Skip to main content

The Legion System: A Novel Approach to Evolving Heterogeneity for Collective Problem Solving

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1802))

Abstract

We investigate the dynamics of agent groups evolved to perform a collective task, and in which the behavioural heterogeneity of the group is under evolutionary control. Two task domains are studied: solutions are evolved for the two tasks using an evolutionary algorithm called the Legion system. A new metric of heterogeneity is also introduced, which measures the heterogeneity of any evolved group behaviour. It was found that the amount of heterogeneity evolved in an agent group is dependent of the given problem domain: for the first task, the Legion system evolved heterogeneous groups; for the second task, primarily homogeneous groups evolved. We conclude that the proposed system, in conjunction with the introduced heterogeneity measure, can be used as a tool for investigating various issues concerning redundancy, robustness and division of labour in the context of evolutionary approaches to collective problem solving.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, R.C., Hobbs, J.D.: Dimensions of Communication and Social Organization in Multi-agent Robotic Systems. In: Meyer, J.-A., Roitblat, H.L., Wilson, S.W. (eds.) Procs. of the Second Intl. Conf. on Simulation of Adaptive Behavior, pp. 486–493. MIT Press, Cambridge (1992)

    Google Scholar 

  2. Arkin, R.C., Ali, K.S.: Integration of Reactive and Telerobotic Control in Multi-agent Robotic Systems. In: Cliff, D., Husbands, P., Meyer, J.-A., Wilson, S.W. (eds.) Procs. of the Third Intl. Conf. on Simulation of Adaptive Behavior, pp. 473–478. MIT Press, Cambridge (1994)

    Google Scholar 

  3. Balch, T.: Behavioral Diversity in Learning Robot Teams. PhD thesis, College of Computing, Georgia Institute of Technology (1998)

    Google Scholar 

  4. Balch, T.: Reward and Diversity in Multirobot Foraging. In: IJCAI 1999 Workshop on Agents Learning About, From and With other Agents, Sweden, July 31 - August 6 (1999)

    Google Scholar 

  5. Balch, T.: Hierarchic Social Entropy: An Information Theoretic Measure of Robot Group Diversity. Autonomous Robots 8(3) (July 2000) (to appear)

    Google Scholar 

  6. Bennett, F.H.: Automatic Creation of an Efficient Multi-Agent Architecture Using Genetic Programming with Architecture-Altering Operations. In: Koza, J.R., Goldberg, D.E., Fogel, D.B. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 30–38. MIT Press, Cambridge (1996)

    Google Scholar 

  7. Bonabeau, E., Sobkowski, A., Theraulaz, G., Deneubourg, J.-L.: Adaptive Task Allocation Inspired by a Model of Division of Labour in Social Insects. Sante Fe Institute Tech. Rep. 98-01-004 (1998)

    Google Scholar 

  8. Bull, L., Fogarty, C.: Evolutionary Computing in Multi-Agent Environments: Specification and Symbiogenesis. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 12–21. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Fahlman, S., Lebiere, C.: The Cascade-Correlation Learning Architecture. Carnegie Mellon University Tech. Rep. CMU-CS-90-100 (1990)

    Google Scholar 

  10. Fontan, M.S., Mataric, M.J.: A Study of Territoriality: The Role of Critical Mass in Adaptive Task Division. In: Maes, P., Mataric, M., Meyer, J.-A., Pollack, J., Wilson, S.W. (eds.) Procs. of the Fourth Intl. Conf. on Simulation of Adaptive Behavior, pp. 553–561. MIT Press, Cambridge (1996)

    Google Scholar 

  11. Goldberg, D., Mataric, M.J.: Interference as a Tool for Designing and Evaluating Multi-Robot Controllers. In: AAAI 1997: Procs. of the Fourteenth Natl. Conf. on Artificial Intelligence, pp. 637–642. MIT Press, Cambridge (1997)

    Google Scholar 

  12. Haynes, T., Sen, S.: Crossover Operators for Evolving a Team. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Gazon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 162–167. Morgan Kauffman, San Francisco (1997)

    Google Scholar 

  13. Langdon, W.B., Poli, R.: Fitness Causes Bloat. In: Second On-Line World Conference on Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer, London (1997)

    Google Scholar 

  14. Luke, S., Spector, L.: Evolving Teamwork and Coordination with Genetic Programming. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 141–149. MIT Press, Cambridge (1996)

    Google Scholar 

  15. Mataric, M.J.: Reinforcement Learning in the Multi-Robot Domain. Autonomous Robots 4(1), 73–83 (1997)

    Article  Google Scholar 

  16. Mataric, M.J.: Designing and Understanding Adaptive Group Behavior. Adaptive Behavior 4(1), 51–80 (1995)

    Article  Google Scholar 

  17. McFarland, D.J.: Animals as Cost-Based Robots. In: Boden, M. (ed.) The Philosophy of Artificial Life. Oxford University Press, Oxford (1996)

    Google Scholar 

  18. Ohno, S.: Evolution by Gene Duplication. Springer, New York (1970)

    Google Scholar 

  19. Ohta, T.: Multigene and Supergene Families. Oxford Surv. Evol. Biol. 5, 41–65 (1988)

    Google Scholar 

  20. Parker, L.: Heterogeneous Multi-Robot Cooperation. PhD thesis, Massachussets Institute of Technology (1994)

    Google Scholar 

  21. Potter, M., De Jong, K.: Evolving neural networks with collaborative species. In: Procs. of the 1995 Summer Computer Simulation Conference, Ottawa (1995)

    Google Scholar 

  22. Sims, K.: Evolving 3D Morphology and Behaviour by Competition. In: Brooks, R., Maes, P. (eds.) Artificial Life VI, pp. 28–39. MIT Press, Cambridge (1994)

    Google Scholar 

  23. Sneath, P., Sokal, R.: Numerical Taxonomy. W. H. Freeman and Company, San Francisco (1973)

    MATH  Google Scholar 

  24. Theraulaz, G., Goss, S., Gervet, J., Deneubourg, J.-L.: Task Differentiation in Polistes Wasp Colonies: a Model for Self-organizing Groups of Robots. In: Meyer, J.A., Wilson, S.W. (eds.) Procs. of the First Intl. Conf. on the Simulation of Adaptive Behaviour, pp. 346–355. MIT Press, Cambridge (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bongard, J.C. (2000). The Legion System: A Novel Approach to Evolving Heterogeneity for Collective Problem Solving. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds) Genetic Programming. EuroGP 2000. Lecture Notes in Computer Science, vol 1802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46239-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46239-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67339-2

  • Online ISBN: 978-3-540-46239-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics