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ABSTRACT 
One of the central challenges of computer science is to build a system that can automatically create 

computer programs that are competitive with those produced by humans.  This paper presents a candidate set 
of criteria that identify when a machine-created solution is competitive with a human-produced result.  We 
argue that the field of design is a useful testbed for determining whether an automated technique can produce 
results that are competitive with human-produced results.  We present several results that are competitive 
with the products of human creativity and inventiveness.  This claim is supported by the fact that each of the 
results infringe on previously issued patents. 

1. Introduction 
One of the central challenges of computer science is to get a computer to solve a problem without explicitly 
programming it. In particular, the challenge is to create an automatic system whose input is a high-level 
statement of a problem's requirements and whose output is a working computer program that solves the given 
problem. Paraphrasing Arthur Samuel (1959), this challenge concerns 

How can computers be made to do what needs to be done, without being told exactly how to do it? 
As Samuel (1983) explained, 

“The aim [is] ... to get machines to exhibit behavior, which if done by humans, would be assumed 
to involve the use of intelligence.” 

This paper provides an affirmative answer to the following two questions:  
• Can computer programs be automatically created? 
• Can automatically created programs be competitive with the products of human creativity and 
inventiveness? 

This paper focuses on a biologically inspired domain-independent technique, called genetic programming, 
that automatically creates computer programs to solve problems. Starting with a primordial ooze of thousands of 
randomly created computer programs, genetic programming progressively breeds a population of computer 
programs over a series of generations using the Darwinian principle of natural selection, recombination 
(crossover), mutation, gene duplication, gene deletion, and certain mechanisms of developmental biology.  

When we talk about a computer program (figure 1), we mean an entity that receives inputs, performs 
computations, and produces outputs.  Computer programs perform basic arithmetic and conditional 
computations on variables of various types (including integer, floating-point, and Boolean variables), perform 
iterations and recursions, store intermediate results in memory, organize groups of operations into reusable 
subroutines, pass information to subroutines in the form of dummy variables (formal parameters), receive 



information from subroutines in the form of return values, and organize subroutines and a main program into a 
hierarchy.   
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Figure 1  A computer program.   

We think that a system for automatically creating computer programs should create entities that possess most 
or all of the above essential features of computer programs (or reasonable equivalents thereof).  A non-
definitional list of attributes for a system for automatically creating computer programs would include the 
following 16 items:  

• Attribute No. 1 (Starts with "What needs to be done"): It starts from a high-level statement 
specifying the requirements of the problem.   
• Attribute No. 2 (Tells us "How to do it"): It produces a result in the form of a sequence of steps that 
can be executed on a computer.  
• Attribute No. 3 (Produces a computer program): It produces an entity that can run on a computer.   
• Attribute No. 4 (Automatic determination of program size):  It has the ability to automatically 
determine the exact number of steps that must be performed and thus does not require the user to 
prespecify the size of the solution.   
• Attribute No. 5 (Code reuse): It has the ability to automatically organize useful groups of steps so that 
they can be reused.  
• Attribute No. 6 (Parameterized reuse):  It has the ability to reuse groups of steps with different 
instantiations of values (formal parameters or dummy variables).   
• Attribute No. 7 (Internal storage): It has the ability to use internal storage in the form of single 
variables, vectors, matrices, arrays, stacks, queues, lists, relational memory, and other data structures.  
• Attribute No. 8 (Iterations, loops, and recursions): It has the ability to implement iterations, loops, 
and recursions.  
• Attribute No. 9 (Self-organization of hierarchies): It has the ability to automatically organize groups 
of steps into a hierarchy.   
• Attribute No. 10 (Automatic determination of program architecture):  It has the ability to 
automatically determine whether to employ subroutines, iterations, loops, recursions, and internal 
storage, and the number of arguments possessed by each subroutine, iteration, loop, recursion.   
• Attribute No. 11 (Wide range of programming constructs): It has the ability to implement analogs 
of the programming constructs that human computer programmers find useful, including macros, 
libraries, typing, pointers, conditional operations, logical functions, integer functions, floating-point 
functions, complex-valued functions, multiple inputs, multiple outputs, and machine code instructions.   
• Attribute No. 12 (Well-defined): It operates in a well-defined way.  It unmistakably distinguishes 
between what the user must provide and what the system delivers.   
• Attribute No. 13 (Problem-independent): It is problem-independent in the sense that the user does 
not have to modify the system's executable steps for each new problem.  
• Attribute No. 14 (Wide applicability): It produces a satisfactory solution to a wide variety of 
problems from many different fields.  
• Attribute No. 15 (Scalability): It scales well to larger versions of the same problem.   
• Attribute No. 16 (Competitive with human-produced results): It produces results that are 
competitive with those produced by human programmers, engineers, mathematicians, and designers.  

Conspicuously, the above list of 16 attributes does not preordain that formal logic or an explicit knowledge 
base must be used to achieve the goal of automatically creating computer programs.  Since computer science is 



founded on logic, many computer scientists unquestioningly assume that formal logic must play a preeminent 
role in any system for automatically creating computer programs.  Similarly, the vast majority of contemporary 
researchers in artificial intelligence believe that a system for automatically creating computer programs must 
revolve around an explicit knowledge base.  Indeed, over the past four decades, the field of artificial intelligence 
has been dominated by the strongly-asserted belief that the goal of getting a computer to solve problems 
automatically can be achieved only by means of formal logic and knowledge.  This approach typically entails 
the selection of a knowledge representation, the acquisition of the knowledge, the codification of the knowledge 
into a knowledge base, the depositing of the knowledge base into a computer, and the manipulation of the 
knowledge in the computer using formal logic.   

Most techniques of artificial intelligence, machine learning, neural networks, adaptive systems, 
reinforcement learning, or automated logic employ specialized structures in lieu of ordinary computer programs.  
These surrogate structures include if-then production rules, Horn clauses, decision trees, Bayesian networks, 
propositional logic, formal grammars, binary decision diagrams, frames, conceptual clusters, concept sets, 
numerical weight vectors (for neural nets), vectors of numerical coefficients for polynomials or other fixed 
expressions (for adaptive systems), genetic classifier system rules, fixed tables of values (as in reinforcement 
learning), or linear chromosome strings (as in the conventional genetic algorithm).   

Tellingly, except in unusual situations, the world's several million computer programmers do not use any of 
these surrogate structures for writing computer programs.   

Instead, human programmers write programs that perform arithmetic and conditional computations on 
variables of various types (including integer, floating-point, and Boolean variables), perform iterations and 
recursions, store intermediate results in memory, organize groups of operations into reusable subroutines, pass 
information to and from subroutines, and organize the subroutines and main program into a hierarchy.   

All of the above elements of ordinary computer programs have been in use since the beginning of the era of 
electronic computers in the l940s.  Significantly, none has fallen into disuse by human programmers.  Our view 
is that if one is really interested in addressing the challenge of getting computers to solve problems without 
explicitly programming them, then the search should be conducted in the space of computer programs.  
Moreover, we believe that computer programs are the best representation of computer programs. 

2 Criteria for Automatically Produced Results 
What do we mean when we say that an automatically created solution to a problem is competitive with the 
product of human creativity and inventiveness? 

We are not referring to the fact that a computer can rapidly print ten thousand payroll checks or that a 
computer can compute π to a million decimal places.  As Fogel, Owens, and Walsh (1966) said,  

Artificial intelligence is realized only if an inanimate machine can solve problems ... not because of 
the machine's sheer speed and accuracy, but because it can discover for itself new techniques for 
solving the problem at hand.   

We think it is fair to say that an automatically created result is competitive with one produced by human 
engineers, designers, mathematicians, or programmers if it satisfies any of the following eight criteria (or any 
other similarly stringent criterion):   

(A) The result was patented as an invention in the past, is an improvement over a patented invention, or 
would qualify today as a patentable new invention.  
(B) The result is equal to or better than a result that was accepted as a new scientific result at the time 
when it was published in a peer-reviewed journal.   
(C) The result is equal to or better than a result that was placed into a database or archive of results 
maintained by an internationally recognized panel of scientific experts.   
(D) The result is publishable in its own right as a new scientific result (independent of the fact that the 
result was mechanically created).  
(E) The result is equal to or better than the most recent human-created solution to a long-standing 
problem for which there has been a succession of increasingly better human-created solutions.  
(F) The result is equal to or better than a result that was considered an achievement in its field at the time 
it was first discovered.  
(G) The result solves a problem of indisputable difficulty in its field.   
(H) The result holds its own or wins a regulated competition involving human contestants (in the form of 
either live human players or human-written computer programs).   



3. Genetic Programming 
Genetic programming is an extension of the genetic algorithm described in John Holland's pioneering book 
Adaptation in Natural and Artificial Systems (Holland 1975). Genetic programming applies the genetic 
algorithm to the space of computer programs.   

The biological metaphor underlying genetic programming is very different from the underpinnings of all 
other techniques that have previously been tried in pursuit of the goal of automatically creating computer 
programs.  Many computer scientists and mathematicians are baffled by the suggestion biology might be 
relevant to solving important problems in their fields. However, we do not view biology as an unlikely well 
from which to draw a solution to the challenge of getting a computer to solve a problem without explicitly 
programming it.  Quite the contrary – we view biology as a most likely source.  Indeed, genetic programming is 
based on the only method that has ever produced intelligence – the time-tested method of evolution and natural 
selection.  

Of course, we did not originate the idea that machine intelligence may be realized using a biological 
approach.  Turing made the connection between searches and the challenge of getting a computer to solve a 
problem without explicitly programming it in his 1948 essay "Intelligent Machines" (Ince 1992).  

Further research into intelligence of machinery will probably be very greatly concerned with 
“searches” ...  

Turing then identified three broad approaches by which search might be used to automatically create an 
intelligent computer program.  

One approach that Turing identified is a search through the space of integers representing candidate 
computer programs. This approach, of course, uses many of the techniques that Turing used in his own work on 
the foundations of computation.   

Another approach is the "cultural search" which relies on knowledge and expertise acquired over a period of 
years from others.  This approach is akin to present-day knowledge-based systems.   

The third approach that Turing specifically identified is “genetical or evolutionary search.”  Turing said, 

There is the genetical or evolutionary search by which a combination of genes is looked for, the 
criterion being the survival value. The remarkable success of this search confirms to some extent 
the idea that intellectual activity consists mainly of various kinds of search. 

Turing did not specify how to conduct the "genetical or evolutionary search" for a computer program.  
However, his 1950 paper "Computing Machinery and Intelligence"  (Ince 1992) suggested how natural selection 
and evolution might be incorporated into the search for intelligent machines.   

We cannot expect to find a good child-machine at the first attempt.  One must experiment with 
teaching one such machine and see how well it learns.  One can then try another and see if it is 
better or worse.  There is an obvious connection between this process and evolution, by the 
identifications 

Structure of the child machine = Hereditary material 

Changes of the child machine = Mutations 

Natural selection = Judgment of the experimenter 

3.1 Implementation of Turing's Third Way 
Genetic programming implements Turing’s third way to achieve machine intelligence. Specifically, genetic 
programming starts with an initial population (generation 0) of randomly generated computer programs 
composed of the given primitive functions and terminals. The programs in the population are, in general, of 
different sizes and shapes. The creation of the initial random population is a blind random search of the space of 
computer programs composed of the problem's available functions and terminals.  

On each generation of a run of genetic programming, each individual in the population of programs is 
evaluated as to its fitness in solving the problem at hand. The programs in generation 0 of a run almost always 
have exceedingly poor fitness for non-trivial problems of interest. Nonetheless, some individuals in a population 
will turn out to be somewhat more fit than others. These differences in performance are then exploited so as to 
direct the remainder of the search into promising areas of the search space. The Darwinian principle of 
reproduction and survival of the fittest is used to probabilistically select, on the basis of fitness, individuals from 
the population to participate in various operations. A small percentage (e.g., 9%) of the selected individuals are 
reproduced (copied) from one generation to the next. A very small percentage (e.g. 1%) of the selected 
individuals are mutated in a random way. About 90% of the selected individuals participate in the genetic 
operation of crossover (sexual recombination) to create offspring programs by recombining genetic material 



from two parents. All operations are performed so as to create offspring that are syntactically valid and 
executable. After the genetic operations are performed on the current population, the population of offspring 
(i.e., the new generation) replaces the old population (i.e., the old generation). Then, each individual in the new 
population of programs is measured for fitness, and this iterative process is repeated over many generations.  

Probabilistic steps are pervasive in genetic programming.  Probability is involved in the creation the 
individuals in the initial population, the selection of individuals to participate in the operations of reproduction, 
crossover, and mutation, and the selection of crossover and mutation points within parental programs.  

The dynamic variability of the size and shape of the computer programs that are created during the run is an 
important feature of genetic programming. It is often difficult and unnatural to try to specify or restrict the size 
and shape of the eventual solution in advance.  

Additional information on current research in genetic programming can be found in Genetic Programming 
III: Darwinian Invention and Problem Solving (Koza, Bennett, Andre, and Keane 1999a) and the accompanying 
videotape (Koza, Bennett, Andre, Keane, and Brave 1999b) and in Koza 1992; Koza and Rice 1992,; Koza 
1994a; Koza 1994b; Banzhaf, Nordin, Keller, and Francone 1998; Langdon 1998; Kinnear 1994; Angeline and 
Kinnear 1996; Spector, Langdon, O'Reilly, and Angeline 1999; Koza, Goldberg, Fogel, and Riolo 1996; Koza, 
Deb, Dorigo, Fogel, Garzon, Iba, and Riolo 1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, 
Goldberg, Iba, and Riolo 1998; Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela, and Smith 1999; Banzhaf, 
Poli, Schoenauer, and Fogarty 1998; and Poli, Nordin, Langdon, and Fogarty 1999.  

4. Design as a Testbed for Automatically Produced Results 
Design is a major activity of practicing engineers. The design process entails creation of a complex structure to 
satisfy user-defined requirements. Since the design process typically entails tradeoffs between competing 
considerations, the end product of the process is usually a satisfactory and compliant design as opposed to a 
perfect design. Design is usually viewed as requiring creativity and human intelligence. Consequently, the field 
of design is a source of challenging problems for automated techniques of machine intelligence. In particular, 
design problems are useful for determining whether an automated technique can produce results that are 
competitive with human-produced results.  

The design (synthesis) of analog electrical circuits is especially challenging. The design process for analog 
circuits begins with a high-level description of the circuit's desired behavior and characteristics and entails 
creation of both the topology and the sizing of a satisfactory circuit. The topology comprises the gross number 
of components in the circuit, the type of each component (e.g., a capacitor), and a list of all connections between 
the components. The sizing involves specifying the values (typically numerical) of each of the circuit's 
components.  

Although considerable progress has been made in automating the synthesis of certain categories of purely 
digital circuits, the synthesis of analog circuits and mixed analog-digital circuits has not proved to be as 
amenable to automation. There is no previously known general technique for automatically creating an analog 
circuit from a high-level statement of the design goals of the circuit. As O. Aaserud and I. Ring Nielsen (1995) 
observe,  

Analog designers are few and far between. In contrast to digital design, most of the analog circuits 
are still handcrafted by the experts or so-called 'zahs' of analog design. The design process is 
characterized by a combination of experience and intuition and requires a thorough knowledge of 
the process characteristics and the detailed specifications of the actual product.  

Analog circuit design is known to be a knowledge-intensive, multiphase, iterative task, which 
usually stretches over a significant period of time and is performed by designers with a large 
portfolio of skills. It is therefore considered by many to be a form of art rather than a science.  

This paper focuses on three particular problems of analog circuit synthesis, namely the design of a lowpass 
filter circuit, the design of a high-gain, low-distortion, low-bias amplifier, and the design of a cube root 
computational circuit.  

A simple analog filter is a one-input, one-output circuit that receives a signal as its input and passes the 
frequency components of the incoming signal that lie in a specified range (called the passband) while 
suppressing the frequency components that lie in all other frequency ranges (the stopband). Specifically, the 
goal is to design a lowpass filter composed of capacitors and inductors that passes all frequencies below 1,000 
Hertz (Hz) and suppresses all frequencies above 2,000 Hz.  

An amplifier is a one-input, one-output circuit whose output is a constant multiple of its input. We are 
seeking a high-gain, low-distortion, low-bias amplifier composed of transistors, diodes, capacitors, resistors, and 
connections to power sources.   

An analog computational circuit is a one-input, one-output circuit whose output is a specified mathematical 
function. The design of computational circuits is exceedingly difficult even for seemingly mundane 



mathematical functions.  Success often relies on the clever exploitation of some aspect of the underlying device 
physics of the components that is unique to the particular desired mathematical function.  Because of this, the 
implementation of each different mathematical function typically requires an entirely different clever insight and 
an entirely different circuit. We are seeking a computational circuit composed of transistors, diodes, capacitors, 
resistors, and connections to power sources. 

It should be noted that the approach described in this paper has also been successfully applied to numerous 
other problems of analog circuit synthesis, including the design of a temperature-sensing circuit, a voltage 
reference circuit, a time-optimal robot controller circuit, a difficult-to-design asymmetric bandpass filter, 
crossover filters, a double passband filter, bandstop filters, highpass filters, frequency discriminator circuits, a 
frequency-measuring circuit, other amplifiers, and other computational circuits.  

5. Applying Genetic Programming to Circuit Synthesis 
Genetic programming can be applied to the problem of synthesizing circuits if a mapping is established between 
the program trees (rooted, point-labeled trees with ordered branches) used in genetic programming and the 
labeled cyclic graphs germane to electrical circuits. The principles of developmental biology provide the 
motivation for mapping trees into circuits by means of a developmental process that begins with a simple 
embryo. For circuits, the embryo typically includes fixed wires that connect the inputs and outputs of the 
particular circuit being designed and certain fixed components (such as source and load resistors). Until these 
wires are modified, the circuit does not produce interesting output. An electrical circuit is developed by 
progressively applying the functions in a circuit-constructing program tree to the modifiable wires of the embryo 
(and, during the developmental process, to new components and modifiable wires).  

An electrical circuit is created by executing the functions in a circuit-constructing program tree. The 
functions are progressively applied in a developmental process to the embryo and its successors until all of the 
functions in the program tree are executed. That is, the functions in the circuit-constructing program tree 
progressively side-effect the embryo and its successors until a fully developed circuit eventually emerges. The 
functions are applied in a breadth-first order.  

The functions in the circuit-constructing program trees are divided into five categories: (1) topology-
modifying functions that alter the circuit topology, (2) component-creating functions that insert components into 
the circuit, (3) development-controlling functions that control the development process by which the embryo 
and its successors is changed into a fully developed circuit, (4) arithmetic-performing functions that appear in 
subtrees as argument(s) to the component-creating functions and specify the numerical value of the component, 
and (5) automatically defined functions that appear in the automatically defined functions and potentially enable 
certain substructures of the circuit to be reused (with parameterization). 

Before applying genetic programming to a problem of circuit design, seven major preparatory steps are 
required: (1) identify the embryonic circuit, (2) determine the architecture of the circuit-constructing program 
trees, (3) identify the primitive functions of the program trees, (4) identify the terminals of the program trees, (5) 
create the fitness measure, (6) choose control parameters for the run, and (7) determine the termination criterion 
and method of result designation.  

A detailed discussion concerning how to apply these seven preparatory steps to particular problems is found 
in Koza, Bennett, Andre, and Keane 1999a (chapter 25).  

6. Results on Illustrative Problems 
6. 1 Campbell 1917 Ladder Filter Patent 
The best circuit (figure 2) of generation 49 of one run of genetic programming on the problem of synthesizing a 
lowpass filter is a 100% compliant circuit.  

 
Figure 2 Evolved Campbell filter.  

The evolved circuit is what is now called a cascade (ladder) of identical π sections and is shown and 
analyzed in Koza, Bennett, Andre, and Keane 1999a (chapter 25). The evolved circuit has the recognizable 
topology of the circuit for which George Campbell of American Telephone and Telegraph received U. S. patent 
1,227,113 in 1917.  In addition to possessing the topology of the Campbell filter, the numerical value of all the 
components in the evolved circuit closely approximate the numerical values specified in Campbell’s 1917 



patent. But for the fact that this 1917 patent has expired, the evolved circuit would infringe on the Campbell 
patent.  

The fact that genetic programming rediscovered both the topology and sizing of an electrical circuit that was 
unobvious "to a person having ordinary skill in the art" establishes that this evolved result satisfies Arthur 
Samuel's criterion for artificial intelligence and machine learning (quoted in section 1).  

Since filing for a patent entails the expenditure of a considerable amount of time and money, patents are 
generally sought, in the first place, only if an individual or business believes the inventions are likely to be 
useful in the real world and economically rewarding. Patents are only issued if an arms-length examiner is 
convinced that the proposed invention is novel, useful, and satisfies the statutory test for unobviousness.  

6.2 Zobel 1925 “M-Derived Half Section” Patent 
In another run of this same problem of synthesizing a lowpass filter, a 100%-compliant circuit (figure 3) was 
evolved in generation 34.   

 
Figure 3 Evolved Zobel filter.  

This evolved circuit (presented in Koza, Bennett, Andre, and Keane 1999a, chapter 25) is equivalent to a 
cascade of three symmetric T-sections and an M-derived half section. Otto Zobel of American Telephone and 
Telegraph Company invented the idea of adding an “M-derived half section” to one or more “constant K” 
sections.  

6.3 Cauer 1934 – 1936 Elliptic Patents 
In yet another run of this same problem of synthesizing a lowpass filter, a 100% compliant circuit (figure 4) 
emerged in generation 31 (Koza, Bennett, Andre, and Keane 1999a, chapter 27).  

 
Figure 4 Evolved Cauer (elliptic) filter topology.  

This circuit has the recognizable elliptic topology that was invented and patented by Wilhelm Cauer in 1934, 
1935, and 1936. The Cauer filter was a significant advance (both theoretically and commercially) over the 
earlier filter designs of Campbell, Zobel, Johnson, Butterworth, and Chebychev. For example, for one 
commercially important set of specifications for telephones, a fifth-order elliptic filter matches the behavior of a 
17th-order Butterworth filter or an eighth-order Chebychev filter. The fifth-order elliptic filter has one less 
component than the eighth-order Chebychev filter. As Van Valkenburg (1982) relates in connection with the 
history of the elliptic filter:  

Cauer first used his new theory in solving a filter problem for the German telephone industry. His 
new design achieved specifications with one less inductor than had ever been done before. The 
world first learned of the Cauer method not through scholarly publication but through a patent 
disclosure, which eventually reached the Bell Laboratories. Legend has it that the entire 
Mathematics Department of Bell Laboratories spent the next two weeks at the New York Public 
library studying elliptic functions. Cauer had studied mathematics under Hilbert at Goettingen, and 
so elliptic functions and their applications were familiar to him.  

Genetic programming did not, of course, study mathematics under Hilbert or anybody else. Instead, the 
elliptic topology emerged from a run of genetic programming as a natural consequence of the problem's fitness 
measure and natural selection – not because the run was primed with domain knowledge about elliptic functions 
or filters or electrical circuitry. Genetic programming opportunistically reinvented the elliptic topology because 
necessity (fitness) is the mother of invention.  



6.4 Darlington 1952 Emitter-Follower Patent 
Sidney Darlington of the Bell Telephone Laboratories obtained some 40 patents on numerous fundamental 
electronic circuits. In particular, he obtained U. S. patent 2,663,806 for what is now called the Darlington 
emitter-follower section. We have evolved Darlington emitter-follower sections on 12 occasions in the process 
of solving problems of analog circuit synthesis.   

 
Figure 5 Evolved 96 dB amplifier.  

For example, figure 5 shows the best circuit from generation 86 of a run of the problem of evolving a high-
gain, low-distortion, low-bias amplifier. The circuit has 25 transistors, no diodes, two capacitors, and two 
resistors and contains a Darlington emitter-follower section (involving transistors Q25 and Q5). 

As another example, figure 6 shows the best-of-run circuit from generation 57 of the problem of 
synthesizing a cube root computational circuit. The circuit has 38 transistors, seven diodes, and 18 resistors.   

 
Figure 6 Evolved cube root computational circuit.  

7 Additional Results 
Table 1 shows 14 instances of results where genetic programming has produced results that are competitive with 
the products of human creativity and inventiveness (Koza, Bennett, Andre, and Keane 1999a).  Each claim is 
accompanied by the particular criterion (from section 2) that establishes the basis for the claim.  The instances in 
the table include classification problems from the field of computational molecular biology, a long-standing 
problem involving cellular automata, a problem of synthesizing the design of a minimal sorting network, and 
several problems of synthesizing the design of analog electrical circuits.  As can be seen, 10 of the 14 instances 
in the table involve previously patented inventions.  The evolved results for claim instances 1, 2, 13, and 14 in 



the table used architecture altering operations (Koza, Bennett, Andre, and Keane 1999a) to automatically 
determine that subroutines were useful in solving the problem.   

Table 1 Fourteen instances where genetic programming has produced results that are competitive with 
human-produced results.  

 Claimed instance Basis 
for claim 

1 Creation of four different algorithms for the transmembrane segment identification 
problem for proteins 

B, E 

2 Creation of a sorting network for seven items using only 16 steps A, D 
3 Rediscovery  of the Campbell ladder topology for lowpass and highpass filters A, F 
4 Rediscovery  of “M-derived half section” and “constant K” filter sections A, F 
5 Rediscovery  of the Cauer (elliptic) topology for filters A, F 
6 Automatic decomposition of the problem of synthesizing a crossover filter A, F 
7 Rediscovery of a recognizable voltage gain stage and a Darlington emitter-follower 

section of an amplifier and other circuits 
A, F 

8 Synthesis of 60 and 96 decibel amplifiers A, F 
9 Synthesis of analog computational circuits for  squaring, cubing, square root, cube 

root, logarithm, and Gaussian functions 
A, D, G 

10 Synthesis of a real-time analog circuit for time-optimal control of a robot G 
11 Synthesis of an electronic thermometer A, G 
12 Synthesis of a voltage reference circuit A, G 
13 Creation of a cellular automata rule for the majority classification problem that is 

better than the Gacs-Kurdyumov-Levin (GKL) rule and all other known rules written 
by humans 

D, E 

14 Creation of motifs that detect the D–E–A-D box family of proteins and the 
manganese superoxide dismutase family 

C 
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