1 (0.17%) 0 0 0 1 (0.17%)

Openbikesharing 0 1 (0.25%) 0 0 1 (0.25%)

Openfoodfacts-androidapp 6 (0.08%) 2 (0.02%) 1 (0.01%) 0 8 (0.11%)

Openmw-android 2 (0.23%) 1 (0.11%) 0 0 3 (0.34%)

Pixivformuzei3 10 (1.14%) 8 (0.91%) 0 1 (0.11%) 17 (1.95%)

Portauthority 27 (2.68%) 25 (2.39%) 2 (0.19%) 1 (0.09%) 50 (4.88%)

Privacy-friendly-reckoning-skills 1 (1.38%) 0 0 0 1 (1.38%)
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Table 7 (continued)

App name Execution time Memory Bandwidth Frame rate Total NFP

commits commits commits commits commits

Proexpense 0 2 (0.72%) 0 1 (0.36%) 3 (1.08%)

Qbittorrent-client 2 (0.21%) 0 0 0 2 (0.21%)

Rbb 4 (0.17%) 2 (0.08%) 0 0 6 (0.25%)

Search-based-launcher-v2 1 (0.38%) 0 0 0 1 (0.38%)

Siteswap generator 1 (0.51%) 0 0 0 1 (0.51%)

Smssync 2 (0.11%) 2 (0.11%) 0 1 (0.05%) 3 (0.16%)

Towercollector 6 (1.06%) 2 (0.35%) 0 0 8 (1.42%)

Trickytripper 1 (0.33%) 0 0 0 1 (0.33%)

Tvhguide 3 (0.82%) 2 (0.54%) 0 0 5 (1.37%)

Ushahidi android 4 (0.31%) 1 (0.10%) 0 0 5 (0.42%)

Voipms-sms-client 4 (0.88%) 0 0 0 4 (0.88%)

Weather 1 (0.70%) 0 0 0 1 (0.70%)

Wulkanowy 2 (0.17%) 2 (0.08%) 0 0 4 (0.26%)

CM Total 211 113 5 15 331

Total 346 188 31 30 560

the four NFPs, and categorise them to see whether source-code level changes could be
implemented in automated software improvement tooling, targeting the mobile domain.

3.1 RQ1: Numbers of NFP-Improving Commits Found

Table 7 shows the number of commits which were found to improve each particular NFP in
each of the repository mined, split between KM and CM commits. We also report on what
percentages of total commits improve each of the four NFPs considered.

KM commits:We found NFP-improving commits in 12 out of 20 most popular Android
repositories. 229 out of a total of 28,028 were deemed to improve 1 of our four NFPs con-
sidered. Execution time is the most commonly improved non-functional property in our
KM set of commits (with 125 commits identified), appearing to be the most important
non-functional property to Android developers. The next most common improvement
was memory usage, with 73 commits. In three repositories, the number of commits
improving memory consumption was actually greater than those improving execution
time, showing its importance varies across projects. Bandwidth is improved less often
than the previous two properties. It is to be expected, as some applications use little to no
network data. A lot of network traffic also consists of large files, such as videos, pictures,
or application APKs. Decreasing the network data used by these files is often not possi-
ble with source code changes. Frame rate is not improved very often. This could be due
to developers being willing to tolerate frame rate in their applications, or that changes
which improve frame rate are less well-known amongst developers. Also we found that
the changes are larger than those for memory and execution time, so may require more
effort to implement (see Table 10).
CM commits: We found NFPs in 40 out of 80 randomly selected repositories. We find
that our automatic classifier mostly selected performance improving commits (211). The
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next most commonly captured improved property was memory consumption with 115
out of 331 CM commits. Bandwidth and frame rate improving commits were, as with
KM, much less common. With 15 frame rate commits and only 5 bandwidth improving
commits found.

3.2 RQ2: How Android Developers Improve NFPs

To answer RQ2 we first analyse general characteristics of the commits found, i.e., age of
commits, functionality changes made at the same time as NFP improving changes, com-
mit size, multiple NFPs improved at once, and optimisation trade-offs between NFPs. This
should give us an overview of the current software development practice with respect to
NFP improvement.

Age of Repository When Commits are Made To determine when developers make com-
mits that improve performance NFPs, we look at the age of the repository when a commit
was made in days, i.e., how long after the first commit was it made (see Table 8). In this
table we show the median number of days between the first commit and the commits of each
category, we also show the upper and lower quartiles to show the spread of the ages. We find
that the age of the repository when these commits are made varies greatly between reposi-
tories. Not only that, but the spread of this figure also varies. For example, in the F-Droid
repository (highlighted in the table), NFP improving commits were spread out in age, even
more so than other commits. Perhaps making NFP commits throughout the life cycle of the
application rather than in small time windows is one of the reasons F-Droid was found to
have the most NFP improving commits.

Functionality Changes in Commits Table 9 shows the number of commits of each type
in which functional changes were also made. For the KM commits three of the types con-
tained very similar numbers (14%), however bandwidth improving commits contained more
(30%). This is mostly due to many of the bandwidth commits coming from repositories in
which commits tended to be larger and contain many changes. The CM commits are similar,
with the exception of frame rate, where 1/3 of commits also modified functionality.

Size of Commits To determine the size of non-functional property improving commits we
consider four measures: the number of files changed, the number of chunks changed, the
number of classes modified, and the number of lines of code inserted/removed. Git splits the
diff of each commit into chunks, where a chunk is the set of lines containing a change and
the surrounding lines. If changes are close together they will be contained within the same
chunks, so chunks can be used to measure the distribution of changes. These measures will
provide a holistic picture of both the size of commits and the distribution of the changes
that are made. Some of the commits contained multiple changes which will inflate their
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Table 9 RQ2: Number of
commits changing both
functional and non-functional
properties

Type of commit No. of commits

KM CM

Exec. Time Commits 17 (14%) 24 (11%)

Memory Commits 10 (14%) 10 (9%)

Bandwidth Commits 8 (30%) 1 (20%)

Frame Rate Commits 2 (13%) 5 (33%)

size, however so do many standard commits. We also take median values to attempt to miti-
gate this distortion and allow for a valid comparison. We compare the size of our identified
performance NFP improving commits to the size of every other commit found in the reposi-
tories. As commits from both categories will contain multiple changes, we do not attempt to
distinguish between functional changes and non-functional changes in individual commits.

As shown in Table 10 we can see that KM commits improving performance NFPs tend to
be larger than a generic commit, in every measure. They often span multiple files, multiple
chunks and change multiple class definitions. They also add in more lines than they remove.
For the CM commits, execution time and memory improving commits are of similar size to
those in the KM set, spanning multiple files and make larger changes than other commits.
The CM bandwidth commits are smaller than those in KM set, however still make larger
changes than non NFP improving commits. Finally, the CM frame rate improving commits
are very large (median lines inserted of 47 for KM and 77 for CM). This could be due to the
large rate of frame improving commits which also alter the functionality of their projects,
as shown in Table 9.

Multiple Improvements Table 11 shows how often commits improve multiple properties
at the same time. The vast majority of NFP improving commits improve one property at
a time. This is true across both CM and KM commits. However, in 6.5% of cases (5.7%
of KM and 7.0% of CM) developers are able to improve multiple properties at once. It is
possible that some commits do improve multiple properties in ways that developers are not
aware of or do not report, as this is not the primary purpose of the commit.

Tradeoffs Some commit messages report that changes which improve one non-functional
property negatively affect others. Table 12 shows that memory and execution time improve-
ments are often traded-off against each other. The most often impaired property is memory.

Table 10 RQ2: Median commit sizes. ‘Other’ category represents all commits that were not deemed to
improve any of the four NFPs of interest

Type of commit Files changed Chunks changed Classes changed Lines inserted Lines removed

KM CM KM CM KM CM KM CM KM CM

Exec. Time 2 2 5 5 4 2 16 9 12 6

Memory 1 2 4 4 3 2 16 7 6 5

Bandwidth 3 1 13 1 10 1 51 10 13 1

Frame Rate 1 3.0 9 16 7 4.5 47 77 4 4

Other 1 1 3 2 1 1 6 4 2 1
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Table 11 RQ2: Commits improving multiple properties

Execution time Memory Bandwidth Frame rate

KM CM KM CM KM CM KM CM

Exec. Time 125 211 6 15 5 5 0 5

Memory 6 15 73 115 2 0 0 3

Bandwidth 5 5 2 0 26 5 0 0

Frame Rate 0 5 0 3 0 0 15 15

Values in boldface indicate that the two properties being improved are the same

This is due to the use of caching. Caching can be used to avoid having to repeatedly call the
same code by storing the result. If the code not being called accesses the network, caching
can reduce bandwidth usage. Sometimes caches can be too big so their size must be reduced.
This can have a negative impact on execution time.

3.3 RQ3: Types of NFP Commits

Subsequently, we discuss the results of the manual categorisation of NFP improving com-
mits, as explained in Section 2.5. This should help us establish whether changes made by
developers are already automated by existing tooling, and if not, whether new refactorings
could be suggested for future work.

Table 12 RQ2: Commits with trade-offs between properties

Exec. time Memory Frame rate

KM CM KM CM KM CM KM CM

Execution Time 0 0 20 25 0 0 0 0

Memory 6 2 0 0 0 0 0 0

Bandwidth 0 0 9 0 0 0 0 0

Frame Rate 0 0 0 0 0 0 0 0

Values in boldface indicate a trade-off between the same category
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Fig. 1 Histogram showing the distribution of commits amongst different categories

In order to answer RQ3, our categorisation is presented in Table 13, we also show this
data in Fig. 1 as a histogram for easy comparison.

Add Condition: Conditions were added in 8 KM and 19 CM commits, this allowed
applications to avoid additional computation unless it was actually necessary.
Execution Time: 2 KM and 13 CM commits improved execution time by using

caching. This is the most obvious application of caching as one can use it to avoid
repeatedly performing the same computation unnecessarily.
Memory: 4 KM commits and 2 CM commits optimised memory usage by adding new

conditions.
Bandwidth: 1 KM and 2 CM commits utilised caching to avoid making unnecessary

network requests.
Frame Rate: 1 KM and 2 CM commits utilised new conditions to avoid unnecessary

work on the UI thread, thus improving frame rate.
Pattern: Wrap blocks of code in if statements, or add new conditions to existing if

statements.
Add Delay: Delays were introduced in 2 KM and 2 CM commits, these delays allowed

background execution to finish before proceeding, thus improving performance NFPs.
Execution Time: 2 CM commits improved execution time using increased delays.
Frame Rate: 2 KM commits utilised delays to improve frame rate.
Pattern: Insert calls to the Time.sleep() method into code.

Animation Length Reduction. Visual changes, such as changes to animations or UI
elements, are used in 2 KM commits to reduce the frame rate of an application.
Frame Rate: 1 KM commit animation length reduction improved the application

execution time.
Frame Rate: 1 KM commit used programmatic animation changes were used to

improve the application frame rate.
Pattern: When animations are done programmatically we recommend using profilers

to identify hotspots. Frames could also be removed from animations to speed them up
and a trade off between speed and smoothness could be found.

Caching. Caching data to avoid rerunning code was one of the largest categories of
change, with 28 KM and 28 CM changes being made.
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Execution Time: 20 KM and 25 CM commits improved execution time using caching.
This is the most obvious application of caching as we one use it to avoid repeatedly
performing the same computation unnecessarily.
Memory: Whilst caching can often increase memory usage, if used to avoid memory

intensive computation it can actually save memory. However, this is uncommon, with
only 1 CM commit showing this use of caching.
Bandwidth: 8 KM commits utilised caching to avoid making unnecessary network

requests.
Frame Rate: 1 CM commit utilised caching to avoid making unnecessary work on the

UI thread, improving frame rate.
Pattern: Caching is a common pattern for decreasing the execution time of an appli-

cation. It can often be easily implemented by assigning the results of a method call to
a variable and replacing future calls to the method with that variable. An example of a
caching pattern being applied can be found in Fig. 2.

Change in Operation Order. 2 KM and 9 CM commits altered the order of operations.
This involved swapping the order in which lines of code are executed, such as conditions
in if statements.
Execution Time: 2 KM and 6 CM commits improved the execution time of code by

changing the order of operations.
Memory: 2 CM commits were found to reduce the memory consumed.
Frame Rate: only 1 CM commit changed the order of operations in order to improve

the application frame rate.
Pattern: Change in operation order can be achieved by swapping lines or blocks of

code, or nodes in the abstract syntax tree. The swap operator has already been utilised
in program repair (Le Goues et al. 2012), but is yet to be widely adopted in automated
search-based techniques for improvement of NFPs of software (Petke et al. 2018). An
example of this pattern can be seen in Fig. 3.

Data Structure Replacement. Data structure replacements were used in 8 KM and 12
CM commits. A data structure replacement could consist of swapping an ArrayList
for a LinkedList where the LinkedList is more efficient.

Execution Time: 8 KM and 9 CM commits replaced data structure to improve
execution time.

Fig. 2 An example of the caching pattern
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Fig. 3 An example of the change in operation order pattern

Memory: 2 CM commits implemented the usage of more memory efficient data
structures.

Bandwidth: 1 CM commit replaced a data structure transmitted over the network with
a smaller equivalent to improve bandwidth usage.
Frame Rate: 1 CM commit used a more efficient data structure to improve frame rate.
Pattern: Various NFPs can be improved by finding data structures and automatically

replacing them with compatible ones. Similar approach has been implemented by Basios
et al. (2018), although their tool is not publicly available.

Data Structure Size Reduction. Reduction in the size of data structures, such as arrays,
were used in 6 KM and 4 CM commits.
Memory: All KM and CM commits improved the memory consumption of applica-

tions by reducing the sizes of data structures.
Pattern: Reduce the size of data structures. This can be achieved, for instance, by

changing the size of declared arrays. Program analysis could be required to prevent
overflows. An example of this pattern can be seen in Fig. 4.

Decrease Asset Size. Changes to assets such as images and fonts, mostly to improve the
efficiency of loading said assets, account for 3 KM changes and 5 CM changes.
Execution Time: 1 KM and 1 CM commit improved the execution by reducing asset

size and speeding up their loading.
Memory: 3 KM commits and 5 CM commits improved memory by reducing the

amount of memory which large assets consume.
Pattern: Use compression algorithms, such as gzip, to reduce the size of assets.

Different Algorithm. The implementation of more efficient algorithms constituted 7 KM
commits and 24 CM commits.

Fig. 4 Data structure size reduction pattern
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Execution Time: 7 KM and 23 CM commits implemented more time efficient versions
of algorithms.
Memory: 1 CM commit replaced one algorithm with another more memory efficient

one.
Frame Rate: 1 CM commit implemented a more efficient algorithm to improve frame

rate.
Subcategories:
Use String Builder: In 4 CM commits, String Builders were used in place of naive

string construction to improve execution time.
Use char instead of String: In 3 CM commits, method calls with Strings for argu-

ments, such as indexOf, were replaced with equivalent methods with char arguments to
improve execution time.
Improve Regex Performance: In 2 KM and 4 CM commits, regular expressions were

modified to execute more quickly.
Other: 5 KM and 12 CM commits consisted of changes to algorithms which could

not be grouped with others. We detail each of these changes in Appendix B.
Early Return. Earlier return statements were introduced in 2 KM and 2 CM commits,

preventing whole methods from executing when unnecessary.
Execution Time: 2 KM and 2 CM commits used earlier returns to speed up application

execution time.
Pattern: Insertion of a return statement. An example of this pattern can be found in

Fig. 5.

Freeing Up Memory. Adjustments to the amount of memory in use when devices were
low on memory was another common change made to 10 KM commits.
Memory: All commits which used this strategy were used to reduce the memory

consumption of applications.
Pattern: Program analysis would be required to identify which resources could be

freed from memory.

Fig. 5 An example of the early return pattern
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Increase in Concurrency Multi-threading changes were used in 15 of the KM and 12 of
the CM changes.
Execution Time: 10 KM and 11 CM commits used more multi threading to speed up

applications.
Memory: 1 CM commit used more concurrency to become more memory efficient.
Frame Rate: 5 KM commits improved frame rate by using multi-threading to reduce

the load on the UI thread.
Subcategories:
Move code to background: 6 KM and 4 CM improved execution time, 1 CM commit

improved memory consumption, and 3 KM commits improved frame rate by executing
code on separate threads.
Alter timing: 3 KM commits improved execution time by altering the timing of

threads.
Use a thread pool: 2 CM commits found improvements to execution time by

introducing thread pools to manage thread execution more efficiently.
Layout Optimisation. 6 CM commits modified the layouts of applications. This consists

of flattening layouts to reduce nesting.
Execution Time: All 6 CM commits were used to speed up applications.
Pattern: Automatic layout flattening obtained by removing layout components and

replacing them with their child components. This can be achieved with the lint tool.10

Leak Fix Fixing memory leaks was the most common approach to decrease memory
consumption, with 35 KM and 74 CM commits.
Memory: Leak fixes were made in 35 KM commits, which is almost half of KM

memory improving changes. 74 CM commits fixed leaks.
Pattern: Automatically detecting objects that are being unnecessarily instantiated or

not properly disposed of, using a tool like infer,11 and removing them with program
repair techniques like GenProg (Le Goues et al. 2012).

Make Final: 2 KM commits introduced the final keyword to local variables, allowing
more efficient code to be compiled.
Execution Time: both commits improved execution time.
Pattern: Add the static keyword to local variables.

Make Static: 1 CM commit added the static keyword to a method in order to reduce
memory usage.
Memory: The only commit in this category improved memory usage.
Pattern: Add the static keyword to methods.

Network Throttling. Network throttling (which is an intentional slowing down of inter-
net speed) was used in 3 KM commits to improve the bandwidth usage. In fact, while
this may not reduce the total amount of bandwidth used, it can still be useful to reduce
the load on the network by speeding it up for other users.
Bandwidth: All 3 KM commits used Network throttling to improve bandwidth usage.
Pattern: Create a network monitor which reduces the networking of the application

when traffic is high, a tool like android-varanus12 could be used to this end.
Parameter Change. 13 CM commits simply changed parameters in various function

calls, speeding up the application.

10https://developer.android.com/studio/write/lint
11https://fbinfer.com/
12https://github.com/Yelp/android-varanus
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Execution Time: 12 CM commits were used to decrease execution time.
Bandwidth: 1 CM commit was used to improve frame rate.
Pattern: Techniques such as deep parameter optimisation (Wu et al. 2015), have proven

useful for finding optimal parameters in source code.
Remove Caching: 2 KM commit removed a cache to improve NFPs.

Execution Time: 1 commit in this category improved execution time by removing a
costly caching operation.
Memory: 1 commit in this category improved memory consumption.
Pattern: Replace cached variables with method calls.

Remove Redundancy. The removal of redundant function calls or iterations is the largest
category we identified, with 46 KM and 65 CM commits found. Removing unnecessary
code can be an easy and simple way to optimise software.
Execution Time: 34 KM and 56 CM changes improved execution time by removing

unnecessary execution of code.
Memory: 15 CM commits removed code instantiating objects, thus reducing memory

consumption.
Bandwidth: 10 KM and 3 CM changes removed unnecessary network access, reducing

bandwidth usage.
Frame Rate: 2 KM and 2 CM commits removed redundant code that was causing

frame rate to be low.
Pattern:Remove lines or blocks of code, or nodes in the abstract syntax tree. This oper-

ation is standard in Genetic Improvement (Petke et al. 2018) tooling used for automated
improvement of non-functional software’s properties, such as execution time, energy
consumption, but also for automated program repair.

SQL Query. A large number of changes (11 KM and 11 CM) to SQL requests appear
for improving performance NFPs. These changes were only present in 7 projects. Some
of the changes removed unnecessary JOIN statements, others changed the order of JOIN
statements.
Execution Time: All SQL query commits improved execution time.
Subcategories
Change Primary Key: 2 CM commits improved execution times by changing the

primary keys used in SQL tables.
Specify Column: 2 CM commits moved from selecting all columns to selecting

individual columns, speeding up query execution.
Combine Queries: 3 CM commits combined multiple queries together to save

executing them each individually.
Move File to DB: 1 KM commit and 2 CM replaced file I/O with an in memory

database to improve the execution time.
Remove Unneeded JOIN: 1 KM commit improved execution time by removing an

unnecessary JOIN statement.
Flatten Queries: 3 KM commits flattened queries containing sub-queries into a single

select query, improving execution time.
Add table indices: 3 KM commits added indices to tables to speed up SQL queries.
Use transactions: 1 KM commit and 1 CM commit wrapped a series of queries up

into a single transaction, allowing them to be executed more quickly.
Parameter Binding: 1 CM commit introduced parameter binding, which allows

similar queries to be made repeatedly with only their parameters changed.
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Time Out Reduction. In total, 1 KM and 7 CM commits made changes to the length of
timeouts, waiting for other computation to complete.
Execution Time: 1 KM commit and 7 CM commits reduced unnecessarily long

timeouts to improve the execution time.
Pattern: Change timeout values in source code.

Use Different Library. 3 KM 11 CM commits replaced the libraries they used with more
efficient alternatives.
Execution Time: 1 KM and 8 CM commits used different faster libraries.
Memory: 2 KM and 3 CM commit used a more memory efficient library.
Frame Rate: 1 CM commit used a more efficient library to improve frame rate.
Pattern: Use a set of similar libraries and automatically replace their existing usages

in code.
Unknown. Some of the commits (41 KM and 46 CM) were not classifiable as the type

of optimising change was not obvious from the commit message or the diff. In fact,
some changes were bundled within large commits making optimisations hard to pinpoint,
yet from the developer message it was clear that execution time, memory consumption,
bandwidth, or frame rate had been improved.

4 Discussion

In this section we discuss potential avenues for future research that stem from our study.

4.1 Recommendations for NFPMining

Our work shows that a more fine-grained mining of NFP commits is feasible. The classifier
that we presented has a good chance of finding commits with a recall of 0.8 (4 in 5 commits
are found in our test set). The precision of 0.72 suggests that around 3 in 4 commits will be
relevant. This means that the manual effort to identify relevant commits is much less than
searching via keywords. This is confirmed by our mining via the classifier where we find
331 relevant commits by analyzing 495 commits. In comparison via keyword search we
mined 229 relevant commits by manually checking 3,132 commits. I.e. analyzing 1.50 com-
mits via classifier returns one relevant commit, vs. 13.68 commits for one relevant commit
via keyword search.

This enables the mining of repositories for NFP commits on a larger scale than previously
possible as the manual effort is reduced significantly. With larger datasets in the future it
may even be possible to expand the classification to identify categories and subcategories
of NFP that a commit falls under.
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4.1.1 Characteristics of Repositories Containing NFP Improving Commits

As we observed that the number of performance NFP improving commits greatly varies
among the mined repositories, we further analyse these repositories in an attempt to find the
characteristics of those repositories that contain many commits. This can allow future NFP
mining studies to target the most commit rich repositories.

Tables 1 and 5 show the properties (i.e., the total number of commits made in the repos-
itory, the number of stars a repository has, the number of developers who have contributed,
the age of the repository, the number of times the repository has been forked, and the
number of lines of code in the repository) of the repositories together with the number of
performance NFP improving commits found in each of them.

In order to quantify the relationship between each property and the number of NFP
improving commits found, we calculate the Pearson Correlation Coefficient (Pearson 1895).
Pearson’s correlation (ρ) measures the linear relationship between two pairs of observa-
tions. It ranges from +1 (indicating perfect correlation) to −1 (indicating perfect inverse
correlation), no correlation is indicated by 0. The results of this analysis are shown in
Table 14.

We find that the total number of commits in a repository shows the strongest, statistically
significant, positive correlation with the number of performance NFP improving commits
(ρ = 0.754, p-value < 2.20e − 16). We also find strong, statistically significant, positive
correlations between the number of NFP improving commits and both the number of stars
(ρ = 0.678, p-value = 1.10e − 13) and the number of contributors (ρ = 0.601, p-value
= 234e − 10). We find no statistically significant correlation with the age of a repository
(ρ = 0.169, p-value = 0.107), the number of lines of code in a repository (ρ = 0.043,
p-value = 0.756), or the number of forks of the repository (ρ = 0.033, p-value = 0.697).

We also attempt to see if there is a relationship between the categories of applications
and the number of performance NFP improving commits we found. We present in Fig. 6
a box plot of the categories reported on F-Droid for each application against the number
of performance NFP improving commits we found in it. We can observe that there are no
categories that tend to have significantly more commits than others, however the appli-
cations in the connectivity category have the highest median number of NFP improving
commits.

The above results suggest that it would be preferable to target large repositories that
receive many stars by GitHub users and have a large number of contributors, when mining
for performance NFPs commits.

Table 14 Correlation between properties of repositories and the number of NFP improving commits found
in them

Property Correlation coefficient (ρ) p − value

Total commits 0.754 < 2.2e − 16

No. Stars 0.678 1.10e − 13

No. Contribs. 0.601 2.34e − 10

Age of Repo. 0.169 0.107

No. Forks. 0.043 0.697

KLoc 0.033 0.756
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Fig. 6 Box plot showing the relationship between repository category and number of performance NFP
improving commits

4.2 Recommendations for Performance NFP-Improving Tooling

Our analysis of commits improving execution time, memory consumption, bandwidth
usage, and frame rate of mobile applications provides several findings. In particular, our
main goal has been to establish how Android developers improve these four NFPs, and
whether we could utilise this knowledge to enhance automated software improvement
tooling.

After careful analysis of the literature, we found that 5 out of 23 improvement strategies
(see Section 3) are already mimicked by software mutation operators in automated software
improvement tooling, as described below.

Deletion of redundancy has been used in many fields, ranging from slicing to newer
strategies such as genetic improvement (Petke et al. 2018). The delete operator, which can
be applied at various granularity levels, e.g., line or statement level has proved effective in
automated program repair (Goues et al. 2012). Similarly, 75% of the non-functional proper-
ties studied were improved through the removal of a redundancy (used to improve execution
time, memory consumption, and frame rate). Android applications contain many lines of
redundant code and its removal is one of the main techniques developers use to improve the
four NFPs considered in this work.

Burles et al. (2015) and Basios et al. (2018) swap the data structures to improve non-
functional properties. This is also reflected in our mined data. Both the execution time and
memory consumption commit sets contained changes which consisted of simply swapping
one data structure for a more efficient one. This suggests that patches produced with their
techniques will be similar to those made by humans.

The early return category is small but offers a simple software transformation. Rather
than assigning a value to a variable, just return the value. This will only be valid if the return
value will not change in the rest of the method. This could be used as an opportunity to
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insert early returns. Recently, Brownlee et al. (2020) incorporated this type of operator in
their automated software improvement tooling for Java software.

Switching the order of operations in which these are executed is also mimicked by the
swap operator in genetic improvement research. Such swaps have been done at the state-
ment (Brownlee et al. 2019) and expression level (Schulte et al. 2014; Haraldsson et al.
2017).

The parameter change category is reminiscent of deep parameter optimisation (Wu et al.
2015), where parameters are exposed and automatically tuned to improve some property.
Bokhari et al. (2017) successfully applied deep parameter optimisation to energy consump-
tion in Android. Our results suggest that deep parameter optimisation could be effective for
improving other properties in Android.

Although the changes mentioned above have been incorporated into automated software
improvement tooling, these have generally not been applied in the Android ecosystem, but
just to traditional software.

Our study has also revealed several improvement strategies that are not yet employed in
current search-based software improvement tools.

One such strategy is caching. Caching has been repeatedly used to improve execution
time, memory consumption, and bandwidth usage. Caching is useful as it reduces calls to
areas of code by storing their output. The stored value is then reused instead of calling
the code. However, it does increase memory usage. The trade-off between the NFPs that
caching improves must be balanced with the cost to memory, pointing to multi-objective
optimisation. A caching pattern could be as simple as replacing multiple calls to a func-
tion, with the same arguments, with a single call to the function. The result of this call
should be stored in a variable, and the original calls to the function replaced by the variable.
Another option would be to cache a function called in a loop, replacing the function call in
the loop with a variable storing the result of the function which is called before the loop,
as in Fig. 2.

Changes to assets, such as pictures, are found among the commits that improve execu-
tion time and memory consumption. Assets can be resized to improve memory consumption
(and potentially bandwidth usage) or handled differently to improve execution time. When
modifying assets, the changes made must result in the asset still being acceptable to the
users. Measuring this acceptability and finding reasonable modifications poses an inter-
esting challenge. However, a few genetic improvement approaches have tried to allow for
decrease of output quality, when improving for other properties, such as energy consump-
tion (Bruce et al. 2018), or shader simplification (Sitthi-amorn et al. 2011). This, however,
has not been regarded as a code changing operator itself, but as a side-effect of the other
software transformations.

SQL queries were modified a substantial number of times in order to improve execution
time. Using search-based techniques to transform SQL queries could allow developers to
automatically achieve large improvement to execution time in applications that have many
database interactions. Das et al. (2016) found also that not only databases but also file
systems led to speed bugs, suggesting that I/O could be a good target for improvement.

Many search-based techniques only focus on making changes within a single file.
Table 10 suggest that a multi-file approach may be more useful for generating patches
to improve non-functional properties. The number of chunks also suggests that patches
are distributed widely across source code and changes are found in many locations.
Thus, for Android applications, changes could be deliberately spread out across multiple
files.
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5 RelatedWork

There have been a few studies that mined for non-functional property improving commits in
Android applications. Moura et al. (2015) performed a study on software repositories min-
ing “energy aware commits”. They mined commits which attempted to improve the energy
efficiency of an application and categorised the commits that did. They used a two-word-
key-phrases approach, to narrow down the returned results to 2,189 commits, rather than
112,900 commits that were initially returned from single keyword search. The majority of
the commits found in this study (∼70%), belong to categories which concern device config-
uration, e.g. Voltage Scaling. Das et al. (2016) mined Android repositories for “performance
related commits”. They found such messages in only 7% Android application repositories
considered. Moreover, their categorisation was more top-level than what we propose, clas-
sifying commits into, e.g., “Memory”, “File system”, and other. They have also used one
set of keywords for all performance-related issues. Their study restricted their searches to
the main application modules. The patterns that they extracted mostly concerned what was
being fixed, rather than how it was fixed, making direct comparison difficult. Although
there are a few similarities, we both find changes to regular expressions to be useful for
improving performance, we find that developers move computation to the background, and
we find that caching is used to improve performance. In their work, Das et al. (2016) find
that developers improve multiple properties 10.4% of the time, whereas we only found that
in 6.5% of cases We have also attempted to use as many keywords as possible, this includes
all of the relevant keywords from the related work, and keywords which we determined
from analysing commit messages, this is detailed in Section 2.

Mazuera-Rozo et al. (2020) performed a similar study, producing a topology of Android
performance bugs, and pointed out several other studies that focused on non-functional
bugs. We are concerned with non-functional property optimisation rather than repair, and
thus we describe the types of changes which can improve NFPs, whilst they describe the
bugs which can be detrimental to them. In their study they uncovered a number of bug types,
for which we have found related fixes. These include the leak fix category, the data structure
replacement category, the layout optimisation category. Interestingly, we find around 3-4x
the amount of commits dealing with caching for execution time improvement than they
do. They also do not capture many of the categories for improving memory usage and
bandwidth usage that we do, in particular the Remove Redundancy category. This may be
due to our usage of a larger keyword set. As we are concerned with a detailed analysis of
the improvement strategies found with respect to four specific performance non-functional
property improvement criteria, we use a more comprehensive keyword search than the three
aforementioned studies. Consequently, we manually analyse more commits. Moreover, we
train a classifier to gather additional data, which we make open source. We also categorise
and analyse commits in ways which allow the comparison to existing, and derivation of
new, mutation operators for automated software engineering approaches for non-functional
property improvement, such as genetic improvement (Hort et al. 2021; Petke et al. 2017).

Linares-Vásquez et al. (2015) attempted to uncover ways in which developers address
performance bottlenecks in Android, they did this by surveying developers. They found that
developers use similar techniques to the caching and SQL query categories uncovered in
this study. Our approach aims to find a more complete picture of the changes developers
make by directly exploring the content of the changes they made, as developers may exclude
techniques used less frequently when answering a survey.
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Chen et al. (2019b) perform a similar study to Mazuera-Rozo et al. (2020), but on 100
projects with C/C++ code. Changes to C/C++ are likely to be different to Java as there is
more direct access to lower level operations like memory allocation. However, their argu-
ments pattern is similar to the change parameter pattern that we found and the memorization
is similar to our caching pattern. Jin et al. (2012b) conducted a study across a number of
different programs in different languages, but did not include Android applications. How-
ever they did find fix patterns similar to change parameter, change order of operations, and
add condition, showing that some changes made in Android may applicable in other type
of software. We also find that changes in Android are larger than those in C/C++. Only
a median of lines of code are changed in C/C++ commits, but for all categories we find
median changes of 10+ lines and in some cases up to 70+ lines.

Our work uncovers a number of new patterns with respect to those discussed in related
work. We find changes to animations, layouts and assets which have not been discussed
in previous work, these categories all seem to be particularly relevant UI focused Android
applications. We also find that searching for source code changes results in a number of pat-
terns that have not been discussed in previous work, like remove redundancy, early return,
different library, data structure changes and time out reduction.

The idea of mining repositories for software improving commits has shown promise in
the automated program repair field. Long et al. (2017) mined Java repositories to automat-
ically find fix patterns to apply to buggy software. Kim et al. (2013) manually evaluated
human written patches from GitHub to generate patches which could then be automatically
applied to buggy software. Bader et al. (2019) leverage the version history of a piece of soft-
ware to extract fix patterns to suggest to developers. Martinez andMonperrus (2018) showed
that repair templates generated by mining existing code could be used to generate large
number of bug fixes. Several of the automated program repair techniques mentioned use
of search-based approaches, which have been utilised for improvement of non-functional
properties, in the field of genetic improvement (Petke et al. 2018), in particular. Therefore,
we believe that the results of our study could be similarly used to provide recommendations
for future tooling (Petke 2017).

6 Threats to Validity

Although we cannot claim that our results can apply to any type of mobile application, we
mitigate the conclusion validity threat by mining commits from applications diverse in many
ways, including their type, size, number of commits made and number of contributors.

Moreover, developers of open-source applications may view non-functional properties
at a different priority than their closed source counterparts. However, the user base is the
same (Android mobile users), and open-source repositories provide a rich amount of data
that can be analysed to improve current software engineering practice. The number of NFP
improving commits we analysed may give a partial picture of the commits which are actu-
ally made by developers, and it was limited by the manual effort needed to analyse the 3,132
commits. However, this is in par with the number of commits examined in previous studies
(e.g., Moura et al. 2015; Das et al. 2016). Some commits which improve NFPs may have
been missed by the keyword search. This may have been due the sets of keywords used being
incomplete or the commits not having messages which reflect the non-functional proper-
ties which they improve. To mitigate the former, the keywords were repeatedly expanded to
try to catch as many commits as possible and had a very large false positive rate (73%), so
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it is unlikely that many were missed. It is also likely that developers did not report trade-
offs that were made. The classifier may also be influenced by the keywords used, as it
was trained on the gold set based on keywords search and manual analysis. We do pro-
vide the source code of both the keyword search and classifier (github.com/SOLAR-group/
NonFunctionalAndroidCommits), so that they can be expanded in the future.

Finally, the NFP improving commits could be categorised differently. The aim of the cur-
rent categorisation was to provide meaningful classes from which insights could be drawn
towards possible new mutation operators for non-functional property improvement using
search-based approaches, such as genetic improvement (Petke et al. 2018). To alleviate
such a threat and facilitate this aim, we provide our detailed commit categorisation on-line
(github.com/SOLAR-group/NonFunctionalAndroidCommits).

7 Conclusions and FutureWork

In this paper we have explored the ways in which Android application developers improve
non-functional properties, in order to guide the development of new automatic transfor-
mations to improve the NFPs of Android applications. To this end we analysed 74,408
commits from 100 repositories, finding 560 commits that improve four performance-related
non-functional properties (NFPs): execution time, memory consumption, bandwidth usage,
and frame rate. We employed a combination of keyword search, and a classifier to filter
irrelevant commits, and manually analysed over 3,000 commits to obtain our corpus. We
have found that developers more commonly improve the execution time of their applica-
tions than other NFPs. However, manual changes to improve non-functional properties are
uncommon, suggesting that automated tools could aid developers in this challenging task.
Moreover, we find that developers occasionally improve multiple non-functional properties
at once (5.2% of cases), or sacrifice one property for another (10.7% of cases). This sug-
gests developers are willing to take multi-objective approaches. However, the rarity of these
changes suggests a need for automatic tools that could propose a Pareto of solutions for the
developer to choose from (Harman et al. 2010). We have also found similarity between 5
current mutation operators in automated software improvement and the changes that app
developers make. Code removal was a very common technique used by app developers for
improving multiple non-functional properties, as was data structure replacement. It would
be interesting to explore whether the corresponding mutation operators, which have already
been successfully used to optimise NFPs of traditional software, are effective in automati-
cally improving NFPs of mobile applications too. We have also found novel ways in which
real commits could be more closely mimicked by tools for automated NFP improvement,
for example, by making changes across multiple files simultaneously.

Our results highlight a need for automated tools which improve the non-functional prop-
erties of Android applications, and provide initial guidance on what types of changes such
tools could implement. These changes include automatic caching to improve speed and
bandwidth, SQL query transformation to improve speed, and image modification to reduce
memory consumption and execution time.

Our study could be further extended. First of all, our corpus could be extended in terms
of commit types and size. Commits improving other non-functional properties such as code
quality could be collected and analysed in future studies. Future work could use automatic
pattern recognition from a large set of NFP improving commits, to generate generic patterns
improving NFPs of Android applications.
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Appendix A: Classifier Training

In order to build an accurate classifier for NFP improving commits, we investi-
gated several different options as detailed in this Appendix. The source code and
the results obtained are provided in our on-line repository (github.com/SOLAR-group/
NonFunctionalAndroidCommits). For clarity we compare between three different classes.
unknown are commits that have not been analysed, and were excluded by the keyword
search. irrelevant commits were identified via keyword search, but deemed not relevant
towards non-functional properties by one or more of the examiners. Finally, relevant com-
mits encompass all commits identified to deal with a non-functional property after keyword
search.

We initially attempted to generate the classifier for all four subclasses of relevant com-
mits, execution time, memory, bandwidth and frame rate. This yielded no satisfactory results
as the classes bandwidth and framerate had no recall (not a single commit) and the other
two groups yielded less than 0.1 recall (i.e., less than 1 in 10 commits found).

We also attempted balancing the data. This was done in two ways. The first was to
balance the irrelevant commits (3,132) with the relevant class (229) as the drastic difference
lets classifiers overfit towards the irrelevant class. The balancing yields large margins in
the test and training sets (accuracy 0.8, with the same recall in both classes). However,
when attempting to reproduce this on the entire dataset the precision in the relevant classes
dropped to 0.07. In this case the classifier misses 20% of commits, but yields no advantage
over keyword search as many commits that are not relevant are identified as such. The
second attempt was balancing the classes of commits to reduce the under-representation
of bandwidth and frame rate (see Table 6). This reduced the recall to 0.02 meaning that
the classifier finds only 2 in 100 commits. We also investigated algorithms specifically
targeted towards unbalanced data, also to no avail. All of the balancing was done by keeping
all commits of the respective smallest class, and randomly removing commits from other
classes until they were the same size.

Since balancing the data worsens the precision drastically, we continued training clas-
sifiers with the datasets as they were recorded (i.e., without balancing). This investigation
was conducted with all combinations of text preprocessing and featurisation. In all cases we
did a preliminary tokenisation and stop word removal of all commit messages. For string
processing we used:

– Lemmatisation—reducing word inflections to a word root
– Stemming—removing word endings to approximate word roots

For the featurisation of the remaining word roots we used:

– TF/IDF—term frequency / inverse document frequency essentially ranking words in
the source

– Bag of words—counting words in the commit messages
– Improved bag of words—the adaption was that we reduce to words that we identified as

discriminative between the relevant and irrelevant sets. E.g. when a word occurs more
often in one or the other it is included, otherwise it is not used in bag of words.

Table 15 shows the best classifier found with this. Quadratic Discriminant Analysis
yields a recall of 0.68 meaning two in three commits are identified, and a precision of
0.36 meaning that about three commits have to be consulted manually to yield one rele-
vant commit. This is much better than keyword search (13,67 commits on average) but still
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Table 15 Quadratic discriminant
analysis of NFP finding two in
three commits

Precision Recall F1-score

Relevant 0.36 0.68 0.47

Irrelevant 0.97 0.90 0.94

represents a loss of information. The best results were yielded via using Lemmatisation as
preprocessing step and improved bag of words to create the feature vectors.

Quadratic Discriminant Analysis was the best algorithm found out of the following
twenty algorithms:

– Multi-layer Perceptron Classifier
– C-Support Vector Classification
– Linear C-Support Vector Classification
– Gaussian Process Classifier
– Decision Tree classifier
– Extra Tree Classifier
– Random Forest Classifier
– Ada Boost Classifier
– Bagging Classifier
– Gaussian Native Bayes
– Multinomial Native Bayes
– Bernoulli Native Bayes
– Complement Native Bayes
– Quadratic Discriminant Analysis
– Linear Discriminant Analysis
– Stochastic Gradient Descent Classifier
– Ridge Classifier
– Passive Aggressive Classifier

We chose Quadratic Discriminant Analysis as it supports the highest recall in the relevant
category while still being a reasonable filter. Multinomial Native Bayes has the highest
accuracy overall (0.95) but only a recall of 0.32, meaning two out of three relevant commits
are lost. Quadratic Discriminiant Analysis is highly dependent on the feature selection, as
selecting regular bag of words actually produces a recall of 1.0 for relevant commits (no
loss), but with a precision of 0.09, meaning that it requires an average of 11 commits to
find one relevant one. This is similar to the results that the keyword search itself produces.
Further information is captured in the GitHub repository.

In an attempt to improve the quality of our classifier we then added the dataset from
Mazuera-Rozo et al. (2020), which are the results discussed in the main body of this work.
The results of this analysis are available in our online repository consisting of csv tables
with 10 runs of a random training / test split and a final line with the averages over all runs.
All of the Classifiers using TF/IDF are outperformed by classifiers using other featurisation
methods. In a similar vein lemmatisation outperformed stemming. In general our improved
bag of words slightly outperforms bag of words. The exception is that best classifier Deci-
sion Tree which performs best when using TF/IDF with stemming. It achieves a recall of
0.80 (i.e. 4 out of 5 commits) with a precision of 0.72 meaning that about 3 in 4 commits
will be found.
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Appendix B: Algorithm Changes in Commits

In this Appendix we describe the commits in the “other” subcategory in the “Different
algorithm” category, found in Section 3.2, in more detail. We First describe those from the
KM set, then those from the CM set. For each commit, we report its SHA and a description
of the changes made in it.

B.1 KM Commits

– c9afd823e8da9393a167a89345301782ef3483b: Change from depth first search to
depth last.

– f3974898af9299632ea9354accb61e12393308c2: Use a look up table.
– b0e4f59f43984867c123fbffb4f345d5cc5f3814: Change if else statement to a switch

statement.
– 85ead3bd940bd445bbaff6a4a4d30ebca6b7c7a6: Use the spread operator.
– 22904667b8e79167339972d4682024d95cd3d169: Use lazy initialisation.

B.2 CM Commits

– fc82441c9aa412be6c1448b99a34607ff98e551d: Use the SharedPreferencesCompat
apply method.

– 588c35967f3dd9c2d27bb8739c46922a9b7a1c24: Call free methods of class compo-
nents in their free methods, rather than in the onClose method of the class.

– 1cc32362aad23dfe5d508776274e643a307a3577: Use lzma2 compression.
– 8bc2b8d5f53b04bbaea49a52eab260e02684376e: Use String.format.
– adbcdddb5625d7cd49b80d5c560eb8998446183a: Faster text rendering method, blit-

From instead of addBlitFrom.
– 1aedaa5c28fc6a3cae76c34ac03d808d5860aa1c: Faster algorithm for calculating the

position of elements on screen.
– a9bc9ed71a84d68bf3e1652550251320c0a38cd8: Use getCount, rather than iterating

over whole cursor.
– d9c393f20e4d869628d8e3531af4e63a4e7b851b: Use Androidx workManager begin

to en-queue jobs.
– 5731360f8a894e49c5383857b629e450af9fa29d: change DOM to SAX for UML pars-

ing.
– 893909146d6e406ca36c5f2d95b82526a4ed6167: Use raw input (effects rooted

devices only).
– 6d1fa0cf056289457c3ca7616861a3dd362caea7: More efficient average calculation.
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