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Abstract We examine the behavior of an evolutionary search on neutral networks in a
simple linear GP system of a Boolean function space problem. To this end
we draw parallels between notions in RNA-folding problems and in Genetic
Programming, observe parameters of neutral networks and discuss the population
dynamics via the occupation probability of network nodes in runs on their way
to the optimal solution.
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1. Introduction

For more than a decade now, neutrality has been observed to play an important
role in Genetic Programming (GP) runs. This was originally believed to be an
atypical phenomenon, perhaps related to the choice of representation (Koza,
1992; Altenberg, 1994a; Angeline, 1994). It was later realized that introns or
non-effective code, as it became to be called, constitute the bulk of material
generating neutrality in GP and that this type of code would appear in most
representations of GP systems (Nordin and Banzhaf, 1995). For a long time
the debate centered around questions of reasons for the emergence of this type
of code which certainly was unintended by the designers of GP systems, and
originally deemed disadvantageous (Soule et al., 1996; Langdon and Poli, 1998;
Soule and Heckendorn, 2002).

During the same time, it was proposed that the theory of neutral mutations as
put forward in the seventies and eighties for natural evolution (Kimura, 1983),
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could be understood in terms of the existence of neutral networks (Schuster,
1995; Forst et al., 1995; Reidys et al., 1997). Subsequent to that proposal
various natural evolutionary systems have been examined, and the existence
of neutral networks has been confirmed (Huynen et al., 1996; Babajide et al.,
1997). Its benefits for evolution were gradually reveiled (Nimwegen et al.,
1998; Schultes and Bartel, 2000), and thus it was natural to ask what neutral
networks would have to offer for evolutionary search.

Barnett proposed to adopt a search paradigm different from a population-
based GA search in landscapes with considerable neutrality (Barnett, 2001).
Smith et al (T. Smith and O’Shea, 2001) argue that, due to higher evolvability,
GA systems with neutrality in search behave more aptly in difficult search
landscapes.

Recently, the confluence of both lines of inquiry can be observed in Ge-
netic Programming as well. Early observations (Banzhaf, 1994) spoke to the
advantage of using plenty of neutrality. In the context of circuit design using
Cartesian GP Miller and coworkers argued for search efficiency as one charac-
teristic of representations with neutrality (Vassilev and Miller, 2000b; Vassilev
and Miller, 2000a; Vassilev et al., 2003). Ebner (Ebner et al., 2002) pointed out
how neutral networks can influence evolvability and Yu (Yu and Miller, 2001)
studied the interaction between neutral and adaptive mutations in the context
of search in Boolean function landscapes.

In this contribution we shall discuss neutrality and the benefit of neutral
networks in the context of a simple Boolean search problem using a linear GP
representation, that consists of registers and logic operators. We shall show
the relation between genotype and phenotype networks, discuss how the search
benefits from neutrality as offered by non-effective code, and demonstrate the
population dynamics of a search process. In a final section we shall put our eyes
on robustness of the evolutionary solutions, and ask ourselves how evolvability
of the search process can be improved if the observations put forward here can
be generalized.

2. Problem, GP representation and Search Operators

In order to be able to examine the effects we are interested in, we have chosen
a small problem instance of a Boolean problem space. While it can be argued
that this space is not suitable to solve real problems, the emphasis here is on
trying to understand the influence of neutrality, notably its benefits.

The problem space under consideration is the NAND space where two binary
inputs x1 and x2 are used and the output x3 is studied under various NAND-
combinations of inputs.

x3 = fNAND(x1, x2) (14.1)
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This follows work done by (Langdon and Poli, 1999) where it was shown, for
tree-based GP, that there is a complexity threshold above which all Boolean
functions can be reached by a combination of Boolean operators on inputs.

We use a linear GP representation because it is much easier to analyse in terms
of non-effective code (Banzhaf et al., 1998; Brameier and Banzhaf, 2001),
and because it is easier to understand. The representation consists of a set
of instructions in a register machine language, interpreted by the CPU as a
program. As content of the registers we only allow Boolean values ”0” and
”1”, as operators of these programs only the logical NAND operation.

Even with so small a set of elements, combinatorics is at play, forcing us to
quickly relinquish the plan to depict everything exhaustively. One choice we
have is whether we want to have only a single type of register (read-and-write)
which can act both as source and destination register of the programs executed,
or two types of registers (input and calculation) which differ in that input reg-
isters hold the input values constantly, i.e. are only acting as source registers,
and calculation registers can act both as source and destination registers.

Table 2 shows the combinatorics in these two different systems, depending
on the length of programs allowed. In the following, we shall concentrate on
C = I = 2. The first calculation register also works as the output register.

Table 14-1. Comparison of number of programs for different number of registers. C: Num-
ber of calculation registers; I: number of input registers; L: Length of programs in number of
instructions. The number of programs is calculated by (I + C)2LCL.

C Registers I Registers L = 2 L = 3 L = 4 L = 5 ... L = 10

2 0 64 512 4.1 × 103 3.3 × 104 1.1 × 109

3 0 729 19,683 5.3 × 105 1.4 × 107 2.1 × 1014

1 2 81 729 6.6 × 103 5.9 × 104 ... 3.5 × 109

2 2 1,024 32,768 1.0 × 106 3.4 × 107 1.1 × 1015

3 2 5,625 421,875 6.3 × 106 2.4 × 109 5.6 × 1018

A typical program (for R0, R1 calculation registers and R2, R3 input regis-
ters, output in register R0) looks like this:

R0 = R1 NAND R2

R1 = R1 NAND R0

R0 = R3 NAND R1

R1 = R1 NAND R2 (*)

R1 = R1 NAND R0 (*)

R1 = R2 NAND R1 (*)

which we code as the following genotype

012 110 031 112 110 121
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This is different from the phenotype of that program which results after remov-
ing the introns1 ( (*)-marked code, above) to yield

R0 = R1 NAND R2

R1 = R1 NAND R0

R0 = R3 NAND R1

which we code as the following phenotype

012 110 031

Figure 14-1 depicts which functions can be reached with programs of different
length up to L = 8. As can be seen from the figure, there is a large discrepancy
between the presence of different Boolean functions, with some like ”Identity”
being frequently found and thus being easy, and others like ”Equivalence” being
seldomly found and thus being difficult. Note the complexity threshold again:
Below program length 5 there is no solution to the Equivalence function.

In the following, our GP system will be set up to find the most difficult func-
tion, the ”Equivalence” function, and we shall study how the system achieves
this solution and what can be said about the neutral networks it uses to find it.

After introducing the representation, we have to say a few words about the
search operator(s) we shall employ in our GP runs. In this contribution we
decided again for the operator easiest to analyse, mutation. Whereas it can
again be argued that this is not an efficient way to traverse the problem space
at hand, we would counter, that at least we can understand what is going on in
the system.
For illustration purposes, suppose a mutation would change a bit in the above
mentioned genotype.

012 110 031 112 110 121 -> 012 110 031 012 110 121

This would mean, that the phenotype now changes, too:

012 110 031 -> 012 110 012

In other words, by switching one bit, one of the instructions has been rendered
non-effective, whereas a previously non-effective one has become effective.

The evolutionary dynamics we have chosen is again a very simple one, we
observe and examine runs with a population of µ(1 + λ) searchers, where
the notation is borrowed from Evolutionary Strategies. There are µ indepen-
dent searchers (providing for statistics), each one acting in an elitist way ( +-
strategy), and exploring the neighborhood with λ trials (in our case, λ = 10).
If one of these neighbor states is equal or better in fitness, the searcher assumes
the new state, if not, it remains where it was.

1The last three instructions only affect register R1 and not the output register R0.
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Figure 14-1. Boolean function space for various length of programs. For L = 5 ”⇔” has a
0.00114 % share of the search space, in contrast to ”= 1” with a share of 23.4 %. For L < 5
”⇔” is not present at all.

3. Non-effective Code, Neutral Networks, and the
Genotype-Phenotype Map

As we have mentioned in the beginning, we expect that neutrality should
play an important role in the search process in our Boolean function landscape.
Neutrality is provided by non-effective code. This is unintentionally generated
by a sequence of instructions if a later instruction simply overwrites what has
been computed before. It might even happen that all instructions are non-
effective. This is the case, if no data is written into the predetermined output
register of the GP system. We refer to the corresponding phenotype as the
"empty phenotype".

The Genotype-Phenotype-Mapping function is provided through removing
the non-effective code. This is analogous to the neutrality provided in RNA
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folding (Gruener et al., 1996). By analysing a program’s code, beginning from
the last line we identify those instructions which are not effective (it could
be an entire block of instructions). All other instructions which will have an
influence on the result of the calculation, are subsequently copied and treated
as the phenotype of the program.

Table 3 shows, for an exhaustive examination of all possible genotypes in a
small example, the frequency of corresponding phenotypes. This is precisely
the sort of picture one encounters in RNA folding landscapes: Many very
uncommon phenotypes, and few highly common phenotypes, if looked at from
the point of view of enumeration of all genotypes.

Table 14-2. Redundancy of genotypes mapping into phenotypes for C = 2; I = 2; L = 5. The
last line shows total number of genotypes and phenotypes. G: Number of genotypes; P: number
of phenotypes; R=G/P: Redundancy. The fitness value relates to ⇔ as the reference function.

G P R Best Fitness Worst Fitness

1,192,960 1,192,960 1 0 4
87,808 5,488 16 2 2

415,744 12,992 32 1 3
749,568 15,616 48 1 3
948,224 14,816 64 1 4

1,030,400 12,880 80 1 3
384,000 4,000 96 1 2
100,352 392 256 2 2
657,408 856 768 1 2

1,413,120 920 1,536 1 2
2,560,000 1,000 2,560 1 2
405,504 144 2,816 1 3

1,753,088 428 4,096 2 3
917,504 56 16,384 2 2

4,096,000 100 40,960 2 2
131,072 2 65,536 2 2

4,259,840 40 106,496 1 2
3,276,800 10 327,680 2 2
1,048,576 1 1,048,576 2 2
8,126,464 4 2,031,616 2 3

33,554,432 1,262,705

Each genotype can be considered a node in a graph. A mutation would
then provide a link between nodes in the graph, allowing evolution to move
if this step is actually allowed by selection. Due to the genotype-phenotype
mapping, however, there is also a graph of nodes constituting the network of
phenotypes. Each of these nodes has a particular fitness depending on how the
fitness function was defined for the problem. A movement on the genotype
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network driven by mutation now induces a corresponding movement on the
phenotype network. Figure 14-2 shows the graph of phenotypes in a Boolean
problem small enough that all phenotypes can be enumerated and drawn (length
of programs: 2 instructions only).

Figure 14-2. Phenotype network graph for a Boolean function problem with C = 2; I =
2; L = 2. Nodes have different colors, depending on the particular fitness they represent which
is calculated as the difference to the AND function. Two neutral networks are shown with black
edges. Self-connections of nodes are not shown.

The links between nodes correspond, as we said, to mutations, except that
we have not shown self-connections which may still have a substantial impact
on evolutionary search. These links are distributed unequally between nodes,
induced by the genotype-phenotype mapping (GPM).

Neutral networks are constituted by those nodes in the network which have
the same fitness and are connected by mutations. Note that there is a difference
between this definition of neutrality and the definition used by e.g. (Ebner
et al., 2002). Here we consider all phenotypes with the same fitness to be in the
same neutral network, provided there is a mutational link. Ebner et al. consider
neutral networks only between the same phenotypes (which surely will have the
same fitness). There are two disconnected components of the neutral network
to the second-best fitness level.
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Strictly speaking, the phenotype network has no direct meaning for the evo-
lutionary search. Our GPM is a simple many-to-one projection and the con-
nectivity of nodes on a path in the phenotype network is not necessarily related
to the path in the genotype network. That is to say, some phenotype nodes are
hiding the fact that the genotypes represented by them are actually not con-
nected at all. Therefore, the connectivity distribution of the phenotype network
seems to be only of minor interest. We shall address this problem later again
by suggesting another way of forming phenotypes.

4. Connectivity of Neutral Networks and Population
Dynamics

It is interesting to study the connectivity of neutral networks, and relate it to
the dynamics of a population of searchers on the network. The reason is that,
as is well known from the study of random walks on graphs, those nodes in the
network which have the highest connectivity tend to be visited the most. This
is a simple Markov chain result (Lovacz, 1993; Noh and Rieger, 2004), and it
leads to the following prediction: The search in the neutral network will not be
a pure random drift. It will have a bias, and will concentrate on those nodes
of the network where connectivity is highest. If in the mutation neighborhood
of those nodes a node with a better fitness can be found, it will be discovered
quickly. This can be captured by saying that the nodes of the neutral network
have a different effective fitness (Nordin and Banzhaf, 1995; Banzhaf et al.,
1998; Stephens and Vargas, 2000; Banzhaf and Langdon, 2002), and those
nodes with a higher connectivity will have a higher effective fitness.

As has been pointed out (Schuster et al., 1994), it can be safely assumed that
neutral networks for different levels of fitness are strongly intertwined. I.e. it
will not be difficult to encounter transition nodes from one of these networks to
another with a higher fitness. These so-called portal nodes (Nimwegen et al.,
1998) are spread throughout the network and provide ample chance to jump off
a neutral network onto one with better fitness. The only problem in our Boolean
example is that in fact the problem is so easy (only 5 different fitness values)
that it is difficult to observe all the phenomena. By looking at Figure 14-3 we
can compare an exhaustive mapping of the search space in terms of connectivity
characteristics with a mapping based on 100,000 GP runs. With this amount
of sampling, the GP runs are already approaching full knowledge of the search
space.

Connectivity characteristics lends itself as a new way of observing the system,
and allows an alternative definition of phenotypes. The only condition of these
phenotypes will be that the fitness of an individual should be carried by the
phenotype. So our alternative phenotypes look like this: (fitness,N, I)i for
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Figure 14-3. Distribution according to connectivity characteristics: A genotype’s connectivity
characteristics is given by a triplet of values (I,N, D) where I (D) is the number of neighbors
with improved (deteriorated) fitness and N the number of neutral neighbors. Since the total
number of neighbors is constant (35), two values (here: I and N ) are sufficient for characteri-
zation. The 3D/2D plots show the proportions of connectivity for all genotypes of fitness 2 in
the genotype network (Figures (a) and (b)) and for all visited nodes of fitness 2 within 100, 000
GP runs (Figures (c) and (d)).

individual i, where N is the number of neutral connections and I is the number
of improving connections of the individual node.
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Figure 14-4. The alternative phenotype definition allows to visualize a PT network. Node colors
reflect the fitness levels from high fitness (white) to low fitness (dark gray). Pale nodes in the
network center correspond to nodes in the subnetwork depicted in next figure. Three nodes with
fitness 0 (perfect solutions) lie in the upper left corner of the network. Fruchterman-Reingold
algorithm (2D) was used to create graphs.

5. Robustness and Evolvability

Two of the main functions of neutrality in biological systems are considered
to be (i) robustness of phenotypes against mutation and (ii) evolvability. For
(i) to work, a viable genotype would try to locate itself in the center of a
neutral network such as to make sure that any mutation that might happen to
it still allows it to stay on the neutral network. In the absence of neutrality,
a viable genotype/phenotype pair might always stand a high probability to
produce deleterious mutations.

The other function is to provide more potential for evolvability. Follow-
ing Kirschner and Gerhardt (Kirschner and Gerhart, 1998) evolvability can be
defined as the capacity of an organism to generate heritable variation. It is in-
teresting to note that modern metazoa seem to have developed in that direction.

In the context of evolutionary computation this would come about by al-
lowing genotype/phenotype pairs to escape local optima through higher di-



Evolution on Neutral Networks in GP 217

Figure 14-5. Neutral network of the most frequently visited nodes. More than 95% of all edges
in the PT network passed during 1,000 GP runs belong to this subnetwork. Node labels specify
fitness value (one digit), number of neutral neighbors (two digits) and number of improved
neighbors (two digits). Self-connections are not shown, although they contribute over 50% .

mensional saddles, produced by neutral changes to the pair. Furthermore, if the
network provides a clear guide via effective fitness, it could accelerate evolution
even in the case of not being caught in a local minimum. Evolution would most
probably be attracted to genotypes/phenotypes which are highly connected in
the network, and thus have a better chance to be connected to higher-fitness
states.

Another aspect of evolvability - not discussed here - is modularity (Altenberg,
1994b; Wagner and Altenberg, 1996). For this to work, a clearer picture of what
building blocks are should be developed. We feel that more research needs to
be done on the question of building blocks in GP before this question can be
approached. For recent progress in this field, see (Langdon and Banzhaf, 2005).
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6. Suggestions for Future Work, Summary and
Conclusions

We have shown, in the context of a very simple linear GP system, that neu-
tral mutations play an important role in setting the system up for exploration.
We argue that the situation in this type of a GP system is analogous to what
can be found in RNA-folding and optimization: There are many uncommon
phenotypes, and just a few very common ones. From this we concluded that
neutral networks must be highly intertwined such as to allow a quick transition
from one neutral network to the next, through certain portal nodes.

By exhaustively enumerating solutions for a small Boolean logic problem we
have demonstrated these ideas. The problem space is by no means considered to
be difficult. Yet, by choosing the most difficult Boolean function to be realized
in the system, we have at least made every effort possible to make it ”relatively”
difficult.

Unfortunately, systems like the present are combinatorial and do not lend
themselves to exhaustive search very easily, except for the smallest choice of
parameters. It would be interesting, for example to analyse the networks of
C, I > 2. As Table 2 illustrates, however, this becomes quickly infeasible.

Notwithstanding the problem of exhaustive examination, we plan to analyse
networks locally, around local optima or best fitness phenotypes found so far.
We also want to provide more thorough statistical measures of network charac-
teristics, such as centrality of neutral networks etc. It would be most interesting
to be able to pinpoint the nodes which most searchers have to pass through and
to manipulate the search in order to either lead it towards these nodes or away
from them.
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