Skip to main content

New Genetic Operators in the Fly Algorithm: Application to Medical PET Image Reconstruction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6024))

Abstract

This paper presents an evolutionary approach for image reconstruction in positron emission tomography (PET). Our reconstruction method is based on a cooperative coevolution strategy (also called Parisian evolution): the “fly algorithm”. Each fly is a 3D point that mimics a positron emitter. The flies’ position is progressively optimised using evolutionary computing to closely match the data measured by the imaging system. The performance of each fly is assessed using a “marginal evaluation” based on the positive or negative contribution of this fly to the performance of the population. Using this property, we propose a “thresholded-selection” method to replace the classical tournament method. A mitosis operator is also proposed. It is triggered to automatically increase the population size when the number of flies with negative fitness becomes too low.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badawi, R.D.: Nuclear medicine. Phys. Educ. 36(6), 452–459 (2001)

    Article  Google Scholar 

  2. Bosman, P.A.N., Alderliesten, T.: Evolutionary algorithms for medical simulations: a case study in minimally-invasive vascular interventions. In: Workshops on Genetic and Evolutionary Computation 2005, pp. 125–132 (2005)

    Google Scholar 

  3. Bousquet, A., Louchet, J., Rocchisani, J.M.: Fully three-dimensional tomographic evolutionary reconstruction in nuclear medicine. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 231–242. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Cagnoni, S., Dobrzeniecki, A.B., Poli, R., Yanch, J.C.: Genetic algorithm-based interactive segmentation of 3D medical images. Image Vision Comput. 17(12), 881–895 (1999)

    Article  Google Scholar 

  5. Fahey, F.H.: Data acquisition in PET imaging. J. Nucl. Med. Technol. 30(2), 39–49 (2002)

    Google Scholar 

  6. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  7. Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics (2001)

    Google Scholar 

  8. Lewitt, R.M., Matej, S.: Overview of methods for image reconstruction from projections in emission computed tomography. Proc. of IEEE 91, 1588–1611 (2003)

    Article  Google Scholar 

  9. Louchet, J.: Stereo analysis using individual evolution strategy. In: International Conference on Pattern Recognition 2000, p. 1908 (2000)

    Google Scholar 

  10. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  11. Vidal, F.P., Lazaro-Ponthus, D., Legoupil, S., Louchet, J., Lutton, E., Rocchisani, J.: Artificial evolution for 3D PET reconstruction. In: Artificial Evolution 2009. LNCS. Springer, Heidelberg (2009) (to appear)

    Google Scholar 

  12. Vidal, F.P., Louchet, J., Lutton, E., Rocchisani, J.: PET reconstruction using a cooperative coevolution strategy in LOR space. In: IEEE Medical Imaging Conference 2009 (2009) (to appear)

    Google Scholar 

  13. Völk, K., Miller, J.F., Smith, S.L.: Multiple network CGP for the classification of mammograms. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 405–413. Springer, Heidelberg (2009)

    Google Scholar 

  14. Zaidi, H. (ed.): Quantitative Analysis in Nuclear Medicine Imaging. Springer, US (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vidal, F.P., Louchet, J., Rocchisani, JM., Lutton, É. (2010). New Genetic Operators in the Fly Algorithm: Application to Medical PET Image Reconstruction. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6024. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12239-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12239-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12238-5

  • Online ISBN: 978-3-642-12239-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics