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ABSTRACT
Augmented Graph Grammars are a graph-based rule for-
malism that supports rich relational structures. They can be
used to represent complex social networks, chemical struc-
tures, and student-produced argument diagrams for auto-
mated analysis or grading. In prior work we have shown
that Evolutionary Computation (EC) can be applied to in-
duce empirically-valid grammars for student-produced argu-
ment diagrams based upon fitness selection. However this
research has shown that while the traditional EC algorithm
does converge to an optimal fitness, premature convergence
can lead to it getting stuck in local maxima, which may
lead to undiscovered rules. In this work, we augmented the
standard EC algorithm to induce more heterogeneous Aug-
mented Graph Grammars by replacing the fitness selection
with a novelty-based selection mechanism every ten genera-
tions. Our results show that this novelty selection increases
the diversity of the population and produces better, and
more heterogeneous, grammars.

Keywords
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1. INTRODUCTION
Intelligent tutoring systems, social-networking systems, and
computer-supported collaborative platforms have grown in-
creasingly prevalent in education (e.g. Pyrenees [15], LASAD
[8], and CSCL [13]). Consequently, researchers have be-
gun to collect large repositories of complex relational data
representing student-produced conceptual or structural dia-
grams [8], structured user-system interaction logs [15], and
personal relationships [13]. Researchers have generally an-
alyzed this data via standard network analysis tools and
gestalt relationships which allow us to assess general topo-
logical graph structures but which do not focus on individual
graph features or graph rules (e.g. [15, 13]).

One of the primary goals of Graph-based Educational Data
Mining is to automatically identify substructures that can
reveal vital pedagogical information in graph data. These
features include good sub-solutions and structural flaws in
students’ solutions, which can be used for automated guid-
ance and grading [10]. Prior research has demonstrated that
we can use hand-authored graph rules to evaluate student-
produced argument diagrams [10]. But, hand-authored rules
are expensive and time consuming to generate and do not
always generalize well to novel contexts. Existing general
purpose graph rule induction algorithms (e.g. [16, 2]) have
limitations and are unsuited to the induction of generalized
rules that use negation or other hierarchical elements [17].

Evolutionary Computation (EC), on the other hand, is both
flexible and robust enough to induce complex graph struc-
tures and to deal with rich graph data. We have previously
shown that EC can be used to automatically induce positive
and negative graph rules for student-produced argument di-
agrams through fitness selection [17]. The induced rules can
be used as features to provide hints for argument writing,
and to detect structural flaws. Prior research also indicates
that the induced graph rules from EC outperform all but one
of the expert hand-authored rules and they outperform all
of the rules induced by two general purpose graph grammar
induction algorithms, Subdue [2] and gSpan [16]. However,
prior research has shown that, while the traditional EC al-
gorithm does converge to an optimal fitness, the premature
convergence can lead to it getting stuck in local maxima,
which may lead to undiscovered graph rules [6].

In this work, we augmented the standard EC algorithm to
produce more heterogeneous Augmented Graph Grammars
that can reflect innovative structures in student-produced
argument diagrams. To that end, we incorporated a novelty
selection mechanism into our EC system that was designed
to enforce population diversity. The goal of this diversity
was to explicitly retain novel introns and thus to reward
the basic stepping stones of evolution both in the internal
(genospace) and the external application space (phenospace),
respectively. In this work, we experimented with two differ-
ent novelty selection mechanisms: novel genotype selection
and novel phenotype selection. Our research hypotheses is
that novelty selection will increase the diversity of the popu-
lation and will produce better and more heterogeneous graph
grammars when compared with pure fitness selection.
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2. BACKGROUND
2.1 Argument diagrams
Argument diagrams are graphical representations for real-
world argumentation that reify the essential components of
arguments such as hypotheses statements, claims, and cita-
tions as nodes and the supporting, opposing, and clarifica-
tion relationships as arcs [11]. These complex elements can
include text fields describing the node and arc types or free-
text assertions, links to external resources and other data.

A sample student-produced diagram is shown in Figure 1.
The diagram includes a hypothesis node at the bottom right,
which contains two text fields, one for a conditional or if
field, and the other for a consequent or then field. Two
citations are connected to the hypothesis via supporting and
opposing arcs colored green and red, respectively. They are
also connected via a comparison arc. Each citation contains
two fields: one for the citation information and the other
for a summary of the work. Each arc has a single text field
explaining what purpose the relationship serves.

Figure 1: A student-produced Argument Diagram.

2.2 Augmented Graph Grammars
Augmented Graph Grammars (AGGs) are a graph-based
rule formalism that supports rich relational structures [9].
AGGs are an extension of traditional graph grammars, which
are composed of standard graph elements including ground
nodes, ground arcs, and variable arcs which can match mul-
tiple items. In addition to these basic features, AGGs also
support: complex node and arc types that contain sub-
elements; negated elements which select for the nonexistence
of subgraphs; generalized node and arc types which match
multiple items; complex element constraints which allow us
to compare individual elements; complex graph expressions
which allow for universal and existential quantification; and
the incorporation of NLP rules or other external constraints.
As such they are an ideal rule representation for the analysis
of argument diagrams.

In prior work [10, 11], we collaborated with a group of do-
main experts to define a set of 77 a-priori argument rules
encoded as grammars. These rules were designed to iden-
tify individual features of argument diagrams or sub-graphs
that were consistent with high quality argumentation or
which represented common structural flaws. We have shown
that these hand-authored graph rules are correlated with
the student-produced argument diagram grades and essay
grades and they are empirically valid and can be used as

t

a b

O S

¬ c





t.Type = “claim′′or“hypothesis′′

a.Type = “citation′′

b.Type = “citation′′

c.Type = “comparison′′





Figure 2: A hand-authored Augmented Graph
Grammar.

the basis for predictive models of student grades. A sample
hand-authored rule is shown in Figure 2. This rule is de-
signed to identify cases where students use a citation a to
oppose a claim or hypothesis node t via an opposing path
O, and use the other citation b to support the node t via a
supporting path S, however, the students do not include a
comparison arc c between two citations a and b.

2.3 Evolutionary Computation
Evolutionary Computation (EC) is a general machine learn-
ing algorithm based upon Natural Selection. The algorithm
starts with a population of candidate solutions, which may
be generated at random or user-defined. The individual so-
lutions are assessed by an objective measurement known as
the fitness function. Subsequent generations are produced
by a combination of elitism in which very fit individuals are
cloned into the next generation, and fitness-proportional re-
production in which individuals are copied over with direct
mutations or through crossover with other members in the
population. The EC algorithm proceeds iteratively until a
given fitness threshold is reached or until a fixed number
of generations has passed. When compared with existing
graph grammar induction algorithms, EC is much more flex-
ible and robust. The behavior of the system is determined
by the user-defined solution representation, fitness function,
and the genetic operators including mutation and crossover.

In prior work, we applied EC to automatically induce a set
of AGG rules on student-produced argument diagrams [17].
The induced rules support disjoint subgraphs, negation, and
generalized elements. In that work, the solution representa-
tion was an individual graph rule. The fitness of each graph
rule was accessed via Spearman’s Rank Sum Correlation (ρ)
[3] between the frequency with which a rule matches a di-
agram, and the argument grades. The mutation in the EC
algorithm was basic point mutation that can add, delete, or
modify existing nodes and arcs. Crossover was implemented
using matrix crossover based upon the work of Stone, Pill-
more, & Cyre [14].

2.4 Novelty Selection
Absolute fitness functions of the type that we used in our
prior studies, are designed to reward individual progress to-
ward an absolute objective in the search space without con-
sideration for the population as a whole. Prior studies have
shown that although the fitness function is driven to con-
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verge to a fitness optimum, the objective function sometimes
suffers from the pathology of local optima [6]. This is be-
cause the objective function only rewards improvements in
performance with respect to the static objective, it does not
necessarily reward diversity in the search space that can ul-
timately lead to other solutions. One approach that EC
researchers have taken to address this problem is Novelty
Selection that is, explicitly incorporating population diver-
sity into the fitness metric or supporting diverse solutions
irrespective of the fitness value [1, 5]. The goal in doing
so is to encourage the development of good sub-solutions or
stepping stones that can support novel solutions and avoid
local optima.

Current novelty selection algorithms fall into one of two
broad categories: novel genotype selection, or novel pheno-
type selection. In EC, the genotype of a solution is the basic
solution structure or code that defines the solution, which
corresponds to the set of genes in a real organism. The phe-
notype, by contrast, is the observed behavior of the solution
when it is evaluated. In the context of our work, the geno-
type is the AGG structure while the phenotype is the way
in which the rule maps to the graphs in our dataset. Thus
the genotype is fixed while the phenotype is data-driven.

The novel genotype selection is focused on finding individu-
als that have a unique structure relative to the remainder of
the population. Prior researchers have focused on applying
user-defined metrics to calculate pairwise distances between
members of the population [4, 1]. The metrics are neces-
sarily representation specific. Maximally-unique individu-
als are then selected for reproduction or cloning in order to
maintain genetic diversity. The primary shortcoming of this
method is that computing pairwise distance can be computa-
tionally intractable (e.g. comparing neural networks which
is NP-Hard) [5].

While novel genotype selection seeks individuals with unique
genes, novel phenotype selection rewards individuals that be-
have differently according to some separate evaluating met-
ric. This is usually based upon some user-defined distance
function based upon prior knowledge of the domain. The
goal of the metrics is to enforce coverage of the solution space
and, as with the genotype selection, maximally unique indi-
viduals are selected for retention. The primary disadvantage
of this approach is that given two individuals with compara-
ble behavior but distinct genes we will discard one and will
potentially lose good evolvable genes in the process [5].

3. METHODS
In order to compare the performance of novelty selection
with traditional objective fitness selection, we implemented
two novelty selection methods in EC with one rewarding
novel rule structures (genotype) and the other rewarding
rules that match a unique set of graphs in our dataset (phe-
notype). For the former metric, we select the novel rules
according to the diversity score, which is calculated using
a greedy graph-matching algorithm; for the latter one, the
novel rules are rewarded based on the behavior score using
the χ2 test[3]. A large diversity or behavior score indicates
that the specified rule is substantively different from the rest
of the population.

3.1 Genotypic Distance - Diversity Score
We define the diversity score of an individual as its aver-
age genotypic distance from the remainder of the popula-
tion. In order to compute this score, we developed a greedy
graph matching algorithm that computes the distance based
upon local-neighborhood similarity. The root intuition be-
hind this algorithm is that if two graph grammars G0 and G1

are isomorphic then it should be possible to automatically
align their local neighborhoods (individual nodes plus im-
mediate neighbors). The algorithm returns a distance score
between 0 and 1 inclusive. Here 0 means that the two gram-
mars are completely isomorphic and 1 indicates they are
wholly distinct from one another. The algorithm operates
as follows:

First, we count the total number of nodes n in both gram-
mars on a per-type basis. For example, Figure 3 shows two
graph grammars G0 and G1. They have a total of 6 nodes
of 5 types (A,B,C,D,E) and 4 arcs of 2 types (1, 2). For
category A, G0 has one A node (A0), while G1 has two (A0

& A1), so na = max(2, 1) = 2. For the remaining types
B,C,D and E, we have nb = nc = nd = ne = 1, and the
total number of nodes n is 6.

A0

B C

E

1 2(G0)

A0 A1

B D C

1 2(G1)

Figure 3: Example of two graph grammars with five
categories of nodes (A,B,C,D,E, ) and two categories
of arcs (1, 2).

Second, we compute the individual similarity score S =
{s1, s2, s3, ..., si, ..., sn} for i ∈ {0, n}, where si indicates
the similarity score for node Ni. For nodes of the same
type, we use greedy search to find the best match for each
node and then update the maximum similarity score of the
whole grammar. The value of si is between -1 and 1, and is
computed by the following formula:

si =





−1 if Ni inG0 or G1;

# of shared neighbors

total# of neighbors inG0 andG1
otherwise.

(1)

(2)

where si = −1 means that node Ni is in either G0 or G1 but
not both; si = 0 indicates that node Ni is in both graphs,
but they do not share any neighbour at all; si = 1 indicates
that node Ni is in both graphs and they share the same
neighbor(s) with the same arc(s). Note that if two nodes
share a same neighbour but with different arcs, we do not
count it as the same neighbour.

In the example shown in Figure 3, we have S = {s1a, s2a, sb, sc,
sd, se}. For A nodes, if we match A0 ∈ G0 with A0 ∈ G1,
we have sa = 1

2
; if we match A0 ∈ G0 with A1 ∈ G1, sa

is 0. Thus, the best match for A0 ∈ G0 is A0 ∈ G1 and
update for s1a = 1

2
. Now for A1 ∈ G1, we cannot find any

node to match with, so s2a = −1 using Equation (2). For the
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B nodes, B is present in both graphs, they share the same
neighbour (A) with the same arc type of (1), so sb = 1.
Similarly C nodes are present in both graphs, but they do
not share any neighbours because C ∈ G1 is isolated, so
sc = 0

1
= 0. For D and E, we have sd = se = −1 because

node D and E is just shown in one of the two graphs. Thus
we have S = { 1

2
,−1, 1, 0,−1,−1}.

Finally, we use Euclidean distance to normalize the simi-
larity scores to a distance score within a range of [0, 1] by
Equation (3). Then the diversity score for an individual is
the average distance score to the remaining population.

D =

√∑n
n=1(1− si)2
n ∗ 22

(3)

3.2 Phenotypic Distance - Behavior Score
The behavior score of an individual is the average pheno-
typic distance between it and the remainder of the popula-
tion. We use a data-driven definition of behavior. For each
individual we define its behavior signature as a vector of pos-
itive integers representing the number of distinct subgraphs
that it matches for each of the 104 graphs in our dataset.
We then calculate the pairwise distance between individuals
using the χ2 test of independence [12]. χ2 is a statistical test
that measures divergence from the expected distribution as-
suming that one feature occurs independently of the others.
It is often applied to evaluate the independence of two vari-
ables in mathematical statistics [7]. The null hypothesis of
this test is that two variables are wholly independent. A p-
value ≤ 0.05 of χ2 test leads us to reject the null hypothesis
and conclude that the variables are significantly correlated.

If two frequency sets are statistically independent from one
another other according to the χ2 test then we assign a phe-
notypic distance score as 1 indicating that the grammars are
independent. If, however they are dependent then we assign
a score of 0, meaning that the grammars are substantively
similar given our dataset. We then calculate the average
score for each individual to indicate its relative uniqueness
within the population.

3.3 Dataset
For this study we used a dataset of 104 argument diagrams
that was originally collected at the University of Pittsburgh
in a course on Psychological Research Methods [10, 11]. The
subgraph shown in Figure 1 was collected as part of this
study. Students in the course were instructed to plan their
written arguments graphically using LASAD, an online tool
for argument diagramming and collaboration [8], and then
to produce written essays. The diagramming ontology con-
tained four types of nodes: citation, claim, current study
and hypothesis; and four types of arcs: supporting, oppos-
ing, comparison, and unspecified. Current study nodes are
used to represent factual information about the study such
as the target population. Unspecified arcs represent cases
where nodes provide clarification or concept definitions. At
the end of the study, 104 paired diagrams and essays were
collected. These diagrams and essays were graded by an
experienced TA according to a parallel grading rubric.

4. EXPERIMENTS
In this work, we evaluated the impact of novelty selection
on graph grammar induction by comparing the two types of
novelty selection to a traditional objective-fitness approach.
We ran three experiments to induce three sets of graph
grammars using the different selection functions. The three
experiments are Baseline, Geno, and Pheno respectively:

Baseline: we used traditional fitness function at each gener-
ation. The fitness function measures the correlation between
the observed graph rule frequency and diagram grades.

Geno: we replaced the fitness function with novel genotype
selection on every tenth generation. The novel genotype
selection rewards grammars with novel structure for further
evolution by cloning them to the next generation.

Pheno: we used the novel phenotype selection to reward
graph grammars that have significantly different behaviours
to the remaining population in every tenth generation.

For each experiment, we conducted a series of three evolu-
tionary runs to explore the search space. In each run, we set
a population size of 100 individuals and ran for 500 gener-
ations. The initial populations were composed of randomly
generated grammars each of which contained between 3 and
10 elements. The nodes and arcs were all ground elements
and were selected from a predefined ontology of basic types
that matched the argument diagram ontology. The fitness
function, crossover and mutation operators were the same
as in our prior work discussed in section 2.3. On each evo-
lutionary run, we harvested all graph grammars generated
over the course of the run whose performance exceeded a
threshold of (ρ ≥ 0.18) and preserved them for later anal-
ysis. The threshold was chosen based upon a series of ex-
ploratory studies which showed that ρ values at or above
this threshold were statistically significant.

5. RESULTS & ANALYSIS
After collecting the three sets of grammars, we applied the
graph matching algorithm discussed in section 3.1 to identify
the isomorphic rules, we then filtered the overlapping rules
to obtain the unique rule sets. Table 1 shows the number of
unique rules collected from each experiment along with the ρ
values for the top three rules in each unique rule set. The top

Table 1: The number of unique rules above the
threshold (ρ ≥ 0.18) and the Spearman’s Correlation
value ρ for the top three best rules

Experiments
Unique ρ value

rules 1st 2nd 3rd

Baseline-Only 37 0.282 0.279 0.260

Geno-Only 112 0.348 0.334 0.325

Baseline ∩ Geno 146 0.371 0.369 0.362

Baseline-Only 26 0.282 0.260 0.254

Pheno-Only 99 0.348 0.334 0.333

Baseline ∩ Pheno 157 0.371 0.369 0.362
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k0

c2

k1 h

c0 c1

s0 s1(N-U-G)





k ∗ .T ype = “claim′′

h.Type = “hypothesis′′

c ∗ .T ype = “citation′′

s ∗ .T ype = “supporting′′





Figure 4: Best performing graph rule in Geno Only
and Pheno Only with correlation (ρ = 0.348).

k0

k1

h

c0 c1

s0 s1(EC-Best)





k ∗ .T ype = “claim′′

h.Type = “hypothesis′′

c ∗ .T ype = “citation′′

s ∗ .T ype = “supporting′′





Figure 5: Best performing rule in EC experiment
with the correlation (ρ = 0.371).

three rows display the rules that are unique to the Baseline
and Geno experiments along with the the overlapping rules
shared between them (Baseline ∩ Geno ). The bottom three
rows show the rules that are unique to the Baseline and
Pheno experiments, and the overlapping rules between them
(Baseline ∩ Pheno).

As Table 1 indicates, after removing the isomorphic rules,
the Geno and Pheno experiments still produced a large num-
ber of high-performing rules with Geno-Only having 112
unique rules and Pheno-Only having 99. The top three per-
forming rules in Geno- and Pheno-Only outperform the rules
in both the Baseline-Only. After examining these rules, we
found that the top two rules in Geno- and Pheno-Only are
isomorphic with the same performance and the best rule is
shown in Figure 4. This rule contains 6 nodes with two ci-
tations (c0 & c1) supporting two claims (k0 & k1) and two
isolated nodes, one hypothesis (h) and one citation (c2),
which may or may not be connected to the remaining struc-
ture. This reflects an argument diagram where the students
have two solid claims supported by different citations and
where they include both a hypothesis and at least one other
additional supporting citation. This rule captures another
highly correlated feature in the student-produced argument
diagrams that two claims are supported by two different ci-
tations.

The top three rules in Baseline ∩Geno and Baseline ∩ Pheno
outperform the rules in both Baseline-Only and the rules in
Geno- and Pheno-Only. We also found that these three best
rules are isomorphic with the same performance, meaning
that all three fitness models are capable of identifying the
best performing rules on our dataset. Figure 5 shows the
best graph rule with the correlation (ρ = 0.371). It repre-
sents a rule with 5-nodes, two of which are citations (c0 &
c1) that support a shared claim node (k0). The remaining
nodes consist of a single claim (k1) and hypothesis (h) which
may or may not be connected to the other elements. This
reflects a graph where the authors identified at least two re-
lated citations that can be synthesized to support a single

k0 k1

c0 c1h

s0 s1

s2

(B-U-G)





k ∗ .T ype = “claim′′

c ∗ .T ype = “citation′′

s ∗ .T ype = “supporting′′





c

hk1

k0

k3

s0

s1u(G-U-G)





k ∗ .T ype = “claim′′

c.Type = “citation′′

h.Type = “hypothesis′′

s ∗ .T ype = “supporting′′

u.Type = “unspecified′′





k

c0 c1

h

c3

s1 s2

s3

s0

(P-U-G)





k ∗ .T ype = “claim′′

c.Type = “citation′′

h.Type = “hypothesis′′

s ∗ .T ype = “supporting′′





Figure 6: Example graph rules with unique struc-
tures. B-N-G: unique rule in Baseline with cor-
relation (ρ = 0.280); G-N-G: unique rule in Geno
experiment with correlation (ρ = 0.197); P-N-G:
unique rule in Pheno experiment with correlation
(ρ = 0.182).

claim and where they included both a hypothesis and an-
other claim. This is one of the structures that students have
been encouraged to make in their arguments as it shows an
ability to synthesize citated work to form a complex claim.

We also investigated the unique structures that were specific
to each experiment. The structure refers to the sub-graph
within a graph rule but without isolated node(s). When
comparing the Baseline and Geno experiments, we found
three unique structures that only show up in the Baseline
experiment and six in Geno. When comparing the Baseline
and Pheno experiments, we identified three unique struc-
tures in the Baseline experiment and four in the Pheno ex-
periment respectively.

Figure 6 shows three example graph rules with unique struc-
tures in each experiment. B-U-G is a unique rule induced
in the Baseline experiment, it matches cases where two ci-
tations (c0 & c1) support two claims (k0 & k1) and are
connected via a supporting arc (S2) and where an isolated
hypothesis (h) may or may not be connected to the remain-
ing structure. This rule reflects a very interesting argument
structure where the student used one citation to directly
support a claim and the other citation to support this claim
with another intermediate claim. G-U-G shows rule that
was induced in the Geno experiment. It has one citation
(c) that supports a claim (k0) which in turn supports a hy-
pothesis (h). This citation is also connected to a claim (k1)
with an unspecified arc (u). And it has an isolated claim
(k3) which may or may not be connected to the remainder
of the structure. This rule indicates another innovative use
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of chaining support which students were encouraged to use
and which is comparable to B-N-G.

P-U-G shows a graph rule from the Pheno experiment, it
contains a connected structure with four arcs, and is the
most complex rule above the threshold. This connected
structure has two citations with one supporting another (c0
& c1) and then jointly supporting a shared claim (k) which
in turn directly supports a hypothesis (h). The rule also
contains an isolated citation (c3) which may or may not con-
nect to the remaining structure. Conceptually this indicates
a case where a grounded claim supports a research hypothe-
sis. In the real word, it indicates that the author sought out
closely-related sources of literature or noted important con-
nections between them, then used this well-supported claim
to support a research hypothesis, something which they had
been encouraged to do in class.

6. CONCLUSION AND FUTURE WORK
In this work, we augmented the standard EC with two nov-
elty section methods to induce Augmented Graph Gram-
mars on student-produced argument diagrams by replacing
the fitness function with a novelty selection function every
ten generations. This novelty selection promotes diversity
in the population by explicitly encouraging the production
and maintenance of novel stepping stones or partial solutions
in the genotypic and phenotypic spaces. Our experimen-
tal results indicate that, when compared to pure objective-
fitness selection, the novelty-selection functions produced
more heterogeneous and better-performing graph grammars.
The unique rules that were induced by each experiment re-
flect some novel features in student-produced argument di-
agrams. The significance of this work is that the novelty
selection can enhance EC to produce more empirically-valid
rules that can be used for automatic grading.

In future work, we plan to work with domain experts to de-
termine whether the rules are semantically valid, and whether
or not they can serve as the basis for automatic hinting. We
will also build an intelligent argument grading system to au-
tomatically grade and provide feedback on student-produced
argument diagrams based on the induced graph grammars
and other argument diagram features.
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