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ABSTRACT
Motivation: In order to design effective HIV inhibitors, study-
ing and understanding the mechanism of HIV protease
cleavage specification is critical. Various methods have been
developed to explore the specificity of HIV protease cleav-
age activity. However, success in both extracting discriminant
rules and maintaining high prediction accuracy is still challen-
ging. The earlier study had employed genetic programming
with a min–max scoring function to extract discriminant rules
with success. However, the decision will finally be degenerated
to one residue making further improvement of the prediction
accuracy difficult. The challenge of revising the min–max scor-
ing function so as to improve the prediction accuracy motivated
this study.
Results: This paper has designed a new scoring function
called a sum–product function for extracting HIV protease
cleavage discriminant rules using genetic programming
methods. The experiments show that the new scoring function
is superior to the min–max scoring function.
Availability: The software package can be obtained by
request to Dr Zheng Rong Yang.
Contact: z.r.yang@ex.ac.uk

INTRODUCTION
The human immunodeficiency virus (HIV) is the main
causative agent of acquired immunodeficiency syndrome
(AIDS) as a kind of retrovirus infecting several types of cells
in the body. The main difference between a normal virus and
a retrovirus is in the direction of flow of genetic information
(Dahlberg, 1988). In a retrovirus, genetic information is stored
in the form of RNA and the flow of genetic information is not
in the routine order. During the life cycle of the retrovirus,
the RNA is converted into DNA by a unique virus-specified
enzyme called reverse transcriptase (Dahlberg, 1988).

The most-effective prevention of HIV infection would be a
vaccine that blocks virus infection. Such a vaccine is difficult
to develop because of the expense and complexity in advan-
cing new candidate vaccines. A model that could achieve the
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goals of a more efficient and integrated HIV vaccine research
enterprise was proposed (Klausner et al., 2003), but there is
little hope that an HIV vaccine would be developed before
2009 (Kathryn, 2003).

Stopping viral replication in people who are already infected
with HIV is then the most important alternative for fighting
against HIV. Protease is one of the enzymes that HIV uses to
reproduce itself and is a digestive enzyme that breaks down
proteins. Enabling HIV protease cleavage inactive is therefore
the major concern in medicine till now and protease inhibitor
is a relatively recent form of an anti-viral agent.

The HIV protease has a crab-like shape, and is consist-
ing of two molecules that are loosely associated. It has an
extended binding region with eight consecutive residues of the
polypeptide substrate in contact with active-site cleft (Miller
et al., 1989). These eight consecutive residues are denoted
by P4–P3–P2–P1–P1′–P2′–P3′–P4′ corresponding to the sub-
strate S4–S3–S2–S1–S1′–S2′–S3′–S4′ in protease. A peptide
of these eight residues is referred to as an 8mer in this study
for convenience.

To design effective HIV protease inhibitors, accurately
identifying cleaved HIV 8mers is very crucial. This identifica-
tion process is based on the study of HIV protease specificity.
However, the potential number of 8mers is 208 as there are
20 amino acids. This makes exhaustive experimental search
impossible. On the other hand, it would be helpful and would
expedite our pace in search of the proper inhibitors of HIV
protease if we could find an accurate and rapid method for
predicting the HIV protease cleavage sites in proteins (Chou,
1993a,b, 1996). In view of this, various computer predic-
tion methods have been developed, such as the h function
(Poorman et al., 1991), the vector-projection method (Chou,
1993), back-propagation neural networks (Cai and Chou,
1998), decision tree algorithms (Narayanan et al., 2002),
bio-basis function neural networks (Thomson et al., 2003)
and bio-support vector machines (Yang and Chou, 2004).

Despite the success of those algorithms, they suffer from
some problems. The statistical methods bear a great depend-
ence on data. The prediction accuracy was degraded due to
the deficiency of data. The neural network models share the
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problems of having complicated structures and being affected
greatly by noises. Furthermore, most of these models are all
approximated by a black box approach and the underlying
cleavage specificity can hardly be acquired for knowledge
acquisition. The use of Genetic Programming (GP) was
therefore proposed as a method of extracting discriminant
rules (Yang et al., 2003).

GP is a branch of Genetic Algorithm (GA) (Goldberg,
1989). The GA is a model of machine learning which derives
its behaviour from a metaphor of the processes of evolu-
tion in nature. This is done by the creation within a machine
of a population of individuals represented by chromosomes.
The individuals in the population then go through a pro-
cess of evolution. GAs have proved to be a useful technique
for finding solutions in a wide range of problem domains.
Although a substantial amount of research has been performed
on variable-length strings and other structures, the majority of
work with GA is focused on fixed-length character strings.

The critical aspects to distinguish GP from GA are the fixed-
lengthiness and the need to encode the representation of the
solution. GP does not have a fixed-length representation and
there is typically no encoding of the problem. The use of
GPs flexible coding system allows it to perform structural
optimization. Koza’s GP algorithm was coded in LISP and
has been applied to a wide range of problems, including sym-
bolic regression (Koza, 1992), robotics (Koza and Rice, 1992),
games (Eskin and Siegel, 1999) and classification (Loveard
and Ciesielski, 2001).

A GP algorithm works on a population of individuals, each
of which represents a potential solution to a problem. Ini-
tially, a population of random compositions of the functions
and terms of the problem is generated. Next, each individual in
the population is assigned a fitness value, which is a numeric
value used to provide a measure of the appropriateness of
a solution, i.e. how good the individual is at competing
in its environment. Having selected candidate members of
the population, some basic genetic operators are applied,
which include reproduction, crossover and mutation. Then
a new population is created. The best individual that appeared
in the last generation is designated as the result of genetic
programming.

A number of early results have demonstrated the potential
applicability of GP to the field of biology. For example, GP
has used to evolve a computer program to classify a given
protein segment as being a transmembrane domain or non-
transmembrane area of the protein (Koza and Andre, 1996a).
In another application, a two-way algorithm that was evolved
using GP for determining whether a protein was an extra-
cellular protein, a nuclear protein, a membrane protein or an
anchored membrane protein (Koza and Andre, 1996b). Koza
has concluded that the single most important area for future
work in GP was to demonstrate the applicability of the tech-
nique to realistic problems, and GP was suitable for an area
where there was a large amount of data, in computer readable

form, which required examination, classification and integra-
tion (Koza, 1997). Therefore, achievements can be expected
from the innovative method of using GP in predicting HIV
protease sites in proteins.

The earlier study had employed GP with a min–max scoring
function to extract discriminant rules with success (Yang et al.,
2003). A rule is a logic function of amino acids in a peptide.
However, the decision is finally degenerated to one residue
making further improvement of the prediction accuracy dif-
ficult. In this paper, we propose a new sum–product scoring
function to replace the min–max scoring function. The use
of the sum–product scoring function focuses on specificity,
although it may lose some extent of generosity, it is still
expected to improve the prediction accuracy.

SYSTEMS AND METHODS
Problem specification and notation
An 8mer is denoted by a vector x ∈ C8, where C is a set
of 20 amino acids. Each 8mer is labelled positive if there
is a cleavage site in it, otherwise negative. A set of 8mers is
denoted by �. The set is divided into two parts. �α contains
non-cleaved 8mers and �β cleaved ones, where

� = �α ∪ �β and �α ∩ �B = φ.

The chromosome of a rule is denoted using a Reversed Polish
Notation (RPN) as, r = [[x]y], where [◦] means that ‘◦’ can
be repeated a couple of times, ‘x’ indicates a term and y ∈
{+, ∗} an operator (+ means or operation and ∗ means and
operation). Note that ‘x’ can take two types. First, it can be
a residue followed by an amino acid. The residue takes one
element from the set {a, b, c, d, e, f, g, h} corresponding to
the eight residues {P4, P3, P2, P1, P1′ , P2′ , P3′ , P4′ }. Second,
‘x’ can be a sub-rule acting as a term. In the earlier study,
each operator always has two terms, hence no parentheses are
needed (Yang et al., 2003). To relax this constrain, parentheses
are used in this study to allowing more than two terms for each
operator. For example, a rule P2 = A and P1′ = K and P3′ = L
is (cAeKgL∗) in this study rather than cAeK∗ gL∗ using the
min–max scoring function.

Population initialization
The initial population is designed to contain M rules. M is an
integer number and is 100 in this study. The distinction of
each single rule in the initial population is very important. The
‘ramped-half-and-half’ method (Koza, 1992) is used, which
supports greater population diversity. The maximum depth is
four. The population is divided equally among individual trees
of depth 2, 3 and 4 (max depth).

Quantitative method for measuring the relationship
between 8mers and rules
To determine a proper quantitative method to measure the
relationship between an 8mer and a rule is the most important
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A C D E F G H I K L M N P Q R S T V W Y
A 40 24 32 32 16 36 28 28 28 24 28 32 36 32 24 36 36 32 8 20
C 24 80 12 12 16 20 20 24 12 8 12 16 20 12 16 32 24 24 0 32
D 32 12 48 44 8 36 36 24 32 16 20 40 28 40 28 32 32 24 4 16
E 32 12 44 48 12 32 36 24 32 20 24 36 28 40 28 32 32 24 4 16
F 16 16 8 12 68 12 24 36 12 40 32 16 12 12 16 20 20 28 32 60
G 36 20 36 32 12 52 24 20 24 16 20 32 28 28 20 36 32 28 4 12
H 28 20 36 36 24 24 56 24 32 24 24 40 32 44 40 28 28 24 20 32
I 28 24 24 24 36 20 24 52 24 40 40 24 24 24 24 28 32 48 12 28
K 28 12 32 32 12 24 32 24 52 20 32 36 28 36 44 32 32 24 20 16
L 24 8 16 20 40 16 24 40 20 56 48 20 20 24 20 20 24 40 24 28
M 28 12 20 24 32 20 24 40 32 48 56 24 24 28 32 24 28 40 16 24
N 32 16 40 36 16 32 40 24 36 20 24 40 28 36 32 36 32 24 16 24
P 36 20 28 28 12 28 32 24 28 20 24 28 56 32 32 36 32 28 8 12
Q 32 12 40 40 12 28 44 24 36 24 28 36 32 48 36 28 28 24 12 16
R 24 16 28 28 16 20 40 24 44 20 32 32 32 36 56 32 28 24 40 16
S 36 32 32 32 20 36 28 28 32 20 24 36 36 28 32 40 36 28 24 20
T 36 24 32 32 20 32 28 32 32 24 28 32 32 28 28 36 44 32 12 20
V 32 24 24 24 28 28 24 48 24 40 40 24 28 24 24 28 32 48 8 24
W 8 0 4 4 32 4 20 12 20 24 16 16 8 12 40 24 12 8 100 32
Y 20 32 16 16 60 12 32 28 16 28 24 24 12 16 16 20 20 24 32 72

Fig. 1. Shows the Dayhoff matrix, where there are 20 rows and 20 columns. Each value means a mutation probability.

issue prior to using GP as it will be used to identify how good a
rule is for classification. Since amino acids in these 8mers are
non-numerical attributes, the relationship between an 8mer
and a rule has to be measured using a scoring function based
on biology measurements. A min–max function was therefore
proposed by Yang et al. (2003) using amino acid similarity
matrices (Dayhoff et al., 1978; Johnson and Overington, 1993;
Henikoff and Henikoff, 1992, 1993).

The n-th 8mer is referred to as xn and m-th rule rm. The d-th
residue in xn is referred to as xnd and the d-th residue used
in rm, rmd . In the min–max function, the minimum similarity
score is found for and operation while the maximum similarity
score is found for or operation

s(xn, rm) =
{

min{h(xnd , rnd)} and

max{h(xnd , rnd)} or,
(1)

where h(xnd , rnd) is the simialrity score between two amino
acids xnd and rmd using an amino acid similarity matrix
with a table loo-up methods. Figure 1 shows a Dayhoff
matrix (Johnson and Overington, 1993).

The min–max function enjoys a large extent of generosity,
while it bears the problem of losing some specificity. In the
sum–product function, all similarity scores calculated for each
pair of amino acids from an input 8mer and a rule are summed
together for and operation and the maximum similarity score
is multiplied by the number of nodes (denoted as K) used in
a rule for or operation.

s(xn, rm) =
{∑

h(xnd , rnd) and

Kh(xnd , rnd) or.
(2)

Table 1. Four artifical rules

No. RPN expression Rule

1 r1 = (aDcV∗) P1 = D and P3 = V
2 r2 = (aDcV+) P1 = D or P3 = V
3 r3 = (aDbEcV∗) P1 = D and P2 = E and P3 = V
4 r4 = (aDbEcV+) P1 = D or P2 = E or P3 = V

The RPNs are at the second column while the rules are at the 3rd column.

Table 2. A comparison between two scoring functions

r1 r2 r3 r4

x1

Min–max 48 48 48 48
Sum–product 96 96 144 144

x2

Min–max 28 32 28 32
Sum–product 60 64 92 96

The scores are calculated using the Dayhoff matrix shown in Figure 1.

Given two 3mers with different functions: x1 = DEV,
x2 = ATG and four rules shown in Table 1. A comparison
between two scoring functions is shown in Table 2, where the
sum–product function shows better discriminating capability
between x1 and x2 than the min–max function.

Fitness function
There are two important factors for a rule to work well.
The first is the discriminating capability. A rule with a high
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discriminating score is expected to work well, but may be too
specific and loss of the generalization capability. The second is
the complexity. A simple rule may cover many peptides with a
low-discriminating capability. The Fisher ratio has been used
for the first factor and the minimal description length has been
used for the second factor in (Yang et al., 2003).

The Fisher ratio of the rule rm is defined as

J (rm)
|umα − umβ |√

σ 2
mα + σ 2

mβ

(3)

Note that um∗ = E < s(xn, rm) > and σ 2
m∗ = var <

s(xn, rm) >, where ∀xn ∈ �∗ and ∗ is either α or β. The
minimum description length of a rule [�(rm)] is defined as
the equivalent length of a rule, which is the number of the
residues used in the rule. We use the normalized equivalent
length for convenience, i.e. dividing the equivalent length by
the maximum number of residues in peptides (Yang et al.,
2003). For instance, the normalized equivalent length of the
rule ‘(P1 = F and P1′ = P) or P1 = L’ is 0.25.

The fitness function (goodness) of a rule is defined as

F(rm) = δJ (rm) + (1 − δ)�(rm) (4)

δ = 0.7 favours the discriminant capability in this study.

Operations
The three evolutionary operations are the same as those used
in Yang et al. (2003). They are reproduction, crossover and
mutation. The top 50% rules (called elites) with the highest
fitness values in the current generation are copied to the next
generation for mating. New 50% rules are generated based on
the mating operations on the elites. A probability referred to
as the mating probability is assigned to each elite accord-
ing to the fitness function value using a sigmoid function
1/{1 + exp[−F(rm)]}. An elite with a higher probability will
have a higher opportunity to take part in the mating operation.
Whenever an elite is selected for mating, a random number
is generated to make a decision between crossover and muta-
tion. The random value is an integer between 1 and 10. When
the random is 9 or 10, crossover takes place. This means that
80% operations are mutation.

IMPLEMENTATION
The program was coded in Java on a PC containing a 2 GHz
Pentium and Windows operating system.

DISCUSSION
A total of 362 HIV 8mers were collected from the earlier study
(Cai and Chou, 1998), of which 114 were positive and the
rest negative. A 10-fold cross-validation is used to compare
two scoring functions. Each run is limited to 100 genera-
tion to prevent possibleoverfitting. Each rule is assigned five

measurements. They are the true negative fraction (TNf or
specificity), true positive fraction (TPf or sensitivity), total
accuracy (Total), the Mattew’s coefficient (MC) (Matthews,
1975) and fitness function value.

Figure 2 shows the measurements through the evolutionary
generations. It can be seen that all these five measurements,
specificity, sensitivity, total accuracy, the MC and fitness val-
ues are consistently increasing until approaching steady state
after about 50 evolutionary generations.

Figure 3 shows the diversities for total accuracy and the MC
through evolutionary generations. It can be seen that the SD
was big at the beginning and was small at break the end.

Table 3 shows a summary of the comparison between
two scoring functions based on the testing performance
using the top 10 rules in cross-validation. It can be seen
that the GP model using the sum–production function out-
performed the GP model using the min–max function.
The worst and the best rules obtained from the min–max
function are dFgLhD+dFdY++∗ and fFaW∗aLbW∗dF++
aYbW∗ dF+fFaW∗hFdD∗cL∗fFaW ∗fFaW∗hFfD∗cL∗+
cL∗dF+++ dF+cL∗dF+++hL∗dF+cL ∗cI∗dF+gFdD∗
cL∗++, respectively. Their equivalent lengths are 0.375
and 0.75, respectively. On the other hand, the worst and
the best rules obtained from the sum–product function are
((fEdLgLfL∗)((fEdLgVfL∗)(cIaL(dYaP∗)∗)cC+)
+) and (dFbM(cV(((gLcL+)aTdF∗)fLdL∗)+)+),
respectively. Their normalized equivalent lengths are 0.625
and 0.75, respectively. The depths of the best rules are 18 and
4 for the min–max and sum–production scoring functions,
respectively. Although the operators used by the best rules
are 32 and 5 for the min–max and sum–production scoring
functions, respectively. It can be seen that the sum–production
function has generated much simpler rule structures compared
with the min–max function. Figure 4 shows the best rule gen-
erated using the sum–production scoring function. It has also
been noticed that the sum–product scoring function did not
present higher total accuracy for the worst case as shown in
Table 3. This is due to the fact that the sum–product scor-
ing function presented more balanced prediction performance,
i.e. the difference between the worst sensitivity and the worst
specificity was 6.66% rather than 36.36% as presented using
the min–max scoring function. As 69% of the HIV protease
8mers are negative (with no cleavage sites), higher specificity
naturally leads to higher total accuracy. By losing 2.57% in
total prediction accuracy for the worst case, the sum–product
scoring function won 16.67% of the sensitivity.

The biological studies have indicated that P1 and P1′ are
very important for cleavage activity. For instance,

• Tyrosine (Y) and Proline (P) are more conserved at
P1 and P1′ for cleavage as observed among the matrix
and capsid proteins (Hong, 1998). The replacement of
the Tyrosine–proline bond with methionine–methionine
reduces the cleavage efficiency (Cheng et al., 1991).
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Fig. 2. Shows the five measurements through evolutionary generations. The horizontal axis represents the evolutionary generation while the
vertical axis the performance. The diamonds, squares, circles, crosses and triangles are for specificity, sensitivity, total accuracy, the MC
and fitness.
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Fig. 3. Shows the diversities of two measurements through the evolutionary generations. The horizontal axis means the evolutionary generation
while the vertical axis, the mean measurements with SD. The thin and the thick lines denote the total accuracy and the MC.

Table 3. Comparison of two scoring functions for the HIV case

FIT TNf (%) TPf (%) Total (%) MC

Min–max
Worst–best 0.69–0.72 86.36–88.89 50.00–94.74 75.00–91.89 0.39–0.84
Mean (SD) 0.71 ± 0.01 85.76 ± 4.88 77.68 ± 13.32 83.61 ± 4.56 0.62 ± 0.13

Sum–product
Worst–best 0.80–0.98 73.33–95.83 66.67–100 72.43–96.88 0.47–0.93
Mean (SD) 0.89 ± 0.06 88.23 ± 6.50 79.84 ± 10.30 85.42 ± 6.64 0.70 ± 0.12

The measurements are obtained from the testing using top 10 rules from each cross-validation model. ‘Worst’ means the lowest total testing accuracy. ‘Best’ means the highest total
testing accuracy. ‘Mean’ means the average among top 10 rules.
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Table 4. Shows the conserved amino acids from two scoring functions

Min–max Sum–product
P4 P3 P2 P1 P1′ P2′ P3′ P4′ P4 P3 P2 P1 P1′ P2′ P3′ P4′

A 0.29
C
D
E 0.20 0.29
F 0.21 0.37 0.22 0.21 0.20 0.55 0.43 0.23
G
H
I 0.23 0.40
K
L 0.37 0.24 0.23
M 0.20 0.20 0.21 0.23
N 0.20
P 0.26 0.21
Q 0.27
R
S 0.22
T
V 0.20 0.36
W 0.20 0.28
Y 0.23 0.20

The numbers are frequencies of the amino acids occurred at the specified residues for the top 10 rules from 10 cross-validation models.

Fig. 4. Shows the best rule generated using the sum–product func-
tion. The rule shows the depth of 4 with the normalized equivalent
length 0.75. Note that ‘+’ means the or operation and ‘∗’ the and
operation.

• The elementary reaction properties of phenylalanine–
proline (F–P) structure at P1 and P1′ have been studied
(Reich et al., 1996; Fournout et al., 1997; Tran et al.,
1997; Okimoto, 2000). The scissile bond (Phe–Pro)
within the gag–pol polyprotein has been shown to be the
competitive inhibitors of HIV-1 protease (Pivazyan et al.,
2000).

• The specificity of phenylalanine–tyrosine (F–Y) bond has
also been shown to play an important role for inhibition

(Glenn et al., 2002; Kassel et al., 1995; Marastoni et al.,
1998; Tossi et al., 1995).

• The other studies also addresses the importance of
leucine–phenylalanine (L–F) bond in inhibitor design
(Dreyer et al., 1992; Polgar et al., 1994; Carrillo et al.,
1998; Hong, 1998).

After the rules are generated, the frequency that each amino
acid occurs in top 10 rules is calculated for the invest-
igation of whether the generated rules are consistent with
biology science. Table 4 shows the frequencies with the
values larger than 0.2. It can be seen that both scoring
functions are able to explore the right conserved amino
acids.

We have presented a new scoring function called the sum–
product scoring function for extracting HIV protease cleavage
discriminant rules using genetic programming. The simula-
tion shows that this new scoring function is superior to the
min–max scoring function. However, both the earlier study
(Yang et al., 2003) and the current study aim to find a single
rule to discriminate cleaved and non-cleaved 8mers. The prin-
ciple of one-for-all may work for a small dataset where the
heterogeneous is not too large. In order to enable the genetic
programming working for a large dataset, multiple rules must
be considered. In this case, the current single-population
genetic programming method may not be suitable and com-
plicated algorithms need to be investigated. On the other
hand, a further comprehensive investigation of the comparison
between discriminating rules and prototype rules as studied in
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pattern recognition will bring this interesting subject deeper
and wider in bioinformatics.
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