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Abstrac:.- In this work, an approach based on Genetic Programming is proposed for the input-
output systems identification problem. Laguerre's functions and the ARX method have been 
commonly used to solve the systems identification problem. Recently, approaches based on 
Artificial Neural Networks have been used to solve this problem. Genetic Programming is an 
Evolutionary Computation technique based on the evolution of mathematical symbols (constants, 
functions, variables, operators, etc.). To achieve the identification, a set of analysis trees is used 
to describe the different models (individuals) that our approach proposes during its execution. At 
the end of the evolutionary process, an input-output model of the system is proposed by our 
approach (it is the best individual). 
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1. Introduction 
The Evolutionary Computation (EC) 
proposes computational schemes based on 
the evolutionary behavior of the species in 
order to solve particular problems [3],[5]. 
The EC includes the Genetic Algorithms, 
the Evolutionary Programs, the Evolutionary 
Programming, the Evolutionary Strategies 
and the Genetic Programming (GP). 
Particularly, the GP guides the evolution of 
a set of procedures to solve a particular 
problem, such that the best procedure that 
solves the problem is the final solution [7], 
[8], [12]. 

On the other hand, in processes control is 
required models, which describe the 
dynamic behavior of the system in order to 
carry out control tasks [2], [11]. The System 
Identification (SI) problem consists in 
proposing an approximated model of a real 
system [2], [9], [11]. Models that only 
manipulates input and output variables is 
one of the possible identification schemes 
(Input-Output Identification problem). In 
control theory, there are many techniques to 

solve this problem [2], [9], [11]: Laguerre's 
Functions, the ARX Method, etc. Recently, 
other techniques based on Intelligent 
Computation [1], [10], [12], [13] (Artificial 
Neural Networks, Evolutionary 
Programming, etc.) have been used.   

In this work, we propose a mechanism 
based on the GP for the input-output 
identification problem of dynamic systems.  
This approach guides the evolution of a 
function set toward an input-output mapping 
of the system by using PG. Our approach 
manipulates a population of analysis trees 
(each analysis tree is an individual), and the 
crossover and mutation operators are used to 
change the population. At the end of the 
evolutionary process, the best individual 
represents the system identification model. 
The computational implementation of this 
mechanism is made using the genetic 
programming library "The Genetic 
Programming Kernel" [4].  
 
 
 



2. Theoretical Background 
In this section, we present the different 
theoretical aspects used in this work. 
 
2.1 Genetic Programming (GP)  
The GP is an EC technique. In general, EC 
techniques manipulate sets of individuals 
(possible solutions of a given problem) by 
using genetic operators, which are inspired 
in biological operators, in order to propose 
better individuals. The general algorithm is: 
 
1. Define the initial population. 
2. Repeat until the system convergence: 
 2.1 Evaluate the individuals. 
 2.2 Reproduce the best individuals 
by using genetic operators. 
 2.3 Replace the worst old 
individuals by the best new individuals. 
 

In GP, the individuals do not represent the 
solution of a given problem. Now, they 
represent algorithms/procedures to solve 
such problem [7], [8]. Thus, the GP find out 
the best procedure to solve a problem. In 
GP, the individuals are defined by a function 
set (subprograms, mathematical functions, 
etc.) and a terminal set (constants, variables, 
etc.). The PG uses analysis trees to codify 
the individuals (solutions), where each tree 
node is a symbol that belongs to one of the 
sets presented above. An example of an 
analysis tree of the mathematical equation 
A+B is shown in the figure 1. 
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Fig. 1. Example of an analysis tree 

Normally, the GP uses two operators: 
crossover and mutation [7], [8]. The 
crossover operator exchanges two sub-trees 
from two tree randomly selected. In this 
way, two new trees are created. The 
mutation operator randomly selects a tree 
and creates a new tree by taking a sub-tree 
and replacing it by other one, which is 
randomly generated. These operators 

preserve the syntactic constraints of the 
models. 
 
2.2 Systems Identification 
In several control tasks, it is necessary to 
known the system model that describes the 
behavior of the system [2], [11]. This model 
can be defined as a non-linear function of 
the current input and previous inputs and 
outputs. An input-output identification 
technique permits to define a model of an 
unknown system from the historical data of 
its inputs and outputs [2], [9], [11]. Such a 
model can be used in control tasks, fault 
tolerance, etc. The classic scheme for the 
systems identification is shown in the figure 
2. The error signal between the real output 
and the estimated output is used to update 
the model parameters. There are many 
identification methods, several of them 
based on the classic control theory [2], [9], 
[11], an others based on the intelligent 
computation [1], [10], [12], [13].  

 
Fig. 2. Systems Identification Scheme. 

 

3. Our Identification Methods 
Using PG 

In this work is proposed a method based on 
PG to develop identification models. In our 
approach, each individual is defined by a 
Multiple Interaction Programs (MIP) model 
(see figure 3.a). In the MIP model, each 
node is one equation, which is represented 
by an analysis tree (see figure 3.b).  



 

Fig. 3. MIPs Model. 

In our model, the terminal set of each node 
has input variables, constants or outputs 
from some precedent equations. In the figure 
3.b is shown an analysis tree for T3, where 
In1 y In2 are input values of the problem. T1 
y T2 are the outputs of these equations, 
which precede T3 (see figure 3.a). This 
model is easy to implement in GP, through 
the utilization of the ADF (Automatic 
Definition Function) technique. This 
extension of GP permits to define functions 
to evolve in parallel with the main 
procedure. These functions can be called by 
other functions, or by the main procedure, 
during the evolution. In our case, the MIP 
model defines the relationship among the 
functions. The population evolution follows 
the next algorithm:  
 
1. Define a given MIP model for the 

individuals.  
2. Generate, randomly, a population of 

individuals. Each one of the individuals 
is defined by a set of analysis trees 
according to the MIP model.  

3. Evaluate each individual. The evaluation 
function is the average error between the 
historical output of the system and the 
output of the identification model 
(individual).  

4. Select the parents (individuals with the 
smallest average error).  

5. Apply the genetic operators to these 
parents in order to generate new 
individuals. 

6. Replace the old worst individuals for the 
new individuals. 

 

4. Experiment 

In this section, an example is presented in 
order to prove the performance of our 
method. The system is a distillation system 
that uses a binary distillation column in 
continuous operation of multiple stages [6]. 
To develop the computational program, we 
have used the "The Genetic Programming 
Kernel" library, designed by A. Fraser en 
1994 [4]. This library permits the utilization 
of ADFs. 
 
4.1 The System Description 
The objective of a distillation system is to 
separate a mixture in two or more fractions 
with different boiling points. The function of 
the continuous distillation system can be 
seen with details in [6]. In the figure 4 is 
shown the structure of this distillation 
column. The feeding input is introduced in 
the second plate, and the distilled product is 
obtained in the first plate on the top of the 
column. 

 

Fig. 4. Distillation Column 

The constant input signal (feeding) is 
modeled with a step function with amplitude 
equal to ten (U(t) = 10). The theoretical 
model of this system is given by the 
equation (1) [6]: 

X(t) =1.1148*X(t-1) + 0.2525*X(t-2) –  

          0.3823*X(t-3) + 0.3294e-4*U(t-1) 



where X(t) represents the output of the 
system. The output is the concentration of 
benzene on the top. The output signal from 
this model is shown in the figure 5. 
 

 

Fig. 5.  Output signal of the system 

4.2 The System Identification using 
our Approach  
In this experiment, the MIP model is 
composed by two equations (M1 y M2), 
where M2 represents the ADF and M1 
represents the main program (main tree), 
which can depend of M2 or not. The 
function set used by M1 and M2 is {+,-,*, 
%, sin, cos}. The terminal set of the main 
tree is composed by St(M1)={u, xa1, xa2, 
xa3, xa4, xa5, s_M2}, where u is the input 
signal at the time t, xa1 is the output signal 
at the time t-1 (X(t-1)), xa2 is the output at 
the time t-2 (X(t-2)), and so forth, and s_M2 
is the output of the ADF. The terminal set of 
the ADF only has two elements 
St(M2)={xa1, xa2}. The trigonometric 
functions are supposed with input values 
given in radians. 
The historical values of the input and output 
signals have been obtained using the 
theoretical model defined by the equation 
(1). The aptitude of each individual was 
determined based on the average error 
between the output historical values and the 
outputs of the model proposed by the 
individual for the same set of input signals. 
A population of 300 individuals was evolved 

through 50 generations. Finally, the 
individual with the smallest average error is 
selected. In the table 1 is shown the models 
obtained (the best individuals) using our 
identification method, for different terminal 
sets. 
 
4.3 Results Analysis  
The identification models obtained in the 
cases 1 and 4 are similar, and they are the 
best models. In the second case, the ADF 
model is different to the previous ones, but 
the value of the error is acceptable. In 
general, in all cases the best individual 
depends of the output signal at the times (t-
1) and (t-2), and it does not depend of the 
input signal. In the second case, the 
identification model is very complex. 

In the figure 6 is shown the identification 
error signal obtained by the model proposed 
in the case 2. The input signal is a constant 
function U(t)=10, and the initial conditions 
for the variables xa1 y xa2 was randomly 
selected near of the real initial conditions. At 
t=2 sec., the identification error converges to 
zero. In the figure 7 is shown the 
identification error for the same previous 
case, but with initial conditions equals to 
zero. The identification error quickly 
converges to zero (at t = 0.05 sec.). 
 
5 Conclusions 
 
In this work has been shown that our 
identification method using PG can propose 
suitable input-output identification models 
for dynamic systems. It is desirable to carry 
out comparisons with others identification 
techniques (classics or based on intelligent 
systems) in order to establish the advantages 
of this approach. 

According to our results, this method is 
efficient as identification technique. This 
efficiency depends of the function and 
terminal sets that are used, and the 
relationship established in the MIP model. 
In the future, we are going to test one 
extension of our approach where the MIP 
model evolves such that the proper evolution 



determines the optimal relation between the equations. 

Table 1. Identification Models 

Cases Identification Models Identificati
on Error 

St(M1)={u, a1, xa2, xa3, s_M2} 
St(M2)={x1, x2} 

M1 = 2*xa1 – 
xa2*s_M2 
M2 = (xa1)2 / xa2 

1.59254e-4 
 

St(M1)={u, xa, xa2, s_M2} 
St(M2)={x1, x2} 

M1 = 2*xa1 – xa2* 
s_M2 
M2 = Equation (2) 

2.0965e-4 
 

St(M1)={u, xa1, a2, xa3, xa4, s_M2} 
St(M2)=={x1, x2} 

M1 = (xa1 / xa2)*xa1 
M2 = xa1+xa2-xa3 

2.86043e-4 

St(M1)={u, xa1, xa2, xa3, xa4, xa5, 
s_M2} 
St(M2)={x1, x2} 

M1 = 2*xa1 – xa2 
*s_M2 
M2 = (xa1)2  / xa2 

1.59254e-4 

 
where, 

M2 = xa1 – sin(sin(sin(sin(sin(sin(sin(sin(sin(sin(sin(sin(sin(sin((xa2 –
xa1))))))))))))))) 

(2) 

 

 

Fig. 6. Identification error using the second 
model 

 

 

Fig. 7. Identification error with initial 
conditions xa1=xa2=0 
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