
Grammar Transformations in an EDA for
Genetic Programming

Peter A.N. Bosman and Edwin D. de Jong

Institute of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{Peter.Bosman, dejong}@cs.uu.nl

Abstract. In this paper we present a new Estimation–of–Distribution
Algorithm (EDA) for Genetic Programming (GP). We propose a proba-
bility distribution for the space of trees, based on a grammar. To intro-
duce dependencies into the distribution, grammar transformations are
performed that facilitate the description of specific subfunctions. We
present some results from experiments on two benchmark problems and
show some of the subfunctions that were introduced during optimization
as a result of the transformations that were applied.

1 Introduction

GP [4, 6] offers algorithms to search highly expressive classes of functions, and
has been applied to a diverse range of problems including circuit design, sym-
bolic regression, and control. Most GP methods employ the subtree-crossover
operator, which exchanges randomly selected subtrees between individuals. Due
to the particular structure of trees, subtrees (rather than e.g. any combination
of nodes and arcs) appear a reasonable choice as the form of the partial solutions
that will be exchanged since the functionality of a subtree is independent of its
place within the tree. However, basic GP does not make informed choices as to
which partial solutions will be exchanged; both the size of the removed subtree
and the position where it will be inserted are chosen randomly.

Several subtree encapsulation methods exist that make more specific choices
as to which partial solutions are selected to be further propagated, e.g. GLiB
[1], ADFs [7], and ARL [13]. Subtree encapsulation methods have been found to
substantially improve performance on a variety of problems. Yet, the criteria for
the selection of partial solutions they employ are still heuristic; typically, either
the fitness of the tree in which a subtree occurs is used as an indication of its
value, or the partial solution is itself subject to evolution.

Here, we explore whether a more principled approach to the selection of
partial solutions and their recombination is possible. If the distribution of high-
fitness trees can be estimated, this would directly specify which combinations of
elements are to be maintained in the creation of new individuals and thus which
combinations of partial solutions may be fruitfully explored. We investigate how
the principle of distribution estimation may be employed in the context of tree-
based problems. In GAs, the development of EDAs and other linkage learning

techniques has yielded a better insight into the design of competent GAs by ren-
dering the assumptions implicitly made by algorithms explicit. Our aim is that
the application of distribution estimation techniques to tree-based problems may
likewise clarify the design of principled methods for GP. This paper represents
a first step in that direction.

To estimate distributions over the space of trees, a representation must be
chosen. In Probabilistic Incremental Program Evolution (PIPE) [14], trees are
matched on a fixed-size template, such that the nodes becomes uniquely identifi-
able variables. Using this representation, all nodes are treated equally. While this
permits the encapsulation of any combination of nodes, it does not exploit the
particular non–fixed–size and variable–child–arity structure of trees. The com-
plexity of such an algorithm is determined by the maximally allowed shape for
the trees, which must be chosen in advance. In PIPE the distribution is the same
for each node, which corresponds to a univariately factorized probability distri-
bution over all nodes. In Extended Compact Genetic Programming (ECGP) [15],
trees are represented in the same way as in PIPE. However, the probability dis-
tribution that is estimated is a marginal–product factorization that allows the
modelling of dependencies between multiple nodes that are located anywhere
in the fixed–size template. In this paper, a method will be employed that esti-
mates the distribution of trees based on the subtrees that actually occur. The
representation specifies a set of rules whose expansion leads to trees. The rules
capture local information, thereby offering a potential to exploit the specific
structure of trees, while at the same time their use in an EDA offers a potential
for generalization that is not provided by using fixed–size templates.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce basic notation and terminology. In Section 3 we describe how we allow the
grammar to be transformed to introduce more specific subfunctions. Next, in
Section 4 we define the probability distribution over trees that we work with. In
Section 5 we perform experiments on two benchmark problems and compare the
performance of standard GP and an EDA based on the proposed distribution.
We also show some of the subfunctions that were introduced during optimization
as a result of the grammar transformations that were applied. We present our
conclusions and a discussion of future research in Section 6.

2 Terminology

A grammar G is a vector of lr production rules Rj , j ∈ {0, 1, . . . , lr − 1}, that
is, G = (R0, R1, . . . , Rlr−1).

A production rule is denoted by Rj : Sk → Ej , where Sk is a symbol that can
be replaced with the expansion Ej of the production rule. Let K be the number
of available symbols, then k ∈ {0, 1, . . . ,K − 1}. We will use only one symbol
and allow ourselves to write S instead of Sk.

An expansion Ej of production rule Rj is a tree. We will therefore generally
call Ej an expansion tree. The internal nodes of an expansion tree are functions
with at least one argument. The leaves are either symbols, constants or input

variables. An example of an expansion tree is Ej = +(sin(S), (−(log(S), cos(S)))
which, in common mathematical notation, represents sin(S)+(log(S)− cos(S)).

A sentence is obtained from a grammar if a production rule is chosen to
replace a symbol repeatedly until all symbols have disappeared. Sentences can
therefore be seen as trees. We denote a sentence by s. We will denote a subtree
of a sentence by t and call it a sentence subtree.

A sentence subtree t is said to be matched by an expansion tree Ej , denoted
t ∈ Ej if and only if all nodes of Ej coincide with nodes found in t following the
same trails, with the exception of symbol nodes, which may be matched to any
non–empty sentence subtree.

The following grammar G = (R0, R1, . . . , R5+n) with lr = 6+n is an example
of a grammar that describes certain n–dimensional real–valued functions:

R0 : S → c (a constant ∈ R) Rn+1 : S → +(S, S)
R1 : S → i0 (input variable 0) Rn+2 : S → ·(S, S)
R2 : S → i1 (input variable 1) Rn+3 : S → −(S)...

... Rn+4 : S → sin(S)
Rn : S → in−1 (input variable n-1) Rn+5 : S → cos(S)

3 Grammar transformations

The grammar that is initially supplied describes the space of all possible sen-
tences in which to search for the optimal sentence. As the search progresses,
the subspace of sentences that we are still interested in becomes smaller as the
sentences become more specific and have more parts in common. To be able
to reproduce these commonalities as much as possible and remain within the
subspace that we are interested in when drawing new solutions, the probability
distribution must be able to represent these commonalities with a large–enough
density. One of the most important features of the probability distribution based
on a grammar that we will propose in Section 4 is that a probability will be as-
sociated with each production rule to represent the probability of that specific
subfunction to appear in a sentence. These probabilities can be changed to make
certain combinations of subfunctions more probable. For instance, subfunction
f(S, S) can be estimated to occur more frequently than subfunction g(S, S) by
increasing the probability associated with production rule S → f(S, S). How-
ever, these individual probabilities do not allow us to say anything about the
combination of functions f and g, i.e. for instance the frequency of f(g(S, S), S)
versus g(f(S, S), S). To allow for such dependencies regarding subfunctions to
be described in the probability distribution, we propose the use of grammar
transformations. In the remainder of this section we describe a specific transfor-
mation that we have used. Examples of results of using these transformations in
an actual EDA are given in Section 5.3.

3.1 Substitution transformation

In this paper, the only transformation that we allow is the substitution of one
symbol of an expansion tree with one expansion tree from the base grammar.
The base grammar is the grammar that is initially provided. This substitution
transformation will allow the probability distribution to model some sentences
more specifically than others. To ensure that after a transformation any sen-
tence subtree can be matched by only one expansion tree we assume that the
base grammar has this property. To transform the grammar we only allow to
substitute symbols with expansion trees of the base grammar. Here is an ex-
ample of expanding the base grammar (first column) using a single expansion
(second column):

Base grammar
R0 : S → c
R1 : S → i
R2 : S → f(S, S)
R3 : S → g(S, S)

Single expansion
R0 : S → c
R1 : S → i
R2 : S → f(S, S)
R3 : S → g(S, S)
R4 : S → g(f(S, S), S)

Full expansion
R0 : S → c
R1 : S → i
R2 : S → f(S, S)
R3 : S → g(c, S)
R4 : S → g(i, S)
R5 : S → g(f(S, S), S)

Note that the set of expansion trees can now no longer be matched uniquely
to all sentence trees. For instance, sentence g(f(c, c), c) can at the top level
now be matched by expansion trees 2 and 4. To ensure only a single match, we
could expand every expansion tree from the base grammar into a production
rule and subsequently remove the original production rule that has now been
expanded (third column in the example above). However, this rapidly increases
the number of production rules in the grammar and may introduce additional
rules that aren’t specifically interesting for modelling the data at hand. To be
able to only introduce the rules that are interesting, we equip the symbols with
a list of indices that indicate which of the production rules in the base grammar
may be matched to that symbol. Once a substitution occurs, the symbol that
was instantiated may no longer match with the expansion tree that was inserted
into it. For example:

Base grammar
R0 : S → c
R1 : S → i
R2 : S → f(S0,1,2,3, S0,1,2,3)
R3 : S → g(S0,1,2,3, S0,1,2,3)

Expanded grammar
R0 : S → c
R1 : S → i
R2 : S → f(S0,1,2,3, S0,1,2,3)
R3 : S → g(S0,1,3, S0,1,2,3)
R4 : S → g(f(S0,1,2,3, S0,1,2,3), S0,1,2,3)

A sentence can now be preprocessed bottom–up in O(n) time to indicate
for each node which expansion tree matches that node, where n is the number
of nodes in the tree. The sentence can then be traversed top–down to perform

the frequency count for the expansion trees. It should be noted that this ap-
proach means that if a symbol list does not contain all indices of the base
grammar, then it represents only the set of the indicated rules from the base
grammar. In the above example for instance S0,1,3 represents S → c, S → i and
S → g(S0,1,2,3, S0,1,2,3). Therefore, the probability associated with this particu-
lar symbol is not the recursive application of the distribution in equation 2, but
is uniform over the indicated alternatives. This is comparable to the approach
of default tables for discrete random variables in which instead of indicating a
probability for all possible combinations of values for the random variables, only
a subset of them is explicitly indicated. All remaining combinations are assigned
an equal probability such that the distribution sums to 1 over all possible values.

4 Probability distribution

To construct a probability distribution over sentences, we introduce a random
variable S that represents a sentence and a random variable T that represents
a sentence subtree. Because sentence subtrees are recursive structures we define
a probability distribution for sentence subtrees recursively. To do so, we must
know where the tree terminates. This information can be obtained by taking the
depth of a sentence subtree into account. Let PG(T = t|D = d) be a probability
distribution over all sentence subtrees t that occur at depth d in a sentence.
Now, we define the probability distribution over sentences s by:

PG(S = s) = PG(T = s|D = 0) (1)

Since sentence subtrees are constructed using production rules, we can define
PG(T = t|D = d) using the production rules. Since there is only one symbol,
we can also focus on the expansion trees. Although depth can be used to model
the probability of terminating a sentence at some node in the tree, sentences
can be described more precisely if depth is also used to model the probability
of occurrence of functions at specific depths. Preliminary experiments indicated
that this use of depth information leads to better results.

We define PE
j (J = j|D = d) to be a discrete conditional probability distribu-

tion that models the probability of choosing expansion tree Ej , j ∈ {0, 1, . . . , lr}
at depth d when constructing a new sentence.

We assume that the values of the constants and the indices of the input
variables in an expansion tree are not dependent on the depth. Conforming to
this assumption we define 2lr multivariate probability distributions that allow
us to model the use of constants and inputs inside production rules other than
the standard rules S → c and S → ik, k ∈ {0, 1, . . . , n − 1}:
– PC

j (Cj), j ∈ {0, 1, . . . , lr − 1}, a probability distribution over all constants
in expansion tree Ej , where Cj = (Cj0, Cj1, . . . , Cj(nCj

−1)). Each Cjk is a
random variable that represents a constant in Ej .

– P I
j (Ij), j ∈ {0, 1, . . . , lr − 1}, a probability distribution over all inputs in

expansion tree Ej , where Ij = (Ij0, Ij1, . . . , Ij(nIj
−1)). Each Ijk is a random

variable that represents all inputs in Ej , i.e. Ijk ∈ {0, 1, . . . , n − 1}.

The above definition of P I
j (Ij) enforces a single production rule S → i,

where i represents all input variables, instead of n production rules S → ij ,
j ∈ {0, 1, . . . , n−1}. This reduces the required computational complexity for es-
timating the probability distribution, especially if n is large. However, it prohibits
the introduction of production rules that make use of specific input variables.

We will enforce that any sentence subtree t can be matched by only one
expansion tree Ej . The probability distribution over all sentence subtrees at
some given depth D = d is then the product of the probability of matching the
sentence subtree with some expansion tree Ej and the product of all (recursive)
probabilities of the sentence subtrees located at the symbol–leaf nodes in Ej .

Let Sjk be the k–th symbol in expansion tree Ej , k ∈ {0, 1, . . . , nSj
−1}. Let

stree(Sjk, t) be the sentence subtree of sentence subtree t at the same location
where Sjk is located in the expansion tree Ej that matches t. Let depth(Sjk) be
the depth of Sjk in expansion tree Ej . Finally, let match(t) be the index of the
matched expansion tree, i.e. match(t) = j ⇔ t ∈ Ej . We then have:

PG(T = t|D = d) = (2)

PE(J = j|D = d)PC
j (Cj)P I

j (Ij)
nSj

−1∏
k=0

PG(T = stree(Sjk, t)|D = d + depth(Sjk))

where j = match(t)

Drawing new samples from the probability distribution is a recursive proce-
dure just as the definition of the distribution is recursive itself. To draw a new
sentence subtree at depth d, first a production rule is drawn according to the
probabilities associated with the production rules at the specified depth. Second,
values are drawn for the constants and input variables in the expansion tree of
the selected production rule, after which sentence subtrees are drawn recursively
for the symbols in the expansion tree of the selected production rule.

To estimate PG(T) from a set S of sentences we choose a greedy approach,
similar to what has been done in most EDAs so far [2, 8–10]. The algorithm
starts from the initial grammar and performs all possible transformations. From
all so–obtained candidate grammars, the best one is selected if the associated
probability distribution is better than the distribution associated with the cur-
rent grammar. The greedy algorithm terminates if no further improvement can
be made. The performance measure used to score distributions is the MDL
metric [3, 12]. The penalty term in the MDL metric consists of a parameter–
complexity term and a structure–complexity term. The number of parameters
to be estimated can be determined in a straightforward manner from the prob-
ability distribution. The value of the structure–complexity term comes from the
production rules. The more production rules, the more bits are required. More-
over, longer production rules require more bits. The number of bits required to
store a production rule is ln(lrbase

) times the number of internal nodes in the ex-
pansion tree where lrbase

is the number of production rules in the base grammar.
Finally, symbols have lists of production–rule indices. To store one such list, the
number of required bits equals ln(lrbase

) times the length of that list.

5 Experiments

We have performed experiments with our approach to estimating a probability
distribution over sentences by using it in an EDA. We applied the resulting EDA
as well as a standard GP algorithm that only uses subtree–swapping crossover
to two GP–benchmarking problems, namely the royal tree problem by Punch,
Zongker and Goodman [11] and the tunable benchmark problem by Korkmaz
and Üçoluk [5], which we will refer to as the binary–functions problem. Both
problems are non–functional, which means that fitness is defined completely in
terms of the structure of the sentence and input variables have an empty domain.

5.1 Benchmark problems

In the royal tree problem, there is one function of arity n for each n ∈ {0, 1, 2, . . .}.
The function with arity 0 is i0. The other functions are labeled A for arity 1, B
for arity 2 and so on. The fitness function is defined recursively and in terms of
“perfect” subtrees. A subtree is perfect if it is a full tree, i.e. all paths from the
root to any leaf are equally long and the arity of any function is n − 1 where n
is the arity its parent function. Figure 1 gives an example of a perfect tree of
height 4. The fitness of a sentence is the fitness of the root. The fitness of a node
is a weighted sum of the fitness values of its children. The weight of a child is

– Full if the child is a perfect subtree with a root function of arity n−1 where
n is the arity of the function in the current node.

– Partial if the child is not a perfect subtree but it has the correct root function.
– Penalty otherwise.

If the node is itself the root of a perfect tree, the final sum is multiplied
by Complete. In our experiments, we follow the choices of Punch, Zongker and
Goodman [11] and set Full = 2, Partial = 1, Penalty = 1

3 and Complete = 2.
The structure of this problem lies in perfect subtrees and child nodes having
a function of arity that is one unit smaller than the function of their parent.
Coincidentally, this results in a very strong dependence on the depth, since the
optimal sentence subtree of height d has one function of arity d − 1 in the root,
d − 1 functions of arity d − 2 on the second level and so on (see figure 1).

C

B B B

A AA A A A

i
0

i
0

i
0

i
0

i
0

i
0

B
0

B
1 B

2

B
2 B

3 B
3 B

4

i
0

i
0

i
0

i
0

i
0

i
0

i
0

i
0

Fig. 1. Examples of sentences for the royal tree problem (left) and the binary–functions
problem (right).

In the binary–functions problem there are various functions Bi, all of which
have arity two. Similar to the royal tree problem, there is only one input variable
i0. The fitness of a sentence is again the fitness of the root. The fitness of a node
is 1 if the node is an input variable. Otherwise the fitness is a combination of
the fitness values of its two children C1 and C2; it is computed according to:

f(C1) + f(C2) if both children are inputs or no constraints violated
ηf(C1) + f(C2) if C1 violates first constraint, C2 doesn’t violate first

constraint and second constraint not violated
f(C1) + ηf(C2) if C2 violates first constraint, C1 doesn’t violate first

constraint and second constraint not violated
ηf(C1) + ηf(C2) if both children violate first constraint or the second

constraint is violated

where the indicated constraints are:

1. The index of the parent function is smaller than the indices of its children.
2. The index of the left child is smaller than the index of the right child.

In our experiments we have used η = 0.25. The structure of this optimization
problem is both local and overlapping. The local aspect lies in the fact that only
a node and its direct descendants are dependent on each other. However, since
these dependencies hold for each node, the structure is recursive throughout the
tree and thus the dependencies are inherently overlapping.

5.2 Results

For both problems, We have computed convergence graphs for both algorithms
and three different population sizes. The curves in the graphs are averaged over
30 runs. For the Royal Tree problem (see Fig. 2, left), GP achieves reasonable
results for population sizes 500 and 1000, but does not reliably find the opti-
mum. The EDA identifies the optimal solution in every single run and for all
population sizes. The Royal Tree problem is a benchmark problem for GP that
features a depth–wise layered structure. Clearly, the use of depth information
therefore renders the EDA particularly appropriate for problems of this kind.
Still, this result demonstrates the feasibility of our EDA to GP. Figure 2 (right)
shows the results when recombination is performed in only 90% of the cases,
and copying a random parent is performed in the remaining 10%. Although GP
is in this case also able to reliably find the optimum this is only the case for a
population size of 1000 whereas the EDA is still able to reliably find the opti-
mum for all population sizes. Although lowering the probability of recombination
normally speeds up convergence, in this case the EDA is only hampered by it
because the distribution can perfectly describe the optimum and therefore using
the distribution more frequently will improve performance. Moreover, copying
introduces spurious dependencies that are estimated in the distribution and will
additionally hamper optimization.

0 1 2 3 4 5

x 10
5

0

2

4

6

8

10

12

14
x 10

4

Fitness evaluations

B
es

t f
itn

es
s

Royal Tree Problem

EDA, popsize 100
EDA, popsize 500
EDA, popsize 1000
GP, popsize 100
GP, popsize 500
GP, popsize 1000

0 1 2 3 4 5

x 10
5

0

2

4

6

8

10

12

14
x 10

4

Fitness evaluations

B
es

t f
itn

es
s

Royal Tree Problem, Pcross=0.9

EDA, popsize 100
EDA, popsize 500
EDA, popsize 1000
GP, popsize 100
GP, popsize 500
GP, popsize 1000

Fig. 2. Results for the Royal Tree problem.

0 1 2 3 4 5

x 10
5

0

2

4

6

8

10

12

14

16

Fitness evaluations

B
es

t f
itn

es
s

Binary−Functions Problem

EDA, popsize 100
EDA, popsize 500
EDA, popsize 1000
GP, popsize 100
GP, popsize 500
GP, popsize 1000

0 0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

14

16

Fitness evaluations

B
es

t f
itn

es
s

Binary−Functions Problem, Pcross=0.9

EDA, popsize 100
EDA, popsize 500
EDA, popsize 1000
GP, popsize 100
GP, popsize 500
GP, popsize 1000

Fig. 3. Results for the binary–functions problem.

Figure 3 shows the results for the binary–functions problem (maximum fitness
is 16). This problem has dependencies that are much harder for the distribution
to adequately represent and reliably reproduce. Very large subfunctions are re-
quired to this end. Moreover, the multiple (sub)optima slow down convergence
for the EDA as can be seen in Figure. 3 on the left. Crossover in GP is much
more likely to reproduce large parts of parents. Hence, crossover automatically
biases the search towards one of these solutions, allowing for faster convergence.
The use of copying leads to faster convergence of the EDA. However, the defi-
ciency of the distribution with respect to the dependencies in the problem still
hamper the performance of the EDA enough to not be able to improve over
standard GP. Additional enhancements may be required to make the distribu-
tion used more suited to cope with dependencies such as those encountered in
the binary–functions problem, after which an improvement over standard GP
may be expected similar to the improvement seen for the Royal Tree problem.

5.3 Examples of learned production rules

In Figure 4 the learned probability distributions during a run of the EDA on the
Royal Tree problem are presented in a tabulated fashion. The figure shows the
distributions at the beginning, in generation 50, and at the end of the run. A
population of size 100 was used and the probability of recombination was set to
1.0. Clearly, the distribution can already be made specific enough by setting the
probabilities because of the perfect dependency on the depth of the Royal Tree
problem. Hence, no new production rules are introduced into the grammar at
any point during the run and the probabilities converge towards a configuration
that uniquely describes the optimal sentence.

In Figure 4 the learned probability distribution in generation 35 during a run
of the EDA on the binary–functions problem is also presented in a tabulated fash-
ion. The population size used in this experiment is 10000 and the probability
of recombination is set to 0.9. In generation 35, the average fitness was 10.1379
whereas the best fitness was 13 (optimal fitness is 16). Clearly in this case the
probability distribution based on the initial grammar cannot be made specific
enough to describe the features of good sentences nor can it perfectly describe
the optimal sentence. Therefore, additional production rules are added by the
greedy search algorithm. As can be seen, the most important rules are added first
and they have a high probability for at least one depth. The rules that are added
afterwards mainly serve to make the distribution more specific by reducing the
size of the default tables that have been created by the substitution transforma-
tions. The rules themselves have only a very low probability. One of the most
important rules regarding the root of the tree has already been established (i.e.
B0(B1(S, S), S)). Although other important rules have been discovered, they
have not yet received high probabilities as they do not occur frequently in the
population. As the search progresses towards the optimum, other important rules
such as B2(B3(S, S), S) will obtain more prominent probabilities as well to more
specifically describe a smaller subset of high–quality sentences.

6 Discussion and conclusions

In this paper we have proposed a probability distribution over trees to be used
in an EDA for GP. The distribution basically associates a probability with each
production rule in a context–free grammar. More involved production rules or
subfunctions can be introduced using transformations in which one production
rule is expanded into another production rule. This allows the probability dis-
tribution to become more specific and to express a higher order of dependency.
We have performed experiments on two benchmark problems from the literature.
The results indicate that our EDA for GP is feasible. It should be noted however
that learning advanced production rules using the greedy algorithm proposed in
this paper can take up a lot of time, especially if the number of production rules
and the arity of the subfunctions increase. To speed up this greedy process,
only a single rule can be randomly selected into which to expand each pro-
duction rule from the base grammar instead of expanding each production rule

D

0 1 2 3 4 5

i0 0.167 0.167 0.167 0.167 0.167 1.000

A(S) 0.167 0.167 0.167 0.167 0.167 0.000

B(S, S) 0.167 0.167 0.167 0.167 0.167 0.000

C(S, S, S) 0.167 0.167 0.167 0.167 0.167 0.000

D(S, S, S, S) 0.167 0.167 0.167 0.167 0.167 0.000

E(S, S, S, S, S) 0.167 0.167 0.167 0.167 0.167 0.000

D

0 1 2 3 4 5

i0 0.000 0.000 0.029 0.140 0.158 1.000

A(S) 0.000 0.000 0.027 0.131 0.318 0.000

B(S, S) 0.000 0.000 0.079 0.362 0.146 0.000

C(S, S, S) 0.000 0.000 0.642 0.143 0.121 0.000

D(S, S, S, S) 0.000 0.992 0.011 0.106 0.133 0.000

E(S, S, S, S, S) 1.000 0.008 0.011 0.116 0.123 0.000

D

0 1 2 3 4 5

i0 0.000 0.000 0.000 0.000 0.000 1.000

A(S) 0.000 0.000 0.000 0.000 1.000 0.000

B(S, S) 0.000 0.000 0.000 1.000 0.000 0.000

C(S, S, S) 0.000 0.000 1.000 0.000 0.000 0.000

D(S, S, S, S) 0.000 1.000 0.000 0.000 0.000 0.000

E(S, S, S, S, S) 1.000 0.000 0.000 0.000 0.000 0.000

D

0 1 2 3 4

i0 0.000 0.000 0.185 0.346 1.000

B0(S, S) 0.082 0.000 0.020 0.000 0.000

B1(S, S) 0.002 0.000 0.009 0.000 0.000

B2(S, S) 0.002 0.002 0.027 0.000 0.000

B3(S, S) 0.006 0.011 0.059 0.000 0.000

B4(S, S) 0.001 0.097 0.106 0.110 0.000

B5(S, S) 0.000 0.158 0.105 0.185 0.000

B6(S, S) 0.000 0.000 0.000 0.000 0.000

B0(B1(S, S), S) 0.582 0.000 0.032 0.000 0.000

B0(i0, S) 0.000 0.000 0.004 0.000 0.000

B6(i0, S) 0.000 0.412 0.114 0.000 0.000

B6(S, i0) 0.000 0.295 0.121 0.000 0.000

B6(i0, i0) 0.000 0.000 0.000 0.249 0.000

B1(B2(S, S), S) 0.189 0.000 0.034 0.000 0.000

B1(i0, S) 0.000 0.000 0.001 0.018 0.000

B3(i0, S) 0.000 0.013 0.092 0.000 0.000

B3(i0, i0) 0.000 0.000 0.000 0.058 0.000

B2(i0, S) 0.000 0.003 0.026 0.000 0.000

B2(B3(S, S), S) 0.018 0.010 0.046 0.000 0.000

B2(i0, i0) 0.000 0.000 0.000 0.019 0.000

B0(B2(S, S), S) 0.096 0.000 0.011 0.000 0.000

B1(B3(S, S), S) 0.023 0.000 0.006 0.000 0.000

B0(B6(S, S), S) 0.000 0.000 0.000 0.000 0.000

B0(B0(S, S), S) 0.000 0.000 0.000 0.000 0.000

B0(i0, i0) 0.000 0.000 0.000 0.015 0.000

Fig. 4. The probability distribution at the beginning (top left), after 50 generations
(center left) and upon convergence after 139 generations (bottom left) of an example
run of the EDA on the Royal Tree problem. Also, the probability distribution is shown
after 35 generations in an example run of the EDA on the binary–functions problem
(right). For brevity, only the expansion trees Ei of each production rule are shown and
the production rule index lists are dropped for the symbols S.

from the base grammar into each currently available production rule. Although
this significantly reduces the number of candidate distributions in the greedy
algorithm, it also significantly improves the running time. Moreover, since the
greedy algorithm is iterative and the probability distribution is estimated anew
each generation, the most important subfunctions are still expected to emerge.

Because our approach to estimating probability distributions over trees does
not fix or bound the structure of the trees beforehand, our approach can be
seen as a more principled way of identifying important subfunctions than by
constructing subfunctions randomly as is the approach currently taken in GP
enhanced with ADFs [7]. As such, this paper may provide one of the first steps
in a new and interesting direction for GP that allows to detect and exploit sub-
structures in a more principled manner for enhanced optimization performance.

References

1. Peter J. Angeline and Jordan B. Pollack. The evolutionary induction of subrou-
tines. In Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society, pages 236–241, Hillsdale, NJ, 1992. Lawrence Erlbaum Associates.

2. Peter A. N. Bosman. Design and Application of Iterated Density–Estimation Evo-
lutionary Algorithms. PhD thesis, Utrecht Univ., Utrecht, the Netherlands, 2003.

3. Wray Buntine. A guide to the literature on learning probabilistic networks from
data. IEEE Transactions On Knowledge And Data Engineering, 8:195–210, 1996.

4. Nichael L. Cramer. A representation for the adaptive generation of simple sequen-
tial programs. In John J. Grefenstette, editor, Proceedings of the First Interna-
tional Conference on Genetic Algorithms and their Applications, pages 183–187,
Hillsdale, NJ, 1985. Carnegie-Mellon University, Lawrence Erlbaum Associates.

5. Emin E. Korkmaz and Göktürk Üçoluk. Design and usage of a new benchmark
problem for genetic programming. In Proceedings of the 18th International Sympo-
sium on Computer and Information Sciences ISCIS–2003, pages 561–567, Berlin,
2003. Springer–Verlag.

6. John R. Koza. Genetic Programming. The MIT Press, Cambridge, MA, 1992.
7. John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-

grams. The MIT Press, Cambridge, MA, May 1994.
8. Pedro Larrañaga and José A. Lozano. Estimation of Distribution Algorithms. A

New Tool for Evolutionary Computation. Kluwer Academic, London, 2001.
9. Martin Pelikan. Bayesian optimization algorithm: From single level to hierarchy.

PhD thesis, University of Illinois at Urbana–Champaign, Urbana, Illinois, 2002.
10. Martin Pelikan, David E. Goldberg, and Fernando G. Lobo. A survey of optimiza-

tion by building and using probabilistic models. Computational Optimization and
Applications, 21(1):5–20, 2002.

11. William F. Punch, Douglas Zongker, and Erik D. Goodman. The royal tree prob-
lem, a benchmark for single and multiple population genetic programming. In
P. J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming
2, pages 299–316. The MIT Press, Cambridge, MA, USA, 1996.

12. Jorma Rissanen. Hypothesis selection and testing by the MDL principle. The
Computer Journal, 42(4):260–269, 1999.

13. Justinian P. Rosca and Dana H. Ballard. Discovery of subroutines in genetic
programming. In P.J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 9, pages 177–202. The MIT Press, Cambridge, MA, 1996.

14. Rafal P. Salustowicz and Jürgen Schmidhuber. Probabilistic incremental program
evolution. Evolutionary Computation, 5(2):123–141, 1997.

15. Kumara Sastry and David E. Goldberg. Probabilistic model building and com-
petent genetic programming. In Rick L. Riolo and Bill Worzel, editors, Genetic
Programming Theory and Practise, chapter 13, pages 205–220. Kluwer, 2003.

