
This is a repository copy of Inferring Computational State Machine Models from Program
Executions.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/127869/

Version: Accepted Version

Proceedings Paper:
Walkinshaw, N. and Hall, M. orcid.org/0000-0002-9408-2996 (2017) Inferring
Computational State Machine Models from Program Executions. In: 32nd IEEE
International Conference On Software Maintenance And Evolution (ICSME). IEEE , pp.
123-133.

https://doi.org/10.1109/ICSME.2016.74

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Inferring Computational State Machine Models

from Program Executions

Neil Walkinshaw

Department of Computer Science

The University of Leicester, UK

Email: n.walkinshaw@le.ac.uk

Mathew Hall

Department of Computer Science

The University of Sheffield, UK

Email: mathew.hall@sheffield.ac.uk

Abstract—The challenge of inferring state machines from log
data or execution traces is well-established, and has led to the
development of several powerful techniques. Current approaches
tend to focus on the inference of conventional finite state machines
or, in few cases, state machines with guards. However, these ma-
chines are ultimately only partial, because they fail to model how
any underlying variables are computed during the course of an
execution; they are not computational. In this paper we introduce
a technique based upon Genetic Programming to infer these
data transformation functions, which in turn render inferred
automata fully computational. Instead of merely determining
whether or not a sequence is possible, they can be simulated, and
be used to compute the variable values throughout the course of
an execution. We demonstrate the approach by using a Cross-
Validation study to reverse-engineer complete (computational)
EFSMs from traces of established implementations.

I. INTRODUCTION

Reverse-engineered models that accurately capture the be-

haviour of a software system are useful for a broad range of

software maintenance, validation, and verification tasks. State

machine inference, which is the subject of this paper, has been

recently used to expose security vulnerabilities in Android

apps via UI analysis [1], [2], to provide API usage models

of black-box software components [3], to infer requirements

from user scenarios [4], and to devise new tests for network

protocols [5].

State machine inference is a well-established activity, –

numerous approaches have been proposed since Bierman and

Feldmann’s seminal k-tails paper [6]. Such approaches have

traditionally been concerned with the inference of conventional

Finite State Machines from traces [7], [8], [9], [10], [11],

[12], [13]. Recently, however, several attempts have been

made to infer Extended Finite State Machines (EFSMs [14]).

EFSMs capture the possible sequencing of events that can

occur in a system (e.g. inputs or method calls) , along with

the corresponding conditions on and changes to the underlying

data state1. Lorenzoli et al. [17] proposed the first approach

– GK-Tails – which links the traditional k-tails algorithm [6]

with Daikon [18], which infers guards on transitions. This has

since been expanded upon by several authors [19], [20], [21],

[3].

1It is worth noting that there are various similar formalisms such as Abstract
State Machines [15] or Event-B models [16] that can in this context be treated
as equivalent to EFSMs.

Current attempts to infer EFSMs suffer from one important,

overarching limitation: The inferred models are only partial –

they are not computational. Approaches infer a state transition

system with data-guards, but they do not include the functions

that actually compute the changes on the data. As such,

they can provide abstract summaries of possible program

behaviours, but cannot, for example, be used to simulate an

actual execution. Given an inferred model, it is only possible

to determine whether or not a particular sequence of events

(with corresponding data values) is valid / accepted. However,

if the data values are not given, it is impossible to compute

them.

In this paper we introduce an approach to augment inferred

state machines with the functions that operate on the under-

lying data state. The approach can in principle be applied to

any inferred Finite State Machine, and is not dependent upon

a specific inference algorithm. The only constraint is that it

is possible to map the transitions in the inferred model to the

data values from which one wishes to infer the functions.

The approach operates in two phases. The first phase builds

for each transition a ‘training set’; for each variable a list

of values are obtained for before and after the execution of

the transition. In the second phase, Genetic Programming [23]

is used to infer a function for each variable that is able to

approximate the underlying computation. The result is a set of

computational functions that can be mapped to each transition

in the inferred model, so that the two can be used together to

form a complete, ‘computational’ EFSM.

The specific contributions are as follows:

• A technique by which to post-process state machines that

have been inferred from execution traces, to enhance them

with data transformations.

• An openly available implementation.

• An evaluation of the accuracy of the inferred functions

with respect to two published EFSMs.

• A proof-of-concept case study, showing how a model can

be inferred from a Java class (the Apache Commons Math

SimpleRegression class), and can be used as a basis for

inference-driven testing.

Section II introduces the notions of EFSMs, EFSM in-

ference, and Genetic programming. Section III introduces

our technique by which to infer update functions. Section

IV presents the quantitative evaluation of model accuracy.

Section V contains the inference-driven testing case study.

Section VI discusses related work, and section VII presents

our conclusions and gives an overview of our ongoing and

future work.

II. BACKGROUND

In this section we start with some brief preliminary defi-

nitions of EFSMs and the EFSM inference problem. This is

followed by an illustration of how current techniques cannot

compute the underlying data state. We then provide a brief

introduction to the key concepts in Genetic Programming,

upon which we will be developing the inference approach.

A. EFSMs and EFSM Inference

An EFSM is a conventional Finite State Machine that

has been extended to include guards and (potentially) update

functions over some data state. Here we present a slightly

simplified definition of that given by Cheng and Krishnakumar

[14] (we do not explicitly highlight output symbols, although

these could trivially be added).

Definition 1 (Extended Finite State Machine (EFSM)):

An EFSM M is a tuple (S, s0,E,V,∆,U, T).

• S is a set of states, s0 2 S is the initial state.

• E is defined as the set of events.

• V is a set of variables mapped to their corresponding

values.

• ∆ : V ! {True,False} is the set of data guards.

• U is a set of update transformations V ! V .

• T is a transition relation such that T : S⇥∆⇥E ! S⇥U.

We use the subscript as a shorthand to refer to a particular

component of an EFSM. For example, MS refers to the set of

states S in machine M. Also as a shorthand, we use Vnames to

refer to the names of a set of variables, and Vvals to refer to

the set of values. 2

The EFSM inference challenge considered in this paper is

based on the notion of traces of events in a software system.

These are defined as follows.

Definition 2 (Events and Traces):

An event is a tuple (l,Vars), where l is the name of a function

and Vars is a set of tuples (n, c) mapping variable names n to

their concrete values c. A trace t 2 Tr is a finite sequence of

events h(l,Vars)0, . . . (l,Vars)ni. 2

The practical process of encoding a trace depends to an

extent on the system under analysis, and upon the aspects of

behaviour that are of interest. In some cases we might be given

logs of system behaviour (c.f. log-analysis work by Ohmann

et al. [22]). In other cases the system might be instrumented

to focus on events and variables of interest [7].

The challenge is to infer an EFSM, given only a set of

traces. The resulting EFSM should accurately predict the

behaviour of the underlying system. One typical means of

assessing accuracy (c.f. previous work [3]) is to present the

inferred EFSM with a set of traces that were not used for the

inference, which may or may not originate from the system

under analysis, and to measure the proportion of those traces

that are correctly classified as valid / invalid.

public class Recurse {

public static void main(String[] args){

int depth = Integer.parseInt(args[0]);

recurse(depth);

}

private static void recurse(int depth) {

System.out.println("recurse "+depth);

if(depth == 0)

baseCase();

else {

depth--;

recurse(depth);

}

}

private static void baseCase() {

System.out.println("basecase");

}

}

recurse 3

recurse 2

recurse 1

recurse 0

basecase

recurse 2

recurse 1

recurse 0

basecase

recurse 5

recurse 4

recurse 3

recurse 2

recurse 1

recurse 0

basecase

recurse 0

basecase

�

�������
���������

�
�������

���������� ����������������

Fig. 1. A simple Java program that recurses for a given value (depth), four
sample traces, and an EFSM inferred by current techniques (in this case MINT
[3]).

B. Motivating Example

We motivate the problem with a small toy example, illus-

trated in Figure 1. Let us suppose that we wish to infer a model

that captures the order in which the methods recurse and

basecase are called. For each method we print out its name

(i.e. recurse or basecase), along with any associated data

values (i.e. depth for recurse). Running this on four inputs

(depth=3,2,5, and 0) gives rise to the traces shown below the

code.

A conventional EFSM inference technique applied to these

traces will produce the model shown at the bottom of Figure

1. This one is produced by the MINT inference technique

[3] (other inference techniques produce different transition

systems or guards, ultimately accepting and rejecting different

sets of traces). Ultimately however, the outputs consist of

a state transition system, where transitions are (sometimes)

accompanied by a guard.

Problem: State machines of the sort shown in Figure 1 are

only partial. They specify what can happen (which sequences

are possible), but fail to describe how the underlying data state

is changed. In other words, they do not provide the update

function U in definition 1.

The absence of update functions has two important ramifica-

tions. Firstly, the inferred model may falsely classify invalid

traces as valid. For example, the trace h(recurse, {depth =
17}), (recurse, {depth = 0}), (basecase, {})i would be ac-

cepted by the inferred model, even though we know from

looking at the code (and we can infer from the traces) that

this sequence should not occur (depth cannot jump from 17
to 0).

The second (possibly more important) problem is that the

model is not computational. It cannot be queried to predict

what will happen. We cannot provide an initial value for depth

(e.g. depth = 17), and predict the resulting path taken through

the model, along with the corresponding changes to the data

state. We cannot examine properties, e.g. whether the value of

depth can ever be negative.

C. Genetic Programming

This paper will present an approach that uses a technique

called Genetic Programming (GP) [23] to address the issues

discussed above. GP has recently found numerous applications

in Software Engineering, and has been suggested as a possible

technology for Reverse-Engineering by Harman et al. [?]. We

conclude this section by providing a brief, generic introduction

to the essential notions in GP. This is necessarily brief for

space reasons, and we only refer to the GP concepts that

we have chosen to use in this work. For a broader, more

comprehensive overview the reader is referred to Poli et al.’s

field guide [25].

In (tree-based) GP, candidate programs are formulated as

abstract syntax trees, where branch nodes correspond to ‘non-

terminals’ representing functions, and leaf-nodes represent

atomic values or variables (terminals). GP is an approach to

synthesise these programs by evolution. The basic loop is as

follows (terms in italics will be elaborated below):

1) Generate an initial population of programs as random

compositions of non-terminals and terminals.

2) Execute each program and evaluate it according to some

fitness function.

3) Select the best programs from the population.

4) Create a new population by a process of cross-over and

mutation.

5) Repeat from step 2 until some stopping criterion is met.

Fitness function: The fitness function provides a metric for

the accuracy of the candidate program. Fitness is evaluated by

executing a candidate on all available inputs, and by comparing

the resulting set of computed outputs to the outputs in the trace

data. If the output is numerical, the fitness function is taken as

the average absolute distance between the predicted and the

actual values. For nominal outputs the fitness is calculated as

the proportion of instances where the outputs were identical.

Selection: Step 3 is responsible for selecting good candi-

dates from the population, so that they can be fed into the

next generation. A popular approach, which we adopt here, is

Tournament Selection [25]. Groups of candidates are chosen

at random, and the best individual is chosen to be fed to the

next generation. In our case the selection process is elitist, this

means that the best individual from one generation is always

preserved for the next one.

Crossover and Mutation: The candidates that were se-

lected in step 3 are subjected to a mixture of crossover

and mutation (the frequency at which they occur is given in

probabilistic terms). We choose to use the most common form

cross-over called subtree-crossover [25]. Mutation is carried

out by selecting a random node in a tree and changing it.

Arbitrary crossover or mutation can easily lead to non-

sensical programs - for example by using String terminals

with a function that expects integer parameters. Strongly-typed

GP [25] prevents this from happening by ensuring that every

terminal and non-terminal has a declared type. In a strongly-

typed GP, every crossover or mutation operation is constrained

so that the result fits the type-constraints.

Termination and result: The loop either terminates once a

candidate has been identified that cannot improve in terms of

fitness, or once the number of iterations hits a given limit. The

resulting programs are usually expressed in prefix-notation –

for example the expression ‘(x+1)/2’ becomes ‘/(+(x,1),2)’.

III. INFERRING EFSM UPDATE FUNCTIONS WITH GP

This paper presents a technique that uses GP to solve

the problem of missing update-functions discussed in Section

II-B. We start with a description of the technique itself. this

is followed by a walk-through on a small example, and a

discussion of the corresponding implementation.

A. The Inference Algorithm

The technique starts from a state transition system and a

corresponding set of traces (it is assumed that the former has

been inferred from the latter). The technique then operates

by generating for each transition, and for each variable on

that transition, a training set that can be supplied to the GP

algorithm. The GP algorithm is then used to infer the corre-

sponding functions. The technique is summarised in Algorithm

1. The steps are explained in more detail below.

Phase 1 - Building training sets: Every variable at a given

transition has its own training set. This training set is built by

identifying every trace that traverses the transition, and by

identifying the values in the trace immediately prior to the

transition, and the value of the variable in question once the

transition is traversed.

In the algorithm this process is illustrated between lines 2

and 6. All of the traces in Tr are processed as follows. For each

trace element (l,Vars)i, the corresponding transition Trans is

identified in the inferred machine (as returned by the walk

function in line 4). For each variable n in the subsequent trace

element (l,Vars)i+1, a ‘training set’ is constructed that maps

the set of variable assignments Varsi to the subsequent value

of n in (l,Vars)i+1 (referred to as c in the algorithm).

Algorithm 1: Inferring update functions

Input: An inferred EFSM EFSM = (S, s0, E, V,∆, U, T) (without update

functions) and a set of traces Tr

Output: EFSM enhanced with update functions

// For a set of variables V, Vnames returns a set of

variable names.

// Initialise an empty map (TD : (T ⇥ Vnames)! 2(V×V)
).

1 TD initialiseMap();

// For each trace...

2 foreach h(l, Vars)0, . . . (l, Vars)ni 2 Tr do

// For every trace-element bar the last one...

3 for i 0 to n− 1 do

// Obtain transition corresponding to position i

in the trace

4 Trans walk(EFSM, h(l, Vars)0, . . . (l, Vars)ii);

// For each variable n and value c in the

subsequent trace elemement

5 foreach (n, c) 2 Varsi+1 do

// Create a training item, using the current

value of n

6 Training (Varsi(n), c);

// Add that to the training set for the

identified transition

7 TDTrans,n TDTrans,n [{Training};

// For each transition, infer and store update functions

for each variable.

8 foreach t 2 EFSMT do

9 foreach n 2 Varsnames do

// Obtain the training data

10 Train TDt,n;

// Use GP to infer a function from the data.

11 Func gp(Train);

// Add function to the set of update functions

in E for transition t.

12 EFSMU,t EFSMU,t [Func;

13 return EFSM;

Phase 2 - Inferring the functions: For each transition in

the T and for every variable in Varsnames, the corresponding

training set is obtained from TD. This is used to infer a

function by genetic programming (the gp function in line

11 - described in more detail below). The result is added to

the set of functions for that transition in EFSM. As a result,

the EFSM has, for each transition, a function corresponding

to each variable that computes the subsequent value of the

variable from the set of variables at that point. The update

function for a transition consists of the simultaneous execution

of all of the functions for each individual variable, leading to

a fully updated data-state.

In principle, any symbolic regression approach could be

applied. Ultimately, the goal is to find a program that is able to

transform the input in a training set (a set of variable values

at some transition) into a target value (the value of a given

variable at the subsequent transition). For our implementation

we have chosen the form of GP that was described in Section

II-C. We use a strongly typed tree-based GP. We use Tourna-

ment selection to identify candidates for recombination, and

use sub-tree crossover and subtree-mutation to accomplish this

[25].

The non-terminals and terminals selected for our imple-

mentation are shown in Table I. These were selected to

provide a reasonable spread of functionalities that could, in

our mind, combine to approximate a reasonably broad range

of behaviours (of course others could be chosen instead, and

TABLE I
NON-TERMINALS AND TERMINALS CHOSEN FOR OUR GP

IMPLEMENTATION

Non-Terminals

Double add(x:D,y:D), subtract(x:D,y:D), multiply(x:D,y:D),
divide(x:D,y:D), power(x:D,y:D), root(x:D, y:D), cast(x:I)

Integer add(x:I,y:I), subtract(x:I,y:I), multiply(x:I,y:I), divide(x:I,y:I),
power(x:I,y:I), cast(x:D)

Terminals

Double 0.0, 0.5, 1.0, 2.0, all variable names in Vars of type double

Integer 0, 1, 2, all variable names in Vars of type integer

Strings All variable names in Vars of type String, all String values
observed in the traces.

Booleans All variable names in Vars of type Boolean, true, false.

there are unlimited options in this respect [25]). Most of the

non-terminals are self-explanatory, elementary mathematical

operations. However, there are two operators that stand out.

The cast(x:I) and cast(x:D) operators will respectively cast an

integer expression into a double and vice-versa. This is to

cater for the situation where there are multiple variables of

both types, and where the value of a variable of one type may

affect the computation of a variable of another type.

The implementation is modular, allowing for the easy addi-

tion of terminals and non-terminals. It is clear from the current

selection that the emphasis is placed on numerical variables.

For string and boolean variables we simply include terminals

that consist of other string variable names and the values

observed in the traces. However, this is merely a reflection

of the types of system we have been experimenting with; it

would be straightforward to add String non-terminals (e.g.

concatenation, sub-string selection, etc.) to carry out more

extensive String operations, or to include operations on other

types such as lists (see Section VII).

B. Walk-through on Running Example

To illustrate the algorithm, we return to the exam-

ple from Figure 1. Let us start with the first trace (in-

put=3). Iterating through it, the walk function (line 4)

applied to h(recurse, {depth = 3})i returns transition

a
depth>0.0
−−−−−−! a. Now, we look to the subsequent trace element

((recurse, {depth = 2})). For each variable (in this case just

depth) we build a training set, taking the current set of

variable assignments (depth = 3) and mapping it to the value

at the next element (2).

Repeating this the other elements in this trace and the others,

for transition t = a
depth>0.0
−−−−−−! a, we end up with:

TDt,depth = {(depth = 3, depth = 2),

(depth = 2, depth = 1),

(depth = 1, depth = 0),

(depth = 5, depth = 4),

(depth = 4, depth = 3)}

�

�������
�����������

�����������������������

�
�������

������������ ����������������

Fig. 2. Inferred model from traces in Figure 1, with update function inferred

by GP. The Identity functions on transitions a
recurse
−−−−→ b and b

basecase
−−−−−→ c are

omitted for readability.

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

re
cu
rs
e

ba
se
ca
se

re
cu
rs
e

ba
se
ca
se

0

5

10

15

0 5 10 15 20

step

d
e
p
th

Fig. 3. Illustration of valid and invalid trace for initial configuration of
depth = 17.

If we repeat the same exercise for the subsequent transition

s = a
depth0.0
−−−−−−! b, we end up with the less interesting training

set: TDs,depth = {(depth = 0, depth = 0)}. Similarly, for

the final transition u = b
basecase
−−−−! c TDu,depth = {(depth =

0, depth = 0)}.

Moving on to the second phase, we run the gp function

on each training set. For the first transition, this gives us

depth=subtract(depth,1). For the other two tran-

sitions, it simply gives us the simple identity function

depth=depth. The resulting EFSM is shown in Figure 2.

Simulating Behaviour: The enhanced inferred model in Fig-

ure 2 enables us to simulate the behaviour of the model from

a given initial configuration. In Section II-B we noted that the

(incorrect) trace h(recurse, {depth = 17}), (recurse, {depth =
0}), (basecase, {})i would be accepted by the conventional

model shown in Figure 1. However, our model enhanced with

update functions shows clearly that this is not possible. Figure

3 plots the value of depth as computed by the enhanced

model, starting with depth = 17. The dashed line represents

the invalid trace.

It is not necessarily the case that any inferred model can

be entirely simulated from just its initial data configuration. If

the system is reactive – i.e. some of its labels or data variables

TABLE II
SUBJECT SYSTEMS

System States Trans. Vars. Traces/Events

LiftDoors [27], [28] 6 12 1 381/10,461
CruiseControl [29], [30] 5 17 5 381/9,776

are external inputs, then these will still be required to compute

the underlying data state.

C. Implementation

The technique has been implemented as an extension to our

MINT EFSM inference tool [3]. The source code, executables,

and links to all experimental materials used in this paper are

available online2. The implementation of the GP framework

and the extension to the existing FSM / EFSM inference tools

required approximately 5000 additional lines of code.

The GP extension is implemented as a ‘decorator’ for the

conventional inference process. This emphasises the point

that this approach is not tied to a specific EFSM inference

technique. We happen to use it in conjunction with our MINT

EFSM inference approach, but it can just as easily be activated

for conventional FSMs inferred, for example, by k-Tails [6],

or EDSM [12], which are also implemented in our MINT tool.

One practical problem that tends to arise with GP is the

issue of ‘bloat’ [26], where the size of generated programs

can rapidly increase. The extent to which this is a problem

depends on the purpose of the inferred models. If they are to

be used for simulation or test-generation (as we intend to use

them), then readability is not an issue. It is however an issue

if the models are for human consumption. To attenuate this

problem, we include some basic (but often effective) rewriting

routines. For example, GP can often produce large sub-trees

that ultimately just produce a constant value. In such cases,

we replace the sub-tree with a single node representing the

constant.

IV. EVALUATION OF FUNCTION ACCURACY

Our work has been motivated by the fact that conventional

inferred (E)FSMs lack update functions. Without these, they

cannot be used to accurately model how the underlying data

state changes during the course of a computation. In this

section we seek to evaluate the accuracy of the inferred data

model by comparing execution trace data (which was not used

as part of the inference) to the data predicted by our model.

The details of the methodology are presented below, followed

by results and discussion. The data (the traces, reference

models, etc.) are available online 3 (this file also contains the

material for the Apache Commons Math example in the next

section).

A. Methodology

a) Subject Systems: The details of the systems we chose

for this study are shown in Table II. These systems were

2https://bitbucket.org/nwalkinshaw/efsminferencetool/overview
3http://www.cs.le.ac.uk/people/nw91/Files/ICSMEData.zip

chosen because they differ in terms of the number of variables

that constitute their data states, a factor that we anticipate will

have a significant effect on the accuracy of our approach. The

first is an implementation of a Lift-door controller, the EFSM

for which was published by Strobl et al. [27], and used by An-

droutsopoulos et al. [28] in her work on EFSM slicing. Since

there was no existing implementation of this, we generated a

simple Java implementation that exactly reflects the behaviour

set out in the model. The second is a more complex automotive

cruise-control system, where the implementation and model

are available on the Software Artefact Infrastructure repository

[29], and has been used in previous research on state-based

testing [30].

To an extent the values in the table mask the gulf in com-

plexity between the two models. The behaviour represented

by the LiftDoors model is less reactive to external inputs;

transitions are mainly triggered automatically by the state of

the internal variable and only occasionally are triggered by an

external stimulus (e.g. interrupting the closure of the doors).

The CruiseControl system in contrast is highly reactive.

Although it only has 5 states, all inputs are always possible at

each state. Behaviour is always triggered by external stimuli

(e.g. pushing the clutch or the brake pedal, the time for which

they are pushed), combined with the current internal state

variables (e.g. speed of the car). Furthermore, the behaviour

often depends on how long an input has been administered for

(e.g. how long the brake pedal has been pressed). This gives

rise to a much greater variability of behaviour in CruiseControl

than in LiftDoors.

b) Generating traces: Neither model is accompanied by

an existing set of traces. For both systems, traces from the

systems were obtained by simulating their use. This was

achieved by setting up a test harness with a transition model of

the system, where inputs to the system were chosen by random

walks through the model. In the case of the CruiseControl

model, we introduced a slight probabilistic bias to some

transitions to encourage complete coverage of the model.

CruiseControl inputs were also associated with a time variable,

recording how long the input had been provided for (since this

is known to have an effect on the internal state).

Given that both systems could potentially run for an infinite

number of steps (and that neither had final states), we chose to

limit the trace-length. This was achieved by setting the length

to a random number between 2 and 50 (picked from a uniform

distribution). The final sets of traces are available online.

c) Evaluating accuracy: We evaluate the accuracy of our

inferred update functions by selecting traces that have not been

used in the inference process, and comparing the data values

predicted by our inferred models against the actual data states

contained in the traces.

In this evaluation we do not assess the accuracy of the

underlying state transition model. This is inferred before our

post-processing technique is applied (in our case using the

MINT inference algorithm [3]). We do however discuss the

relationship between the (in-)accuracy of the state transition

structure and our inferred functions in Section IV-C.

To avoid the inherent bias of selecting just a single trace

from our set of traces, we adopt a procedure inspired by k-

folds Cross Validation [31]. The set of traces is partitioned

into k ‘folds’. In our case we choose k = 10, which has

been shown to be the best setting for several generic Machine

Learning evaluation tasks [31]. Then, over k iterations, the

traces belonging to k − 1 folds are used to infer a model,

and the traces belonging to the remaining fold are used to

evaluate the model by investigating how good the model is at

predicting them – in our case, by seeing how well the model

predicts the data values contained in the traces. The output is

a set of traces where, for each trace, we also obtain the values

predicted by an inferred model (where the trace was omitted

from the training set).

There is a large amount of stochasticity in the GP algorithm,

which gives rise to possibility that a particular model could be

down to good or bad fortune. To attenuate this risk, we repeat

every k-folds exercise 30 times, using different random seeds.

The accuracy measurement comes down to a comparison

between the data values that are attached to an actual trace

(which is not used during the model inference) and the

equivalent values that are predicted by our inferred model. For

a given evaluation trace, we obtain the values from our model

by stripping any data values from the trace that are meant to

be computed by the model. We then use the stripped trace to

‘walk’ through the inferred model, using the inferred functions

to compute the corresponding variable values instead. This

gives rise to two time-series – the set of target values and the

set of inferred values.

To measure the agreement between these time series we

calculate the Root Mean Square Error (RMSE) – a metric

that is commonly used to evaluate model accuracy in Machine

Learning. Given two time series x1 (a sequence of reference

values) and x2 (the values produced by an inferred model),

both of length n, The RMSE measures the mean error pro-

duced by the model (small values are desirable). It is calculated

as follows:

RMSE =

r

Pn

t=0(x1,t − x2,t)2

n

This is scale-dependent. Since we want to assess the accu-

racy of our (GP) models without considering the specific scales

of the variables they compute, we calculate the Normalised

RMSE (NRMSE). This is computed by dividing the RMSE by

the range of values observed in the reference data set, leading

to a value between 0 and 1. In this case, zero represents the

best possible case (no error at all), and 1 represents the worst

case (continuously large errors):

NRMSE =
RMSE

max(x1)− min(x1)

For boolean variables we calculate the binary error rate [32].

This is defined as
fp+fn

tp+tn+fp+fn
, where tp represents instances

where both values are true, tn where both values are false,

and fp and fn represent a true-false and false-true disagreement

respectively. A high score (both are within the limits [0, 1])

indicates that, for a given trace, there is a high error rate (i.e.

a low rate of agreement).

To provide some insight into the relationships between

variables we also present some of the time-series in a similar

vein to Figure 3. For the sake of readability (and since we are

focussing on data values), we leave out the textual annotations

of the labels at each point.

B. Results

1) LiftDoors: The error measured for the computed values

for the (only) variable t in LiftDoors was relatively low. The

mean RMSE was 1.35 (out of a total value range of 10), so

the mean NRMSE was 0.13. The spread of NRMSE values is

shown in the histogram at the top of Figure 4.

Figure 4 contains two time-series plots that show the

variable values through the course of two specific executions.

These were chosen because their RMSE scores are close to

the mean RMSE measured across all traces, and can thus be

considered to be reasonably representative. Blue solid lines

represent the traced variable values, whereas red dashed lines

represent the corresponding values computed by the inferred

models.

From these series, two remarks can be made. Firstly,

deviations from the expected score tend to be localised to

specific functions. For example, in both series, it is apparent

that the functions computing t for the waittimer and

closingDoor were slightly inaccurate. Secondly (and un-

surprisingly) the inaccuracy incurred by the miscalculation

of a value at one point can propagate for several steps. For

example, in the first example the value of t is miscalculated

at the second instance of fullyOpen, and remains incorrect

for the subsequent four steps (timeout, closingDoor,

closingDoor, closingDoor).

2) CruiseControl: The mean NRMSE values for all of

the variables in CruiseControl are given in the box-plot in

Figure 5. It should be noted that the first four plots show the

distribution for numerical error in NRMSE, whereas the final

plot shows the error-score for binary values (see Section IV-A).

The scores should also be interpreted with care; NRMSE is

computed in relative terms to the value-range of the variable

(in parentheses below each box). If a variable (such as Speed

– as discussed below) has occasional very large values, the

larger range can artificially deflate the overall NRMSE score.

Although the functions inferred for CruiseControl offer an

approximation of the expected values, their accuracy tends

to vary from one variable to the next. Specifically, Figure

5 indicates that the accuracy of the functions inferred for

distance and speed are much better than for brake, throttle,

and ignition.

One apparent explanation for this difference is the fact that

brake, throttle and ignition are all inputs, which are (in our

case) controlled by a pseudo-random algorithm. Although the

inputs follow certain probabilistic patterns to ensure that the

controller is put through its paces, they also exhibit a lot of

random behaviour. Accordingly, their behaviour can rarely be

easily inferred from the rest of the state of the system, which

0

20

40

0.00 0.25 0.50 0.75 1.00

NRMSE

C
o
u
n
t

s
ta
rt

s
e
tT
im
e
r

w
a
it
T
im
e
r

w
a
it
T
im
e
r

w
a
it
T
im
e
r

w
a
it
T
im
e
r

w
a
it
T
im
e
r

s
y
s
te
m
In
it
R
e
a
d
y

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

b
u
tt
o
n
In
te
rr
u
p
te
d

o
p
e
n
in
g
D
o
o
r

fu
lly
O
p
e
n

fu
lly
O
p
e
n

ti
m
e
o
u
t

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

fu
lly
C
lo
s
e
d

fu
lly
C
lo
s
e
d

fu
lly
C
lo
s
e
d

fu
lly
C
lo
s
e
d

fu
lly
C
lo
s
e
d

fu
lly
C
lo
s
e
d

re
q
u
e
s
tO
p
e
n

o
p
e
n
in
g
D
o
o
r

o
p
e
n
in
g
D
o
o
r

o
p
e
n
in
g
D
o
o
r

o
p
e
n
in
g
D
o
o
r

o
p
e
n
in
g
D
o
o
r

o
p
e
n
in
g
D
o
o
r

o
p
e
n
in
g
D
o
o
r

o
p
e
n
in
g
D
o
o
r

fu
lly
O
p
e
n

fu
lly
O
p
e
n

ti
m
e
o
u
t

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

b
u
tt
o
n
In
te
rr
u
p
te
d

o
p
e
n
in
g
D
o
o
r

fu
lly
O
p
e
n

0

5

10

15

3200 3210 3220 3230 3240

step

t

RMSE=1.320

s
ta
rt

s
e
tT
im
e
r

w
a
it
T
im
e
r

w
a
it
T
im
e
r

w
a
it
T
im
e
r

w
a
it
T
im
e
r

w
a
it
T
im
e
r

s
y
s
te
m
In
it
R
e
a
d
y

c
lo
s
in
g
D
o
o
r

b
u
tt
o
n
In
te
rr
u
p
te
d

o
p
e
n
in
g
D
o
o
r

fu
lly
O
p
e
n

fu
lly
O
p
e
n

ti
m
e
o
u
t

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

b
u
tt
o
n
In
te
rr
u
p
te
d

o
p
e
n
in
g
D
o
o
r

fu
lly
O
p
e
n

fu
lly
O
p
e
n

ti
m
e
o
u
t

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

c
lo
s
in
g
D
o
o
r

0

5

10

15

690 695 700 705 710 715

step

t

RMSE=1.217

Fig. 4. Histogram of NRMSE for LiftDoors, with two examples of trace
trajectories.

explains the lower accuracy for these variables. However, for

state and distance, which can at least be approximated from

the inputs and the state of the system, the accuracy of the

inferred functions is markedly improved.

The presence of multiple variables, the fact that some

of these variables are ‘noisy’, and the larger number of

possible events make it harder to infer accurate models.

This is illustrated in the distance plot in Figure 5, which

is broadly representative. Although the value of the inferred

0.00

0.25

0.50

0.75

1.00

brake (8) distance (15) speed (67) throttle (10) ignition

variable

E
rr

o
r

(N
M

R
S

E
 /

 B
in

a
ry

 e
rr

o
r−

ra
te

)

in
it

o
ff

e
n
g
in

e
O

n
a
c
c
e
le

ra
to

r

o
n

a
c
c
e
le

ra
to

r

o
ff

re
s
u
m

e

o
ff

a
c
c
e
le

ra
to

r
a
c
c
e
le

ra
to

r
re

s
u
m

e

b
ra

ke

o
ff

re
s
u
m

e
a
c
c
e
le

ra
to

r
b
ra

ke

re
s
u
m

e

o
n

e
n
g
in

e
O

ff
e
n
g
in

e
O

n

o
n

o
ff

e
n
g
in

e
O

n

−2

0

2

4

6

690 700

step

D
is

ta
n
c
e

Distance − RMSE=0.289

Fig. 5. NRMSE distributions, with sample trajectory inferred for the distance
variable.

values broadly increase and decrease at the right points, the

extent to which they do can be inaccurate (this is often because

the value is calculated from other variable values which, if

noisy, can be easily mis-calculated).

C. Discussion

From the two case studies used here, we are able to draw

some high-level insights into the accuracy of the approach.

Both systems have state transition systems that are of a similar

complexity, and were inferred from trace sets with the same

number of traces, where the length of the traces was also

similar. Nonetheless, LiftDoors is substantially more accurate

than CruiseControl. There are two key reasons for this:

1) State variables: There is just one state variable in the

LiftDoors example, whereas there are five in CruiseCon-

trol. This means that, for each function inferred by GP,

there are many more terminals (variables) to be taken

into account. This in turn raises the probability that a

mistake is made – that spurious variables are used within

a transition function.

2) Breadth of sequence possibilities: In the LiftDoors

machine, each state has at most two different types

of subsequent event, and usually only one. In other

words, a set of traces will tend to consist of very

similar sequences of events. This is not the case for

CruiseControl. Every type of input is possible from

every state. This means that any set of traces over this

model will be much more heterogeneous. In this case

the state machine inference algorithm will struggle to

match sequences of events that are in fact equivalent.

This in turn implies less training data that can be used

by the GP algorithm to infer the transition functions,

producing less accurate outputs as a result.

There are several potential means by which to address the

problems posed by these issues. These are discussed in the

context of our future work, in Section VII.

D. Threats to Validity

The study used herein cannot be used to (and does not

aim to) draw general conclusions about the accuracy of the

technique. It does however aim to provide the reader with a

reasonable idea of how the technique performs ‘out of the

box’. There are however several parameters of this study that

must be taken into account when reviewing the results, which

we briefly discuss here.

Choice of systems: For this study we used two fully

specified EFSMs. Although these present us with valuable

insights here, it will require a larger, more diverse selection

of systems to produce more generalisable results.

Selection of parameters: There are many parameters to

our approach. For the GP there is the choice of terminals

and non-terminals, the cross-over, mutation, tournament size,

and population size parameters. Then there are the EFSM

inference parameters [3] such as the choice of state-merging

heuristic, and any minimum merging thresholds. For all of

these we avoided deliberate bias by simply using the default

settings in our tool. Of course, a more comprehensive study

will need to control for these parameters, to establish their

effect. If anything, the current results can be seen as an under-

approximation of the ‘ideal’ performance of the system. A

more system-specific selection of parameters would, depend-

ing on the system, probably lead to much more accurate

results.

V. CASE STUDY: APPLICATION TO REGRESSION TESTING

In this section we provide a small case study to (1) show

that the approach can be applied to reverse-engineer Java APIs

for larger frameworks, and (2) provide an illustration of how

inferred models can be used for regression testing, as in the

vein of growing body of work [1], [2], [33]: We use the

inferred functions to derive assertions that can be used as

oracles, and illustrate how the model can be used to identify

test-inputs that explore previously unexplored behaviour.

As our subject system, we select the

stat.regression.SimpleRegression class from the

Apache Commons Math library4; this was selected because

it is reasonably complex, is accompanied by a test set, and

is ‘updateable’; calls made to a SimpleRegression object can

4https://commons.apache.org/proper/commons-math/

change its state in a variety of ways and it calculates its

results on the fly. The SimpleRegression API5 suggests

that the addData(double,double) is a key function

that enables the user to incrementally add observations as

(x,y) coordinates to the regression data set. Here we show

how the inferred model can be used to formulate new test

cases that can be added to the existing tests.

a) Inferring the Model: There are 53 JUnit tests (53

separate usages of the SimpleRegression class, though some of

these are wrapped in the same formal unit test). We obtained

the traces of the sequences and the data by executing the

tests with the Daikon Chickory tool [18] and recording the

trace file. There are a total of 1689 trace elements within the

traces. Importantly, the traces also include 52 variables that

are affected by (and in turn affect) the sequencing of method

calls (this is including object attributes, method parameters

and return values). Let us consider the scenario where we

are equipped only with the test sets (or their traces), but we

have no knowledge of how the SimpleRegression class

behaves.

The inferred transition system (by MINT) contains 537

states and 705 transitions. The full state machine (along with

the Daikon dtrace file) can be downloaded along with the

traces we used in our previous experiments (see footnote 3).

b) Identifying Inputs: The sequences required to reach

the addData function can be established by adopting typical

EFSM-testing approaches [35]. The transitions that correspond

to the addData entry-point are identified (there are 34 such

transitions in the model). We then identify the sequence of

inputs corresponding to the shortest path from the start-state

to the source states for these transitions. This sequence is in

effect using the history from previous test executions to set

up the system into a suitable state so that addData can be

tested.

c) Identifying test-oracles: For each transition, we ex-

tract the inferred functions. Functions that failed to produce

a low fitness score are omitted. The rest can be used as

assertions. For functions where the fitness score was not

perfect, any assertions should allow for an error-margin (as

a heuristic, we tend to allow for an error around the fitness

function score).

We can then refer to the functions that were inferred for the

exit-points to show how addData has behaved for the tests

that have executed so far – in effect these are post-conditions.

Our goal is then to identify inputs that will confound these

post-conditions – this would mean that the behaviour we are

eliciting is different from the tests from which the model was

inferred.

d) Illustration: In Figure 6, the transition diagram pro-

vides an illustration of the information that is inferred, with

respect to two of the most direct paths from the initial node to

the addData function. To save space, elements of the model

have been re-coded (we have left out function-exit points

5https://commons.apache.org/proper/commons-math/apidocs/org/apache/
commons/math3/stat/regression/SimpleRegression.html

SimpleRegression(boolean)

includeIntercept=OR(false,

 AND(true,includeIntercept)) ✔✔

this.ybar=0.0 ✔✔

this.sumYY=0.0 ✔✔

this.n=IntCast(0.0)) ✔✔

this.sumXX=0.0 ✔✔

this.sumX=0.0 ✔✔

this.sumXY=0.0 ✔✔

this.hasIntercept=EQ(true,includeIntercept) ✔✔

this.xbar=0.0 ✔✔

this.sumY=0.0 ✔✔

SimpleRegression.addData(double,double):::ENTER

x’=Add(x,0.0) ✔✔

y’=y ✔✔

this.ybar’=IF-THEN-ELSE(EQ(this.sumXY,this.sumX),y,

 Add(0.5,Add(0.5,this.ybar))) ✔

this.sumYY’=Log(Add(this.sumX,this.sumXX)) ?

this.n’=IntCast(Exp(IF-THEN-ELSE(LT(0.5,this.ybar),

 2.6642546161809926,0.0))) ✔

this.sumXX’=NA

this.sumX’=Add(x,this.sumX) ✔✔

this.sumXY’=Subtract(Subtract(Add(this.sumXX,

 Mult(x,x)),this.sumY)),y) ?

this.hasIntercept’=OR(this.hasIntercept,false) ✔✔

this.xbar’= Add(Div(x,Exp(this.sumXX)),IF-THEN-ELSE(true,

 Add(this.ybar,0.5),this.sumXX)) ✔

this.sumY’=Add(Add(0.0,this.sumY),y) ✔✔

SimpleRegression.addData(double,double):::ENTER

x’= x ✔✔

y’= y ✔✔

this.ybar’=Add(Add(Add(this.ybar,Cos(Exp(Add(IF-THEN-ELSE(

 this.hasIntercept,this.ybar,0.0),Cos(this.ybar))))),Cos(Exp(y))),

 Cos(this.ybar)) ✔

this.sumYY’=IF-THEN-ELSE(this.hasIntercept,Add(this.sumYY,

 Subtract(Subtract(this.sumX,x),Add(Div(this.ybar,

 Exp(this.sumXY)),this.xbar))),0.0) ?

this.n’=IntCast(DoubleCast(IntCast(IF-THEN-ELSE(AND(true,

 this.hasIntercept),DoubleCast(this.n),0.0)))) ✔

this.sumXX’=Add(Subtract(Subtract(Subtract(Add(Add(Subtract(

 this.sumXX,this.xbar),y),y),x),Cos(this.sumXX)),Cos(

 DoubleCast(this.n))),Subtract(y,0.5)) ?

this.sumX’=Add(this.sumX,x) ✔✔

this.sumXY’=Mult(0.7240123395998462,Add(this.sumYY,y)) ?

this.hasIntercept’=EQ(true,AND(OR(EQ(true,this.hasIntercept),

 this.hasIntercept),true)) ✔✔

this.xbar’= IF-THEN-ELSE(this.hasIntercept,IF-THEN-ELSE

 (EQ(this.ybar,this.sumX),x,IF-THEN-ELSE(GT(

 Cos(x),DoubleCast(IntCast(this.sumY))),x,this.xbar)),x) ✔

this.sumY’=Add(this.sumY,y) ✔✔

this.intercept=false

this.intercept=true

✔✔ Perfect fitness

✔ Approximate fitness (allow for error)

 ? Poor fitness

@Test

public void addDataInterceptTrueYbarTest() {

boolean includeIntercept = true;

SimpleRegression testobj =

new SimpleRegression(includeIntercept);

Assert.assertEquals(testobj.ybar, 0.0,0D);

Assert.assertEquals(testobj.hasIntercept,

(includeIntercept == true));

//Other assertions from constructor

Random r = new Random();

double x = r.nextDouble()+r.nextInt(20);//15.6

double y = r.nextDouble()+r.nextInt(20);//5.2

double expected = (testobj.ybar + Math.cos

(Math.exp(testobj.hasIntercept?testobj.ybar+

Math.cos(testobj.ybar):0.0+Math.cos(testobj.

ybar))))+Math.cos(Math.exp(y))+

Math.cos(testobj.ybar);

testobj.addData(x,y);

Assert.assertEquals(testobj.ybar, expected,5D);

}

Fig. 6. Extract from SimpleRegression state machine, with a sample
derived JUnit test. For space reasons the test is specific to the ybar attribute.
To run, the SimpleRegression attributes have to be made visible (protected).

which are in the trace produced by Daikon, but have no bearing

on the behaviour, and we have re-written long GP functions

to shorter equivalent versions where possible). The inferred

functions represent what the state of the system should be after

the function has been invoked. Variables post-execution are

hyphenated. Functions that achieved perfect fitness are given

two ‘ticks’, those that achieved an approximate fitness (in this

case 5 for doubles) are given a single tick, and others are

appended with a question-mark.

The test case has in this case been constructed by hand

as a literal translation from the inferred functions, but this

could feasibly be automated. The invocations to SimpleObject

follow the sequence given by the path in the state machine.

After each invocation, assertions are inserted to reflect the

inferred functions (for space reasons we focus only on the

ybar attribute). For addData, x and y are parameters. If we

choose any of the values that have been used in the training

set (e.g. 15.6 and 5.2 had been used in the Apache tests), the

test will pass; the value of testobj.ybar will be within

a small delta of the value predicted by our inferred function

(assigned here to expected).

If we want to identify new test cases that do not re-

execute behaviour that has already been explored, we can

focus on identifying values of x and y that ‘break’ the inferred

assertions. This can (for example) be elicited in our case by

attempting random values, as is the case in our example. For

example, x = 9.731, y = 13.606 (which will appear if the

test case in Figure 6 is executed) contradict the assertion.

In a typical inference-driven testing cycle [33], [36], these

new inputs would be assimilated into the test set, and the

model would be inferred afresh, repeating the cycle until no

contradictory inputs can be found.

Qualitative Remarks

One notable property of the inferred models is that, de-

pending on the given set of traces, the inferred model may

become very large, with several transitions only supported by

few trace elements. This means that the inferred functions for

these transitions can be highly specific. This is especially the

case when traces have large label-sets, as is the case with

the SimpleRegression model. In this case 49% of the

inferred functions are only inferred for a single data-point.

For cases such as the automated testing scenario, this is not

a problem (if anything, the task of finding new test cases is

facilitated). It could however be problematic if the inferred

model is intended for documentation or human consumption;

for such cases it is recommended that any inferred functions

are annotated alongside the number of data points from which

they were inferred, so that they can be interpreted accordingly.

In our future work, we intend to adapt the underlying state-

merging algorithms to guide them towards solutions where

each transition is supported by a large number of data-points,

to facilitate the inference of functions (we suspect that this

would lead to more accurate models in any case).

VI. RELATED WORK

The area of Genetic Programming is also a thriving area of

research since the early nineties [23]. Although GP has never

been used to infer data-functions in EFSMs, it has been used

before to infer the underlying state transition structures. Brave

[37] used GP to evolve programs that contained the necessary

instructions to construct accurate state machines from traces,

by splitting states and changing their properties. This technique

however pre-dated the EDSM state-merging algorithm [12]

which underpins our technique and is generally agreed to

represent the state-of-the-art.

The authors are only aware of one line of work that attempts

to infer fully computational automata. Howar et al.[38] have

built upon Angluin’s L⇤ model inference algorithm [39] to

infer Register Automata (state machines that, similarly to

EFSMs have an internal data state, and accept data parameters

as input). Given that their algorithm is based upon L⇤, it relies

upon a different learning setting to the one considered in this

paper. It relies upon the ability to submit tests to the system

being inferred (which can often reach a substantial number).

It also relies upon the availability of an ‘oracle’, a mechanism

that has the ability to determine whether a hypothesised model

provided by the learner is correct and, if not, to provide

a counter-example. The setting considered in our work is

entirely passive; once the traces have been provided, there is

no more input required.

There has been a some work on inferring state machines

from source code (as opposed to dynamic traces) [40], [41].

This work is however predicated on the availability of the

source code (and often a corresponding static analysis frame-

work such as a symbolic execution engine). The work we have

presented in this paper requires neither, and can work from

traces alone.

VII. CONCLUSIONS AND FUTURE WORK

This work has presented a technique that can, given a state

machine and a set of traces, infer the state-transition functions

for each transition in the state machine. In this way, inferred

state machines can be made to be computational. They can

not only be used to state whether or not a sequence is or is

not possible. They can be used to compute the data values at

each step as well.

Our preliminary results indicate that the technique is reason-

ably accurate. However, establishing this in detail will require

a larger more in-depth experimental study, where the various

potentially confounding factors are more tightly controlled.

This forms part of our ongoing work.

The results from our case studies indicated that (unsurpris-

ingly) multiple variables, coupled with a breadth of activity at

every state in the system – could have an impact on model

accuracy. These are problems that have arisen in various guises

in Machine Learning and in Software Engineering. There are

two immediate options that can be used to address them.

The variable-issue can be potentially addressed by filtering-

out potentially confounding variables, for which there are a

variety of algorithms [42]. The second problem, which has

been advocated before in the inference of conventional state

machines, is to accept additional sequential constraints from

a user, to guide the state machine inference [4], [11].

The authors have made only very little effort to fine-tune the

selection of non-terminals and terminals in the GP framework.

There is an ongoing effort to experiment with the use of

new operators, and constructs such as loops [25] to produce

functions that are more accurate, and applicable to a broader

range of systems.

REFERENCES

[1] Chen, Qi Alfred, Zhiyun Qian, and Z. Morley Mao. ”Peeking into your
app without actually seeing it: Ui state inference and novel android
attacks.” 23rd USENIX Security Symposium (USENIX Security 14).
2014.

[2] Choi, Wontae, George Necula, and Koushik Sen. ”Guided gui testing
of android apps with minimal restart and approximate learning.” OOP-
SLA’13 - ACM SIGPLAN Notices. Vol. 48. No. 10. ACM, 2013.

[3] Walkinshaw, N., Taylor, R., Derrick, J., ”Inferring extended finite state
machine models from software executions”, Empirical Software Engi-
neering (2015).

[4] Damas, Christophe, et al. ”Generating annotated behavior models from
end-user scenarios.” Software Engineering, IEEE Transactions on 31.12
(2005): 1056-1073.

[5] Comparetti, Paolo Milani, et al. ”Prospex: Protocol specification extrac-
tion.” Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 2009.

[6] Biermann, Alan W., and Jerome A. Feldman. ”On the synthesis of
finite-state machines from samples of their behavior.” Computers, IEEE
Transactions on 100.6 (1972): 592-597.

[7] Ammons, G., Bodk, R., & Larus, J. R. (2002). Mining specifications.
POPL’02, ACM Sigplan Notices, 37(1), 4-16.

[8] Cook, J. E., & Wolf, A. L. (1998). Discovering models of software
processes from event-based data. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 7(3), 215-249.

[9] Walkinshaw, N., Bogdanov, K., Holcombe, M., & Salahuddin, S. (2007,
October). Reverse engineering state machines by interactive grammar
inference. In Reverse Engineering, 2007. WCRE 2007. 14th Working
Conference on (pp. 209-218). IEEE.

[10] Lo, D., & Khoo, S. C. (2006, November). SMArTIC: towards building
an accurate, robust and scalable specification miner. In Proceedings of
the 14th ACM SIGSOFT international symposium on Foundations of
software engineering (pp. 265-275). ACM.

[11] Walkinshaw, N., & Bogdanov, K. (2008, September). Inferring finite-
state models with temporal constraints. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (pp. 248-257). IEEE Computer Society.

[12] Lang, Kevin J., Barak A. Pearlmutter, and Rodney A. Price. ”Results
of the abbadingo one DFA learning competition and a new evidence-
driven state merging algorithm.” Grammatical Inference. Springer Berlin
Heidelberg, 1998. 1-12.

[13] Beschastnikh, I., Brun, Y., Abrahamson, J., Ernst, M. D., & Krishna-
murthy, A. (2015). Using declarative specification to improve the under-
standing, extensibility, and comparison of model-inference algorithms.
Software Engineering, IEEE Transactions on, 41(4), 408-428.

[14] Cheng K, Krishnakumar A (1993) Automatic functional test generation
using the extended finite state machine model. In: 30th Conference on
Design Automation. ACM, pp 8691

[15] Boerger, E., & Staerk, R. (2012). Abstract state machines: a method
for high-level system design and analysis. Springer Science & Business
Media.

[16] Abrial, J. R., & Hallerstede, S. (2007). Refinement, decomposition, and
instantiation of discrete models: Application to Event-B. Fundamenta
Informaticae, 77(1-2), 1-28.

[17] Lorenzoli, Davide, Leonardo Mariani, and Mauro Pezz. ”Automatic
generation of software behavioral models.” Proceedings of the 30th
international conference on Software engineering. ACM, 2008.

[18] Ernst, Michael D., et al. ”The Daikon system for dynamic detection of
likely invariants.” Science of Computer Programming 69.1 (2007): 35-45.

[19] Krka, I., Brun, Y., & Medvidovic, N. (2014, November). Automatic
mining of specifications from invocation traces and method invariants. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (pp. 178-189). ACM.

[20] Lo, D., Maoz, S., & Khoo, S. C. (2007, November). Mining modal
scenario-based specifications from execution traces of reactive systems.
In Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering (pp. 465-468). ACM.

[21] Lo, D., Mariani, L., & Santoro, M. (2012). Learning extended FSA from
software: An empirical assessment. Journal of Systems and Software,
85(9), 2063-2076.

[22] Ohmann, Tony, et al. ”Behavioral resource-aware model inference.” Pro-
ceedings of the 29th ACM/IEEE international conference on Automated
software engineering. ACM, 2014.

[23] Koza, John R. Genetic programming: on the programming of computers
by means of natural selection. Vol. 1. MIT press, 1992.

[24] Harman, Mark, William B. Langdon, and Westley Weimer. ”Genetic
programming for Reverse Engineering.” WCRE. Vol. 13. 2013.

[25] Poli, Riccardo, William B. Langdon, Nicholas F. McPhee, and John R.
Koza. A field guide to genetic programming. Lulu. com, 2008.

[26] Langdon, William B. ”Quadratic bloat in genetic programming.” Pro-
ceedings of the 2nd Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc., 2000.

[27] Strobl, Frank, and Alexander Wisspeintner. ”Specification of an elevator
control system - an autofocus case study.” Institutsbericht, Technische
Universitaet Muenchen, Institut fuer Informatik (1999).

[28] Androutsopoulos, Kelly, David Clark, Mark Harman, Robert M. Hierons,
Zheng Li, and Laurence Tratt. ”Amorphous slicing of extended finite state
machines.” Software Engineering, IEEE Transactions on 39, no. 7 (2013):
892-909.

[29] Do, Hyunsook, Sebastian Elbaum, and Gregg Rothermel. ”Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact.” Empirical Software Engineering 10.4 (2005): 405-
435.

[30] Briand, Lionel C., Yvan Labiche, and Yihong Wang. ”Using simulation
to empirically investigate test coverage criteria based on statechart.” Pro-
ceedings of the 26th International Conference on Software Engineering.
IEEE Computer Society, 2004.

[31] Kohavi, Ron. ”A study of cross-validation and bootstrap for accuracy
estimation and model selection.” In Ijcai, vol. 14, no. 2, pp. 1137-1145.
1995.

[32] Sokolova, Marina, and Guy Lapalme. ”A systematic analysis of per-
formance measures for classification tasks.” Information Processing &
Management 45, no. 4 (2009): 427-437.

[33] Fraser, Gordon, and Neil Walkinshaw. ”Assessing and generating test
sets in terms of behavioural adequacy.” Software Testing, Verification
and Reliability 25.8 (2015): 749-780.

[34] Walkinshaw, N., Bogdanov, K., Derrick, J., & Paris, J. (2010). Increasing
functional coverage by inductive testing: a case study. In Testing Software
and Systems (pp. 126-141).

[35] Petrenko, Alexandre, Sergiy Boroday, and Roland Groz. ”Confirming
configurations in EFSM testing.” Software Engineering, IEEE Transac-
tions on 30.1 (2004): 29-42.

[36] Weyuker, Elaine J. ”Assessing test data adequacy through program
inference.” ACM Transactions on Programming Languages and Systems
(TOPLAS) 5.4 (1983): 641-655.

[37] Brave, S. (1996, July). Evolving deterministic finite automata using
cellular encoding. In Proceedings of the 1st annual conference on genetic
programming (pp. 39-44). MIT Press.

[38] Howar, F., Steffen, B., Jonsson, B., & Cassel, S. (2012, January).
Inferring canonical register automata. In Verification, Model Checking,
and Abstract Interpretation (pp. 251-266). Springer Berlin Heidelberg.

[39] Angluin, D. (1988). Queries and concept learning. Machine learning,
2(4), 319-342.

[40] Walkinshaw, N., Bogdanov, K., Ali, S., & Holcombe, M. (2008).
Automated discovery of state transitions and their functions in source
code. Software Testing, Verification and Reliability, 18(2), 99-121.

[41] Sen, Tamal, and Rajib Mall. ”Extracting finite state representation of
Java programs.” Software & Systems Modeling 15.2 (2016): 497-511.

[42] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3, 1157-1182.

