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ABSTRACT
This paper examines genetic program-
ming as a machine learning technique
in the context of object detection.
Object detection is performed on image
features and on gray-scale images
themselves, with different goals. The
generality of the solutions discovered,
over the training set and over a wider
range of images, is tested in both cases.
Using genetic programming as a means
of testing the utility of algorithms is
also explored. Two programs generated
using different features are hierarchi-
cally combined, improving the results
to 1.4% false negatives on an untrained
image, while saving processing.

1.   Introduction
How can one formulate a general method for detecting spe-
cific objects in a cluttered scene? A general solution is
impossible since the algorithms will be target specific. Any
strategy for detecting faces in an image, for example, can-
not be expected to detect airplanes as well. Just like a per-
son, a computer needs different strategies to detect different
objects. Machine learning provides a general approach for
solving task-specific problems like target detection.

As a machine explores its environment in the context of
a task it gathers exploitable knowledge about which actions
lead to success. The specific knowledge depends on the task,
but the learning method is task-independent. Machine learn-
ing allows strategies tailored to a particular data set to be de-
veloped without any simplifying assumptions. A learning
machine handles any adaptive fine tuning necessary, and
may produce novel algorithms. Machine learning can pro-
vide general solutions to task-specific problems.

Genetic programming (GP) is capable of learning strate-
gies based on the rewards received as it attempts to perform
a task. Given a set of tools, GP efficiently searches the space

of possible programs and finds those that perform the spec-
ified task well. Because the only information GP receives
about its task is the fitness measures of its programs, the
learning method is the same whether one is interested in lo-
cating faces or planes. Only the training set is modified.

GP differs from other learning methods in that the data
does not have to be manipulated into a special format, and
any algorithm coded as a function can be used as a tool in the
solution. GP exhibits this flexibility because it works direct-
ly with coded functions to perform the task. For image pro-
cessing, commands as clear as “shift image left” or “Gabor
filter image” can be included. Because specific algorithms
can be included, their utility at the task can be tested. The
cost of using these different functions can easily be taken
into account with GP. Another advantage occurs when the
evolved code is terse: it can be interpreted piecewise and ex-
amined for specific strategies.

2.   Previous Work
Not much work has been done with image processing using
GP because of the huge amounts of processing involved.
GP typically runs thousands of programs through hundreds
of generations to arrive at a solution. When these programs
start processing images rather than scalars, the computa-
tions become immense. A training set of 50 by 50 pixel
images where the average program in a population of 500
performs 50 operations requires 62.5 million operations per
generation for every image trained. For a task such as object
detection, thousands of training examples may be required
for a representative set. The promise of GP holds true in
that the effort comes from a computer rather than a human,
but for images this represents a great deal of effort. The
results reported thus far, however, are encouraging.

Harris and Buxton (1996) evolved edge detectors which
outperformed Canny’s edge detector, particularly on non-
ideal step edges of the type included in the training set. They
worked in 1D rather than 2D to save on processing effort.

Poli (1996) used GP to segment MR images of the brain
and reported better results than with a neural network. He at-
tempted to keep the processing down to a reasonable level
by including precomputed results and using tools that do
minimal processing. His work used minimum and maximum
functions to allow for morphological operations, and “shift”



functions for filter design. Poli thresholded the result of test-
ed programs before scoring because forcing the GP to pro-
duce binary output is inefficient. The filter’s output will
have to be classified into object and non-object pixels any-
way, so selecting a threshold tests the actual filter output.

Soule et al. (1996) examined how to use selective pres-
sure to cut down on code growth. The code in GP tends to
grow exponentially in size while the fitness grows linearly.
Since images require huge amounts of computational effort,
code growth must be constrained. Selective pressure punish-
es code based on the number of nodes (function calls) in the
evolved program, using the machinery that already exists to
create a pressure on longer programs.

Tackett (1993) used image features to locate vehicles in
cluttered terrain. The genetic program created a better strat-
egy using primitive features directly rather than statistical
features derived from these primitive features. Using a lim-
ited number of features rather than the entire gray-scale im-
age reduces the amount of processing required.

Other work using GP with images has been done by Koza
(1992), Nordin and Banzhaf (1996), Daida et al. (1996) and
Swets et al. (1995).

3.   Tools
TheCompfunction is a new tool which enhances the capa-
bilities of theMin , Max, Avg, and Logical functions in cre-
ating nonlinear filters. TheCompfunction compares two
images pixel by pixel, returning an image with a value of 0
where the two images are equal, 1 where the first image has
a larger value, and -1 where the second image has a larger
value. Consider trying to locate all the global maxima in an
image. In three or four generations, the GP evolves the code
(+ (Comp(Img Max(Img))) 1) , which marks only
the global maxima. This tool allows the evolving programs
to easily select portions of an image based on intensity.

Table 1: Optional Functions

The three optional tools shown in Table 1 are included so
their utility at object detection can be tested. Each is expect-
ed to be useful for the detection task, but their relative utility
is unknown. The GP will discover which tools seem more
useful for object detection as the tools are included or not for
training runs. If including any tool increases performance, it
is in some way fit for the specific task.

The scale space interactions with Gabor filters tool, de-
scribed in Manjunath et al. (1996), implements a feature de-
tection model. Two different Gabor filters are applied to an
image, and the absolute value of the difference in their re-

Name Definition

G(XYZ) Scale space interactions with Gabor filters

PGA(X) Big window peer grouping (PG).

P(WXYZ) Big window peer grouping, then scale space
interactions with Gabor filters

sponses is the interaction result.G(XYZ) represents the dif-
ference of the responses of a Gabor filter at scale X and a
filter at scale Y, both at orientation Z. In scaling, 1 represents
the largest filter, i.e. the most smoothing. ,

, and , where an increase of one rep-
resents a change of 22.5 degrees counterclockwise in filter
orientation. One is horizontal and five is vertical.

Figure 1: Response versus fitness score curves.

The peer grouping (PG) tool from Hewer et al. (1997) is
a means of smoothing an image within similar regions. At
each pixel the m values closest to the center pixel’s value are
chosen from an n by n window centered on the pixel. The av-
erage value of these peers replaces the center pixel’s value
and the process is repeated until convergence. In big window
PG, the entire image is the window, so the averaging ignores
spatial location. Now sorting has to be done only initially.
PGA(X) represents a big window PG image where X% of
the total pixels in the image are chosen as peers. In the fol-
lowing experiments, 20 iterations are performed in all cases.

The final tool combines the two other optional tools.
P(WXYZ) represents an image peer grouped with W% of
the total pixels in the image as peers, and then operated on
by the scale space model interactions, as inG(XYZ) .

Table 2: Tableau for Feature-based Detection

4.   Experiments
The experiments use GP to learn a strategy for detecting
faces in a cluttered scene. The algorithm could be applied to
any other detection problem without modification.

Two experiments are performed, examining different
methods of processing images with GP, and involving dif-

Objective Partition faces from non-faces

Function set +,-, *,% (protected division)

Terminal set constants 0.5, 1, 1.5,...10
52 features from image

Fitness See Figure 1

Parameters Population Size: 500

Selection Demetic (20 individuals/deme)
Migration rate: 5%

Mutation Rate 1%
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ferent goals. The first experiment processes statistical fea-
tures extracted from the image to determine if the
specifically sized image is a face. Only one scale is trained,
so the entire scene must be searched through scale space to
detect all faces. A large set of faces and non-faces is trained
in hopes of discovering a general solution.

Figure 2: Regions of the image for feature extraction.

The second experiment processes gray-scale images,
searching the image once for faces at all scales. Only a single
image with multiple faces is used for training. Four different
training runs are made, including different tools each time,
so that the utility of these tools may be tested.

The experiments were run with GPC++, a public domain
genetic programming system developed by Fraser (1994).

4.1   Feature-Based Detection
The first experiment creates programs which process “fea-
tures” extracted from 20 by 20 pixel regions of either face
or non-face images. Every face or non-face image is parti-
tioned four times, as shown in Figure 2. The average value
and standard deviation of these regions are used as two sep-
arate features, for a total of 52 features per image. Table 2
shows the details of the parameters for these experiments.

Figure 3: The ROC curves for every 20 generations.

The training set includes 1464 face images, including
137 faces from the FERET database and 45 faces from 24
images taken with two different cameras in two different en-
vironments. The faces are scaled, with constant aspect ratio,
to be approximately the same size. Each face is represented
8 times in the training set, using the mirror image and low-
pass filtered versions (3x3, 9x9, and 15x15 smoothing
masks) of both the image and its mirror. The training set also
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includes 36300 non-faces which are cut from variously sub-
sampled versions of 15 images taken with the same cameras
and environments as the non-FERET faces.

Figure 4: Percent success at identifying faces.

For such a large training set it is impossible to train on ev-
ery example every generation, so the GP may begin to con-
verge to solutions before a representative set of the images
have been experienced. Premature convergence can be di-
minished by demetic grouping selection, which keeps the
code from becoming too tightly focused in a particular area
of program space. The use of ‘islands’ of programs develop-
ing independently, except for a few wanderers who may
travel to another island and breed, accomplishes this goal.

Table 3: Tableau for gray-scale object detection

Training is performed on 300 randomly selected exam-
ples each generation: 150 faces and 150 non-faces. Selection
is without repetition. The average fitness over the 300 exam-
ples is reported as the fitness of the program.

The receiver operating characteristic (ROC) curves
shown in Figure 3 move toward an ideal receiver as training
progresses. These curves piecewise linearly approximate the
ROC curves with five points: when the face selection thresh-
old is -100, 0, 100, and plus and minus infinity. The data
points represent the average results for three successive best-
of-generation programs over the entire training set. The per-
formance of these programs at distinguishing faces from
non-faces is obviously improving. Figure 4 shows the per-
centage of success at correctly identifying faces and non-
faces in the entire training set as training progresses.

The best-of-generation programs for generations 198 to
202 have average fitness 183.4 with 3495.2 nodes. The only

Objective Detect faces in image.

Parameters Population Size: 500
Maximum Generations: 40

Selection Tournament (size 5)

Mutation Rate 0%
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features used by these five programs relate to the areas 4, 10
through 19, and 23. Regions 11 to 18 represent the statistics
most closely related to eye areas, which are known to be use-
ful in detecting faces. The discovered program mimics hu-
man behavior in focusing on eye areas.

Table 4: Standard Function Tool Box

The generality of the evolved code is tested using the best
of generation program for generation 200. This program has
3651 nodes and had a fitness score of 179 during training.
This program is not the best-of-run individual, but can be
considered representative. Using zero as the face selection
threshold, 130 out of 137 faces from the training set (94.9%)
are classified as faces. The code correctly classifies 128 out
of 137 untrained images (93.4%) of the same individuals and
36 out of 50 faces (72%) images of unknown individuals in
the FERET database. Given a mixed set of trained and un-
trained non-face images, the program classifies 109915 out
of 116509 images as non-faces. Even if the 2420 trained ex-
amples included in this set have all been correctly classified,
the program achieves better than 94% correct classification
for unknown non-faces. A good strategy for partitioning
known faces from non-faces has been evolved and it does
fairly well for unknown faces too.

4.2   Gray-Scale Images
The next experiment trains on a single image with the faces
marked by hand. The task is to locate all six faces, which
are at different scales and include a hand drawn face. Table
3 and Table 4 show the parameters for the run.

Fitness is calculated with

(1)

where Fp is the number of false positives observed and Mp

is the number of false positives possible. The n subscript
denotes equivalent values for false negatives. N is the num-

Name Arity Definition

Img 0 Image.

Im(X) 0 Low pass filtered image (X by
X neighborhood).

(X) 0 Constant value X. NX = -X.

+, -, * 2 Add, subtract, multiply.

% 2 Protected division.

Sh(X) 1 Shift input up, down, etc.

Add3 3 Add three inputs.

Comp 2 Compare inputs (see text).

Not 1 Logically NOTs input,
assuming values>0 were 1s.

And, Or 2 Logically ORs, ANDs.

Avg, Min,
Max

1 Returns a constant value
based on input.

N 1 0.5 F p M p⁄( )– 0.5 Fn Mn⁄( )–( )

ber of pixels in the image. As more false positives are possi-
ble, individual false negatives are weighted more heavily.

Selective pressure is used to keep the code terse and save
processing. The programs are allowed 50 nodes and then pe-
nalized heavily, piecewise linearly with code length. This
selective pressure is so severe as to degrade performance,
but limits the processing to acceptable levels.

Figure 5: The solution found by the evolved program.
Bright areas indicate potential faces.

The tools available in this experiment are designed to
work as efficiently as possible. Many tools, including low
pass filtering, peer grouping (PG), and scale space interac-
tions with Gabor filters, have been precomputed. None of the
image processing tools used in this experiment can increase
the size of the images they process.

Figure 6: Response to an individual not in training set.

Figure 5 shows the results for the best individual after 45
generations. A few false negatives are evident: portions of
the face near the eyes and the entire hand-drawn face. The
false positives include some of the skin areas in the image,
as well as some of the high frequency areas.

The evolved program to locate these face regions reads:
((- (- (Comp (Add3 Im9 2 N9) (- Im15

Im3)) (ShL (% (ShD(ShD(- Im9 8))) (- Im9
8)))) (% (ShD (ShD (ShL (- Im9 8))))
(Add3 (Add3 Im9 2 N9) (Min (Min (ShL (ShL
(% (- N8 (Neg Im3)) (% 8 N3)))))) 2))))
Studying this code can reveal the evolved strategy. Three



major pieces exist, the results of second and third portions
being subtracted from the first. The first segment selects all
but dark regions surrounded by bright. The next block
removes regions that do not have a specific intensity tex-
ture. The final block of code removes the brighter regions of
the image except under specific brightness conditions. This
code selects as faces the dark but not darkest regions of the
image that have a face-like texture of intensities.

Figure 7: Response to the face of an individual not in
training set with a hand occluding portions of the face.

The code generated during training can be informative,
too. Generation 0 selects regions with sudden changes in in-
tensity no matter how minimal. Generation 1 selects only re-
gions that have larger intensity changes. Generations 2 and
3 keep uniform regions in the smoothed image which are not
the darkest areas. By Generation 4, the faces are beginning
to be marked as darker regions in the image which have a
certain texture. Subsequent generations fine tune the texture.

Figure 8: The best resulting image for run 2.

The evolved code is applied to other images taken with
the same camera under similar lighting conditions. Only one
of the three individuals in the images was included in the
training set image, and the scale of the faces differs from
those in the training image by up to a factor of two. The al-
gorithm locates the six faces in the four images, but also has
a number of false positives. Figure 6 shows one example re-
sult. The code has not been exposed to the texture of the par-

tition board, which is selected as face. Had this texture
appeared in the training image, a different approach would
have been learned. Figure 7 shows how the program selects
a partially occluded face, rejecting the obscuring hand.

Table 5: Face detection after 40 generations.

Four different training runs are made with the same face
image, the details are shown in Table 5. Figure 9 shows how
fitness improves as training progresses. The code evolved
when all optional tools were available performs the best,
while the code denied all optional tools performs the worst.
The generated code shows that for runs 2 and 3, the optional
tools are used extensively, while for run 4 only the scale
space interaction tools are used. Since run 4 becomes the
same as run 2 with different random numbers, it is not exam-
ined further. The best choice then is the scale space interac-
tion tools, while the PG tools have some utility at the task.

Figure 9: Comparison of fitness using different tools

This “best” code produces Figure 8, and is terse enough
to be interpreted in a piecewise manner. The code selects re-
gions with edges in the horizontal and diagonal direction
that are near areas with edges in the horizontal but not in the
diagonal direction.When this evolved filter is applied to un-
trained images, it becomes obvious that this filter is not as
general as the one evolved without the optional tools. The
filter responds mainly to horizontal edges, which were near-
ly all face-related in the training image. In other images, this
strategy causes false positives. Given a more representative
training image, the results would have been more general.

Run  Fitness Optional Tools

1 25117 None

2 27296 G(XYZ)

3 26327 PGA(X)

4 27787 All (29 Generations)
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4.3   Hierarchical combination
The code from the first experiment does well at locating a
specific scale of face, but has to be applied to images multi-
ple times to find the faces at every scale. The code from the
second experiment locates faces at all scales based solely on
intensity, but exhibits an undesirable number of false posi-
tives. An elegant solution might combine the two evolved
programs in a hierarchical manner. After the gray-scale pro-
gram has processed the image, the more time consuming
search through scale space can be limited to the potential-
face regions discovered by this first filter. For the image
shown in Figure 6, this cuts the processing on the second
level of the hierarchy nearly 75%. If the scale can be pre-
dicted as well, the savings are much greater.

Figure 10: The results for an untrained image and hier-
archical processing. Bright areas indicate potential face
centers. The square indicates the scale for the search.

Because the two face detection methods are evolved
based on different information about the image, they are un-
likely to have similar false positives. Figure 10 shows the re-
sults for processing an untrained image with the evolved
code in a hierarchical manner, and assuming a nearly correct
estimate of face scale. The false negative rate is cut from
8.2% (assuming the hits on the nose are correct) to 1.4%.
The programs discovered are complementary in this case.

5.   Conclusions
GP trades human insight for computer iterations in attempt-
ing to solve a class of problems. Training is expensive, but
the solutions discovered may be general for object detec-
tion. A combination of results evolved using different fea-
tures can improve performance and save processing.

Testing the utility of different tools cannot be performed
by learning mechanisms which do not allow functions them-
selves to be included. The GP has multiple means of testing,
and will even suggest potential uses of the tool.

The main problems with the programs discovered herein
arise from mistakes in the training set. The training set
should be more representative, and the question arises of

how to select non-objects from the training set. In neural net-
work literature, Rowley et al. (1996) suggest a bootstrapping
method for selecting non-objects. Recent experiments show
that this method does not work in GP. An alternative ap-
proach may be the topic for future research.
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