Skip to main content

Explicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming

  • Conference paper
  • First Online:
Book cover Genetic Programming (EuroGP 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2278))

Included in the following conference series:

Abstract

We have investigated structural distance metrics for linear genetic programs. Causal connections between changes of the genotype and changes of the phenotype form a necessary condition for analyzing structural differences between genetic programs and for the two objectives of this paper: (i) Distance information between individuals is used to control structural diversity of population individuals actively by a two-level tournament selection. (ii) Variation distance is controlled on the effective code for different genetic operators - including a mutation operator that works closely with the applied distance metric. Numerous experiments have been performed for three benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge, MA, MIT Press, 1992.

    MATH  Google Scholar 

  2. Ferreira, C., 2001. Gene Expression Programming: A New Adaptive Algorithm for Solving Problems. Complex Systems, 13 (2): 87–129.

    Google Scholar 

  3. Wolfram, S., Theory and Applications of Cellular Automata. World Scientific, 1986.

    Google Scholar 

  4. Toffoli, T. and N. Margolus, Cellular Automata Machines: A New Environment for Modeling. MIT Press, 1987.

    Google Scholar 

  5. Gacs, P., G. L. Kurdyumov, and L.A. Levin, 1978. One-dimensional Uniform Arrays that Wash out Finite Islands. Problemy Peredachi Informatsii 14, 92–98 (in Russian).

    Google Scholar 

  6. Mitchell, M., An Introduction to Genetic Algorithms. MIT Press, 1996.

    Google Scholar 

  7. Koza, J. R., F. H. Bennett III, D. Andre, and M. A. Keane, Genetic Programming III:Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco, 1999.

    MATH  Google Scholar 

  8. Juillé, H. and J. B. Pollack. Coevolving the “Ideal Trainer: Application to the Discovery of Cellular Automata Rules. In J. R. Koza, W. Banzhaf, K. Chellapilla, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R.L. Riolo, eds., Genetic Programming 1998: Proceedings of the Third Annual Conference, Morgan Kaufmann, San Francisco, 1998.

    Google Scholar 

  9. Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press, 1975 second edition: MIT Press, 1992).

    Google Scholar 

  10. Cramer, N. L., A Representation for the Adaptive Generation of Simple Sequential Programs. In J. J. Grefenstette, ed., Proceedings of the First International Conference on Genetic Algorithms and Their Applications, Erlbaum, 1985.

    Google Scholar 

  11. Mitchell, M., J. P. Crutchfield, and P. T. Hraber, 1994. Evolving Cellular Automata to Perform Computations: Mechanisms and Impediments. Physica D 75, 361–391.

    Google Scholar 

  12. Mitchell, M., P. T. Hraber, and J. P. Crutchfield, 1993. Revisiting the Edge of Chaos:Evolving Cellular Automata to Perform Computations. Complex Systems 7, 89–130.

    Google Scholar 

  13. Das, R., M. Mitchell, and J. P. Crutchfield, A Genetic Algorithm Discovers Particle-based Computation in Cellular Automata. In Y. Davidor, H.-P. Schwefel, and R. Männer, eds., Parallel Problem Solving from Nature-PPSN III, Springer-Verlag, 1994.

    Google Scholar 

  14. Dawkins, R., River out of Eden. Weidenfeld and Nicolson, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brameier, M., Banzhaf, W. (2002). Explicit Control of Diversity and Effective Variation Distance in Linear Genetic Programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds) Genetic Programming. EuroGP 2002. Lecture Notes in Computer Science, vol 2278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45984-7_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-45984-7_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43378-1

  • Online ISBN: 978-3-540-45984-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics