Searching for Resource-Efficient Programs:
Low-Power Pseudorandom Number Generators

David R. White
Dept. of Computer Science,
University of York, UK
drw@cs.york.ac.uk

John Clark
Dept. of Computer Science,
University of York, UK
jac@cs.york.ac.uk

Jeremy Jacob
Dept. of Computer Science,
University of York, UK
jeremy@cs.york.ac.uk

Simon Poulding
Dept. of Computer Science,
University of York, UK
smp@cs.york.ac.uk

ABSTRACT

Non-functional properties of software, such as power con-
sumption and memory usage, are important factors in de-
signing software for resource-constrained platforms. This is
an area where Search-Based Software Engineering has yet
to be applied, and this paper investigates the potential of
using Genetic Programming and Multi-Objective Optimisa-
tion as key tools in satisfying non-functional requirements.
We outline the benefits of such an approach and give an
example application of evolving pseudorandom number gen-
erators and performing power-functionality trade-offs.

Categories and Subject Descriptors

D.1.2 [Software Engineering]: Automatic Programming

General Terms
Design

Keywords

Search Based Software Engineering, Genetic Programming,

Multi-Objective Optimisation, Non-Functional Requirements,

Automatic Programming

1. INTRODUCTION

Search-Based Software Engineering (SBSE) [7] has yet to
tackle the hardware-software interface, and in particular it
has yet to be applied to the problem of choosing between
potential trade-offs during implementation. This is becom-
ing an increasingly important part of a software engineer’s
task, as embedded systems (where this interface is most
exposed) constitute the vast majority of computing plat-
forms [18] and the continued growth of embedded systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

1775

shows no sign of slowing. As their adoption becomes more
and more widespread, the requirements for emerging low-
cost and low-resource platforms are including an increasing
amount of non-functional constraints and objectives. The
resources available on such systems approaches a zero level,
for example the power supply to passive Radio-Frequency
Identification (RFID) technology.

With multiple and conflicting objectives to satisfy and a
diverse and volatile target platform specification, the soft-
ware engineer is confronted with a very difficult task [4]. For
example, consider a situation where a programmer is told
they are to provide some given functionality in a memory-
efficient way, whilst also restricting the execution time and
the power consumed. A designer must consider the impact
of each decision in terms of these non-functional properties.
This is an extremely challenging problem, because the space
of possible solutions may be very large and the relationship
between non-functional properties unclear and in some sense
unpredictable with the knowledge in hand. Such a situation
is a suitable target for the application of SBSE.

Genetic Programming (GP) [14] is a program search tech-
nique that has been applied successfully in the past to a
diverse set of problems. It is a population-based search
method that represents an individual program as a sym-
bolic expression tree. New solutions are generated from two
selected parents by exchanging chosen subtrees. Note that
other program search methods such as Grammatical Evolu-
tion [19] could also be used.

As with other search methods, GP can be used in conjunc-
tion with Multi-Objective Optimisation (MOO) techniques
[8]. MOO aims to find solutions that satisfy more than one
objective, so that an individual’s ability to solve a problem
is assessed by a set of objective functions fi ... f,. Pareto-
based MOO methods return a set of solutions in a single
run, attempting to approximate an underlying Pareto front,
where each solution achieves different balances between con-
flicting objectives (provided such conflicts exist). Each such
solution « within the Pareto front is said to be Pareto weakly
non-dominated, such that:

—Jy- fily) < fi(z) foralli=1...n (1)

There is no alternative solution y in the Pareto front that
can improve on z in all of the n possible objectives, assuming
the aim is to minimise the value of each objective function.

Therefore, Pareto-based methods can be used in program
search to find a set of programs that make different trade-
offs.

Hence a combination of MOO and GP can be used to
explore solution and objective spaces such as those defined
by the problem of low-resource embedded systems program-
ming, both to generate solutions and to provide insight into
the trade-offs that can be made between different objectives.
Specific uses for such an approach are:

e Satisfying exact constraints specified as a requirement.

e Finding the extent to which objectives may be bal-
anced: is the number of distinct individuals in the

Pareto front large or small?

Identifying how many different distinct values of each
objective are represented within the Pareto Front, i.e.
what level of granularity of trade-off exists?

Empirically quantifying the relationships between mul-
tiple objectives: just how many joules of energy can be
saved through increasing by 100ms the available pro-
cessing time to the task?

Finding a set of programs offering multiple different
trade-offs. A solution may be chosen from this set de-
pending on future requirements, whether statically at
design-time or dynamically at run-time. For example,
a new target platform may have fewer resources, or a
different mode of operation may reduce the amount of
available processing time.

The discovery of a single source-scalable program [20]
that will provide an improved quality of output when
given an increased amount of resources.

This paper focuses on the first three uses, and illustrates
them by constructing a technique to evolve random number
generators that balance power consumption with function-
ality.

2. CASE STUDY

2.1 Overview

To demonstrate the principle of such an approach, pseudo-
random number generators (PRNGs) were generated using
GP, as an example of how power consumption can be taken
into account when evolving software.

PRNGs are important program components that gener-
ate a stream of pseudorandom numbers, where the precise
definition of “random” is dependent on the way in which the
output will be used [13]. PRNGs are often found in em-
bedded systems. For example, they may be used for key
generation in cryptographic applications or within commu-
nication protocols for collision resolution. Typically, PRNGs
are small code fragments that are used frequently within a
system. Thus, random number generators with specific non-
functional properties are a useful tool.

PRNGs have been produced using both GP [15, 12, 11,
16] and other bio-inspired techniques (for example, [21]).
A complete review is not given here, rather we are most
concerned with applying GP to find programs that output
pseudorandom numbers. Where heuristic search techniques
have been applied in the past, the key difference between

1776

alternative methods has been the fitness function selected to
establish how good a candidate PRNG is. Knuth [13] gives
an extensive review of tests to measure the “randomness” of
a sequence, all of which are potential candidates for a fitness
measure.

2.2 Producing PRNGs with GP

Koza [15] demonstrated the ability of GP to evolve pseu-
dorandom number generators, outputting a stream of binary
digits when given as input a sequence 1...2'. He used an
entropy-based measure that summarised the measurement
of the distribution of possible subsequences. By this mea-
sure, for a sequence of N integers where each integer can
take k different values, the desired probability of each pos-
sible subsequence occurring is kLN Koza’s results success-
fully produced individual programs that provide sequences
with high entropy, and perform well when measured against
commercial randomisers under two statistical methods from
Knuth [13]. Koza notes that in some sense the distributions
are too perfect, in that the divergence from an ideal distribu-
tion is so small that the output could be considered unlikely
to be from a truly “random” source.

Jannink [12] used GP to predict the outputs of existing
commercial generators, as a measure of their quality. He
then took a similar approach to creating new randomis-
ers, by using coevolution to competitively evolve generators
and predictors, thus using competition to measure fitness
in place of statistical measures of randomness. The func-
tion set provided to GP was similar to that used in this
paper, with the addition of memory reading and writing op-
erations. Evaluating the success of the evolved generators
against standard battery tests was not included in the paper,
and therefore it is difficult to make comparisons between the
effectiveness of this approach and those that define fitness
using statistical measures.

Herndndez et al.[11] also applied GP to PRNG creation.
Part of the stated aim of their work was to consider not
only the functionality of PRNGs but also the efficiency of
the evolved solution, and hence this work is closely related
to the aims of this paper in satisfying non-functional re-
quirements. This work was continued and expanded upon
by Lamenca-Martinez et al.[16]. Much of the experimental
work reported here is based on this later work. In particu-
lar, the fitness measure and choice of function set are taken
from these papers. The fitness function used measures the
nonlinearity of a PRNG’s output, as an alternative to statis-
tical measures of randomness. Further details of the fitness
function are given in Section 3.

In order to produce efficient PRNGs, [11] and [16] re-
stricted the function set to contain operations that could
be executed quickly, and could be described as producing
a “minimalist’s PRNG”. Direct measurements of efficiency
were not made, and both papers comment on whether the
inclusion or exclusion of a MULT (multiply) function would
be appropriate due to its relative inefficiency. This paper ex-
tends their work by explicitly examining one non-functional
property of each solution, power consumption. It also pro-
vides a method of comparing the impact of the MULT func-
tion on efficiency-functionality trade-offs for a specific target
architecture.

Problem Description Find r(ag...a7) where r
minimises the x? fitness
metric defined by the strict
avalanche criterion.

MULT, AND, SUM, NOT,
OR, XOR, Logical Shift Left
(LSL), LSR, Circular Shift
Left (CSL), CSR

ao...ar and Integer
Ephemeral Random Con-
stants (ERCs)

Function set

Terminal set

Population Size 150
Generations 250
Crossover Probability 0.8
Reproduction 0.2
Probability

Mutation Probability 0.0
SPEA2 Archive Size 100

Selection method Tournament Selection, size 7

Table 1: GP Parameter Settings

3. EXPERIMENTAL METHOD
3.1 GP Parameters

Parameters for the GP search are given in Table 1. The
table shows the major parameters of the search, which was
implemented using the ECJ 16 Toolkit [17]. The settings
for parameters not listed here are given by the parame-
ter files koza.params, simple.params and ec.params supplied
with the toolkit. All of these parameters were taken from
Lamenca-Martinez et al. [16], with the exception of tourna-
ment size (since none was given) and the parameters for the
multi-objective Strength Pareto Evolutionary Algorithm 2
(SPEA2), since SPEA2 was not used in that paper. The
ECJ default was selected for tournament size. The aims of
these experiments were to demonstrate the validity and po-
tential of the multi-objective approach to functional trade-
offs in general, and so no parameter tuning was attempted.

The fitness evaluation was performed in C, by converting
the GP tree to a C expression and enclosing it within a
function, and then compiled. As some of the members of
the function set are not available as native C functions (CSL,
CSR), they were implemented as functions within the test
harness code and the output of an individual from ECJ was
altered to replace the relevant infix expressions with function
calls.

3.2 Fitness Measurement

The fitness of an individual is determined by its ability
to satisfy two objectives: reducing power consumption and
optimising functionality or “randomness”. In fact, its fitness
is also dependent on the other individuals within the pop-
ulation due to the fitness sharing used by SPEA2, which
incorporates the concept of pareto dominance (see Section
3.3 for further details). Within this paper, “performance”
will be used to refer to the functional objective of improving
the quality of the PRNG.

3.2.1 PRNG Quality

An individual’s performance as a PRNG is measured by
the way its output varies when a single input bit is changed.

1777

Ideally, when a single bit in the input is flipped, on average
half of the output bits should change.

To describe in more detail: to evaluate the performance
of the ith individual as a PRNG, a set of 8 random 32-bit
integer inputs ao ...a7 is generated by a Mersenne Twister
PRNG. The output 7i(ao ...ar) of the individual for these
inputs is evaluated, this is also a 32-bit integer. Then one
randomly selected bit of one randomly selected integer in-
put is flipped to provide a new set of inputs bo...b7 and
ri(bo...b7) evaluated. This data constitutes the result of
one test case, and 4096 such test cases are used to com-
pletely evaluate one individual.

This fitness component of an individual is then calculated
as defined by the Strict Avalanche Criterion (SAC), first in-
troduced by Webster and Tavares [22] and analysed in detail
by Forré [10]. The criterion measures nonlinearity, specifi-
cally the expected distance between outputs given a single
bit flip in the input. Each output bit should have a probabil-
ity of 0.5 of being flipped when a single input bit is changed,
in order to maximise the nonlinearity of the PRNG. Hence,
the Hamming distance between the two outputs should fol-
low the binomial distribution B(n, %). By recording the
Hamming distance between r;(ag ...a7) and r;(bo ... br) for
each test case, a x? squared goodness-of-fit measure can be
calculated against the ideal binomial distribution of bit flips.
The performance measure of an individual i is given by:

n

>

=0

2
G B @)
E;

Here, n is the number of possible bit flips (0 ...32), C; is
the observed number of test cases that resulted in ¢ bit flips,
i.e. where the Hamming distance was i between r;(ao . .. ar)
and 7;(bo ... br), and E; is the expected number of tests with
i bit flips according to the binomial distribution. Our aim
is to minimise this statistic, and reduce the deviation from
the ideal distribution.

Note that in order to test an evolved PRNG, we employ
a Mersenne T'wister PRNG! This circularity does not, how-
ever, pose a problem for fitness evaluation. The only danger
would be if an evolved PRNG managed to “take advantage”
of some predictable characteristics of the input integers, gen-
erated by the Mersenne Twister. Given that the Mersenne
Twister algorithm is designed not to betray such character-
istics, this appeared to be an unlikely outcome!

3.2.2 Power Consumption

To produce programs that trade-off non-functional crite-
ria, we must be able to measure the specified property, in
this case the power consumption of a program. We must
also be able to perform this evaluation in a way that is com-
putationally acceptable. For this work, we simulated each
program’s execution using the Wattch [5] extension for the
SimpleScalar [6] simulator. Wattch is a cycle-level power
simulator based on a parameterised processor model, and
provides overall power estimates for a program’s execution,
calculating power consumption P, for different logic units
using the following equation:

Py = CViaf (3)

C' is the load capacitance, Vg4 the supply voltage, f the
clock frequency and a an activity measure that estimates the

amount of transistor switching. The values of these param-
eters are partly estimated; however more detail of how they
are derived and a good validation of their results is given by
Brooks et al.[5].

Wattch was designed as a tool to explore trade-offs be-
tween processor architecture design, and to enable compiler
writers to optimise their software. Its intended use to pro-
vide “speed versus power consumption” trade-off is replaced
here with a “quality of output versus power consumption”
goal. As a result of the design objectives of Wattch, care has
been taken to ensure it is relatively fast to execute hence a
program can be evaluated in tens of seconds, an expensive
fitness evaluation, but viable when used in a parallelised
framework.

The version of Sim-Wattch we used was an unaltered dis-
tribution version, v1.02, compiled for SimpleScalar’s PISA
instruction architecture, rather than a custom platform.

3.3 Multi-objective Optimisation

In order to carry out multi-objective optimisation, an im-
plementation of the SPEA2 algorithm was written as an
extension to ECJ, which followed precisely the original al-
gorithm specified by Zitzler et al.[23]. The algorithm re-
tains an archive of non-dominated individuals, which are
individuals that cannot be improved upon in terms of all
objectives by any other single individual within the archive.
The algorithm attempts to use the archive to approximate
the “Pareto front”, a surface of non-dominated individuals
within objective space. The archiving is effectively elitist,
and counteracts the emergence of bloat in GP, because a
larger individual will only survive if it makes an improve-
ment over the existing archive in at least one objective.
This is an important feature in attempting to evolve low-
power individuals, because unchecked bloat would increase
the number of instructions in individual solutions, which in
general tends towards a higher power consumption.

SPEA2 includes a niching function to ensure the sample
of the Pareto front defined by the archive is representative
of the trade-offs that can be made. See Deb and Kalyanmoy
[9] for further details of multi-objective optimisation.

3.4 Problem Summary

To summarise, the problem to be solved was to find a
pareto front of programs, where each program implemented
a function r(ao...a7). The two objectives, both of which
were cost functions to be minimised, were the power con-
sumption of the program and the measure of functionality
given by the x? goodness of fit measure.

3.5 Implementation

Figure 1 gives an overview of the way that the ECJ-based
framework measures the fitness of a program. The PRNG
is a symbolic expression, and is written out to a file as a
C function representing the PRNG. This file is then com-
piled and linked with test harness code, which measures
the fitness of a program as previously described calculat-
ing the x? measure. The test cases are generated using a
Mersenne Twister PRNG [2]. The program is then run on
the Sim-Wattch simulator, which produces power statistics
along with redirected program output from the test harness
i.e. the x? measure. These fitness values are used by SPEA2
to assign fitness scores based on Pareto non-dominance and
a niching function.

1778

Test Harness
source \
]:{]:>[Gee]:>[Object Code]
Mersenne ’
Twister source

Test Harness
Output \
Sim-Wattch

PRNG

ECJ
GP & SPEA2 source

Power
Statistics

Raw Fitness Values

Figure 1: Overview of Fitness Evaluation

An alternative arrangement we considered was to pass test
case data to and from the simulator via streams or sockets,
but this proved too inefficient to be feasible. By placing
the entire fitness evaluation (test case creation, the program
under test and the goodness-of-fit calculation) within the
simulator, the run-time of a single program evaluation was
greatly reduced. As a further improvement, the expected
distribution for a given number of test cases was calculated
once and hard-coded in the test source. However, even with
this efficient arrangement, a single evaluation of an individ-
ual under 4096 test cases took approximately half a minute
on a 4200+ AMD processor. Most of this time was spent
within the Sim-Wattch simulator, hence the only remaining
target for optimisation was to reduce the sample size.

3.6 Reducing Sample Size

The paper that this work builds upon [16] used 16384 test
cases, whereas in our work we chose to use only 4096 test
cases. This section justifies that decision.

To reduce the number of test cases required, we evalu-
ated the variance of functional fitness measures on smaller
sample sizes using a bootstrapping resampling technique [3].
Firstly, we executed a single run using the larger test sample
size over 4 days and logged each individual in the archive. A
selection of 5 individuals were chosen across a range of dif-
ferent fitness values to provide the required data. These in-
dividuals were evaluated and the 7(ao ...a7) and r(bo ... b7)
values logged over 16384 test cases. This allowed us to em-
ploy statistical bootstrapping methods to determine whether
smaller sample sizes were effective in estimating the x? mea-
sure.

An example plot is given in Figure 2. This illustrates for
a single program the impact of varying the sample size on
the resulting fitness measure. The samples sizes run from
0 to 16384 in powers of 2. Each point is the result of us-
ing bootstrapping with 30 bootstrap samples. Other results
had similar or smaller variance, and from these plots we con-
cluded a sample size of 4096 was sufficient. It was necessary
to ensure that the smaller sample size did not adversely af-
fect power consumption statistics, and similarly the variance
of the power statistics for each program across each sample
size was empirically found to be very low at a sample size of
4096. Note that during the experiments each individual was
also re-evaluated at each generation, reducing the chance of
a single outlier fitness measure incorrectly giving an individ-
ual a higher priority when populating the next archive.

i
°
°
el o o ° °© 4
° °
° ° S g ! ﬂ [} [} 8 ° °
el ° o 4
° °
= °
N
[CONE 13 4
w
o1 N
= .l i
i}
@
=
w!
o 4
o]
=
m
., BF ,
& °
-
y gl o ° 4
R
o °
%) SRS ° 4
° °
S e
g 8 ° 4
LA
.
[

Lo Sal SiZe)

Figure 2: Example Plot of Sample Size
ness for one Program

against Fit-

MH

log. .(Fitness)

+
s

ot
.

B g
R TR

T4 e
I I
Wh s

I
kiR

k[“]-'. i
Power Consumption (mJ)

kK

il

Figure 3: Archive at Generation 249, Experiment 1.
The graph shows the trade-offs made by programs
within the archive, between total power consump-
tion and error. For both objectives, lower values
are better.

4. RESULTS
4.1 Example Pareto Fronts

Figure 3 shows the archive at generation 249 of Experi-
ment 1, where each point corresponds to a program’s prop-
erties in objective space. The power consumption is the to-
tal power consumed by each individual across all 4096 test
cases. Fitness is the goodness-of-fit measure as described
in Section 3.2.1. Note that the archive is not always com-
posed entirely of non-dominated individuals for two reasons:
firstly it may be “topped up” with dominated ones by the
SPEA2 algorithm when there are too few non-dominated in-
dividuals to fill the archive completely, and also due to the
variance in fitness values (which are input-dependent) when
the archive is re-evaluated at each generation.

This graph demonstrates that functional trade-offs are in-
deed possible for this problem. The most impressive PRNGs,
at the bottom-right corner of the diagram, have a small de-
viation from the binomial distribution, and these require the

1779

o
Ll - %
s
A
0wt
e oot B
e
X5
wi
s
.
xxx o,
O, i
& % ofge
o4
18 B
.
KBbpxr g
N +#+X§&?$xx
© o0 v

I | I | I | I | I
LI i ik L) L)
[z G nsem gien [ml)

2]
ik

Figure 4: Archives at Generation 249 for Experi-
ments 1, 2 and 3. Similar trade-offs are discovered.

most power. Very poor pseudorandom number generators,
with low power requirements, are at the top-left of the dia-
gram. This diagram allows us to visualise the relationship
between power and functionality of the problem.

There is a discontinuity in the archive, where a step im-
provement in the nonlinearity of the evolved PRNGs is ob-
served. This is caused by the simple niching function used
by SPEA2 algorithm, which works on Euclidean distance
between points in objective space. As the fitness values are
not normalised, from this point to the right of the graph the
power consumption, rather than PRNG performance, dom-
inates the niching function. This will have some impact on
the variety of solutions produced by the search, depending
on how often the niching function is used by the search. The
use of a more sophisticated niching function enables further
control on how the archive approximates the pareto front.

Figure 4 shows three archives resulting from three sepa-
rate experiments, with different seeds for ECJ being the only
difference between each experiment. Similar trade-offs are
achieved, although Experiment 2 shows much better perfor-
mance towards the lower range of the fitness values.

These results are an order of magnitude worse, in terms
of the functional fitness (SAC), than the results presented
by Lamenca-Martinez et al.[16]. The aims of this work is
not to improve on those results, however Experiment 2 was
extended for an extra 50 generations to demonstrate that the
quality of solutions found was not compromised. The Pareto
front was improved by a small amount and x? values as low
as 32.0 were obtained, versus the 12.7 reported by Lamenca-
Martinez et al[16]. These are both excellent values: see
Figure 6 for an indication of the quality of the best individual
from Experiment 2.

4.2 Function Usage

Figure 5 shows the number of programs using each func-
tion in the function set at least once for the 300 individuals
contained in the final archives from Experiments 1, 2, and
3. This diagram gives an intuitive impression of how impor-
tant each function within the function set was for developing
useful trade-offs. The figure begins to answer the question
of whether the MULT function should be included in the
function set: at this stage it does indeed appear to be a

CSH B
s

O
NOT
MU
e =y
LS B
| nli=lEr) b

ISUV] b

[AND)
2]
kS
B
[24]
20
2]
e
20

| | |
1100) 100 200
0w Sy o IS esanss (Wi, (@0 oo

I
250

0 50 300)

Figure 5: Function set usage across the archives in
Generation 249 for Experiments 1, 2 and 3

220

[0S B

II “ ‘||II 1
in o) 3

L) 3]
Figure 6: Distribution of Bit flips of the best indi-
vidual from Experiment 2

[
0w Sl o 31 [g

useful tool in making trade-offs, as it is used by most of the
programs on the Pareto front. This question is addressed in
more detail in Section 4.4.

From the chart, the most striking feature is the lack of
Circular Shift Left (CSL) and Circular Shift Right (CSR)
function calls. As C does not provide these functions as stan-
dard, they were provided within the test harness as functions
(in the same way as [16]). The function calls are expensive,
both because of the overhead in calling a function, and be-
cause the CSL and CSR functions required several lines of
code. Hence they were discarded by the search. However, in-
struction sets for processors such as the Z80 do provide such
rotate instructions. By evolving programs in assembly lan-
guage, the search could take advantage of these commands.
This raises an important issue of how the target language
impacts the ability of search to make trade-offs.

4.3 Example Individuals

Three example individuals are show in Table 2. These in-
dividuals are the best (in terms of SAC) from the extended
run of Experiment 2, and the worst and median from Ex-

1780

20008

ldea)

IV)

R o

i B
o -

L ‘ll | | . .
& (108 =

ik 2
INUTOCICRIREIC)

Figure 7: Distribution of Bit flips of the Median (by
x? Fitness) individual from Experiment 2

periment 1. The x? measure of the best individual is the
average of 10 runs over 16384 test cases, as the variance
in the fitness function becomes significant at very low x?
values.

The distribution of the bit flips from test cases for the
best individual from Experiment 2 (extended to 300 runs) is
given in Figure 6. Comparing this to the median individual
of Experiment 1, which is given in Figure 7, these diagrams
illustrate the dependence of quality on power, or “bang for
your buck” as far as random number generation is concerned.

It is interesting to note that the best individual in Table
2 contains a deal of self-similarity, and also that the use of
the MULT function is distributed across different parts of
the program tree. This would appear to be a sensible way
of managing the “energy budget” of an individual through
placement of the most expensive function.

The best individual was then used to generated a 250MB
file of random bytes, by initialising ao ...a7 with random
numbers and from then onwards feeding the previous output
into the next input at position 7, as described by Lamenca-
Martinez[16]:

alt'=al, Vi=0...6

1
art

(4)
(®)

The file was then run through the ENT test suite [1], a
standard battery test used to evaluate PRNGs. The results
are given in Table 3. These results indicate that with this
feedback method the individual performs well. However,
it performs poorly given a low-entropy input such as feed-
ing sequential numbers as inputs, particularly on the ENT
x? test (not to be confused with the avalanche criterion test
used in this paper!). It is not surprising that this is the case,
because fitness evaluation used random rather than sequen-
tial inputs. More surprisingly, the best individual “Lamar”
as reported by Lamenca-Martinez [16] performs well under
a low-entropy input. It is possible that a comparable num-
ber of experiments would have to be completed to achieve
comparable results, in particular to achieve a similarly low
value for the x? objective. An alternative method may be
to incorporate low-entropy tests into fitness evaluation.

=r"(ap...ar)

Relative PRNG Program Expression Power x? Fitness
Performance Consumption (mJ)
Best (2307363674 @ (a2* ab)) + ((=((((((a2+ab6) ® (a7@®al)) * | 3.3658 * 10° 32.0
(Experiment 2) (a0®a3))®d (a2%ab))+ (abxad)) >> 2307363674) B (a0

a3))+—((ab*ad)*((2307363674® (a7®al))+ (a0®a3))))
Worst —(—(1997453768)) 2.9639 * 10° 1.76 1013
(Experiment 1)
Median a2V —(((a2+a0) * ((a4 ® ((ab+ab) B aT7)) + (al ®a3))) A | 3.2892 * 10° 2.39 * 10°
(Experiment 1) —(—(1997453768)))

Table 2: Three example PRNGs of varying quality

Test

Best Individual

Entropy

7.999999 bits/byte

Compression Rate

0%

x> Statistic

264.98 (32%)

Arithmetic Mean

127.5011

Monte Carlo 7 Estimation

3.141828142 (0.01%)

Serial Correlation Coefficient

0.000010

Table 3: ENT Results for Best Individual

%%%
113 * E
&
0%
"
S

33 e E
7 %
o
= %
n
= "]
= %
1)
-

[* x B

& .
B
° o
3 < E
0B
@ o
"
(1 [i [[L] [T wE €n

[Gemse i giwn [al) il
Figure 8: Pareto Front from Experiment 1 compared
to Pareto Front without Multiply Function

4.4 Impact of the MULT Function

In previous work [11, 16], there was some discussion as
to whether the MULT function should be included in the
function set, the argument being that whilst it is likely to aid
greatly in achieving the functional goals of pseudorandom
number generation, it is an inefficient operation. Using a
systematic approach based on multi-objective optimisation,
we can address this issue more directly, by comparing the
Pareto fronts that result under experiments using (a) the
function set described above and (b) the same function set
with the MULT function removed.

Figure 8 displays both Pareto fronts, and the difference
is quite striking. Without the MULT function, the Pareto
front is stretched to the right, in that the same level of func-
tionality requires an increased amount of power. Further-
more, certain levels of functionality do not seem achieveable
without it, at least given the computational resources pro-
vided to the search.

1781

5. CONCLUSIONS

Satisfying trade-offs at the software-hardware interface is
an important problem that is amenable to a Search-Based
Software Engineering approach. In particular, this work
demonstrates that GP can be used in combination with
MOO as an effective SBSE method for exploring the trade-
offs between power consumption and functionality when cre-
ating a pseudorandom number generator. It also demon-
strates that continuous trade-offs are possible for the PISA-
based SimpleScalar architecture. A designer may choose a
satisfactory compromise from the set provided.

To achieve the same level of functionality within the re-
sults of a MOO run requires increased computation power,
in this case we extended the search from 250 generations to
300, i.e. an increase of 20% in terms of evaluations, genetic
operators etc.

For this specific problem, the MULT function is a useful
function to include in the function set. Whilst the power
consumption of any instruction varies depending on the ar-
chitecture, it is likely that this conclusion will generalise to
other architectures.

6. FURTHER WORK

This work is an initial attempt to use SBSE techniques
to help software engineers to produce software that effec-
tively satisfies multiple functional and non-functional crite-
ria. Straightforward extensions of this work would be to
apply the same method to other common applications, for
example hash function generation, or to other non-functional
properties such as memory requirements or footprint size
within a FPGA. Whilst only two objectives were examined
here, many more exist in practice and incorporating an in-
creased number of objectives is also a future goal of this
work. Similarly, the same method can be applied to other
architectures provided that appropriate simulation tools are
available, and the impact of the selected architecture on the
Pareto fronts generated analysed.

The target language used will affect the ability of both
software engineers and heuristic search to locate trade-offs.

Access to finer-grained trade-offs through applying search at
the assembly language level may improve the overall results
obtained. Comparisons between this and compiler-based op-
timisations can also be carried out.

With the results provided, a human designer would have
to select a solution with satisfactory trade-offs. This deci-
sion making process is somewhat limiting, as is the amount
of information that an engineer must assess, which grows
with the number of objectives. One way of circumventing
this problem is to evolve resource-scalable programs (such
as energy-scalable algorithms, see Sinha et al.[20]). A single
resource-scalable program can provide a variety of trade-offs.

Finally, the replacement of simulation to measure fitness
could improve the accuracy and reliability of our results.
One method we are examining is to use intrinsic power mea-
surement, in order to measure non-functional properties of
software running on a physical embedded system.

7. ACKNOWLEDGEMENTS

This work is part of the Software Engineering by Auto-
mated Search (SEBASE) Project and is supported by an
EPSRC grant (EP/D050618/1). We gratefully acknowledge
this support. We would also like to thank Andrea Arcuri,
Tain Bate, Julio Cesar and Juan M.E. Tapiador for their
feedback and suggestions.

8. REFERENCES

[1] Ent: A pseudorandom number sequence test program.
http://www.fourmilab.ch/random/.

[2] Mersenne Twister PRNG, University of Hiroshima.

http://www.math.sci.hiroshima-u.ac.jp/ m-

mat/MT /emt.html.

M. Berthold and D. J. Hand. Intelligent Data

Analysis: An Introduction. Springer-Verlag, 1999.

[4] B. Bouyssounouse and J. Sifakis, editors. Embedded
Systems Design: The ARTIST Roadmap for Research
and Development. Springer, 2005.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. In ISCA, pages 83-94, 2000.

[6] D. Burger, T. M. Austin, and S. Bennett. Evaluating
Future Microprocessors: The SimpleScalar Tool Set.
Technical Report CS-TR-1996-1308, Computer
Sciences Department. University of
Wisconsin-Madison, 1996.

[7] J. Clark, J. Dolado, M. Harman, R. Hierons, B. Jones,
M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees,

M. Roper, and M. Shepperd. Reformulating software
engineering as a search problem. Software, IEE
Proceedings, 150:161-175, 2003.

[8] C. A. Coello. An updated survey of GA-based
multiobjective optimization techniques. ACM
Computing Surveys, 32(2):109-143, 2000.

[9] K. Deb. Multi-Objective Optimization Using
Evolutionary Algorithms. John Wiley & Sons, 2001.

[10] R. Forré. The Strict Avalanche Criterion: spectral
properties of boolean functions and an extended
definition. In CRYPTO ’88: Proceedings on Advances
in cryptology, pages 450—468. Springer-Verlag, 1990.

[11] J. C. Hernandez, P. Isasi, and A. Seznec. On the
design of state-of-the-art pseudorandom number

3

(12]

(13]

(14]

(15]

(16]

generators by means of genetic programming. In
Proceedings of the 2004 IEEE Congress on
FEvolutionary Computation, pages 1510-1516, 2004.

J. Jannink. Cracking and Co-Evolving Randomizers.
Advances in Genetic Programming, pages 425-443,
1994.

D. E. Knuth. Art of Computer Programming, Volume
2: Seminumerical Algorithms (3rd Edition).
Addison-Wesley, November 1997.

J. R. Koza. Hierarchical genetic algorithms operating
on populations of computer programs. In Proceedings
of the Eleventh International Joint Conference on
Artificial Intelligence IJCAI-89, volume 1, pages
768-774. Morgan Kaufmann, 1989.

J. R. Koza. Evolving a computer program to generate
random numbers using the genetic programming
paradigm. In Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 37-44.
Morgan Kaufmann, 1991.

C. Lamenca-Martinez, J. C. Hernandez-Castro, J. M.
Estevez-Tapiador, and A. Ribagorda. Lamar: A new
pseudorandom number generator evolved by means of
genetic programming. In Parallel Problem Solving
from Nature 1X, volume 4193, pages 850-859.
Springer-Verlag, 2006.

S. Luke. ECJ: A Java-based Evolutionary
Computation Research System.

http://cs.gmu.edu/ eclab/projects/ecj/, 2007.

B. Mesman, L. Spaanenburg, H. Brinksma,

E. Deprettere, E. Verhulst, F. Timmer, H. van
Gageldonk, L. Eggermont, R. van Leuken, T. Krol,
and W. Hendriksen. Embedded Systems Roadmap —
Vision on technology for the future of PROGRESS.
STW Technology Foundation, 2002.

M. O’Neill and C. Ryan. Grammatical Evolution:
Evolutionary Automatic Programming in an Arbitrary
Language. Springer, 2003.

A. Sinha, A. Wang, and A. P. Chandrakasan.
Algorithmic transforms for efficient energy scalable
computation. In ISLPED ’00: Proceedings of the 2000
international symposium on Low power electronics and
design, pages 31-36. ACM Press, 2000.

M. Sipper and M. Tomassini. Co-evolving parallel
random number generators. In Parallel Problem
Solving from Nature — PPSN IV, pages 950-959.
Springer, 1996.

A. F. Webster and S. E. Tavares. On the design of
S-boxes. In Advances in Cryptology — Crypto ’85,
pages 523-534. Springer-Verlag, 1986.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary
Algorithm. Technical Report 103, Swiss Federal
Institute of Technology, 2001.

