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Abstract Available machine fault diagnostic methods show unsatisfactory 

performances on both on-line and intelligent analyses because their operations involve 

intensive calculations and are labour intensive. Aiming at improving this situation, 

this paper describes the development of an intelligent approach by using the Genetic 

Programming (abbreviated as GP) method. Attributed to the simple calculation of the 

mathematical model being constructed, different kinds of machine faults may be 

diagnosed correctly and quickly. Moreover, human input is significantly reduced in 

the process of fault diagnosis. The effectiveness of the proposed strategy is validated 

by an illustrative example, in which three kinds of valve states inherent in a six-

cylinders/four-stroke cycle diesel engine, i.e. normal condition, valve-tappet clearance 

and gas leakage faults, are identified. In the example, 22 mathematical functions have 

been specially designed and 8 easily obtained signal features are used to construct the 

diagnostic model. Different from existing GPs, the diagnostic tree used in the 

algorithm is constructed in an intelligent way by applying a power-weight coefficient 

to each feature. The power-weight coefficients vary adaptively between 0 and 1 

during the evolutionary process. Moreover, different evolutionary strategies are 

employed respectively for selecting the diagnostic features and functions, so that the 

mathematical functions are sufficiently utilized and in the meantime, the repeated use 

of signal features may be fully avoided. The experimental results are illustrated 

diagrammatically in the following sections. 

 

Keywords     Genetic programming,          Engine valve,          Fault diagnosis,  

                          Immigration operator. 
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1. Introduction 

 

Many mechanical fault-diagnosing techniques based on vibration analysis have been 

fully developed over the last few decades [1].  Among them the well-known Fast 

Fourier Transform (FFT) is one of the most widely used and well-established methods. 

Based on the FFT, Qu et al. [2] developed an effective tool namely the Holospectrum 

for diagnosing rotating machinery and Yang et al. [3] successfully applied it to the 

diagnosis of a cracked rotor; Unfortunately, the FFT-based methods failed to deal 

with non-stationary signals. Therefore, some time-frequency analysis methods such as 

Short Time Fourier Transform (STFT) [4], Wigner-Ville Distribution (WVD) [5], 

Wavelet Transform (WT) [6] and the Instantaneous Power Spectrum (IPS) [7] were 

proposed and thereafter, their improved versions were further developed [8, 9]. But 

few of them can meet the practical requirements completely with respect to on-line 

and intelligence performances because their operation needs human input and involve 

intensive calculations. For instance, the vibratory orbit of a rotor provides a useful 

clue for diagnosing the faults occurring in rotor-bearing system, but current computer 

programs cannot easily distinguish the orbit shapes automatically. Likewise, when 

diagnosing the faults in a rolling-element bearing, the quasi-periodic interval between 

neighbouring impulses in the signal is a very important indication that characterises 

the type of bearing fault. But its automatic identification is also not easily 

programmed into a computer. In most cases, both the shape of rotor vibratory orbit 

and the aforementioned quasi-periodic interval in bearing signal are estimated by the 

means of visual observation or manual measurement. Sometimes, however, manual 

methods cannot work effectively, in particular, when diagnosing the machinery with 

complex structures such as diesel engines. In these cases, the vibratory features 
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characterizing different kinds of faults overlap together, so that engineers cannot 

diagnose the faults at all from the direct observation of the signals. In order to tackle 

this difficulty in the diagnosis of faults inherent in complex machinery, an intelligent 

approach has been developed in this study using the Genetic Programming 

(abbreviated as GP) method. 

    The GP was first clearly defined by Koza [10]. It involves finding both the 

functional form (the structure of the tree) and the numeric coefficients (terminals) for 

the model. In comparison with the conventional Genetic Algorithm (GA) [11], its 

individual components part are represented by binary trees and terminals rather than 

by coded strings of numbers. As GP allows the optimization of much more complex 

structures, it can therefore be applied to a greater diversity of problems [12,13,14]. 

Recently, Chen et al. [7] adopted it to diagnose the faults occurring in rolling-

elements bearings. However, most of available GPs use a few predefined binary tree 

structures and a small number of basic mathematical operators (e.g. +, -, × , ÷  and 

power). Moreover, every terminal plays an equal role in the model. This is not true in 

reality and affects the flexibility of the optimisation. In view of the aforementioned 

insufficiencies of existing GPs, a new GP approach is proposed in this paper. Using   

this proposed GP approach, many more mathematical functions, instead of the basic 

operators, will be introduced and the diagnostic tree will be constructed intelligently 

by applying an adaptive power-weight coefficient to each terminal (i.e. signal 

features). The structure of the tree is optimised adaptively with the variation of the 

power-weight coefficients between 0 and 1. In addition, different evolutionary 

strategies will be employed respectively for the selections of the functions and signal 

features, so that the designed functions may be sufficiently utilized whilst in the 

meantime, the repeated use of signal features can be completely avoided. A group of 
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constant numbers will be employed to avoid the occurrence of morbid solutions. In 

the paper, the effectiveness and feasibility of the proposed approach will be verified 

by an example where a mathematical model has been designed to diagnose the 

running states of an exhaust valve in a six-cylinders/four-stroke cycle diesel engine. 

The remaining parts of the paper are organized as follows. 

    In Section 2, the characteristics of both the vibratory signals collected from the 

exhaust valve and the corresponding cylinder pressure signals are analysed, based on 

which 8 signal features are considered to be the possible terminals of the diagnostic 

tree. Moreover, the same number of power-weight coefficients are designed 

simultaneously, from which the importance of the role of every feature in the 

mathematical model is indicated.    

    In Section 3, the 22 mathematical functions or ‘operators’ are deliberately designed 

for constructing the diagnostic tree. In the meantime, the same number of constants   

are used in order to avoid the occurrence of morbid solutions (e.g. the quantity in the 

model is divided by zero). 

    In Section 4, the fitness function that drives the evolutionary process is designed. 

Meanwhile, different evolutionary strategies are applied to the selections of the 

features, the ‘operators’ and the power-weight coefficients as well as the constant 

numbers, respectively. 

    In Section 5, using the specially designed GP program, the diagnostic tree is 

optimised adaptively until either the pre-defined maximum iteration time is reached or 

the satisfied fitness value is achieved. The optimised diagnostic tree is eventually 

formulated into a mathematical equation.  

    Finally, the effectiveness of the mathematical model identifying the running states 

of an engine valve is demonstrated by an illustrative experiment in Section 6. 
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  2. Characteristics of engine signals 

 

Nowadays, the need to further improve the diagnostic technique of engine faults has 

been widely recognized, but due to the complex structure and the presence of multi-

excitation sources, the vibratory signals collected from engines are complicated in 

composition. Moreover, the features of the signals collected in different fault 

conditions often overlap together with each other. Thus, the engine faults are very 

difficult to diagnose by convenient means. Fig.1 shows the vibratory signals collected 

from an exhaust valve of a six-cylinders/four-stroke cycle diesel engine. The valve 

works under three different conditions, (1) the normal condition, (2) the valve-tappet 

clearance faulty condition and (3) the gas leakage fault condition. The normal valve 

clearance is 0.1mm and in the experiments, a severe valve clearance fault was 

simulated and the clearance was adjusted to be 0.5mm. The gas leakage fault was 

simulated by producing a 3mm long crack on the cap of the valve. Two kinds of 

signals were considered in the calculation, one was the vibration signal collected from 

the cap of the exhaust valve; another was the cylinder pressure signal collected from a 

standard Thompson adapter that was positioned between the indicator cock and the 

cylinder head. The sampling frequency was 25 kHz and during the data acquisition 

process, the rotating speed of the engine was kept at a constant 1500 rpm. 

From Fig.1, it was found that the signals collected under different valve running 

conditions showed different complexities in structure. But the signal at every stage 

appeared similarly in the form of the impulses with decaying amplitudes and periods, 

despite the running states of the valve. Among the five stages, the fourth stage showed 

the strongest vibration. Moreover, the vibration at each stage increased or decreased 

more or less when the valve worked abnormally. Based on these observations the 
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following criteria were designed for characterising the signals. If it was assumed that 

the time series signal is ix (i=1, 2, …, N), then 

(1) General vibration intensity 1E  
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Where l and m indicate the first and the last number of data collected at the second 

stage, respectively. 
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∑
+=

+−=
n

mi
i mnxE

1

2
3 )2(                                                                         (3) 

Where n indicates the last number of data collected at the third stage. 

(4) Structural complexity S  
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Where S, in essence, is the structural entropy of the signal. Herein, the amplitude 

region of the signal is divided into Ω  sub-regions. '
iN  indicates the number of the 

data located in the i-th sub-region. 

    From the long-term observations, it was also found that the vibratory energy of the 

valve was redistributed in the frequency domain when the valve worked abnormally, 

as shown in Fig.2. It is necessary to note that the subplots in Fig.2 are the frequency 

spectra of those signals shown in Fig.1. 
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From Fig.2, it was observed that when the valve worked abnormally, the vibration 

energy moved forward towards the high frequency region (i.e. larger than 9kHz) and 

in consequence, the low frequency vibration decreased correspondingly at the same 

time. The observation showed that the remarkable differences among the spectra 

occurred in the regions (6.5kHz, 9kHz) and (9kHz, 12.5kHz), respectively. In order to 

characterize these phenomena, the fifth and the sixth criteria were designed. 

(5) The ratio of the vibration in the region from 6.5kHz to 9kHz, R1 
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Where ),,,,2,1( Nijd j LL=  are the spectral data derived by the FFT, and a  and 

b represent the first and the last number of spectral data in the region (6.5kHz, 9kHz), 

respectively.  

(6) The ratio of the vibration in the region from 9kHz to 12.5kHz, R2 
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    In order to see whether or not these vibratory criteria can really work in identifying 

the running states of the valve, Fig.3 plots, their calculated results were obtained 

during a series of experiments. 

From Fig.3, it was found that the vibratory criteria, derived under different valve 

running conditions, either overlapped together or were very close to each other. 

Obviously, they cannot be directly applied to the identification of valve states, but 

from eqns. (1) to (6), it is seen that these criteria are much more easily obtained than 

those used by [7]. 
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Experiments revealed that the cylinder pressure was also a very important feature 

for diagnosing the valve states, as shown in Fig.4. From this figure, it is clearly seen 

that when the running state of the valve has changed especially when a gas leakage 

fault occurs, the maximum value of the cylinder pressure will change significantly. 

Moreover, the decreasing ratio of the cylinder pressure in one working cycle is 

modified as well. 

Based on the observations shown in Fig.4, the following seventh and the eighth 

features were further designed.  

(7) The maximum cylinder pressure Pmax 

),,2,1|max(max MipP i L==                                                            (7) 

Where M indicates the number of data included in the cylinder pressure signal 

),,2,1( Mipi L= . 

(8) The decreasing ratio pR of the cylinder pressure signal 

max
p P

PR Δ
=                                                                                           (8) 

The Pmax and PΔ are indicated in Fig.5. Their calculation results derived during 

experiments are shown in Fig.6. 

    From Fig.6, it is seen that the Pmax derived under different valve conditions overlap 

together with each other and so does the pR . From the calculated results, shown in 

Figs.3 and 6, it can be concluded that the valve states cannot be identified correctly by 

directly using the calculated results of these criteria. This is why a new approach has 

been developed and described in this paper. 

Using the aforementioned 8 signal features criteria, the set of features for 

constructing the diagnostic tree is written as a 83× matrix F=[E1, E2, E3, S, R1, R2, 

Pmax, Rp]. Where, ''''
1

''
1

'
11 ][ EEE=E . '

1E , ''
1E  and '''

1E  are the 1E  respectively 
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derived under three different kinds of valve states. The other features in the matrix F 

have the similar expressions. 

In addition, the research carried out in [15] reveals that different signal features 

play different roles in fault diagnosis. In other words, some features play more 

important roles, while the others play less important roles or even, in some cases, do 

not play any role in the diagnosis. In view of this, a particular set of power-weight 

coefficients C= }8,,2,1|10{ L=≤≤ ici  was further designed. They corresponded to 

the aforementioned 8 signal feature criteria, and indicate the roles that these criteria 

play in the construction of the diagnostic tree. With the aid of C, the flexibility of the 

optimisation of the diagnostic tree can be dramatically improved. For example, in case 

of 0=ic , the i-th feature in the set of terminals F does not play any role in the tree, so 

the binary tree related to this feature can be cut off from the main trunk. Conversely, 

the binary trees related to those features with )8,,2,1(0 L=≠ ici  will be reserved. 

 

3. Mathematical functions 

 

Instead of using a few basic operators adopted by conventional GPs, a series of 

mathematical functions are taken as the ‘operators’ in the proposed GP so that more 

complex mathematical computation forms can be involved in the optimisation process. 

The designed ‘operators’ are listed in Table 1. 

    In the functions, jy  is the result derived from the j-th iterative calculation. if  

represents the i-th feature in the set of terminals F. ic  denotes the power-weight 

coefficient corresponding to if . In addition, a group of constant numbers 

ε = }8,,2,1|10{ L=≤< iiε  was also designed for avoiding the occurrence of morbid 
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solutions. The coded constant numbers in the set iε (i=1,2,…,8) can be optimised as 

well. From Table 1, it should be noticed that in designed ‘operators’, the feature if  is 

multiplied by the power-weight coefficient ic  first before carrying out further 

calculations of the function, so that the roles of the features play in the mathematical 

model are taken into account in the calculation. Moreover, through optimising 

ic (i=1,2,…,8), the structure of the diagnosing tree may be optimised adaptively whilst 

in contrast, the convenient GPs do not posses this merit. The diagram of the 

diagnostic tree is shown in Fig.7. 

In this figure, the composite criterion w is finally derived from the diagnostic tree, 

which can be taken as the measure for identifying the running states of the valve. 

 

4. Evolutionary strategies 

 

During the evolutionary process, four factors will be involved in the optimisation. 

They are the order of the features in the set F, the coded coefficients in the set C, the 

coded constant numbers in the set ε  as well as the order of the functions in the set of 

‘operators’, respectively. For the last three factors, their evolution will be realized by 

performing the conventional crossover and mutation operations. The details of the 

crossover and mutation operations may be found from [11]. But the optimisation of 

the order of the features in F cannot be manipulated in the same way, otherwise the 

features in the set F could be used repeatedly. In essence, the optimisation of the order 

of the features in F belongs to the type identified as Travelling Salesman Problems 

(TSPs). The related description about the TSPs may be found in [16]. Whilst aiming 

at solving the TSPs by using genetic algorithms, the author has been innovative and 
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proposed an improved genetic operator namely ‘Immigration Operator (IO)’ [17]. A 

brief introduction of the IO is given as follows. 

The IO is a special strategy for generating individuals at the outside of the 

population and then introducing the fitter ones into the population to substitute for 

those inferior individuals. The operating scheme of the IO is depicted in Fig. 8. 

Where, M represents the scale of the population, Pimmigration the probability of 

immigration operation, I the number of individuals that will be generated, fi the fitness 

value of the i-th individual, fmean the mean fitness of the individuals contained in 

present population. 

As depicted in Fig.8, the individuals are generated stochastically, but the population 

will not accept all individuals being generated. Only those with the fitness larger than 

the mean fitness of the available individuals contained in present population may be 

regarded as the “qualified ones”. Hence, the individuals accepted by the population 

posses better fitness. This is why the IO can drive the evolution of the population 

more successfully. The other merits of the IO may be found from [17]. 

Using the different evolutionary strategies, the operating diagram of the GP is 

drawn in Fig.9. 

In order to accomplish a perfect classification of different valve states, both the 

largest pseudo space distances among different groups of samples and the smallest 

pseudo space distances among different samples contained in the same group are 

considered simultaneously. The fitness function for the GP is designed as 
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Where a indicates the number of valve states being considered, b the number of data 

included in the signal. ijw  denotes the composite criterion derived from the i-th signal 

collected under the j-th running state of the valve. lkw  and ikw  have the similar 

meanings. 

 

5. The implementation of the GP 

 

Adopting the GP algorithm depicted in Fig.9 and taking the fitness function f 

described by eqn. (9) as the measure for evaluating the fitness levels of the individuals. 

The diagnostic tree, shown in Fig.7, is optimised for diagnosing three such kinds of 

valve running states as (1) the normal condition, (2) the valve-tappet clearance fault 

and (3) the gas leakage fault. The recorded evolutionary history is shown in Fig.10. 

The optimised results are listed in Table 2. 

    After substituting the optimised results listed in Table 2 into the diagnostic tree, the 

following mathematical model for identifying the valve state is readily derived. 
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From equation (10), it should be noticed that only 7 features appear in the 

mathematical model, though 8 criteria were considered during the optimisation. This 

is because the first function being selected is jiij yfcy =+1 (refer to Tables 1 and 2). 

As at the beginning of the GP, the initial value of jy  is zero, this function does not 

play any role in the model and the role of the first feature in the optimised set F is 

ignored. From Table 2, it is found that this feature is E1. This is also why E1 does not 

appear in the final mathematical model. 

 

6. Application of the mathematical model in the diagnosis of valve 

states 

 

Aiming at demonstrating the effectiveness of the derived mathematical model in 

identifying the running states of the valve, 29 additional signals were collected under 

each kind of valve running condition. After extracting the features specified by the set 

F from the sample data, the features were substituted into eqn. (10). The Composite 

Criterion w was calculated and the results plotted in Fig.11. 

Fig.11 shows that using the mathematical model derived by the GP, the three 

different kinds of valve states are distinguished correctly and efficiently. The 

overlapping phenomenon among them does not occur at all on the composite criterion 

w. In order to further prove the merit of the derived mathematical model on valve 

state classification, the following experiments were also carried out for comparison. 

The Principal Component Analysis (PCA) method has been widely accepted as a 

favoured tool for constructing the classification models [15]. Hence, the PCA was 

also employed to solve the present problem. The numerical results of the first, the 



 15

second and the third orders of principal components (PC1, PC2 and PC3) derived by 

the PCA are given in Fig.12. 

  From Fig.12, it is easily found by using the mathematical model, derived from the 

PCA method, that the three kinds of valve states cannot be distinguished satisfactorily 

because of the overlapping phenomenon existing among them. The accuracy of the 

classification may be improved by employing the Kernel Principal Component 

Analysis (KPCA) method [15], but in the case of using KPCA, the mathematical 

model is difficult to establish as the a non-linear operation is involved in the 

calculation algorithm. 

 

7. Concluding remarks 

 

From the aforementioned research studies, the merits of the proposed GP approach 

may be summarized as follows. 

(1) In comparison with the features adopted by [7], the signal features used in the 

proposed GP are more easily obtained. ; No further complex calculation is needed; 

(2) The introduction of the power-weight coefficients into the GP allows the 

optimisation of the diagnostic tree to be a more logical process, dramatically 

improving the flexibility of the optimisation; 

(3) The use of different evolutionary strategies fully ensures  sufficient utilization of 

both the signal features and the ‘operators’. Incorporating the constant numbers 

introduced, the morbid solutions are completely avoided; 

(4) The proposed GP approach produces a simple, feasible and effective 

mathematical model for diagnosing the running states of the engine valve. 

However, such a perfect model is difficult to achieve by using the conventional 
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signal processing methods like wavelet transform or other advanced signal 

processing tools; 

(5) The simple calculation of the signal features and the mathematical model make it 

much easier to realize an intelligent online fault diagnostic system; 

(6) Compared with the PCA or other conventional classification methods, the 

proposed GP technique shows more powerful ability in solving the classification 

problems. 
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Figure Captions 

Fig.1 Vibration signal collected from the exhaust valve of the engine. 

Fig.2 The frequency spectra of the signals shown in Fig.1. 

Fig.3 Computational results of the six vibratory criteria. 

Fig.3 (a) E1. 

Fig.3 (b) E2. 

Fig.3 (c) E3. 

Fig.3 (d) S. 

Fig.3 (e) R1. 

Fig.3 (f) R2. 

Fig.4 Cylinder pressure signals collected under different running conditions of the 

valve. 

Fig.5 Cylinder pressure signatures Pmax and PΔ . 

Fig.6 Calculation results of Pmax and Rp. 

Fig.6 (a) Pmax. 

Fig.6 (b) Rp. 

Fig.7 The diagram of the diagnosing tree. 

Fig. 8.  The operating scheme of the IO. 

Fig.9 The operating diagram of the GP. 

Fig.10 The recorded evolutionary history. 

Fig.11 The results derived by the mathematical model. 

Fig.12 The results derived by the PCA method. 

Fig.12 (a) PC1. 

Fig.12 (b) PC2. 

Fig.12 (c) PC3. 

Fig.12 (d) Three dimensional plot PC1- PC2- PC3. 
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Fig.1 Vibration signal collected from the exhaust valve of the engine 
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Fig.2 The frequency spectra of the signals shown in Fig.1 
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Fig.3 Computational results of the six vibratory criteria 

(a) E1        (b) E2       (c) E3        (d) S     (e) R1       (f) R2 
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Fig.4 Cylinder pressure signals collected under different running conditions of the 

valve 

 

(Drawn by W.-X. Yang) 
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Fig.5 Cylinder pressure signatures Pmax and PΔ  
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Fig.6 Calculation results of Pmax and Rp 

(a) Pmax              (b) Rp 
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Fig.7 The diagram of the diagnosing tree 

 

(Drawn by W.-X. Yang) 
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Fig. 8.  The operating scheme of the IO 

 

(Drawn by W.-X. Yang) 
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Fig.9 The operating diagram of the GP 
 

(Drawn by W.-X. Yang) 
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Fig.10 The recorded evolutionary history 

 

(Drawn by W.-X. Yang) 
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Fig.11 The results derived by the mathematical model 
 

(Drawn by W.-X. Yang) 
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(c) 

0 5 10 15 20 25 30 
-100 

-80 

-60 

-40 

-20 

0 

20 

40 

60 

80 

100 

number of samples

PC
3 

normal condition

valve-tappet clearance fault

gas leakage fault

 

 

 

(d) 

2500
3000

3500
4000 

4500 

-50

0 

50 

100 
-100 

-50 

0 

50 

100 

PC1
PC2 

PC
3 

normal condition

valve-tappet clearance fault

gas leakage fault

 

 

Fig.12 The results derived by the PCA method 

(a) PC1    (b) PC2    (c) PC3    (d) Three dimensional plot PC1- PC2- PC3 
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Table 1 Mathematical functions 

No. Functions No. Functions 

1 jiij yfcy +=+1  12 )(1 iiijj fcyy +=+ ε  

2 jiij yfcy −=+1  13 jiij yfcy +=+1  

3 jiij yfcy =+1  14 jiij yfcy +=+1  

4 jiij yfcy =+1  15 jiij yfcy −=+1  

5 )(1 jiiij yfcy +=+ ε  16 jiij yfcy −=+1  

6 jiij yfcy +=+1  17 iijj fcyy =+1  

7 jiij yfcy −=+1  18 jiij yfcy =+1  

8 jiij yfcy =+1  19 )(1 jiiij yfcy +=+ ε  

9 )(1 jiiij yfcy +=+ ε  20 )(1 jiiij yfcy +=+ ε  

10 iijj fcyy −=+1  21 jiij yfcy +=+
2

1 )(  

11 )(1 iiijj fcyy +=+ ε  22 2
1 jiij yfcy +=+  
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Table 2. Optimised results 

Items Optimised results 
The order of the features in the set F {1, 6, 2, 3, 5, 4, 8, 7} 

The coefficients in the set C {0.1526, 0.5351, 0.0212, 0.6745, 0.1540, 
0.0515, 0.6745, 0.6745} 

The constant numbers in the set ε  {0.3647, 0.6619, 0.5746, 0.9965, 0.0279, 
0.4955, 0.5746, 0.3860} 

The order of the functions in the set of 
‘operators’ {8, 9, 10, 11, 20, 14, 5, 3} 

 


