
Expansion of the GeLog System by Automatic Adaptation of Parameters

GABRIELLA K ÓKAI
Department of Programming Languages Friedrich-Alexander University

Martensstr. 3. D-91058 Erlangen, GERMANY

Abstract: -Different techniques have been introduced for the improvement of Evolutionary Algorithms (EA)
to increase their performance as well as to achieve better results. Adaptive methods are commonly used. In
the scope of this work these extensions are applied toGeLog, a system which implements a combination of
two different approaches for automatic programming: inductive logic programming and genetic algorithms.∗

Key-Words:Genetic Programming, Hybrid Intelligent Systems, Inductive Logic Programming

1 Introduction

The GeLogsystem ([6]) is a combination of inductive
logic programming ([8],ILP) from the area of machine
learning and the genetic algorithms from the area of evo-
lutionary algorithms intended to avoid some problems of
existing ILP systems and to join the advantages of both
systems. The goal of this paper is to simplify the choice
of evolution parameters, which has to be repeated for
each new problem, through an automatic adaptation of
parameters. AsGeLogis a very flexible system, which
can be employed for various kinds of problems, there
are also a big number of possibilities how to use it.
Good knowledge of the problem and the system, which
the user often lacks, are the precondition of a success-
ful search. ThereforeGeLogwas extended and three
new adaptation procedures were added which adapt the
possibilities of application of the genetic operators dur-
ing evolution to the change of fitness or the success
rate of operators. In the remainder of this paper first
a brief overview aboutGeLogsystem is given. Section
3 contains the formal description of EA. In Section 4
the automatic adaptation is discussed. The expansion of
GeLogis described. In Section 6 one example is given
to demonstrate the learning ability. Finally in Section 7
a summary and outlook of future work will be made.

2 The GeLog System

GeLog([6]) is a learning program for the automatic gen-
eration of logic programs, which combines the tech-
niques of inductive logic programming (ILP, [8]) and
the genetic programming (GP). Solutions, which can be
expressed by Prolog programs, are learned on the basis
of background knowledge and training examples. The
inductive logic programming is embedded through the
use of Prolog programs as phenotypes of the individu-
als, which, as in otherGP systems, are depicted on an
object graph. The individuals are evaluated by a Pro-
∗ This work is supported by the grants of the Bayerisches Staatsministerium

für Wissenschaft

log process in order to determine the fitness. The pro-
cess is initiated with the background knowledge and the
positive and negative training examples. TheILP opera-
tors of generalization and specialization are mapped on
mutation and recombination. AsGeLogoffers multiple
possibilities, the relevant adjustments from a configura-
tion file, which has to be indicated when the program
is called, are read in. The goal clause and the possi-
ble predicates are also extracted from the configuration
file. The reproduction of the examples on the predicates
is explained in the background knowledge. The Pro-
log process is initialized with the basic knowledge and
the examples. After generation of the initial generation
from these files the real evolution cycle is started. The
generations are separately stored in different files and
statistics about the completeness and the consistency of
the individuals are elaborated. After the end of the pro-
gram it is thus possible to analyse in great detail the evo-
lution on the basis of the statistics of the populations.

3 Formal description

Just as the evolutionary algorithms have different devel-
opment streams, there are also different approaches for
the formulation of the respective methods. As already
explained in [5] we are going to employ a model of de-
scription which can mainly be deduced from the theory
of evolution strategies but also enables a description of
other procedures. First, a population ofµ individuals is
generated. A selection of the parental generation is car-
ried out in accordance with the fitness of the individu-
als. Usually, the user has to define the fitness function as
well as to determine the selection operator. In contrast to
natural sexual reproduction, EAs also permit recombi-
nation with more than two or just one partner. The exact
number can therefore be indicated explicitly by factor
ρ. Mutations, however, always concern just one indi-
vidual. The exact parameters of the genetic operators
(i.e. usually their application probability) are indicated
by option vectorλ. λ new individuals are produced in

each generation.(
µ0/ρ0

+
, λ0 || Ω0

)γ0

(1)

µ0: number of parental individuals (size of population)
ρ0: size of recombination pool (usually 2)
λ0: number of descendants
γ0: number of generations
Ω0: parameters of operators employed

There are two more strategies for the creation of a gener-
ation of descendants. The comma strategy only accepts
new individuals and lets the parents die out. According
to the plus strategy, in contrast, parents are also seen as
possible candidates.

4 Automatic adaptation of parameters

The user has a lot of possibilities to influence the pro-
cedure and thus also the results of the search by using
evolutionary algorithms. However, it is not possible to
indicate a general and optimal parameterization, as it
depends on the nature of the problem and on the pos-
sible genetic operators. Especially with the use of flex-
ible programming systems likeGeLog, which are not
designed to specialize on one class of problems and, fur-
thermore, can be extended with regard to the operators
that are to be employed, the user already needs good
knowledge of system and search area in order to be able
to take a useful decision. It would therefore be desir-
able, to develop an at least partly automated adaptation
process. Another problem is however caused by the evo-
lution run itself. At the beginning, operators that lead
to large adaptations are preferable, because they can ex-
plore the search area more quickly. During the approach
towards the searched maximum, however, small adapta-
tions get more important in order to avoid overshoot-
ing the mark. Therefore, the use of operators has to
be adjusted during run time. In the following, differ-
ent approaches how to carry out these adaptations are
explained, the main emphasis lies on the adaptation of
operator probabilities.

4.1 Absolute and empirical updating rules

Basically, it is possible to distinguish between two dif-
ferent methods for adaptation of parameters (cf [1]). For
anabsolute adaptation, a set of statistics of various gen-
erations or populations is elaborated. According to the
evolution that thereby becomes apparent, the parame-
ters that are subject to change and partly also the size
of adaptation are established. The method is absolute,
as the necessary adaptations are already known before
the real evolution. For such a procedure it is necessary
to predict the course of evolution up to a certain degree.
This prediction is justified, as long as it actually reflects
an existing regularity. In [10], for example, the1/5 rule
of success is employed, which adapts the global muta-
tion variable according to the success rate of mutation.

The assumption especially applies to a search area that
can be described by a smooth multimode function, as it
is often the case with evolution strategies. Such a rule,
however, cannot be applied to other algorithms such as,
for example, genetic programming, whose fitness func-
tion rises by leaps and bounds.

With empirical adaptation, on the contrary, the strat-
egy parameters evolve together with the population.
Usually special operators for the evolution of param-
eters are employed. It would therefore be possible to
speak of a parallel evolution of parameters, which, how-
ever, will be evaluated in accordance with the fitness of
the individuals. Procedures using empirical adaptation
are also calledself-adaptive. As a general rule, adapta-
tion takes place at individual level and is therefore con-
nected to their preservation within a population. Previ-
ous knowledge of the present problem is not necessary,
which makes the process more adaptable.

4.2 Level of adaptation

Parameters can be adapted on different levels of rep-
resentation, depending on which parameters are to be
adapted. In the following, different approaches are com-
pared. For this means, we will distinguish between
adaptation on the population level, on the individual
level and on the component level. A more detailed com-
parison can be found in [1].

4.2.1 Adaptation on the population level

In the easiest case, an evolution run is determined by
only a few global parameters that apply to the whole
population. As these values are relatively independent
of the problem class, such an adaptation can be largely
applied. Taking a look at the evolution of a population,
you will see that first, the search area is explored into
every direction because of the generation of the descen-
dants, and only with the help of the selection operator
the search can be focussed. Through adaptation of the
global parameters it is possible to focus on promising
areas, too. One example is the ARGOT system (cf [13])
In this system the interpretation of individuals is modi-
fied dynamically and adapted to the convergence degree
of the population. In this case, the adaptation leads to
a refined search when evolution becomes stagnant. In
contrast to the ones mentioned before, there are also
systems that carry out an empirical adaptation on the
population level. In [14], for example, the application
probability of recombination operators is determined by
the number of flags added to the individuals.

4.2.2 Adaptation on individual level

The fact that evolutionary algorithms evolve whole gen-
erations parallely to each other does not always lead to
a uniform adaptation of all individuals. Especially if
the individuals are widely spread in the search area and
their direct environments therefore differ very much, a

global parameterization is not sufficient. For an indi-
vidual adaptation, each individual needs additional in-
formation on the basis of which the adaptations can be
realized. Therefore, more specific values are optimized,
for example in order to determine the crossover points.
In most processes, evolution is completed with this ad-
ditional parameter, i.e. they are self-adaptive. However,
also in this case there are systems providing absolute
adaptation. In the programming system depicted in [11],
for example, a fitness function is used in order to evalu-
ate the structure of individuals. If one part of the struc-
ture has a greater fitness, no more crossover points may
be within its borders for it to remain complete.

4.2.3 Adaptation on component level

Finally, it is possible to take another step down and carry
out adaptation of different components of the individu-
als. The main difference between this approach and the
one mentioned before is that here, the kind of manipu-
lation of different components can be specified indepen-
dently and does not depend on other components. This
form of adaptation is used in [2] for excluding further
manipulation of certain components. A frozen/unfrozen
flag which (like the other strategy parameters) was sub-
ject to self-adaptation is thus allocated to each compo-
nent. In [12], a self-adaptive procedure for ES based on
the components is described, which contains a specific
variable parameter for each real-valued element of the
individuals. It serves to focus the search into the direc-
tion, where the predecessors were more successful.

5 Expansion of GeLog

Especially due to the number of possible operators for
recombination and mutation as well as the possibilities
of adjustment inGeLogthe user must have familiarized
himself with the relevant problem and the effects of the
operators for this type of problem. Therefore, one of the
aims of this work was to help the user with this choice by
introducing an automatic adaptation of the application
probabilities of the operators.

An absolute adaptation on the population level was
implemented for theGeLogsystem, in order to have a
procedure which, on the one hand, causes relatively lit-
tle or no problems, and on the other hand ensure that the
additional effort necessary because of the adaptation is
as small as possible. First we will explain the expansion
which was introduced in order to save the evolution his-
tory of each individual and analyse it. In the following
part, the realization of adaptation limits which are used
for all adaptation procedures will be explained. Dur-
ing first tests of adaptation, certain defects of the ini-
tially implemented fitness-based adaptation became vis-
ible. Therefore, a success-based adaptation was added
to the system. During the design of the different classes
of history we had the idea to consider not only the gen-
eration of the predecessors, but also the whole (or also

limited as to its length) genealogical tree.

5.1 Expansion of individuals

For adaptation, data about the evolution history of each
individual are necessary. In the originalGeLog sys-
tem, each operator was used according to its application
probability. It was, in particular, possible to use various
recombination operators successively, although this did
not seem to be very useful, taking into account their po-
tential for adaptation. Through an orientation towards
natural evolution it was possible to limit the procedure
to just one application of recombination. The recombi-
nation operators always operate with two parental indi-
viduals, of whom only the fitness as well as the oper-
ator applied have to be included into the history. For
the mutation operators, however, multiple mutation was
maintained and a variable limited to exactly one mu-
tation was permitted. Therefore, an operator vector is
listed in the history. To begin with, only the previous
generation was regarded. However, it should also be
possible to consider various generations for adaptation.
The data is therefore stored together with references to
the predecessors of the parents. As the adaptation is in-
tended to adapt the application probabilities of each op-
erator, it would be possible to evaluate them separately
after each operation. We refrained from applying this
method, however, as when it comes to multiple muta-
tion this would require too much work and, furthermore,
effects which are only produced when various operators
work together could not be taken into account. In addi-
tion, the results would be too insignificant. Therefore,
each operator participating in the generation of new in-
dividuals counts with the total number of adaptations.

5.2 Limits of adaptation

As it is possible that all operators are necessary to reach
a global maximum, no operator may disappear because
of adaptation. Therefore, a minimal probability can be
indicated with the parameterminProbwhich guarantees
the maintenance of all operators. In case of multiple
mutation, it must, in addition, also always be possible
to omit an operator. The upper limit is constituted by
the complementmaxProb = 1 − minProb. In order
to make it easier to keep to the minimal limit, it is allo-
cated to each operator in the case of multiple mutation
and distributed equally to the operators in case of simple
mutation and recombination (cf also [9]). Therefore, the
factor(1−minProb) is added to the real adaptation in
order to avoid passing over the limit.

5.3 Fitness-based adaptation

In analogy to the fitness-proportional selection, the ap-
plication probabilities of operators can be adjusted ac-
cording to the change of fitness. The version imple-
mented here is mainly based on the description found in

[5]. During adaptation, three factors are taken into con-
sideration for each operatorω: the evaluation of opera-
tors of the previous generationγ(ω, t− 1), the mean of
change of fitness∆γ(ω, t) and an expiry rateγdecay(ω).
This leads to the following formula:

γ(ω, t) = γ(ω, t− 1) ·∆γ(ω, t) · γdecay(ω) (2)

First of all, the change of fitness of all individuals is
determined and their mean is calculated. For this means,
the mean of the fitness values of the parental individu-
als is compared to fitnessτ of the filial individual for
each operator. The standardization is then determined
by the number of applications of the respective opera-
tor in the present generation. In the following formula
for the mean of the change of fitness,P (ω, t) refers to
all individuals onto which the operatorω was applied in
the generationt.

∆γ(ω, t) = |P (ω, t)|−1 ·
∑

s∈P (ω,t)

τ(s)
τ(parents(s))

(3)

The expiry rateγdecay serves to weaken fitness-
neutral operators which neither lead to an improvement
nor to a deterioration. The factor is of especial interest,
when the operator already counts with a high probability
of application. In the case of a simple mutation, the high
evaluation of the operator impedes the improvement of
other operators, as they are always evaluated relatively
to one another. In the case of multiple mutations, how-
ever, the expiry rate serves to ”punish” the operator for
its weakening effect. In general, the value ofγdecay
should not be much smaller than1, as the amount of
change of fitness is often very small. In order to main-
tain the new application probability, thisγ(ω, t) is eval-
uated together with the factormaxProband added to the
minimal value of operators. The formula for the calcu-
lation of application probabilities is:

Pfitness(ω, t) = minProb+maxProb∗γ(ω, t) (4)

Another possibility of implementation for a fitness-
based adaptation is presented in [9]. There, the fitness
of the parental node as well as the operator used are
stored in pairs for each increase of fitness.pall points
are equally distributed to all operators (this corresponds
to the above mentioned use ofminProb). The remaining
pleft = 100 − pall are distributed to those operators,
through whose application the new fitness is closest to
the fitness of the parental node. Each operator receives
at least one point. If the increase of fitness is underpleft,
the other points go to the remaining classp0, which cor-
responds to the probability that no operator will be used.
The use ofminProb was adopted from this implemen-
tation. Apart from that, the use of percentage points for
populations of any possible size does not seem useful for
this implementation. Through the selection of operators
with the smallest possible change of fitness it is tried to

implement adaptation in smaller steps. For this means,
the direct application of the previous evaluation as in [5]
is more fit and the procedure is more comprehensible
when an expiry rate is also introduced.

5.4 Success-based adaptation

One disadvantage of fitness-based adaptation in accor-
dance with [5] is that the value depends directly on the
value of the change of fitness. The closer one gets to
the maximum, the smaller the positive deviations are
and the bigger the probability that application of oper-
ators will lead to deterioration. In the case of success-
based adaptation, it is tried to loosen the dependence
on the value by using operators for the adaptation of
the success-rate. The implementation presented here is
mainly based on [9]. The success-rate is determined by
the relation of successful applicationssucc(ω, t) and the
total number of application|P (ω, t)| of the operator:

σ(ω, t) =
succ(ω, t)
|P (ω, t)|

(5)

For calculation, only the present generation is taken into
account, whereas a history-adaptation as described in
the following chapter was not implemented in combina-
tion with the success-based adaptation. The formula for
the determination of the new probability of application
therefore is:

Psuccess(ω, t) = minProb+maxProb∗σ(ω, t) (6)

In [9], the successessucc(ω, t) are additionally squared.
This leads to a significantly better evaluation of high
success rates than of lower success rates, and this is why
it comes to greater deviations among the probabilities of
application. as otherwise the total of the success rates
would be over100%. This was however not done here,
as subsequent evaluation of a multiple mutation is very
labour-intensive.

5.5 History adaptation

In the procedures explained before, only the directly
previous generations were taken into consideration for
adaptation. It might however be necessary to use various
generations for generation of a new best individual, al-
though interim deterioration of fitness can be accepted.
Previous methods could not recognize such a longer
evolution time and impede or even stop it. For this case,
a so-calledhistory adaptationwas implemented, which,
in addition to the normal adaptation also favours those
operators, which served for generation of the predeces-
sor. The different items in the history therefore also con-
tain references on the predecessors, so that the whole ge-
nealogical tree can be traced back. It does of course not
make much sense to include all generations until the be-
ginning of evolution, as on the one hand only small devi-
ations of the adaptation values of the different operators
can be expected while on the other hand the additional

effort for calculation rises exponentially to the number
of generations. As the direct parental generation was,
however, already considered in other adaptation proce-
dures, the history-adaptation only applies to the last two
generations, i.e. it starts with the ”grandparents”.

The basic idea for this adaptation was to proceed in
accordance with the fitness based adaptation, but dis-
tribute the amount of adaptation to the respective ge-
nealogical tree of the operators. One half of the sum
should be allocated to the operators of the latest/current
individual, the other half to those of its procedure.
Through recursive application with reduction by half,
the influence which is getting weaker with rising length
of the distance to the original individual would have
been considered at the same time. However, the argu-
ment against the realization of this concept was that usu-
ally the size of the change of fitness is usually so small,
that further division would only have produced insignif-
icant values. Furthermore, the same negative effects that
also appeared in the case of fitness-based adaptation be-
cause of the direct dependence on the size would have
been repeated.

Furthermore, also the assumption that the size of
adaptation would be smaller, the bigger the operator
depth was proven insufficient. What, after all, is to be
reached by adaptation is to favour evolutions which can
be successful after various generations. As, however,
there is no possibility to determine the exact number of
generations needed for an improvement, the reduction of
the amount from a certain point on cannot be explained.
For this reason, the total amount of history adaptation is
not determined by the change of fitness, but is regarded
as a constant and adjusted by the maxHistAdapt variable
in the configuration file. This amount is again divided
and allocated in equal shares to the previous generations
by each individual. Finally, the adaptation sum within a
generation is allocated to the different operators, so that
the amount received by each operator isaddi(ω, d).

addi(ωop, d) =
1
λ
∗ adaptmax
dmax − 1

∗ 1
|Ωop(d)|

(7)

i: current individual
ω: operator
d: current history-low
λ: number of descendents
op: recombination or mutation

Ωop(d): applied operators of current generation

At an evolution ofλ = 100 descendants, a history-low
d = 6 and a value 1 foradaptmax each individual counts
with an adaptation total of0.01, i.e. every previous
generation has a share of0.002. With recombination
and simple mutation this amount is allocated directly
to the operators, with multiple mutation these 0.002 are
again allocated to the respective operators. The different
sums are finally added, if an individual deteriorated, the
sums it contributed are subtracted. Adaptation can also
lead to a reduction of probabilities of application. Un-
til now, implementation is only based on a combination

with fitness-based adaptation. The history adaptation is
simply added to the operator value, the sum being lim-
ited to interval[0; 1]. The new probability of application
is therefore calculated in accordance with the following
formula:

Phist,fitness(ω, t) = minProb+

+maxProb ∗
(
γ(ω, t) +

∑
i,d

addi(ω, d)
)

(8)

6 Experimental result

In this chapter, adaptation of parameters is tested in an
experiment. The problem is a standard example in the
area of machine learning. They were chosen in order to
be able to compare them with other learning systems as
well as the original system (see [7]). The description of
the examples and the data record were taken from [4].

6.1 Chess Endgame (Chess KRK)

The chess problems are challenging problems in the area
of ILP. In this paper, the King-Rook-King version is in-
vestigated [3], where a given situation on the board al-
ways consists of the white king and rook and the black
king. Under the precondition that black is on turn, the
difference between allowed and disallowed constella-
tions has to be learned. Those positions where white has
already won and where black can strike a white figure
without subsequently being struck are forbidden. The
records in the database are described by the six coordi-
nates of the three figures. A class indicates the optimal
number of turns in which white wins the given situation
assuming minimax-optimal play. There are17 differ-
ent classes for the minimal number of turns from0 to
16 and the additional class draw are referred to as being
positive, while all the others are treated as negative. Ac-
cording to this,10.1% of the28056 available examples
are positive and89.9% are negative.

A test run took between35 and45 minutes. The evo-
lution was observed over100 generations with a popula-
tion size of 100 individuals, the number of descendants
was set atλ0 = 90. As the target predicate contains
three variables, the mutation operators on variable level
also came to application in this example. The number of
variables was also considered for the evaluation of fit-
ness and was in this case fixed at1. The value for the
positive and negative examples recognized correctly was
stipulated to be100. The selection process was based
on the different ranks. The results of training and tests
are shown in table 1. The early results without adap-
tation were relatively bad (83%). Correspondingly, the
adaptation procedures lead to significant improvement
of the results. Success-based adaptation and simple mu-
tation produce the best results under the plus strategy,
but also through the history adaptation in combination
with simple mutation the results were significantly im-
proved. This was the case during training as well as dur-

configuration best error rate in % midle error ratein % proper classified examples in %
adaption mult. mutation indiv. gener. indiv. gener. all positive negative

+ noadapt − 8,87±0,02 21,33±0,23 12,06±1,43 22,89±0,75 84,40±0,31 98,87±0,27 82,78±0,37
+ noadapt

√
8,87±0,02 32,78±0,51 9,06±0,34 33,46±0,34 84,40±0,31 98,87±0,27 82,78±0,37

+ fitness − 8,16±1,44 19,21±0,93 9,26±0,41 20,37±0,17 86,03±2,98 98,87±0,27 84,60±3,29
+ fitness

√
8,14±1,46 29,52±0,89 8,94±0,84 30,92±0,60 84,71±2,74 98,94±0,22 84,22±3,05

+ history − 5,86±2,94 9,05±0,78 9,01±0,47 20,06±0,42 90,19±5,47 99,01±0,41 89,20±6,06
+ history

√
8,14±1,46 29,52±0,89 8,04±0,84 30,92±0,60 85,71±2,74 98,94±0,22 84,22±3,05

+ success − 4,10±3,90 17,22±3,03 7,82±1,48 20,91±1,10 93,41±7,25 98,80±0,17 92,81±8,06
+ success

√
8,87±0,02 17,39±0,68 10,60±1,11 18,34±0,42 84,40±0,31 98,87±0,27 82,78±0,37

, noadapt − 9,77±1,74 29,37±1,95 13,89±0,97 30,82±3,13 83,09±3,13 99,08±0,28 81,31±3,50
, noadapt

√
8,87±0,02 40,19±0,52 8,87±0,02 41,40±0,38 84,40±0,31 98,87±0,27 82,78±0,37

, fitness − 8,17±4,00 23,40±2,01 12,44±1,21 26,12±0,65 85,88±7,44 98,87±0,27 84,43±8,29
, fitness

√
8,87±0,02 31,49±0,59 9,07±0,35 32,29±0,33 84,40±0,31 98,89±0,27 82,79±0,37

, history − 8,87±0,02 20,56±1,22 12,15±1,44 23,19±0,58 84,40±0,31 98,87±0,27 82,78±0,37
, history

√
8,87±0,02 28,33±1,69 9,58±0,65 29,84±0,32 84,40±0,31 98,87±0,27 82,78±0,37

, success − 11,48±2,14 26,14±1,82 14,88±2,57 28,28±1,64 79,38±3,88 99,22±0,27 77,16±4,33
, success

√
8,87±0,02 26,30±0,42 11,03±1,47 27,56±0,67 84,40±0,31 98,87±0,27 82,79±0,37

Table 1: Training- and testresults forchess king-rook-king

ing application. Under the comma strategy, only fitness-
based adaptation with simple mutation reached a better
result than the non-adaptive procedure in combination
with multiple mutation. With both strategies, the im-
provements were made possible by better recognition of
the negative examples. As they constitute a big part of
the data basis, an increase of its recognition capabilities
is even more important.

7 Conclusion

In this work, automatic adaptation of the application
probabilities of genetic operators was added to the
GeLogsystem. We did not only intend to improve the
results, but we wanted to simplify configuration of the
system for the user by trying to find out the best con-
figurations. With the help of the three adaptation proce-
dures, it was possible to improve the results of the tested
example.

Over and above this work, there are of course other
possibilities of how to enlarge theGeLogSystem in or-
der to improve its performance or the quality of its re-
sults. At the moment, there are, for example, attempts,
to include building blocks, where components that prob-
ably form parts of the optimal solution are to be discov-
ered and excluded of further variation. These extensions
are area of special interest in connection with metaevo-
lution.

References:

[1] P. J. Angeline. Adaptive and self-adaptive evolu-
tionary computations. InComputational Intelli-
gence: A Dynamic System Perspective, pages 152–
161. IEEE Press, 1995.

[2] P. J. Angeline and J. B. Pollack. Evolutionary
module acquisition. In W. A. D. B. Fogel, edi-
tor, Proceedings of the Second Annual Conference
on Evolutionary Programming, Evolutionary Pro-
gramming Society, 1993.

[3] M. Bain. Learning Logical Exceptions in Chess.
Dissertation, University of Strathclyde, 1994.

[4] C. Blake and C. Merz. UCI Repository of machine
learning databases, Univ. of California, Irvine,
Dept. of Information and Computer Sc., 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[5] C. Jacob. Principia Evolvica – Simulierte Evolu-
tion mit Mathematica. dpunkt.verlag, Heidelberg,
Germany, Aug. 1997.

[6] G. Kókai. Gelog - a system combining genetic
algorithms with inductive logic programming. In
7th Fuzzy Days LNCS, 2206, pages 326–345, Dort-
mund, Germany, October 1-3 2001. Springer.

[7] G. Kókai, Z. Tóth, and S. Zvada. An experimen-
tal comparison of monostrategy and multistrategy
learning methods. Insubmitted GECCO’2002,
New York, 9-13 July 2002.

[8] N. Lavrǎc and S. Ďzeroski. Inductive Logic Pro-
gramming. Ellis Horwood, 1994.

[9] J. Niehaus and W. Banzhaf. Adaption of operator
probabilities in genetic programming. InProceed-
ings of 4th EuroGP Conference, pages 325–336,
Como, Italien, 2001. Springer.

[10] I. Rechenberg.Evolutionsstrategie ’94, Werkstatt
Bionik und Evolutionstechnik. Band 1, Fromman-
Holzboog, 1994.

[11] J. P. Rosca. Hierarchical self-organization in ge-
netic programming. InProc. of the Eleventh Inter-
national Conference on Machine Learning, 1994.

[12] H.-P. Schwefel.Evolution and Optimum Seeking.
Wiley, New York, 1995.

[13] C. G. Shaefer. The argot system: Adaptive repre-
sentation genetic optimizing technique. InProc. of
the 2nd International Conference on Genetic Algo-
rithms, Hillsdale, New Jersey, 1987.

[14] W. M. Spears. Adapting crossover in evolution-
ary algorithms. InEvolutionary Programming
IV: Proceedings of the Fourth Annual Conference
on Evolutionary Programming, Cambridge, Mas-
sachusetts, 1995. MIT Press.

