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Abstract— This paper describes an approach to the improve- In GP, solutions to a problem can be represented in differ-
ment of a fitness function and the optimisation of training data in  ent forms but are usually interpreted as computer programs.
genetic programming (GP) for object detection particularly 0b-  panyinian principles of natural selection and recombiorati

ject localisation problems. The fitness function uses the weighted dt | lati f ¢ d
F-measure of a genetic program and considers the localisation are used to evolve a populauon of programs towards an

fitness values of the detected object locations. To investigateeth €ffective solution to specific problems. The flexibility and
training data with this fitness function, we categorise the training expressiveness of computer program representation, oeahbi
data into four types: exact centre, close to centre, include centre,  with the powerful capabilities of evolutionary search, &P
and background. The approach is examined and compared with 5, exciting new method to solve a great variety of problems.

an existing fitness function on three object detection problems . . .
of increasing difficulty. The results suggest that the new fithess GP has been applied to a range of object detection and

function outperforms the old one by producing far fewer false recognition tasks with some success [5], [8], [9], [10], ][11
alarms and spending much less training time and that the first [12], [13].
two types of the training examples contain most of the useful  Finding a good fitness function for a particular object
information for object detection. The results also suggest that detection problem is an important but difficult task in de-
the complete background type of data can be removed from the . h . .
training set, velqplng a GP.system. \(arlous_ f|tness_ functions have been
devised for object detection, with varying success [5], [9]
[11], [14], [15]. These tend to combine many parameters
using scaling factors which specify the relative impor&anc
of each parameter, with no obvious indication of what scalin
factors are good for a given problem. Many of these fitness
functions require clustering to be performed to group rplsti
BJECT detection tasks arise in a very wide range @dcalisations of single objects into a single point befdne t
applications, such as detecting faces from video imagéigness is determined [16], [15], [14]. Other measures ag@ th
finding tumours in a database of x-ray images, and detectiimgorporated in order to include information about the pre-
cyclones in a database of satellite images [1], [2], [3], [A] clustered results (such as how many points have been found
many cases, people (possibly highly trained experts) dee ator each object). While some of these systems achieved good
to perform the detection task well, but there is either atslyer detection rates, many of them resulted in a large number of
of such experts, or the cost of people is too high. Given tiglse alarms. In addition, the clustering process during th
amount of image data containing objects of interest thatl negvolutionary process made the training time very long.
to be detected, computer based object detection systems am®rganising training data is critical to any learning ap-
of immense social and economic value. proaches. The previous approaches in object detection tend
An object detection program must automatically and cofe use all possible positions of the large image in training
rectly determine whether an input vector describing a porti an object detector. However, this usually requires a venglo
of a large image at a particular location in the large imaggaining time due to the use of a large number of positions on
contains an object of interest or not and what class thige background.
suspected object belongs to. Writing such programs is ysuall This paper aims to investigate a new fitness function and
difficult and often infeasible: human programmers oftemcdn a new way to optimise the training data in GP for object
identify all the subtle conditions needed to distinguistwe®n detection, in particular object localisation, with the boé
all objects and background instances of different classes. improving the detection performance and refining training
Genetic programming (GP) is a relatively recent and fagkamples. The approach will be examined and compared with
developing approach to automatic programming [5], [6], [7hn existing GP approach on a sequence of object detection
Mengjie Zhang is with the School of Mathematics, Statistiod @omputer pr(_jl_?]lzn:sn?;:]Jéfa:flr:ﬁlglgg:;é?IS organised as follows. Sec-
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to object detection, including the major components of the
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New Zealand. approach. Section IV focuses on the new fitness function and
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I. INTRODUCTION
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compares it with an existing clustering based fitness foncti  In terms of the number of classes in object detection, there
Section V investigates the training data. Finally, we draare two categories. The first igne-class object detection
conclusions in section VI. Some GP basics are given in tpeoblem where there are multiple objects in each image,
appendix. however they belong to or are considered the same (single)
class of interest. In nature, these problems contain a two-
Il. BACKGROUND class (binary) classification problembjectversusnon-object
also calledobjectversusbackground Examples are detecting
} ) ) ) ~small targets in thermal infrared images [17] and detecting
GP is an approach to automatic programming, in wWhich particular face in photograph images [18]. The problem is
a computer can construct and refine its own programs 4@yally the same asbject localisation where the main goal
solve specific tasks. First introduced by Koza [6] in theear|s to find where the objects of interest are in the large images
1990s, GP has become another main genetic paradigmTie second ismulti-class object detection problerwhere
evolutionary computation (EC) in addition to the well knowRpere are multiple object classes of interest each of which
genetic algorithmgGAs). ~has multiple objects in each image. Detection of handwritte
Compared with GAs, GP has a number of characteristiGfgits in postal code images [19] is an example of this kind.
While the standard GAs use bit strings to represent solutioR§nile GP has been widely applied to the one-class object
the forms evolved by GP are generally trees or tree-likgstection and binary classification problems [15], [8], [2P],
structures. The standard GA bit strings use a fixed lengihhas also been applied to multi-class object detection and
representation while the GP trees can vary in length. Whilgscsification problems [21], [22], [23], [10], [24], [11].
the GAs use a binary .alphapet to form the bit strings., the GP|, terms of the representation of genetic programs, differe
uses alphabets of various sizes and content depending on¢figs of genetic programs have been developed in GP systems
problem domain. These trees are made up of internal noggsspject classification and image recognition. The mai pr
and leaf nodes, which have been drawn from a set of primitiygam representation forms include tree or tree-like or migne
elements that are relevant to the problem domain. Compa@ﬁ)ression programs [5], [7], [21], [11], graph based paos

with a bit string to represent a given problem, the trees CH), linear GP [25], linear-graph GP [26], and grammar based
be much more flexible. P [27

G
The basic concepts, genetic operators, and the GP algorithnﬂn[]
are described in the appendix.

A. Genetic Programming and Main Characteristics

e use of GP in object detection and image recognition
has also been investigated in a variety of application domai
These domains include military applications [9], [20], Esly

B. Object Detection letter recognition [28], face/eye detection and recognif9],

The termobject detectiorhere refers to the detection of22]: [30], vehicle detection [15], [31] and other visiondan
small objects in large images. This includes bobject clas- IMage processing problems [32], [33], [6], [34], [35], [36]
sificationandobject localisationObject classificatiomefers to
the task of discriminating between images of different kioél [1l. THE GP APPROACH TOOBJECTDETECTION
objects, where each image contains only one of the objects o

interest.Object localisatiorrefers to the task of identifying the . s tak d a trained locall lied to it :
positions of all objects of interest in a large image. Thesobj image is taken and a trained localiser applied to it, prawyci

detection problem is similar to the commonly used terrr%_ set of points found to be the positions of these objects.

automatic target recognitioandautomatic object recognition hmgle Ob_JSCtS” Cotﬂld have rlr(;uglple poilltlons (Ilocall_|eatt_; ),
Object detection performance is usually measureddéy owever ideally there wou € exaclly one localisation per

tection rate and false alarm rate The detection rate (DR) obJ(eigt.nRegmniioLthEe |rr;]ag$t?]re thent cutt ourt ?rt] er?cr;aif itff;e
refers to the number of small objects correctly reported sitions speciied. =ach of these cutouts are then classitie

a detection system as a percentage of the total number Sfpr? the tr;unded classn‘lTlr. bi f ltiole cl
actual objects in the image(s). The false alarm rate (FAR), s method treats all objects of multiple classes as a

also called false alarms per object [17], refers to the numb ngle “object qf_intgrest” class for the purpose of locatiisn,
of non-objects incorrectly reported as objects by a demctiand the classification stage handles attaching correcs clas
lahels. Compared with the single-stage approach [10],, [11]

system as a percentage of the total number of actual obje A .
y P g ) 5 approach has the advantage that the training is easier f

in the image(s). Note that the detection rate is between 0 33 h ii lis f d h ining of
100%, while the false alarm rate may be greater than 10 3th stages as a specific goalls focuse on the t_ral_mng eac
of the two stages. The first is tailored to achieving results

for difficult object detection problems. as close to the object centres as possible (to achieve high
) ) ~ “positional accuracy”), while the second is tailored to mak

C. GP Related Work for Object Detection and Recognition | classifications correct (high “classification accuracy

Since the early 1990s, there has been only a small amounThe object localisation stage is performed by means of a
of work on applying GP techniques to object classificatiomyindow which sweeps over the whole image, and for each
object detection and other image recognition problemss Thiosition extracts the features and passes them to the draine
in part reflects the fact that GP is a relatively young diso#l localiser. The localiser then determines whether eachipnosi
compared with, say, neural networks and genetic algorithmis an object or not (i.e. background).

tI'he process for object detection is shown in Figure 1. A raw
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Fig. 1. An overview of the object detection process.
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Fig. 2. GP approach to object detection.

Our work will focus on object localisation using geneti¢he training data are the main focuses of this paper, whith wi
programming. Figure 2 shows an overview of this approacbe described in the next sections. In the rest of this section
which has a learning process and a testing procedure. In the will describes all of the other components.
learning/evolutionary process, the evolved genetic @nogr .
use a square input field which is large enough to contafh Terminal Set
each of the objects of interest. The programs are applied afor object detection problems, terminals generally corre-
many sampled positions within the images in tinaining spond to image features. In this approach, the features are
setto detect the objects of interest. If the program localisextracted by calculating the mean and standard deviation of
returns a value greater than or equal to zero, then thisipositpixel values within several circular regions. This set aftieres
is considered the centre of an object of interest; otherwibas the advantages of being rotationally invariance. litiadc
it is considered background. In the test procedure, the best also used a constant terminal. Note that finding a good set
evolved genetic program obtained in the learning processofifeatures is beyond the goal of this paper, and we will use th
then applied, in a moving window fashion, to the whole imageset of features to check the performance of both the existing
in the test setto measure object detection performance. and the new approaches for comparison purpose only.

This approach has five major components: (1) Determina- ]
tion of a terminal set; (2) Determination of a function s& ( B- Function Set
Construction of a new fitness function; (4) Determination of The function set contains the four standard arithmetic and
the major parameter values and the termination criterid; aa conditional operationFuncSet = {+,—,*,/,if}. The
(5) investigation of the training data. In addition, to exaen +, —, and x operators are usual addition, subtraction and
the performance of this approach, we also need to choose tingtiplication, while / represents “protected” divisionhe if
object detection example tasks. function returns its second argument if the first argument is

Construction of a new fitness function and investigation @ositive or returns its third argument otherwise.
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Fig. 3. Sample images in the three data sets. (a) Easy; (b) ktedifficulty; (c) Hard.

C. GP Structure, Parameters and Termination Criteria

sweeping window is within a few pixels of the centre of the

In this system, we used tree structures to represent gen&figet objects, but also when the sweeping window is centred
programs [6]. The ramped half-and-half method [5] was us«?&f‘?r a n’L,meer of cluttered pieces of background. Clearbgah
for generating programs in the initial population and foe th ©PJ€cts” are not those we expected but false alarms.

mutation operator. The proportional selection mechanisth a
the reproduction, crossover and mutation operators weyd ufe
in evolution.

We used a population of 500 genetic programs for evolutid
in each experiment run. The reproduction rate, crossover ra
and mutation rate were 5%,
program size was initialised to 4 and it could increase to
during evolution.

The system run 50 generations unless it successfully foundR1.
an ideal solution or the performance on the validation dét fe

down, in which cases the evolution was terminated early.
R2.

D. Data Sets R3.

To investigate the performance of this approach, we chose
three image data sets of New Zealand 5 and 10 cent coins
in the experiments. Examples are shown in Figure 3. TheR4.
data sets are intended to provide object localisationétiete
problems of increasing difficulty. The first data setagy
contains images of tails and heads of 5 and 10 cent coins
against an almost uniform background. The secanddjum R5.
difficulty) is of 10 cent coins against a noisy background,
making the task harder. The third data skarf) contains
tails and heads of both 5 and 10 cent coins against a noisy
background.

We used 24 images for each data set in our experiments and
equally split them into three sets: a training set for leagni

Different evolved genetic programs typically result in-dif
rent numbers of false alarms and such differences should
be reflected when these programs are evaluated by the fitness
Ynction.

When designing a fitness function for object detection
70% and 25%, respectively. TREPblems, a number of considerations need to be taken into
ggecount. At least the following requirements should be con-
sidered.

The fitness function should encourage a greater num-
ber of objects to be detected. In the ideal case, all the
objects of interest in large images can be detected.
The fitness function should prefer a fewer number of
false alarms on the background.

The fitness function should encourage genetic pro-
grams to produce detected object positions closer to
the centres of the target objects.

For a single object to be detected, the fithess func-
tion should encourage programs to produce fewer
detected “objects” (positions) within a few pixels
from the target centre.

For two programs which produce the same number
of detected “objects” for a single target object but
the “objects” detected by the first program are closer
to the target object centre than those detected by the
second program, the fithess function should rank the
first program better than the second.

Some typical examples of these requirements are shown in

good genetic programs, a validation set for monitoring thgyure 4. In this figure, the circles are target objects anciseg.
training process to avoid overfitting, and a test set to Measlre |arge images or regions. A cross (X) represents a ddtecte

object detection performance.

object. In each of the five cases, the program associated with

In our experiments, a total nhumber of 100 runs were pefe |eft figure should be considered better than that with the

formed on each data set and the average results are preseygf
in the next two sections.

B. An Existing Fitness Function

IV. FITNESSFUNCTION
A. Design Considerations

As the goal is to detect the target objects with no or a small
number of false alarms, many GP systems uses a combination

During the evolutionary process for object detection, wef detection rate and false alarm rate or recall and pretaso
expect that the evolved genetic programs only detect tHi fithess function. For example, a previous GP system uses
objects when the sweeping window is centred over thedte following fitness function [10]:

objects. However, in the usual case, these evolved genetic
programs will also detect some “objects” not only when the

fitnesscer = A-(1—=DR)+ B-FAR+C-FAA (1)

IEEE Intelligent Informatics Bulletin
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Fig. 4. Examples of the design considerations of the fitnesstin.

represent a localisation, each localisation is allocategight
where DR, FAR, and FAA are detection rate (the number(referred to as thdocalisation fithess, LFwhich represents
of small objects correctly reported by a detection system #s individual worth and counts towards the overall fitness.
a percentage of the total number of actual objects in theEach weight is calculated based on its relative location, or
images), false alarm rate (also calliadse alarms per object the distance of the localisation from the centre of the dbse
the number of non-objects incorrectly reported as objeatbject, as shown in Equation 2.
by a detection system as a percentage of the total number
of actual objects in the images), and false alarm area (the {

1— zj+y2 7 if /x2+y2 <r (2)

number of false alarm pixels which are not object centres but LF(xz,y) = )
0 , otherwise

are incorrectly reported as object centres before clumjgri
respectively, and4, B, C are constant weights which reflectwhere

the relative importance of detection rate versus falseratate (,y) from target object centre, amds called the “localisation

versus false alarm area. fithess radius”, defined by the user. In this systens set to

Basically, this fitness function has considered requirdmel p5i¢ of the square size of the input window, which is also
1, and partially considered requirements 2 and 4, but dog3 radius of the largest object.

not take intq accounts of requirements 3 and 5. Although this|, orqer to deal with all the situations in the five design

fitness function performed reasonably well on some problemgq irements, we used the localisation fithess to construct

it still produced many false alarms and the evolutionary,,w ne\y fitness function, as shown in Equations 3 to 5. The

training time was still very long [10]. Since this method, eision and recall are calculated by taking the locatisat

used clustering before calculating the fitness, we refet ©0gkness for all the localisations of each object and dividinig

asclustering based fitnessr CBF for short. by the total number of localisations or total number of targe
objects respectively.

V22 + 42 is the distance of the localisation position

C. A New Fitness Function — RLWF

N L;
To avoid a very large false alarm rate (greater than 100% _ >ict Zj:l LF(zi5,yi5)

for difficult problems) in the training process, we use ps&xi we Ef\il Li ©
and recall, both of which have the range between [0, 1], to

construct the new fitness functionBrecision refers to the N S LR u)

number of objects correctly localised/detected by a GRegyst WR — Dim1 ’_IL— @)
as a percentage of the total number of object localiseditizte - N

by the systemRecallrefers to the number of objects correctly

localised by a system as a percentage of total number ofttarge fitnessy wr = 2 x WP x WR (5)
objects in a data set. Note that precision/recall and detect WP+ WR

rate/false alarm rate have internal relationship, whegevéiue where NV is the total number of target objects;;;, v;;) is the
of one pair for a problem can be calculated using the othposition of thej-th localisation of object, L; is number of
for the same problem. localisations made to obje¢t WP and WR are the weighted
During the object localisation process, a genetic prograpnecision and recall, arfithess; .y r is the localisation fithess
might consider many pixel positions in an image as objeateighted F-measure, which is used as the new fitness function
centres and we call each object centre localised in an imagérhe new fitness function has a number of properties. Firstly,
by a genetic program Bcalisation the main parameter in this fithess function is thealisation
Unlike the previous fitness function CBF, the new fitfithess which can by easily determined in the way presented
ness function is based on a “Relative Localisation Weightdetre. This has an advantage over the existing methods which
F-measure” (RLWF), which attempts to acknowledge tHeave many parameters whose values usually need to be man-
worth/goodness of individual localisations made by the geally determined. Secondly, in the previous approaches, th
netic program. Instead of using either correct or incortect multiple localisations of each object must be clustered int

December 2006 Vol.7 No.1 IEEE Intelligent Informatics Bulletin
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TABLE |
RESULTS OF THEGP SYSTEMS WITH THE TWO FITNESS FUNCTIONS

Dataset | Fitness Test Accuracy Training Efficiency
function | LR (%) | LP (%) | ExtralLocs | Generations| time(sec)
CBF 99.99 98.26 324.09 13.69 178.99
Easy RLWF 99.99 99.36 98.35 36.44 111.33
CBF 99.60 83.19 804.88 36.90 431.94
Medium | RLWF 99.90 94.42 95.69 34.35 105.56
CBF 98.22 75.54 148451 31.02 493.65
Hard RLWF 99.53 87.65 114.86 33.27 107.18

one group and its centre found. While this is not a too difficully RLWF were significantly better than CBF, suggesting that
task, it is very time consuming to do during training. Thisvne the new fithess function outperforms the existing one in germ
fithess function does not require clustering before the dgneof reducing false alarms.

is calculated. We expect that the new fitness function can do a\s expected, performance on the three data sets detedorate
better job in terms of reducing false alarms and evolutipnaas the degree of difficulty of the object detection problens wa
training time. increased.

D. Results E. Detection Map Analysis

To give a fair comparison for the two fitness functions, the To give an intuitive view of detection performance of the
“localisation recall (LR) and precision (LP)” were used tdwo fitness functions, we checked the “detection maps” of
measure the final object detection accuracy on the test Bet. some objects in the test set. Figures 5 (a) and (b) show
is the number of objects with one or more correct localisetiothe detection maps for the same 15 objects in the medium
within the localisation fithess radius at the target objecites difficulty data set produced by the two approaches. The black
as a percentage of the total number of target objects, and piRels in these maps indicate the localisations of the 1B6aibj
is the number of correct localisations which fall within theroduced using the two fitness functions. The “background”
localisation radius at the target object centres as a pegen means that no objects were found in those positions.
of the total number of localisations made. In addition, wsoal

check the “Extra Localisations” (ExtraLocs) for each sgste | o | |
to measure how many extra localisations were made for each 0 i. ‘ y | . &
object. The training efficiency of the systems is measured wi | I =
the number of training generations and the CPU (user) time @ . . |‘ r | ¥ »
in second. | ! |

Table | shows the results of the GP systems with the . | G i, » i 3 a
two fitness functions. The results on the easy data set show | ‘) |
that both the fitness functions achieved almost perfect test S f_“‘"“—"" o R A
accuracy. Almost all the objects of interest in this data set .| ‘ » * | s .
were successfully localised with very few false alarms ffbot | |
LR and LP are very close to 100%), reflecting the fact that . ‘ % G + | ; .
the detection task in this data set is relatively easy. Hewev i |
the extra locations and the training time resulted from the (@) (b)

two approaches are quite different. The new fithess function _ _
(RLWF) produced a far fewer number of extra localisations p&f¢ > Sample object detection maps. (a) CBF; (b) RLWF.
object than clustering based fitness function (CBF) and #pe g
between them is significant. Although the CBF approach us : o
only 13.69 generations on average, which are considera F resuIFed in @ huge number of gxtra Iocallsgnons for all
fewer than that of the new RLWF, it actually spent about 5050e 15 ObJeCtTQ’ detected. The new fitness funptpn, however,
longer training time. This confirms our early hypothesisttha?nly resultgd in a small nur_nber of extr.a localisations. 'Ehe;
the clustering process in the CBF approach is time consumi ps confirm that the new fltness funcpon was more effective
and the approach with the new fitness function is more eﬁiicietrhl n the clustering based fitness function on these problems
than that with CBF.

The results on the other two data sets show a similar pattern V. OPTIMISING TRAINING DATA
in terms of the number of extra localisations and training We could train the detection system with a full set of cutouts
time. The systems with RLWF always produced a significanttpken from a window at all possible positions over the tragni
fewer number of extra localisations and a much short trginimmages. However, for a set of large images, this can create a
time than CBF. In addition, although almost all the objectsuge number of training examples making the training time
of interest in the large images were successfully detectadsuitably long. While we can reduce the total number of
(LRs are almost 100%), the localisation precisions acliev&aining examples using a combination of hand-chosen and

s shown in the figure, the clustering based fitness function

IEEE Intelligent Informatics Bulletin December 2006 Vol.7 No.1
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randomly chosen examples [16], in this approach, we foc
on investigating whether some examples are better thamsoth
and how we pick up better examples.

A. Four Training Data Types

The traditional approaches usually ysesitiveandnegative
examples. The former refers to the exact object examples &
the latter refers to those for the background [9], [10], [15
However, this did not consider those with a portion of olgec
and a portion of background. In this approach, we identifig
four basic types of training examples, as shown in figure
The exact centraype (figure 6a) refers to the positive objec
examples which sit exactly the centre of the sweeping windg
This type of examples has only a very small number. F
example, in each of our training images, we have only 16 su
examples out of approximately half a million pixel position
The backgroundtype (figure 6d) refers to the positions (x
which do not contain any piece of objects. This type typical
has a huge number of examples. These to centréype refers
to the examples that have the centre of the sweeping wind

us Included Object

and
I
t
2d
6.
t

Close to Centre

0,
100% Background

W (a)
| for each C and B (%)
Pr | B\C [100[83[67[50[33[17[ O
ch [0 0 [1I7[ 33|50 67 | 83| 100
17 0|17 |33|50]| 67| 83
33 0 | 17| 33| 50| 67 (b)
50 0 | 17| 33| 50
67 0| 17| 33
83 0| 17
100 0

ow

falling down within the bounds of an object (figure 6b). Thesig. 7. Training data proportions set.
include objectgype refers to the examples that contain some

pixels of an object but are not considered asdiose to centre
type.

object

iiiiiii

@
Fig. 6.
positions.

(b) © ()
Examples of training data types caused by differeptiirwindow

B. Optimisation of Training Data

C. Results

For each experiment with a sampled proportion, we did 100
runs. These were made up of 10 different random seeds when
extracting the training data from source images, by 10 wdiffe
random seeds for the GP system. Other parameters are the
same as before.

The average results on tiest setare shown in figure 8. In
the figure, ther andy axes are th€' and B, and thez is the
relative fitness for the these problems (1.0 or 100% means the
ideal case).

As shown in the figure, for all the three data sets, the value

For a problem domain, we assume that there is sorf€C’ Or the percentage of the objects for @ise to Centre
proportion of these four types which is optimal (or closdype played an _|mportant role using our new fithess function.
to optimal) for object detection. From previous research, wi he best detection results were achieved with 100% examples
found that the exact centre type is always important idpr theclose to centréype and the wprst _results were produced
object detection. As the number of examples of this typ&nen we do not use any example in this type at all. The more
is very small, we will always use this type of examples ipbject examples used in this type, the best result_; achieved
the experiments and assume that the best results can onlysvever, theBackgroundtype objects were not critical for
achieved by including them. In the remainder of investiyati these data sets. These examples did not seem to have clear

we will vary the proportions among the rest three types to firRgd or good influence.

the optimal combinations.

Based on this idea, if we us€,I and B to refer to
percentage of the examples for the three tygese to centre,
include objectsand background then we have:

C+1+B=100%
This has the nice feature that it represents only a pla

These results suggest that, when using the new RLWF
fitness function for these object detection, good fitnessltes
can be achieved with only the two typeSxact Centreand
Close to Centreand most if not all object examples for the
other two typednclude Objectand Backgroundcan be taken
out from the training set.
nelnspection of this reveals that, this is not only because

effectively reducing the parameter search space from 3IDto 2the first two types of objects might contain the most useful
as shown in figure 7 (a). We experimented with 28 separdtdormation for object detection, but more importantlychase
proportions sampled from the plane in figure 7 (a), as showine new RLWF fitness function is capable of learning well

in figure 7 (b), where each entry represents value Ifdor

from these two types of examples and can cope well with the

a givenC and B. For example, the first two entries in thegoal of finding object centres from large images. This is fiyain

first row show that, using no backgroun® (= 0), we will
examine 100%C with 0% I, and 83%C with 17% I type
objects, respectively.

due to the fact that the RLWF fitness function consider the
relative effect of the detected “objects” in different Itioas.
A further inspection of the use of the old fitness function
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Fig. 8. Results of optimisation. (a) Easy; (b) Medium difftyul(c) Hard.

reveals that the old fithess function must use object exanpl¢] H. L. Roitblat, W. W. L. Au, P. E. Nachtigall, R. Shizumurand
from all the four types. This is because the old fitness famcti G- Moons, “Sonar recognition of targets embedded in sedifmbiet/ral

cannot capture the relative effect information from thecotg Networks vol. 8, no. 7/8, pp. 1263-1273, 1995.
p [3] M. W. Roth, “Survey of neural network technology for antatic target

of the first two types only. This also suggests that the new" recognition,”IEEE Transactions on neural networkeol. 1, no. 1, pp.
fitness function is more effective than the old one for object 28-43, March 1990.

detection, particularly when only are training examplesrfr [4 A- M. Waxman, M. C. Seibert, A. Gove, D. A. Fay, A. M. Berna
P y y 9 P C. Lazott, W. R. Steele, and R. K. Cunningham, “Neural praogssf

the first two types available. targets in visible, multispectral ir and sar imagemiural Networks
vol. 8, no. 7/8, pp. 1029-1051, 1995.
VI. CONCLUSIONS [5] W. Banzha_lf, P. Nordin, R_. E. Keller, and F_. D. Fra_ncor&enetic
_ _ ] Programming: An Introduction on the Automatic Evolutioncofmputer
The goal of this paper was to develop a new fithess function programs and its Applications San Francisco, Calif. : Morgan Kauf-

i ; ; ; it i S mann Publishers; Heidelburg : Dpunkt-verlag, 1998, subjéenetic
for object detection and investigate its influence on ofsing programming (Computer science): ISBN: 1-55860-510-X,

the tra'_nmg data. Rather th_an using a clustering process fa J. R. Koza,Genetic programming : on the programming of computers
determine the number of objects detected by the GP systems, by means of natural selection London, England: Cambridge, Mass. :
the new fitness function introduced a weight called loctitisa MIT Press, 1992.

- ; ——, Genetic Programming II: Automatic Discovery of Reusable-Pr
fitness to represent the goodness of the detected objects fﬂi'dgramS London, England: Cambridge, Mass. : MIT Press, 1994,

usled Weighted F'me_asures' To inve_Stigate th.e_training .da[téﬂ A. Song, V. Ciesielski, and H. Williams, “Texture classif$ generated
with this fitness function, we categorise the training data i by genetic programming,” irProceedings of the 2002 Congress on

four types. This approach is examined and compared to that Evolutionary Computation CEC200D. B. Fogel, M. A. El-Sharkawi,
ith th Id clustering b d fitn function on thr in X. Yao, G. Greenwood, H. lba, P. Marrow, and M. Shackletons.Ed
wit e old clustering base ess function o ee co IEEE Press, 2002, pp. 243-248.

detection problems of increasing difficulty. [9] W. A. Tackett, “Genetic programming for feature discovenyd image
The results suggest that the new fitness function outpesform  discrimination,” in Proceedings of the 5th International Conference on

; : Genetic Algorithms, ICGA-93. Forrest, Ed. University of lllinois at
the old one by producing far fewer false alarms and spending Urbana_Ch%mpaign: Morgan Kaufmann, 17-21 July 1935’93’ Dp. 303

much Ies; _training time. Further investigation on the fopes [10] M. Zhang, P. Andreae, and M. Pritchard, “Pixel statistand false alarm
of the training object examples suggests that the first twegy area in genetic programming for object detection,"Applications of

of obiects can be used to produce aood detection results and Evolutionary Computing, Lecture Notes in Computer Sciebs&S Vol.
J P 9 2611 S. Cagnoni, Ed. Springer-Verlag, 2003, pp. 455-466.

that the new fitness function is effective in optimising thﬁl] M. Zhang, V. Ciesielski, and P. Andreae, “A domain in t
training data for object detection. window-approach to multiclass object detection using genpto-

In the future, we will app|y the new approach to other object gramming,”EURASlP Journal on Sﬁgnal Prqcessing, Spe_cial Issue on
Genetic and Evolutionary Computation for Signal Procegsind Image

detection problems particularly with non-circular obgect Analysis vol. 2003, no. 8, pp. 841859, 2003.
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operations. The second class comprises specific functiortee winner is allowed to reproduce with mutation and the

which vary with the problem domain. result is returned to the population, replacing the losethef
Terminals have no arguments and form the leaves of ttmirnament.

parse tree. Typically, terminals represent the inputs ® th

GP program, the cqnstant.s sgpplied to the GP program, (or genetic Operators

zero-argument functions with side-effects executed byGRe . ] .

program [5]. In any case, a terminal returns an actual numeri There are three fundamental genetic operators: repraahycti

. ; . mutation and crossover.
value without having to take an input. L . . -
9 P Reproductionis the basic engine of Darwinian theory [6],

which involves just simply copying the selected programmfro

B. Program Generation the current generation to the new generation. This allovegligo
There are several ways of generating programs to initialisgorograms to survive during evolution.

GP population, includindull, grow andramped half-and-half ~ Mutation operates only on a single selected program and
[6]. In the full method, functions are selected as the (mar introduces new genetic code in the new generation. This
nodes of the program until a given depth of the program trégerator removes a random subtree of a selected program,
is reached. Then terminals are selected to form the leafsnodé@en puts a new subtree in the same place. The goal here is
This ensures that full, entirely balanced trees are coctstru to keep the diversity of the population in evolution.
When the grow method is used, nodes are selected from either

functions or terminals. If a terminal is selected, the gatien <
process is terminated for the branch and moves on to the next —
O
O
(@

non-terminal branch in the tree. In the ramped half-and-hal
method, both the full and grow methods are combined. Half
of the programs generated for each depth value are created
by using the grow method and the other half using the full
method.

C. Fitness Function g\o+ vo J> —

Fitness is the measure of how well a program has learnt to ®)

predict the output from the input during simulated evolntio rig. 10. Effect of genetic operators in genetic programmiag.Mutation
The fitness of a program generated by the evolutionary psoc@sGP: Replaces a random subtree; (b) Crossover in GP: Swapsandom
is computed according to the fitness function. The fitne&gPtrees.
function should be designed to gve graded an_d ConthOUSCrossovertakes advantage of different selected programs
feedback about how well a program in a population performs, .. ; . ;

o within a population, attempting to integrate the useful at-
on the training set. : :

tributes from them. The crossover operator combines the

_ _ genetic material of the two selected parents by swapping
D. Selection Mechanism a subtree of one parent with a subtree of the other, and

The selection mechanism determines which evolved pri#itroducing two newly formed programs into the population
gram will be used for the genetic operators to produce nélythe next generation.
individuals for the next generation during the evolutignar
process. Two of the most commonly used selection methodsThe GP Algorithm
are proportional _selectlorand_tournament selectm_n - . The learning/evolutionary process of the GP algorithm is
In the proport_lonal selection method_ [6], an individual INummarised as follows:
a population will be selected according to the proportion - .
of its own fitness to the total sum of the fitness of all the 1) Initialise th? populafuon_. o e
individuals in the population. Programs with low fithessreso 2) Repeat until a terrr?lnzfltl'on criterion is Sa.t'Sﬂed'
would have a low probability of having any genetic operators 2.1 Evaluate the individual programs in the current

applied to them and so would most likely be removed from population. Assign a fitness to each program.
the population. Programs which perform particularly well i 2.2 Until the new population is fully created, repeat the
an environment will have a very high probability of being following:
selected. — Select programs in the current generation.

The tournament selection method [5] is based on com- — Perform genetic operators on the selected pro-
petition within only a subset of the population, rather than grams.
the whole population. A number of programs are selected — Insert the result of the genetic operations into the
randomly according to the tournament size and a selective new generation.
competition takes place. The better individuals in the tour 3) Present the best individual in the population as the dutpu
nament are allowed to replace the worse individuals. In the  — the learned/evolved genetic program.

smallest possible tournament, two individuals can compete
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