
Genetic Programming: Biologically Inspired Computation that
Exhibits Creativity in Solving Non-Trivial Problems

Forrest H Bennett III
Genetic Programming Inc., Los Altos, California

forrest@evolute.com

John R. Koza
Department of Medicine, Stanford University, Stanford, California

koza@stanford.edu
http://www.smi.stanford.edu/people/koza/

Martin A. Keane
Econometrics Inc., Chicago, Illinois

makeane@ix.netcom.com

David Andre
Computer Science Division, University of California, Berkeley, California

dandre@cs.berkeley.edu

ABSTRACT
This paper describes a biologically inspired domain-independent technique, called genetic programming,

that automatically creates computer programs to solve problems. We argue that the field of design is a useful
testbed for determining whether an automated technique can produce results that are competitive with
human-produced results. We present several results that are competitive with the products of human
creativity and inventiveness. This claim is supported by the fact that each of the results infringe on
previously issued patents. This paper presents a candidate set of criteria that identify when a machine-created
solution to a problem is competitive with a human-produced result.

1. Introduction
One of the central challenges of computer science
is to get a computer to solve a problem without
explicitly programming it. In particular, the
challenge is to create an automatic system whose
input is a high-level statement of a problem's
requirements and whose output is a working
computer program that solves the given problem.
Paraphrasing Arthur Samuel (1959), this challenge
concerns

How can computers be made to do
what needs to be done, without being
told exactly how to do it?

As Samuel (1983) explained,

“The aim [is] ... to get machines to
exhibit behavior, which if done by
humans, would be assumed to involve
the use of intelligence.”

This paper provides an affirmative answer to
the following two questions:

• Can computer programs be automatically
created?

• Can automatically created programs be
competitive with the products of human
creativity and inventiveness?

This paper focuses on a biologically inspired
domain-independent technique, called genetic
programming, that automatically creates computer
programs to solve problems. Starting with a
primordial ooze of thousands of randomly created
computer programs, genetic programming
progressively breeds a population of computer
programs over a series of generations using the
Darwinian principle of natural selection,
recombination (crossover), mutation, gene
duplication, gene deletion, and certain mechanisms
of developmental biology.

Section 2 states what we mean when we say
that an automatically created solution to a problem
is competitive with the product of human
creativity. Section 3 briefly describes genetic
programming. Section 4 presents a problem
involving the automatic synthesis (design) of an
analog electrical circuit, namely a lowpass filter.
Section 5 describes how genetic programming is
applied to the problem of analog circuit synthesis.
Section 6 shows the results. Section 7 discusses the

importance of illogic in creativity and
inventiveness. Section 8 shows additional results.

2 Inventiveness and Creativity
What do we mean when we say that an
automatically created solution to a problem is
competitive with the product of human creativity
and inventiveness?

We are not referring to the fact that a computer
can rapidly print ten thousand payroll checks or
that a computer can compute π to a million decimal
places. As Fogel, Owens, and Walsh (1966) said,

Artificial intelligence is realized only
if an inanimate machine can solve
problems ... not because of the
machine's sheer speed and accuracy,
but because it can discover for itself
new techniques for solving the
problem at hand.

We think it is fair to say that an automatically
created result is competitive with one produced by
human engineers, designers, mathematicians, or
programmers if it satisfies any of the following
eight criteria (or any other similarly stringent
criterion):

(A) The result was patented as an invention
in the past, is an improvement over a
patented invention, or would qualify today
as a patentable new invention.
(B) The result is equal to or better than a
result that was accepted as a new scientific
result at the time when it was published in a
peer-reviewed journal.
(C) The result is equal to or better than a
result that was placed into a database or
archive of results maintained by an
internationally recognized panel of scientific
experts.
(D) The result is publishable in its own right
as a new scientific result (independent of the
fact that the result was mechanically
created).
(E) The result is equal to or better than the
most recent human-created solution to a
long-standing problem for which there has
been a succession of increasingly better
human-created solutions.
(F) The result is equal to or better than a
result that was considered an achievement in
its field at the time it was first discovered.
(G) The result solves a problem of
indisputable difficulty in its field.
(H) The result holds its own or wins a
regulated competition involving human
contestants (in the form of either live human

players or human-written computer
programs).

3. Genetic Programming
Genetic programming is an extension of the genetic
algorithm described in John Holland's pioneering
book Adaptation in Natural and Artificial Systems
(Holland 1975). Genetic programming applies the
genetic algorithm to the space of computer
programs.

The biological metaphor underlying genetic
programming is very different from the
underpinnings of all other techniques that have
previously been tried in pursuit of the goal of
automatically creating computer programs. Many
computer scientists and mathematicians are baffled
by the suggestion biology might be relevant to
solving important problems in their fields.
However, we do not view biology as an unlikely
well from which to draw a solution to the challenge
of getting a computer to solve a problem without
explicitly programming it. Quite the contrary – we
view biology as a most likely source. Indeed,
genetic programming is based on the only method
that has ever produced intelligence – the time-
tested method of evolution and natural selection.

Of course, we did not originate the idea that
machine intelligence may be realized using a
biological approach. Turing made the connection
between searches and the challenge of getting a
computer to solve a problem without explicitly
programming it in his 1948 essay "Intelligent
Machines" (Ince 1992).

Further research into intelligence of
machinery will probably be very
greatly concerned with “searches” ...

Turing then identified three broad approaches
by which search might be used to automatically
create an intelligent computer program.

One approach that Turing identified is a search
through the space of integers representing
candidate computer programs. This approach, of
course, uses many of the techniques that Turing
used in his own work on the foundations of
computation.

Another approach is the "cultural search" which
relies on knowledge and expertise acquired over a
period of years from others. This approach is akin
to present-day knowledge-based systems.

The third approach that Turing specifically
identified is “genetical or evolutionary search.”
Turing said,

There is the genetical or evolutionary
search by which a combination of
genes is looked for, the criterion being
the survival value. The remarkable
success of this search confirms to
some extent the idea that intellectual

activity consists mainly of various
kinds of search.

Turing did not specify how to conduct the
"genetical or evolutionary search" for a computer
program. However, his 1950 paper "Computing
Machinery and Intelligence" (Ince 1992) suggested
how natural selection and evolution might be
incorporated into the search for intelligent
machines.

We cannot expect to find a good child-
machine at the first attempt. One must
experiment with teaching one such
machine and see how well it learns.
One can then try another and see if it is
better or worse. There is an obvious
connection between this process and
evolution, by the identifications

Structure of the child machine =
Hereditary material

Changes of the child machine =
Mutations

Natural selection = Judgment of the
experimenter

3.1 Implementation of Turing's Third
Way to Achieve Machine
Intelligence

Genetic programming implements Turing’s third
way to achieve machine intelligence. Specifically,
genetic programming starts with an initial
population (generation 0) of randomly generated
computer programs composed of the given
primitive functions and terminals. The programs in
the population are, in general, of different sizes and
shapes. The creation of the initial random
population is a blind random search of the space of
computer programs composed of the problem's
available functions and terminals.

On each generation of a run of genetic
programming, each individual in the population of
programs is evaluated as to its fitness in solving the
problem at hand. The programs in generation 0 of a
run almost always have exceedingly poor fitness
for non-trivial problems of interest. Nonetheless,
some individuals in a population will turn out to be
somewhat more fit than others. These differences
in performance are then exploited so as to direct the
remainder of the search into promising areas of the
search space. The Darwinian principle of
reproduction and survival of the fittest is used to
probabilistically select, on the basis of fitness,
individuals from the population to participate in
various operations. A small percentage (e.g., 9%)
of the selected individuals are reproduced (copied)
from one generation to the next. A very small
percentage (e.g. 1%) of the selected individuals are

mutated in a random way. About 90% of the
selected individuals participate in the genetic
operation of crossover (sexual recombination) to
create offspring programs by recombining genetic
material from two parents. All operations are
performed so as to create offspring that are
syntactically valid and executable. After the genetic
operations are performed on the current population,
the population of offspring (i.e., the new
generation) replaces the old population (i.e., the old
generation). Then, each individual in the new
population of programs is measured for fitness, and
this iterative process is repeated over many
generations.

Probabilistic steps are pervasive in genetic
programming. Probability is involved in the
creation the individuals in the initial population, the
selection of individuals to participate in the
operations of reproduction, crossover, and
mutation, and the selection of crossover and
mutation points within parental programs.

The dynamic variability of the size and shape of
the computer programs that are created during the
run is an important feature of genetic
programming. It is often difficult and unnatural to
try to specify or restrict the size and shape of the
eventual solution in advance.

Additional information on current research in
genetic programming can be found in Genetic
Programming III: Darwinian Invention and
Problem Solving (Koza, Bennett, Andre, and Keane
1999a) and the accompanying videotape (Koza,
Bennett, Andre, Keane, and Brave 1999b) and in
Koza 1992; Koza and Rice 1992,; Koza 1994a;
Koza 1994b; Banzhaf, Nordin, Keller, and
Francone 1998; Langdon 1998; Kinnear 1994;
Angeline and Kinnear 1996; Spector, Langdon,
O'Reilly, and Angeline 1999; Koza, Goldberg,
Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel,
Garzon, Iba, and Riolo 1997; Koza, Banzhaf,
Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg,
Iba, and Riolo 1998; Banzhaf, Poli, Schoenauer,
and Fogarty 1998; and Poli, Nordin, Langdon, and
Fogarty 1999.

4. Design as a Testbed for
Machine Intelligence

Design is a major activity of practicing engineers.
The design process entails creation of a complex
structure to satisfy user-defined requirements.
Since the design process typically entails tradeoffs
between competing considerations, the end product
of the process is usually a satisfactory and
compliant design as opposed to a perfect design.
Design is usually viewed as requiring creativity and
human intelligence. Consequently, the field of
design is a source of challenging problems for
automated techniques of machine intelligence. In
particular, design problems are useful for

determining whether an automated technique can
produce results that are competitive with human-
produced results.

The design (synthesis) of analog electrical
circuits is especially challenging. The design
process for analog circuits begins with a high-level
description of the circuit's desired behavior and
characteristics and entails creation of both the
topology and the sizing of a satisfactory circuit.
The topology comprises the gross number of
components in the circuit, the type of each
component (e.g., a capacitor), and a list of all
connections between the components. The sizing
involves specifying the values (typically numerical)
of each of the circuit's components.

Although considerable progress has been made
in automating the synthesis of certain categories of
purely digital circuits, the synthesis of analog
circuits and mixed analog-digital circuits has not
proved to be as amenable to automation. There is
no previously known general technique for
automatically creating an analog circuit from a
high-level statement of the design goals of the
circuit. As O. Aaserud and I. Ring Nielsen (1995)
observe,

Analog designers are few and far
between. In contrast to digital design,
most of the analog circuits are still
handcrafted by the experts or so-called
'zahs' of analog design. The design
process is characterized by a
combination of experience and
intuition and requires a thorough
knowledge of the process
characteristics and the detailed
specifications of the actual product.

Analog circuit design is known to be a
knowledge-intensive, multiphase,
iterative task, which usually stretches
over a significant period of time and is
performed by designers with a large
portfolio of skills. It is therefore
considered by many to be a form of art
rather than a science.

This paper focuses on three particular problems
of analog circuit synthesis, namely the design of a
lowpass filter circuit, the design of a high-gain,
low-distortion, low-bias amplifier, and the design
of a cube root computational circuit.

A simple analog filter is a one-input, one-output
circuit that receives a signal as its input and passes
the frequency components of the incoming signal
that lie in a specified range (called the passband)
while suppressing the frequency components that
lie in all other frequency ranges (the stopband).
Specifically, the goal is to design a lowpass filter
composed of capacitors and inductors that passes

all frequencies below 1,000 Hertz (Hz) and
suppresses all frequencies above 2,000 Hz.

An amplifier is a one-input, one-output circuit
whose output is a constant multiple of its input. We
are seeking a high-gain, low-distortion, low-bias
amplifier composed of transistors, diodes,
capacitors, resistors, and connections to power
sources.

An analog computational circuit is a one-input,
one-output circuit whose output is a specified
mathematical function. The design of
computational circuits is exceedingly difficult even
for seemingly mundane mathematical functions.
Success often relies on the clever exploitation of
some aspect of the underlying device physics of the
components that is unique to the particular desired
mathematical function. Because of this, the
implementation of each different mathematical
function typically requires an entirely different
clever insight and an entirely different circuit. We
are seeking a computational circuit composed of
transistors, diodes, capacitors, resistors, and
connections to power sources.

It should be noted that the approach described
in this paper has also been successfully applied to
numerous other problems of analog circuit
synthesis, including the design of a temperature-
sensing circuit, a voltage reference circuit, a time-
optimal robot controller circuit, a difficult-to-
design asymmetric bandpass filter, crossover
filters, a double passband filter, bandstop filters,
highpass filters, frequency discriminator circuits, a
frequency-measuring circuit, other amplifiers, and
other computational circuits.

5. Applying Genetic
Programming to Circuit
Synthesis

Genetic programming can be applied to the
problem of synthesizing circuits if a mapping is
established between the program trees (rooted,
point-labeled trees with ordered branches) used in
genetic programming and the labeled cyclic graphs
germane to electrical circuits. The principles of
developmental biology provide the motivation for
mapping trees into circuits by means of a
developmental process that begins with a simple
embryo. For circuits, the embryo typically includes
fixed wires that connect the inputs and outputs of
the particular circuit being designed and certain
fixed components (such as source and load
resistors). Until these wires are modified, the
circuit does not produce interesting output. An
electrical circuit is developed by progressively
applying the functions in a circuit-constructing
program tree to the modifiable wires of the embryo
(and, during the developmental process, to new
components and modifiable wires).

An electrical circuit is created by executing the
functions in a circuit-constructing program tree.
The functions are progressively applied in a
developmental process to the embryo and its
successors until all of the functions in the program
tree are executed. That is, the functions in the
circuit-constructing program tree progressively
side-effect the embryo and its successors until a
fully developed circuit eventually emerges. The
functions are applied in a breadth-first order.

The functions in the circuit-constructing
program trees are divided into five categories: (1)
topology-modifying functions that alter the circuit
topology, (2) component-creating functions that
insert components into the circuit, (3)
development-controlling functions that control the
development process by which the embryo and its
successors is changed into a fully developed
circuit, (4) arithmetic-performing functions that
appear in subtrees as argument(s) to the
component-creating functions and specify the
numerical value of the component, and (5)
automatically defined functions that appear in the
automatically defined functions and potentially
enable certain substructures of the circuit to be
reused (with parameterization).

Before applying genetic programming to a
problem of circuit design, seven major preparatory
steps are required: (1) identify the embryonic
circuit, (2) determine the architecture of the circuit-
constructing program trees, (3) identify the
primitive functions of the program trees, (4)
identify the terminals of the program trees, (5)
create the fitness measure, (6) choose control
parameters for the run, and (7) determine the
termination criterion and method of result
designation.

A detailed discussion concerning how to apply
these seven preparatory steps to particular
problems is found in Koza, Bennett, Andre, and
Keane 1999a (chapter 25).

6. Results on Illustrative Problems
6. 1 Campbell 1917 Ladder Filter

Patent
The best circuit (figure 1) of generation 49 of one
run of genetic programming on the problem of
synthesizing a lowpass filter is a 100% compliant
circuit.

Figure 1 Evolved Campbell filter.

The evolved circuit is what is now called a
cascade (ladder) of identical π sections and is
shown and analyzed in Koza, Bennett, Andre, and
Keane 1999a (chapter 25). The evolved circuit has
the recognizable topology of the circuit for which
George Campbell of American Telephone and
Telegraph received U. S. patent 1,227,113 in 1917.
Claim 2 of Campbell’s patent covered,

“An electric wave filter consisting of a
connecting line of negligible
attenuation composed of a plurality of
sections, each section including a
capacity element and an inductance
element, one of said elements of each
section being in series with the line
and the other in shunt across the line,
said capacity and inductance elements
having precomputed values dependent
upon the upper limiting frequency and
the lower limiting frequency of a range
of frequencies it is desired to transmit
without attenuation, the values of said
capacity and inductance elements
being so proportioned that the
structure transmits with practically
negligible attenuation sinusoidal
currents of all frequencies lying
between said two limiting frequencies,
while attenuating and approximately
extinguishing currents of neighboring
frequencies lying outside of said
limiting frequencies.”

In addition to possessing the topology of the
Campbell filter, the numerical value of all the
components in the evolved circuit closely
approximate the numerical values specified in
Campbell’s 1917 patent. But for the fact that this
1917 patent has expired, the evolved circuit would
infringe on the Campbell patent.

The legal criteria for obtaining a U. S. patent
are that the proposed invention be "new” and
“useful" and

... the differences between the subject
matter sought to be patented and the
prior art are such that the subject
matter as a whole would [not] have
been obvious at the time the invention
was made to a person having ordinary
skill in the art to which said subject
matter pertains. (35 United States
Code 103a).

The fact that genetic programming rediscovered
both the topology and sizing of an electrical circuit
that was unobvious "to a person having ordinary
skill in the art" establishes that this evolved result
satisfies Arthur Samuel's criterion for artificial

intelligence and machine learning (quoted in
section 1).

Since filing for a patent entails the expenditure
of a considerable amount of time and money,
patents are generally sought, in the first place, only
if an individual or business believes the inventions
are likely to be useful in the real world and
economically rewarding. Patents are only issued if
an arms-length examiner is convinced that the
proposed invention is novel, useful, and satisfies
the statutory test for unobviousness.

6.2 Zobel 1925 “M-Derived Half
Section” Patent

In another run of this same problem of synthesizing
a lowpass filter, a 100%-compliant circuit (figure
2) was evolved in generation 34.

Figure 2 Evolved Zobel filter.

This evolved circuit (presented in Koza,
Bennett, Andre, and Keane 1999a, chapter 25) is
equivalent to a cascade of three symmetric T-
sections and an M-derived half section. Otto Zobel
of American Telephone and Telegraph Company
invented the idea of adding an “M-derived half
section” to one or more “constant K” sections.

6.3 Cauer 1934 – 1936 Elliptic Patents
In yet another run of this same problem of
synthesizing a lowpass filter, a 100% compliant
circuit (figure 3) emerged in generation 31 (Koza,
Bennett, Andre, and Keane 1999a, chapter 27).

Figure 3 Evolved Cauer (elliptic) filter

topology.
This circuit has the recognizable elliptic

topology that was invented and patented by
Wilhelm Cauer in 1934, 1935, and 1936. The
Cauer filter was a significant advance (both
theoretically and commercially) over the earlier
filter designs of Campbell, Zobel, Johnson,
Butterworth, and Chebychev. For example, for one
commercially important set of specifications for
telephones, a fifth-order elliptic filter matches the

behavior of a 17th-order Butterworth filter or an
eighth-order Chebychev filter. The fifth-order
elliptic filter has one less component than the
eighth-order Chebychev filter. As Van Valkenburg
(1982) relates in connection with the history of the
elliptic filter:

Cauer first used his new theory in
solving a filter problem for the
German telephone industry. His new
design achieved specifications with
one less inductor than had ever been
done before. The world first learned of
the Cauer method not through
scholarly publication but through a
patent disclosure, which eventually
reached the Bell Laboratories. Legend
has it that the entire Mathematics
Department of Bell Laboratories spent
the next two weeks at the New York
Public library studying elliptic
functions. Cauer had studied
mathematics under Hilbert at
Goettingen, and so elliptic functions
and their applications were familiar to
him.

Genetic programming did not, of course, study
mathematics under Hilbert or anybody else.
Instead, the elliptic topology emerged from a run of
genetic programming as a natural consequence of
the problem's fitness measure and natural selection
– not because the run was primed with domain
knowledge about elliptic functions or filters or
electrical circuitry. Genetic programming
opportunistically reinvented the elliptic topology
because necessity (fitness) is the mother of
invention.

6.4 Darlington 1952 Emitter-Follower
Patent

Sidney Darlington of the Bell Telephone
Laboratories obtained some 40 patents on
numerous fundamental electronic circuits. In
particular, he obtained U. S. patent 2,663,806 for
what is now called the Darlington emitter-follower
section. Darlington emitter-follower sections have
been evolved on numerous occasions in the process
of solving problems of analog circuit synthesis.

Claim 1 of Darlington's 1952 patent covers

A signal translating device comprising
a pair of transistors of like
conductivity type and each including a
base, an emitter and a collector, means
directly connecting the collectors
together, means directly connecting
the emitter of one transistor to the base
of the other, and individual electrical
connections to the other emitter and
base.

In a similar vein, claim 3 covers

A signal translating device comprising
a pair of transistors of like
conductivity type and each including a
base, an emitter and a collector, means
directly connecting the emitters
together, means directly connecting
the collector of one transistor to the
base of the other, and individual
electrical connections to the other
collector and base.

Claim 5 is somewhat more general and covers
the case where any two like electrodes of the
transistor are connected.

A signal translating device comprising
a pair of transistors of like
conductivity type and each including a
base, an emitter and a collector, means
directly connecting two like electrodes
of said transistors together, means
directly connecting another electrode
of one transistor to an unlike electrode,
other than one of said like electrodes,
of the other transistor, and individual
electrical connections to the other
emitter and base.

The Darlington patent also refers to an optional
external connection to the connection between the
leads of the two transistors. For example, claim 2
is a dependent claim based on claim 1 (where the
collectors are connected together) and covers

A signal translating device in
accordance with claim 1 comprising an
additional electrical connection to the
connected emitter and base.

Similarly, claim 4 is based on claim 3 (where
the emitters are connected together) and covers

A signal translating device in
accordance with claim 3 comprising an
additional electrical connection to the
connected collector and base.

Table 1 shows 12 instances in Koza, Bennett,
Andre, and Keane 1999a where genetic
programming evolved a circuit containing a
canonical Darlington section. The table identifies
the particular claims (1, 2, 3, or 4) of U. S. patent
2,663,806 that genetic programming appears to
have infringed.

Table 2 Twelve instances where genetic
programming appears to have infringed

Darlington's emitter-follower patent.
Problem Type Patent

claim
96 dB amplifier npn 1
96 dB amplifier npn 3

Squaring circuit npn 1
Squaring circuit pnp 4
Cubing circuit pnp 3
Cubing circuit pnp 3
Cubing circuit pnp 3
Square root circuit pnp 2
Cube root circuit pnp 2
Cube root circuit pnp 1
Cube root circuit pnp 2
Logarithmic circuit pnp 4

Figure 4 Evolved 96 dB amplifier.

For example, figure 4 shows the best circuit
from generation 86 of a run of the problem of
evolving a high-gain, low-distortion, low-bias
amplifier. The circuit has 25 transistors, no diodes,
two capacitors, and two resistors and contains a
Darlington emitter-follower section (involving
transistors Q25 and Q5).

As another example, figure 5 shows the best-of-
run circuit from generation 57 of the problem of
synthesizing a cube root computational circuit. The
circuit has 38 transistors, seven diodes, and 18
resistors.

Figure 5 Evolved cube root computational

circuit.

7. The Illogical Nature of
Creativity and Evolution

Many computer scientists and mathematicians
unquestioningly assume that every problem-solving
technique must be logically sound, deterministic,
logically consistent, and parsimonious.
Accordingly, most conventional methods of
artificial intelligence and machine learning are
constructed so as to possess these characteristics.
However, in spite of this strong predisposition by
computer scientists and mathematicians, the
features of logic do not govern two of the most
important types of complex problem solving
processes, namely the invention process performed
by creative humans and the evolutionary process
occurring in nature.

A new idea that can be logically deduced from
facts that are known in a field, using
transformations that are known in a field, is not
considered to be an invention. There must be what
the patent law refers to as an "illogical step" (i.e.,
an unjustified step) to distinguish a putative
invention from that which is readily deducible from
that which is already known. Humans supply the
critical ingredient of “illogic” to the invention
process. Interestingly, everyday usage parallels the
patent law concerning inventiveness: People who
mechanically apply existing facts in well-known
ways are summarily dismissed as being uncreative.
Logical thinking is unquestionably useful for many
purposes. It usually plays an important role in
setting the stage for an invention. But, at the end of

the day, logical thinking is not sufficient in the
invention process.

Recalling his invention in 1927 of the negative
feedback amplifier, Harold S. Black of Bell
Laboratories (1977) said,

Then came the morning of Tuesday,
August 2, 1927, when the concept of
the negative feedback amplifier came
to me in a flash while I was crossing
the Hudson River on the Lackawanna
Ferry, on my way to work. For more
than 50 years, I have pondered how
and why the idea came, and I can't say
any more today than I could that
morning. All I know is that after
several years of hard work on the
problem, I suddenly realized that if I
fed the amplifier output back to the
input, in reverse phase, and kept the
device from oscillating (singing, as we
called it then), I would have exactly
what I wanted: a means of canceling
out the distortion of the output. I
opened my morning newspaper and on
a page of The New York Times I
sketched a simple canonical diagram
of a negative feedback amplifier plus
the equations for the amplification
with feedback.

Of course, inventors are not oblivious to logic
and knowledge. They do not thrash around using
blind random search. Black did not try to construct
the negative feedback amplifier from neon bulbs or
doorbells. Instead, "several years of hard work on
the problem" set the stage and brought his thinking
into the proximity of a solution. Then, at the critical
moment, Black made his “illogical” leap. This
unjustified leap constituted the invention.

The design of complex entities by the
evolutionary process in nature is another important
type of problem-solving that is not governed by
logic. In nature, solutions to design problems are
discovered by the probabilistic process of evolution
and natural selection. There is nothing logical
about this process. Indeed, inconsistent and
contradictory alternatives abound. In fact, such
genetic diversity is necessary for the evolutionary
process to succeed. Significantly, the solutions
evolved by evolution and natural selection almost
always differ from those created by conventional
methods of artificial intelligence and machine
learning in one very important respect. Evolved
solutions are not brittle; they are usually able to
grapple with the perpetual novelty of real
environments.

Similarly, genetic programming is not guided
by the inference methods of formal logic in its
search for a computer program to solve a given

problem. When the goal is the automatic creation
of computer programs, we believe that the non-
logical approach used in the invention process and
in natural evolution are far more fruitful than the
logic-driven and knowledge-based principles of
conventional artificial intelligence and machine
learning. In short, "logic considered harmful."

8 Additional Results
Table 2 shows 14 instances of results where genetic
programming has produced results that are
competitive with the products of human creativity
and inventiveness (Koza, Bennett, Andre, and
Keane 1999a). Each claim is accompanied by the
particular criterion (from section 2) that establishes
the basis for the claim. The instances in the table
include classification problems from the field of
computational molecular biology, a long-standing
problem involving cellular automata, a problem of
synthesizing the design of a minimal sorting
network, and several problems of synthesizing the
design of analog electrical circuits. As can be seen,
10 of the 14 instances in the table involve
previously patented inventions.

Table 2 Fourteen instances where genetic
programming has produced results that are
competitive with human-produced results.

 Claimed instance Basis
for claim

1 Creation of four different
algorithms for the
transmembrane segment
identification problem for
proteins

B, E

2 Creation of a sorting
network for seven items using
only 16 steps

A, D

3 Rediscovery of the
Campbell ladder topology for
lowpass and highpass filters

A, F

4 Rediscovery of “M-
derived half section” and
“constant K” filter sections

A, F

5 Rediscovery of the Cauer
(elliptic) topology for filters

A, F

6 Automatic decomposition
of the problem of
synthesizing a crossover filter

A, F

7 Rediscovery of a
recognizable voltage gain
stage and a Darlington
emitter-follower section of an
amplifier and other circuits

A, F

8 Synthesis of 60 and 96
decibel amplifiers

A, F

9 Synthesis of analog
computational circuits for
squaring, cubing, square root,
cube root, logarithm, and
Gaussian functions

A, D, G

10 Synthesis of a real-time
analog circuit for time-
optimal control of a robot

G

11 Synthesis of an electronic
thermometer

A, G

12 Synthesis of a voltage
reference circuit

A, G

13 Creation of a cellular
automata rule for the majority
classification problem that is
better than the Gacs-
Kurdyumov-Levin (GKL)
rule and all other known rules
written by humans

D, E

14 Creation of motifs that
detect the D–E–A-D box
family of proteins and the
manganese superoxide
dismutase family

C

References
Aaserud, O. and Nielsen, I. Ring. 1995. Trends in

current analog design: A panel debate. Analog
Integrated Circuits and Signal Processing. 7(1)
5-9.

Angeline, Peter J. and Kinnear, Kenneth E. Jr.
(editors). 1996. Advances in Genetic
Programming 2. Cambridge, MA: The MIT
Press.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert
E., and Francone, Frank D. 1998. Genetic
Programming – An Introduction. San Francisco,
CA: Morgan Kaufmann and Heidelberg: dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer,
Marc, and Fogarty, Terence C. 1998. Genetic
Programming: First European Workshop.
EuroGP'98. Paris, France, April 1998
Proceedings. Paris, France. April l998. Lecture
Notes in Computer Science. Volume 1391.
Berlin, Germany: Springer-Verlag.

Black, Harold S. 1977. Inventing the negative
feedback amplifier. IEEE Spectrum. December
1977. Pages 55 – 60.

Campbell, George A. 1917. Electric Wave Filter.
Filed July 15, 1915. U. S. Patent 1,227,113.
Issued May 22, 1917.

Cauer, Wilhelm. 1934. Artificial Network. U. S.
Patent 1,958,742. Filed June 8, 1928 in
Germany. Filed December 1, 1930 in United
States. Issued May 15, 1934.

Cauer, Wilhelm. 1935. Electric Wave Filter. U. S.
Patent 1,989,545. Filed June 8, 1928. Filed
December 6, 1930 in United States. Issued
January 29, 1935.

Cauer, Wilhelm. 1936. Unsymmetrical Electric
Wave Filter. Filed November 10, 1932 in
Germany. Filed November 23, 1933 in United
States. Issued July 21, 1936.

Fogel, Lawrence J., Owens, Alvin J., and Walsh,
Michael. J. 1966. Artificial Intelligence through
Simulated Evolution. New York: John Wiley.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Ince, D. C. (editor). 1992. Mechanical Intelligence:
Collected Works of A. M. Turing. Amsterdam:
North Holland.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: The
MIT Press.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II
Videotape: The Next Generation. Cambridge,
MA: MIT Press.

Koza, John R., Banzhaf, Wolfgang, Chellapilla,
Kumar, Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max H., Goldberg, David E.,
Iba, Hitoshi, and Riolo, Rick. (editors). 1998.
Genetic Programming 1998: Proceedings of the
Third Annual Conference. San Francisco, CA:
Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre,
David, and Keane, Martin A. 1999a. Genetic
Programming III: Darwinian Invention and
Problem Solving. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre,
David, Keane, Martin A., and Brave, Scott.
1999b. Genetic Programming III Videotape. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max, Iba, Hitoshi, and
Riolo, Rick L. (editors). 1997. Genetic
Programming 1997: Proceedings of the Second
Annual Conference San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Goldberg, David E., Fogel, David
B., and Riolo, Rick L. (editors). 1996. Genetic
Programming 1996: Proceedings of the First
Annual Conference. Cambridge, MA: The MIT
Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA:
MIT Press.

Langdon, William B. 1998. Genetic Programming
and Data Structures: Genetic Programming +
Data Structures = Automatic Programming!
Amsterdam: Kluwer.

Poli, Riccardo, Nordin, Peter, Langdon, William
B., and Fogarty, Terence C. 1999. Genetic
Programming: Second European Workshop.
EuroGP'99. Goteborg, Sweden, May 1999,
Proceedings. Lecture Notes in Computer
Science. Volume 1598. Berlin, Germany:
Springer-Verlag.

Samuel, Arthur L. 1959. Some studies in machine
learning using the game of checkers. IBM
Journal of Research and Development. 3(3):
210–229.

Samuel, Arthur L. 1983. AI: Where it has been and
where it is going. Proceedings of the Eighth
International Joint Conference on Artificial
Intelligence. Los Altos, CA: Morgan Kaufmann.
Pages 1152 – 1157.

Spector, Lee, Langdon, William B., O'Reilly, Una-
May, and Angeline, Peter (editors). 1999.
Advances in Genetic Programming 3.
Cambridge, MA: The MIT Press.

Van Valkenburg, M. E. 1982. Analog Filter
Design. Fort Worth, TX: Harcourt Brace
Jovanovich.

Zobel, Otto Julius. 1925. Wave Filter. Filed
January 15, 1921. U. S. Patent 1,538,964. Issued
May 26, 1925.

Version 3 – March 11, 1999 for
Symposium on AI and Scientific Creativity (AISB-
99) convention to be held in Edinburgh on April 8 -
9, 1999.

Genetic Programming:
Biologically Inspired

Computation that Exhibits
Creativity in Solving Non-

Trivial Problems

Forrest H Bennett III
Chief Scientist

Genetic Programming Inc.
Box 1669

Los Altos, California 94023
forrest@evolute.com
http://www.genetic-

programming.com

John R. Koza

Section on Medical Informatics
Department of Medicine

Medical School Office Building
Stanford University

Stanford, California 94305
koza@stanford.edu

http://www.smi.stanford.edu/
people/koza/

Martin A. Keane

Chief Scientist
Econometrics Inc.
111 E. Wacker Dr.

Chicago, Illinois 60601
makeane@ix.netcom.com

David Andre

Division of Computer Science
University of California

Berkeley, California 94720
dandre@cs.berkeley.edu

SEND TO:
Dr. Geraint A. Wiggins
Division of Informatics
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
Scotland
United Kingdom

