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ABSTRACT 
This paper describes a biologically inspired domain-independent technique, called genetic programming, 

that automatically creates computer programs to solve problems. We argue that the field of design is a useful 
testbed for determining whether an automated technique can produce results that are competitive with 
human-produced results. We present several results that are competitive with the products of human 
creativity and inventiveness. This claim is supported by the fact that each of the results infringe on 
previously issued patents. This paper presents a candidate set of criteria that identify when a machine-created 
solution to a problem is competitive with a human-produced result.  

 

1. Introduction 
One of the central challenges of computer science 
is to get a computer to solve a problem without 
explicitly programming it. In particular, the 
challenge is to create an automatic system whose 
input is a high-level statement of a problem's 
requirements and whose output is a working 
computer program that solves the given problem. 
Paraphrasing Arthur Samuel (1959), this challenge 
concerns 

How can computers be made to do 
what needs to be done, without being 
told exactly how to do it? 

As Samuel (1983) explained, 

“The aim [is] ... to get machines to 
exhibit behavior, which if done by 
humans, would be assumed to involve 
the use of intelligence.” 

This paper provides an affirmative answer to 
the following two questions:  

• Can computer programs be automatically 
created? 

• Can automatically created programs be 
competitive with the products of human 
creativity and inventiveness? 

This paper focuses on a biologically inspired 
domain-independent technique, called genetic 
programming, that automatically creates computer 
programs to solve problems. Starting with a 
primordial ooze of thousands of randomly created 
computer programs, genetic programming 
progressively breeds a population of computer 
programs over a series of generations using the 
Darwinian principle of natural selection, 
recombination (crossover), mutation, gene 
duplication, gene deletion, and certain mechanisms 
of developmental biology.  

Section 2 states what we mean when we say 
that an automatically created solution to a problem 
is competitive with the product of human 
creativity. Section 3 briefly describes genetic 
programming. Section 4 presents a problem 
involving the automatic synthesis (design) of an 
analog electrical circuit, namely a lowpass filter. 
Section 5 describes how genetic programming is 
applied to the problem of analog circuit synthesis. 
Section 6 shows the results. Section 7 discusses the 



importance of illogic in creativity and 
inventiveness. Section 8 shows additional results.  

2 Inventiveness and Creativity 
What do we mean when we say that an 
automatically created solution to a problem is 
competitive with the product of human creativity 
and inventiveness? 

We are not referring to the fact that a computer 
can rapidly print ten thousand payroll checks or 
that a computer can compute π to a million decimal 
places.  As Fogel, Owens, and Walsh (1966) said,  

Artificial intelligence is realized only 
if an inanimate machine can solve 
problems ... not because of the 
machine's sheer speed and accuracy, 
but because it can discover for itself 
new techniques for solving the 
problem at hand.   

We think it is fair to say that an automatically 
created result is competitive with one produced by 
human engineers, designers, mathematicians, or 
programmers if it satisfies any of the following 
eight criteria (or any other similarly stringent 
criterion):   

(A) The result was patented as an invention 
in the past, is an improvement over a 
patented invention, or would qualify today 
as a patentable new invention.  
(B) The result is equal to or better than a 
result that was accepted as a new scientific 
result at the time when it was published in a 
peer-reviewed journal.   
(C) The result is equal to or better than a 
result that was placed into a database or 
archive of results maintained by an 
internationally recognized panel of scientific 
experts.   
(D) The result is publishable in its own right 
as a new scientific result (independent of the 
fact that the result was mechanically 
created).  
(E) The result is equal to or better than the 
most recent human-created solution to a 
long-standing problem for which there has 
been a succession of increasingly better 
human-created solutions.  
(F) The result is equal to or better than a 
result that was considered an achievement in 
its field at the time it was first discovered.  
(G) The result solves a problem of 
indisputable difficulty in its field.   
(H) The result holds its own or wins a 
regulated competition involving human 
contestants (in the form of either live human 

players or human-written computer 
programs).   

3. Genetic Programming 
Genetic programming is an extension of the genetic 
algorithm described in John Holland's pioneering 
book Adaptation in Natural and Artificial Systems 
(Holland 1975). Genetic programming applies the 
genetic algorithm to the space of computer 
programs.   

The biological metaphor underlying genetic 
programming is very different from the 
underpinnings of all other techniques that have 
previously been tried in pursuit of the goal of 
automatically creating computer programs.  Many 
computer scientists and mathematicians are baffled 
by the suggestion biology might be relevant to 
solving important problems in their fields. 
However, we do not view biology as an unlikely 
well from which to draw a solution to the challenge 
of getting a computer to solve a problem without 
explicitly programming it.  Quite the contrary – we 
view biology as a most likely source.  Indeed, 
genetic programming is based on the only method 
that has ever produced intelligence – the time-
tested method of evolution and natural selection.  

Of course, we did not originate the idea that 
machine intelligence may be realized using a 
biological approach.  Turing made the connection 
between searches and the challenge of getting a 
computer to solve a problem without explicitly 
programming it in his 1948 essay "Intelligent 
Machines" (Ince 1992).  

Further research into intelligence of 
machinery will probably be very 
greatly concerned with “searches” ...  

Turing then identified three broad approaches 
by which search might be used to automatically 
create an intelligent computer program.  

One approach that Turing identified is a search 
through the space of integers representing 
candidate computer programs. This approach, of 
course, uses many of the techniques that Turing 
used in his own work on the foundations of 
computation.   

Another approach is the "cultural search" which 
relies on knowledge and expertise acquired over a 
period of years from others.  This approach is akin 
to present-day knowledge-based systems.   

The third approach that Turing specifically 
identified is “genetical or evolutionary search.”  
Turing said, 

There is the genetical or evolutionary 
search by which a combination of 
genes is looked for, the criterion being 
the survival value. The remarkable 
success of this search confirms to 
some extent the idea that intellectual 



activity consists mainly of various 
kinds of search. 

Turing did not specify how to conduct the 
"genetical or evolutionary search" for a computer 
program.  However, his 1950 paper "Computing 
Machinery and Intelligence"  (Ince 1992) suggested 
how natural selection and evolution might be 
incorporated into the search for intelligent 
machines.   

We cannot expect to find a good child-
machine at the first attempt.  One must 
experiment with teaching one such 
machine and see how well it learns.  
One can then try another and see if it is 
better or worse.  There is an obvious 
connection between this process and 
evolution, by the identifications 

Structure of the child machine = 
Hereditary material 

Changes of the child machine = 
Mutations 

Natural selection = Judgment of the 
experimenter 

3.1 Implementation of Turing's Third 
Way to Achieve Machine 
Intelligence 

Genetic programming implements Turing’s third 
way to achieve machine intelligence. Specifically, 
genetic programming starts with an initial 
population (generation 0) of randomly generated 
computer programs composed of the given 
primitive functions and terminals. The programs in 
the population are, in general, of different sizes and 
shapes. The creation of the initial random 
population is a blind random search of the space of 
computer programs composed of the problem's 
available functions and terminals.  

On each generation of a run of genetic 
programming, each individual in the population of 
programs is evaluated as to its fitness in solving the 
problem at hand. The programs in generation 0 of a 
run almost always have exceedingly poor fitness 
for non-trivial problems of interest. Nonetheless, 
some individuals in a population will turn out to be 
somewhat more fit than others. These differences 
in performance are then exploited so as to direct the 
remainder of the search into promising areas of the 
search space. The Darwinian principle of 
reproduction and survival of the fittest is used to 
probabilistically select, on the basis of fitness, 
individuals from the population to participate in 
various operations. A small percentage (e.g., 9%) 
of the selected individuals are reproduced (copied) 
from one generation to the next. A very small 
percentage (e.g. 1%) of the selected individuals are 

mutated in a random way. About 90% of the 
selected individuals participate in the genetic 
operation of crossover (sexual recombination) to 
create offspring programs by recombining genetic 
material from two parents. All operations are 
performed so as to create offspring that are 
syntactically valid and executable. After the genetic 
operations are performed on the current population, 
the population of offspring (i.e., the new 
generation) replaces the old population (i.e., the old 
generation). Then, each individual in the new 
population of programs is measured for fitness, and 
this iterative process is repeated over many 
generations.  

Probabilistic steps are pervasive in genetic 
programming.  Probability is involved in the 
creation the individuals in the initial population, the 
selection of individuals to participate in the 
operations of reproduction, crossover, and 
mutation, and the selection of crossover and 
mutation points within parental programs.  

The dynamic variability of the size and shape of 
the computer programs that are created during the 
run is an important feature of genetic 
programming. It is often difficult and unnatural to 
try to specify or restrict the size and shape of the 
eventual solution in advance.  

Additional information on current research in 
genetic programming can be found in Genetic 
Programming III: Darwinian Invention and 
Problem Solving (Koza, Bennett, Andre, and Keane 
1999a) and the accompanying videotape (Koza, 
Bennett, Andre, Keane, and Brave 1999b) and in 
Koza 1992; Koza and Rice 1992,; Koza 1994a; 
Koza 1994b; Banzhaf, Nordin, Keller, and 
Francone 1998; Langdon 1998; Kinnear 1994; 
Angeline and Kinnear 1996; Spector, Langdon, 
O'Reilly, and Angeline 1999; Koza, Goldberg, 
Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, 
Garzon, Iba, and Riolo 1997; Koza, Banzhaf, 
Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, 
Iba, and Riolo 1998; Banzhaf, Poli, Schoenauer, 
and Fogarty 1998; and Poli, Nordin, Langdon, and 
Fogarty 1999.  

4. Design as a Testbed for 
Machine Intelligence 

Design is a major activity of practicing engineers. 
The design process entails creation of a complex 
structure to satisfy user-defined requirements. 
Since the design process typically entails tradeoffs 
between competing considerations, the end product 
of the process is usually a satisfactory and 
compliant design as opposed to a perfect design. 
Design is usually viewed as requiring creativity and 
human intelligence. Consequently, the field of 
design is a source of challenging problems for 
automated techniques of machine intelligence. In 
particular, design problems are useful for 



determining whether an automated technique can 
produce results that are competitive with human-
produced results.  

The design (synthesis) of analog electrical 
circuits is especially challenging. The design 
process for analog circuits begins with a high-level 
description of the circuit's desired behavior and 
characteristics and entails creation of both the 
topology and the sizing of a satisfactory circuit. 
The topology comprises the gross number of 
components in the circuit, the type of each 
component (e.g., a capacitor), and a list of all 
connections between the components. The sizing 
involves specifying the values (typically numerical) 
of each of the circuit's components.  

Although considerable progress has been made 
in automating the synthesis of certain categories of 
purely digital circuits, the synthesis of analog 
circuits and mixed analog-digital circuits has not 
proved to be as amenable to automation. There is 
no previously known general technique for 
automatically creating an analog circuit from a 
high-level statement of the design goals of the 
circuit. As O. Aaserud and I. Ring Nielsen (1995) 
observe,  

Analog designers are few and far 
between. In contrast to digital design, 
most of the analog circuits are still 
handcrafted by the experts or so-called 
'zahs' of analog design. The design 
process is characterized by a 
combination of experience and 
intuition and requires a thorough 
knowledge of the process 
characteristics and the detailed 
specifications of the actual product.  

Analog circuit design is known to be a 
knowledge-intensive, multiphase, 
iterative task, which usually stretches 
over a significant period of time and is 
performed by designers with a large 
portfolio of skills. It is therefore 
considered by many to be a form of art 
rather than a science.  

This paper focuses on three particular problems 
of analog circuit synthesis, namely the design of a 
lowpass filter circuit, the design of a high-gain, 
low-distortion, low-bias amplifier, and the design 
of a cube root computational circuit.  

A simple analog filter is a one-input, one-output 
circuit that receives a signal as its input and passes 
the frequency components of the incoming signal 
that lie in a specified range (called the passband) 
while suppressing the frequency components that 
lie in all other frequency ranges (the stopband). 
Specifically, the goal is to design a lowpass filter 
composed of capacitors and inductors that passes 

all frequencies below 1,000 Hertz (Hz) and 
suppresses all frequencies above 2,000 Hz.  

An amplifier is a one-input, one-output circuit 
whose output is a constant multiple of its input. We 
are seeking a high-gain, low-distortion, low-bias 
amplifier composed of transistors, diodes, 
capacitors, resistors, and connections to power 
sources.   

An analog computational circuit is a one-input, 
one-output circuit whose output is a specified 
mathematical function. The design of 
computational circuits is exceedingly difficult even 
for seemingly mundane mathematical functions.  
Success often relies on the clever exploitation of 
some aspect of the underlying device physics of the 
components that is unique to the particular desired 
mathematical function.  Because of this, the 
implementation of each different mathematical 
function typically requires an entirely different 
clever insight and an entirely different circuit. We 
are seeking a computational circuit composed of 
transistors, diodes, capacitors, resistors, and 
connections to power sources. 

It should be noted that the approach described 
in this paper has also been successfully applied to 
numerous other problems of analog circuit 
synthesis, including the design of a temperature-
sensing circuit, a voltage reference circuit, a time-
optimal robot controller circuit, a difficult-to-
design asymmetric bandpass filter, crossover 
filters, a double passband filter, bandstop filters, 
highpass filters, frequency discriminator circuits, a 
frequency-measuring circuit, other amplifiers, and 
other computational circuits.  

5. Applying Genetic 
Programming to Circuit 
Synthesis 

Genetic programming can be applied to the 
problem of synthesizing circuits if a mapping is 
established between the program trees (rooted, 
point-labeled trees with ordered branches) used in 
genetic programming and the labeled cyclic graphs 
germane to electrical circuits. The principles of 
developmental biology provide the motivation for 
mapping trees into circuits by means of a 
developmental process that begins with a simple 
embryo. For circuits, the embryo typically includes 
fixed wires that connect the inputs and outputs of 
the particular circuit being designed and certain 
fixed components (such as source and load 
resistors). Until these wires are modified, the 
circuit does not produce interesting output. An 
electrical circuit is developed by progressively 
applying the functions in a circuit-constructing 
program tree to the modifiable wires of the embryo 
(and, during the developmental process, to new 
components and modifiable wires).  



An electrical circuit is created by executing the 
functions in a circuit-constructing program tree. 
The functions are progressively applied in a 
developmental process to the embryo and its 
successors until all of the functions in the program 
tree are executed. That is, the functions in the 
circuit-constructing program tree progressively 
side-effect the embryo and its successors until a 
fully developed circuit eventually emerges. The 
functions are applied in a breadth-first order.  

The functions in the circuit-constructing 
program trees are divided into five categories: (1) 
topology-modifying functions that alter the circuit 
topology, (2) component-creating functions that 
insert components into the circuit, (3) 
development-controlling functions that control the 
development process by which the embryo and its 
successors is changed into a fully developed 
circuit, (4) arithmetic-performing functions that 
appear in subtrees as argument(s) to the 
component-creating functions and specify the 
numerical value of the component, and (5) 
automatically defined functions that appear in the 
automatically defined functions and potentially 
enable certain substructures of the circuit to be 
reused (with parameterization). 

Before applying genetic programming to a 
problem of circuit design, seven major preparatory 
steps are required: (1) identify the embryonic 
circuit, (2) determine the architecture of the circuit-
constructing program trees, (3) identify the 
primitive functions of the program trees, (4) 
identify the terminals of the program trees, (5) 
create the fitness measure, (6) choose control 
parameters for the run, and (7) determine the 
termination criterion and method of result 
designation.  

A detailed discussion concerning how to apply 
these seven preparatory steps to particular 
problems is found in Koza, Bennett, Andre, and 
Keane 1999a (chapter 25).  

6. Results on Illustrative Problems 
6. 1 Campbell 1917 Ladder Filter 

Patent 
The best circuit (figure 1) of generation 49 of one 
run of genetic programming on the problem of 
synthesizing a lowpass filter is a 100% compliant 
circuit.  

 
Figure 1 Evolved Campbell filter.  

The evolved circuit is what is now called a 
cascade (ladder) of identical π sections and is 
shown and analyzed in Koza, Bennett, Andre, and 
Keane 1999a (chapter 25). The evolved circuit has 
the recognizable topology of the circuit for which 
George Campbell of American Telephone and 
Telegraph received U. S. patent 1,227,113 in 1917. 
Claim 2 of Campbell’s patent covered,  

“An electric wave filter consisting of a 
connecting line of negligible 
attenuation composed of a plurality of 
sections, each section including a 
capacity element and an inductance 
element, one of said elements of each 
section being in series with the line 
and the other in shunt across the line, 
said capacity and inductance elements 
having precomputed values dependent 
upon the upper limiting frequency and 
the lower limiting frequency of a range 
of frequencies it is desired to transmit 
without attenuation, the values of said 
capacity and inductance elements 
being so proportioned that the 
structure transmits with practically 
negligible attenuation sinusoidal 
currents of all frequencies lying 
between said two limiting frequencies, 
while attenuating and approximately 
extinguishing currents of neighboring 
frequencies lying outside of said 
limiting frequencies.” 

In addition to possessing the topology of the 
Campbell filter, the numerical value of all the 
components in the evolved circuit closely 
approximate the numerical values specified in 
Campbell’s 1917 patent. But for the fact that this 
1917 patent has expired, the evolved circuit would 
infringe on the Campbell patent.  

The legal criteria for obtaining a U. S. patent 
are that the proposed invention be "new” and 
“useful" and  

... the differences between the subject 
matter sought to be patented and the 
prior art are such that the subject 
matter as a whole would [not] have 
been obvious at the time the invention 
was made to a person having ordinary 
skill in the art to which said subject 
matter pertains. (35 United States 
Code 103a).  

The fact that genetic programming rediscovered 
both the topology and sizing of an electrical circuit 
that was unobvious "to a person having ordinary 
skill in the art" establishes that this evolved result 
satisfies Arthur Samuel's criterion for artificial 



intelligence and machine learning (quoted in 
section 1).  

Since filing for a patent entails the expenditure 
of a considerable amount of time and money, 
patents are generally sought, in the first place, only 
if an individual or business believes the inventions 
are likely to be useful in the real world and 
economically rewarding. Patents are only issued if 
an arms-length examiner is convinced that the 
proposed invention is novel, useful, and satisfies 
the statutory test for unobviousness.  

6.2 Zobel 1925 “M-Derived Half 
Section” Patent 

In another run of this same problem of synthesizing 
a lowpass filter, a 100%-compliant circuit (figure 
2) was evolved in generation 34.   

 
Figure 2 Evolved Zobel filter.  

This evolved circuit (presented in Koza, 
Bennett, Andre, and Keane 1999a, chapter 25) is 
equivalent to a cascade of three symmetric T-
sections and an M-derived half section. Otto Zobel 
of American Telephone and Telegraph Company 
invented the idea of adding an “M-derived half 
section” to one or more “constant K” sections.  

6.3 Cauer 1934 – 1936 Elliptic Patents 
In yet another run of this same problem of 
synthesizing a lowpass filter, a 100% compliant 
circuit (figure 3) emerged in generation 31 (Koza, 
Bennett, Andre, and Keane 1999a, chapter 27).  

 
Figure 3 Evolved Cauer (elliptic) filter 

topology.  
This circuit has the recognizable elliptic 

topology that was invented and patented by 
Wilhelm Cauer in 1934, 1935, and 1936. The 
Cauer filter was a significant advance (both 
theoretically and commercially) over the earlier 
filter designs of Campbell, Zobel, Johnson, 
Butterworth, and Chebychev. For example, for one 
commercially important set of specifications for 
telephones, a fifth-order elliptic filter matches the 

behavior of a 17th-order Butterworth filter or an 
eighth-order Chebychev filter. The fifth-order 
elliptic filter has one less component than the 
eighth-order Chebychev filter. As Van Valkenburg 
(1982) relates in connection with the history of the 
elliptic filter:  

Cauer first used his new theory in 
solving a filter problem for the 
German telephone industry. His new 
design achieved specifications with 
one less inductor than had ever been 
done before. The world first learned of 
the Cauer method not through 
scholarly publication but through a 
patent disclosure, which eventually 
reached the Bell Laboratories. Legend 
has it that the entire Mathematics 
Department of Bell Laboratories spent 
the next two weeks at the New York 
Public library studying elliptic 
functions. Cauer had studied 
mathematics under Hilbert at 
Goettingen, and so elliptic functions 
and their applications were familiar to 
him.  

Genetic programming did not, of course, study 
mathematics under Hilbert or anybody else. 
Instead, the elliptic topology emerged from a run of 
genetic programming as a natural consequence of 
the problem's fitness measure and natural selection 
– not because the run was primed with domain 
knowledge about elliptic functions or filters or 
electrical circuitry. Genetic programming 
opportunistically reinvented the elliptic topology 
because necessity (fitness) is the mother of 
invention.  

6.4 Darlington 1952 Emitter-Follower 
Patent 

Sidney Darlington of the Bell Telephone 
Laboratories obtained some 40 patents on 
numerous fundamental electronic circuits. In 
particular, he obtained U. S. patent 2,663,806 for 
what is now called the Darlington emitter-follower 
section. Darlington emitter-follower sections have 
been evolved on numerous occasions in the process 
of solving problems of analog circuit synthesis.   

Claim 1 of Darlington's 1952 patent covers 

A signal translating device comprising 
a pair of transistors of like 
conductivity type and each including a 
base, an emitter and a collector, means 
directly connecting the collectors 
together, means directly connecting 
the emitter of one transistor to the base 
of the other, and individual electrical 
connections to the other emitter and 
base.   



In a similar vein, claim 3 covers 

A signal translating device comprising 
a pair of transistors of like 
conductivity type and each including a 
base, an emitter and a collector, means 
directly connecting the emitters 
together, means directly connecting 
the collector of one transistor to the 
base of the other, and individual 
electrical connections to the other 
collector and base.   

Claim 5 is somewhat more general and covers 
the case where any two like electrodes of the 
transistor are connected.   

A signal translating device comprising 
a pair of transistors of like 
conductivity type and each including a 
base, an emitter and a collector, means 
directly connecting two like electrodes 
of said transistors together, means 
directly connecting another electrode 
of one transistor to an unlike electrode, 
other than one of said like electrodes, 
of the other transistor, and individual 
electrical connections to the other 
emitter and base.   

The Darlington patent also refers to an optional 
external connection to the connection between the 
leads of the two transistors.  For example, claim 2 
is a dependent claim based on claim 1 (where the 
collectors are connected together) and covers 

A signal translating device in 
accordance with claim 1 comprising an 
additional electrical connection to the 
connected emitter and base.   

Similarly, claim 4 is based on claim 3 (where 
the emitters are connected together) and covers 

A signal translating device in 
accordance with claim 3 comprising an 
additional electrical connection to the 
connected collector and base.   

Table 1 shows 12 instances in Koza, Bennett, 
Andre, and Keane 1999a where genetic 
programming evolved a circuit containing a 
canonical Darlington section.  The table identifies 
the particular claims (1, 2, 3, or 4) of U. S. patent 
2,663,806 that genetic programming appears to 
have infringed.   

Table 2 Twelve instances where genetic 
programming appears to have infringed 

Darlington's emitter-follower patent.   
Problem Type Patent 

claim 
96 dB amplifier npn 1 
96 dB amplifier npn 3 

Squaring circuit npn 1 
Squaring circuit pnp 4 
Cubing circuit pnp 3 
Cubing circuit pnp 3 
Cubing circuit pnp 3 
Square root circuit pnp 2 
Cube root circuit pnp 2 
Cube root circuit pnp 1 
Cube root circuit pnp 2 
Logarithmic circuit pnp 4 

 
 
 

 
Figure 4 Evolved 96 dB amplifier.  

For example, figure 4 shows the best circuit 
from generation 86 of a run of the problem of 
evolving a high-gain, low-distortion, low-bias 
amplifier. The circuit has 25 transistors, no diodes, 
two capacitors, and two resistors and contains a 
Darlington emitter-follower section (involving 
transistors Q25 and Q5). 

As another example, figure 5 shows the best-of-
run circuit from generation 57 of the problem of 
synthesizing a cube root computational circuit. The 
circuit has 38 transistors, seven diodes, and 18 
resistors.   



 
Figure 5 Evolved cube root computational 

circuit.  

7. The Illogical Nature of 
Creativity and Evolution 

Many computer scientists and mathematicians 
unquestioningly assume that every problem-solving 
technique must be logically sound, deterministic, 
logically consistent, and parsimonious. 
Accordingly, most conventional methods of 
artificial intelligence and machine learning are 
constructed so as to possess these characteristics. 
However, in spite of this strong predisposition by 
computer scientists and mathematicians, the 
features of logic do not govern two of the most 
important types of complex problem solving 
processes, namely the invention process performed 
by creative humans and the evolutionary process 
occurring in nature.  

A new idea that can be logically deduced from 
facts that are known in a field, using 
transformations that are known in a field, is not 
considered to be an invention. There must be what 
the patent law refers to as an "illogical step" (i.e., 
an unjustified step) to distinguish a putative 
invention from that which is readily deducible from 
that which is already known. Humans supply the 
critical ingredient of “illogic” to the invention 
process. Interestingly, everyday usage parallels the 
patent law concerning inventiveness: People who 
mechanically apply existing facts in well-known 
ways are summarily dismissed as being uncreative. 
Logical thinking is unquestionably useful for many 
purposes. It usually plays an important role in 
setting the stage for an invention. But, at the end of 

the day, logical thinking is not sufficient in the 
invention process.  

Recalling his invention in 1927 of the negative 
feedback amplifier, Harold S. Black of Bell 
Laboratories (1977) said, 

Then came the morning of Tuesday, 
August 2, 1927, when the concept of 
the negative feedback amplifier came 
to me in a flash while I was crossing 
the Hudson River on the Lackawanna 
Ferry, on my way to work. For more 
than 50 years, I have pondered how 
and why the idea came, and I can't say 
any more today than I could that 
morning. All I know is that after 
several years of hard work on the 
problem, I suddenly realized that if I 
fed the amplifier output back to the 
input, in reverse phase, and kept the 
device from oscillating (singing, as we 
called it then), I would have exactly 
what I wanted: a means of canceling 
out the distortion of the output. I 
opened my morning newspaper and on 
a page of The New York Times I 
sketched a simple canonical diagram 
of a negative feedback amplifier plus 
the equations for the amplification 
with feedback.  

Of course, inventors are not oblivious to logic 
and knowledge. They do not thrash around using 
blind random search. Black did not try to construct 
the negative feedback amplifier from neon bulbs or 
doorbells. Instead, "several years of hard work on 
the problem" set the stage and brought his thinking 
into the proximity of a solution. Then, at the critical 
moment, Black made his “illogical” leap. This 
unjustified leap constituted the invention.  

The design of complex entities by the 
evolutionary process in nature is another important 
type of problem-solving that is not governed by 
logic. In nature, solutions to design problems are 
discovered by the probabilistic process of evolution 
and natural selection. There is nothing logical 
about this process. Indeed, inconsistent and 
contradictory alternatives abound. In fact, such 
genetic diversity is necessary for the evolutionary 
process to succeed. Significantly, the solutions 
evolved by evolution and natural selection almost 
always differ from those created by conventional 
methods of artificial intelligence and machine 
learning in one very important respect. Evolved 
solutions are not brittle; they are usually able to 
grapple with the perpetual novelty of real 
environments.  

Similarly, genetic programming is not guided 
by the inference methods of formal logic in its 
search for a computer program to solve a given 



problem. When the goal is the automatic creation 
of computer programs, we believe that the non-
logical approach used in the invention process and 
in natural evolution are far more fruitful than the 
logic-driven and knowledge-based principles of 
conventional artificial intelligence and machine 
learning. In short, "logic considered harmful."  

8 Additional Results 
Table 2 shows 14 instances of results where genetic 
programming has produced results that are 
competitive with the products of human creativity 
and inventiveness (Koza, Bennett, Andre, and 
Keane 1999a).  Each claim is accompanied by the 
particular criterion (from section 2) that establishes 
the basis for the claim.  The instances in the table 
include classification problems from the field of 
computational molecular biology, a long-standing 
problem involving cellular automata, a problem of 
synthesizing the design of a minimal sorting 
network, and several problems of synthesizing the 
design of analog electrical circuits.  As can be seen, 
10 of the 14 instances in the table involve 
previously patented inventions.  



Table 2 Fourteen instances where genetic 
programming has produced results that are 
competitive with human-produced results.  

 Claimed instance Basis 
for claim 

1 Creation of four different 
algorithms for the 
transmembrane segment 
identification problem for 
proteins 

B, E 

2 Creation of a sorting 
network for seven items using 
only 16 steps 

A, D 

3 Rediscovery  of the 
Campbell ladder topology for 
lowpass and highpass filters 

A, F 

4 Rediscovery  of “M-
derived half section” and 
“constant K” filter sections 

A, F 

5 Rediscovery  of the Cauer 
(elliptic) topology for filters 

A, F 

6 Automatic decomposition 
of the problem of 
synthesizing a crossover filter 

A, F 

7 Rediscovery of a 
recognizable voltage gain 
stage and a Darlington 
emitter-follower section of an 
amplifier and other circuits 

A, F 

8 Synthesis of 60 and 96 
decibel amplifiers 

A, F 

9 Synthesis of analog 
computational circuits for  
squaring, cubing, square root, 
cube root, logarithm, and 
Gaussian functions 

A, D, G 

10 Synthesis of a real-time 
analog circuit for time-
optimal control of a robot 

G 

11 Synthesis of an electronic 
thermometer 

A, G 

12 Synthesis of a voltage 
reference circuit 

A, G 

13 Creation of a cellular 
automata rule for the majority 
classification problem that is 
better than the Gacs-
Kurdyumov-Levin (GKL) 
rule and all other known rules 
written by humans 

D, E 

14 Creation of motifs that 
detect the D–E–A-D box 
family of proteins and the 
manganese superoxide 
dismutase family 

C 
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