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ABSTRACT
The study of common, complex multifactorial diseases in
genetic epidemiology is complicated by nonlinearity in the
genotype-to-phenotype mapping relationship that is due, in
part, to epistasis or gene-gene interactions. Symobolic dis-
criminant analysis (SDA) is a flexible modeling approach
which uses genetic programming (GP) to evolve an opti-
mal predictive model using a predefined collection of math-
ematical functions, constants, and attributes. This has been
shown to be an effective strategy for modeling epistasis.
In the present study, we introduce the genetic “mask” as
a novel building block which exploits expert knowledge in
the form of a pre-constructed relationship between two at-
tributes. The goal of this study was to determine whether
the availability of “mask”building blocks improves SDA per-
formance. The results of this study support the idea that
pre-processing data improves GP performance.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
biology and genetics

General Terms
Algorithms, Design, Human Factors

Keywords
Genetic Analysis, Genetic Epidemiology, Genetic Program-
ming, Symbolic Discriminant Analysis, Symbolic Regres-
sion, Function Set, Two-Locus Model, Genetic Mask

1. INTRODUCTION
Advancing laboratory techniques such as DNA microar-

rays [30] and Gene Chips [13] are driving the massive growth
of biomedical data without a paralleled advancement in the
analytical and computational methods utilized to interpret
this information. The challenge for genetic epidemiologists
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will be to develop statistical and computational methods
that are able to identify subsets of genetic attributes that
classify and predict clinical endpoints. In the 1930’s, Sir
Ronald Fisher et al. [2] developed linear discriminant anal-
ysis (LDA) as a tool for classifying discrete endpoints using
information about multiple attributes or variables. LDA lin-
early combines measurements of multiple explanatory vari-
ables into a single value or discriminant score that can be
used to classify observations. The major disadvantage of
LDA is the assumption of linearity, which means that the
model needs to be pre-specified, and only the coefficients for
each linear predictor are estimated from the data. In the
early 90’s, Koza et al. [5, 6] developed symbolic regression
as a means of identifying regression equations that would
not need to be pre-specified. Symbolic regression uses ge-
netic programming (GP) machine learning methodology to
identify optimal symbolic regression models. Most recently,
Moore et al. [24, 21] extended symbolic regression into a
method called symbolic discriminant analysis (SDA) where
the symbolic model is used to generate symbolic discrimi-
nant scores for each observation in each group from which
the classification error can be estimated for the model. The
disadvantages of SDA include a large computational require-
ment, a potentially complex function output, and no guar-
antee that the GP will find the optimal solution. To begin
addressing these shortcomings, Moore et al. [17] outlined a
5-step SDA method for the automated detection, character-
ization, and interpretation of epistasis in population-based
data. The first step in this method employs a full facto-
rial experimental design to optimize search parameters for
running SDA. One of the key parameters is the selection of
the function set building blocks to make available to SDA,
including arithmetic operators (+,−, ∗, /), relational oper-
ators (=, ! =, <, >, <=, >=, max, min) and Boolean opera-
tors (AND, OR, NOT, IF, XOR).

In the present study we evaluate “masks” as a novel func-
tion set of building blocks. We use the 5-step SDA method
as a framework to test the ability of masks to facilitate
modeling of epistatic interactions. A mask function set is
made up of two-locus interaction models intended to pro-
vide SDA with a pre-constructed relationship between pairs
of explanatory variables or attributes. There are 512 pos-
sible two-locus, two allele, two-phenotype, fully penetrant
disease models [12]. Beyond providing the GP with the en-
tire set of 512 unique masks, we explore the utility of smaller,
simpler mask function sets assembled by (1) selecting only
the models which reduce the genetic redundancy present in
entire set, (2) selecting models believed to be of general bi-
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Figure 1: A generalized 3-by-3 penetrance table.
The row label gives the three possible genotypes
of the first disease locus (i.e. AA, Aa, aa) and the
column label gives the genotypes for the second lo-
cus (i.e. BB, Bb, bb). The table element (fij) (pene-
trance) is the probability of being affected with the
disease when the genotype at the first locus is i, and
that of the second locus is j.

ological interest, and (3) selecting models which are cus-
tomized to interactions detected in the given dataset using
Multifactor Dimensionality Reduction (MDR). The utility
of mask building blocks was assessed for both simulated and
real case/control datasets. Each dataset contained known
2 way non-additive attribute interactions combined with a
single attribute main effect. The real case/control dataset
has been previously studied [17, 31, 19] and most recently
utilized to test and validate the 5-step SDA method itself
[17]. Masks are designed to save SDA the time and effort
of evolving complex interaction models by intelligently pro-
viding such relationships in a pre-constructed fashion such
that the most difficult task left to the GP is the selection of
the appropriate attributes. We aim to evaluate masks as a
novel function set and to determine whether expert knowl-
edge at the level of building block selection can improve the
modeling of epistatic interactions.

2. METHODS

2.1 Genetic Masks
The idea behind a “mask” is to provide SDA with a pre-

constructed interaction relationship between pairs of explana-
tory variables or attributes. A geneticist might view a“mask”
as being a disease model involving two genetic loci. As dis-
cussed by Li et al. [12], these two-locus models have been
widely used in the study of complex diseases since they are
a natural choice if the underlying disease mechanism in-
volves two or more genes. A two-locus model is typically
represented by a 3-by-3 penetrance table where each cell
represents a combination of two inherited genotypes from
different loci (see Figure 1). Penetrance is defined as the
probability of disease given a particular genetic state.

In the most general case, the penetrance (fij) of a given
table cell ranges from 0-1. If the value of fij is limited to
the discrete values ′0′ (not at all penetrant) and ′1′ (fully
penetrant), we can categorize the nine-parameter space to
29 = 512 distinct models. The implementation of masks as
building blocks for the GP requires the functional transla-
tion of a two-locus model into a binary representation of the

Figure 2: In this mask representation of the
codominant model, single nucleotide polymorphisms
(SNPs) are the loci of interest and the specific SNP
polymorphism (1-3) represents the genotypes (i.e.
AA, Aa, aa). The values (1-3) are arbitrarily assigned
to code for a specific combination of the two SNP
alleles an individual possesses at a given loci. For
example 1 = G/G, 2 = G/T, 3 = T/T. The result-
ing 3-by-3 matrix of discrete outcomes can be repre-
sented as a 9-digit binary number where the digits
are ordered by position as indicated by the arrows.

penetrance table. We use the following notation to label
each of these 512 fully penetrant two-locus models:

′modelnumber′10 = (f11f12f13f21f22f23f31f32f33)2

Where the subscript of 2 or 10 indicates whether the num-
ber is represented as binary or decimal. Now, each position
in the penetrance table may be represented as a single digit
within a nine digit binary number. Consider the following
example: In this study, the discrete outcomes 0 and 1 rep-
resent healthy and disease state, respectively. For the two
locus model which represents codominance, position f11 is
the only combination where both genes have the recessive
genotype so f11 = 0 and all other fijs equal one. Figure 2
indicates how the codominant model would be expressed as
a mask in this study.

Considering this representation, if an individual has geno-
type = 1 for both SNP 1 and SNP 2, the mask function
would output the value ′0′, while for any other combina-
tion of codes it would output a ′1′. In model discovery, a
mask “building block” is somewhat analogous to a simple
black box. For a given subject, two SNP genotypes and the
binary representation of a mask make up the input values
which yield a discrete output of zero or one. We can view
this as a form of constructive induction, where the geno-
types of two SNP attributes are being combined into a sin-
gle discrete attribute. If the disease model was comprised
of a mask function alone, this output would correspond to
the prediction of disease status (zero = no disease, one =
disease).

Determining what set of masks to provide SDA is an im-
portant concern. The ability of masks to improve SDA mod-
eling would most likely depend on the subset of masks se-
lected to make up the function set. The first mask set tested
in this study consists of all 512 possible models (M 512). Li
et al. [12] classified progressively smaller groups of two-locus
models, characterized by a step-wise reduction in the redun-
dancy of interaction information which is present when all
512 models are considered. Here, we discuss how three sub-
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Figure 3: The bars in the MDR attribute construc-
tion represent the number of cases(left bar) and con-
trols (right bar) in the dataset that possess a given
combination of genotypes. Empty cells represent
genotype combinations not found in the dataset. For
simplicity, the are treated as low-risk/control cells.

groups were obtained each of which were tested in this study.
The first step towards constructing intelligent mask subsets
involves the removal of all zero and single locus mask models
which are of no value in representing two-locus interaction.
Mask models were excluded if all fijs in the matrix were
either zero or one, or if fijs did not change with row or with
column. The second mask set in this study consisted of
96 models (M 96) obtained by additionally removing mod-
els where the first and second locus could be exchanged, or
where two alleles within the first (or second) locus could
be exchanged. This was done to remove positional redun-
dancy. The third mask set, consisting of 48 models (M 48),
additionally removed masks from the 96 mask subset that
represented an inverse of the affection status (0 = 1, 1 = 0).
The fourth mask set consisted of 6 models (M 6) defined
and studied by Neuman and Rice [26], singled out as be-
ing of being of potential biological interest. They include a
recessive-recessive, dominant-dominant, recessive-dominant,
modifying-effect, threshold, and exclusive OR model. We
will evaluate whether the availability of these different mask
functions improves SDA modeling of complex genetic rela-
tionships.

2.2 Mask Selection by Multifactoral Dimen-
sionality Reduction (MDR)

A potentially superior approach to the implementation of
masks would require a quick and simple data pre-processing
step. Multifactoral dimensionality reduction (MDR) will
conveniently construct and evaluate all possible two-locus
interaction models for each pair of attributes in the dataset.
From this, any number of best two-locus interaction mod-
els may be selected to make up the mask set. In essence,
MDR allows us to select a set of masks customized to a
given dataset. MDR was developed as a nonparametric,
model-free data mining strategy for identifying combinations
of SNPs that are predictive of a discrete clinical endpoint
[19, 28, 15, 16]. The MDR method has been successfully
applied to detecting gene-gene interactions for a variety of
common human diseases including adverse drug reactions

[32]. While MDR was designed to perform attribute con-
struction for any reasonable number of loci, the following
explanation of MDR will be given from the perspective of
constructing two-locus models. At the heart of the MDR
approach is an attribute construction algorithm that cre-
ates a new attribute by pooling genotypes from any given
pair SNPs. Constructive induction using the MDR kernel
is accomplished in the following way. Given a threshold T ,
a two-locus genotype combination (eg. AABb) is consid-
ered high-risk if the ratio of cases (subjects with disease) to
controls (healthy subjects) exceeds or equals T , otherwise
it is considered low-risk. Genotype combinations consid-
ered to be high-risk are labeled G1 while those considered
low-risk are labeled G0. This process constructs a new one-
dimensional attribute with levels G0 and G1 which represent
an output of 0 or 1 respectively when formatted as a mask
(Figure 3). The MDR method is described in more detail
by Hahn et al. [4].

Using MDR, three mask sets were assembled and evalu-
ated in addition to the ones previously described in section
2.1. Using the landscape feature of MDR the prediction
accuracies for all possible two-locus combinations can be as-
sessed to rapidly rank all two-locus models. Prediction ac-
curacy is simply the percentage of subjects whose status is
correctly predicted by a given model. From this ranked list,
the first MDR mask set included only the single best two way
interaction model (MDR 1), the second included the 5 best
interaction models (MDR 5), and the third included the 10
best interaction models (MDR 10). In all of the above cases,
only the interaction framework information was captured by
the mask representation. In other words, the mask repre-
sentation did not retain the knowledge of which attributes
were used to construct that framework. This was done so
that the GP could assign any pair of attributes to be the
input loci for any given mask.

2.3 Symbolic Discriminant Analysis
Symbolic discriminant analysis uses symbolic regression

to generate models from which symbolic discriminant scores
are generated so that classification error can be estimated
for the model. SDA is able to automatically identify an op-
timal functional form and coefficients of discriminant func-
tions that may be linear or nonlinear [24, 21, 17, 27, 20,
14]. This is accomplished by providing a list of mathemat-
ical functions and a list of explanatory variables that can
be used to build discriminant scores. Here, GP is used to
perform a parallel search for a combination of functions and
variables that optimally discriminates between two endpoint
groups. GP permits the automatic discovery of symbolic dis-
criminant functions that can take any form defined by the
functions provided.

There are two key advantages of SDA over traditional mul-
tivariate methods. First, SDA does not pre-specify the func-
tional form of the model. The basic mathematical building
blocks (and mask functions examined in this paper) are de-
fined and then flexibly combined with explanatory variables
to derive the best discriminant function. The second ad-
vantage of SDA is the automatic and unbiased selection of
variables from a potential list of thousands. This differs
from traditional model fitting which involves stepwise pro-
cedures that enter a variable into the model and then keep
it in the model if it has a statistically significant marginal
or independent main effect [25].
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2.4 Genetic Programming
Genetic programming is an automated computational dis-

covery tool that is inspired by Darwinian evolution and nat-
ural selection [6, 7, 9, 8, 1, 11, 10]. The goal of GP is
evolve computer programs to solve problems. This is ac-
complished by first generating random computer programs
that are composed of the building blocks needed to solve
or approximate a solution to a problem. Each randomly
generated program is evaluated and the good programs are
selected and recombined to form new computer programs.
This process of selection based on fitness and recombination
to generate variability is repeated until a best program or set
of programs is identified. The advantage of GP and other
evolutionary computing algorithms is that they carry out
a parallel or beam search of the fitness landscape by con-
sidering hundreds or thousands of solutions simultaneously.
Recombination makes it possible to sample multiple peaks in
a rugged fitness landscape. In the present study, symbolic
discriminant functions are represented in the computer as
expression trees. Each node in the tree is a function while
each leaf in the tree is either an attribute or a constant. Con-
stants made available for GP included (−2,−1, 0, 1, 2)[17].
The fitness of a tree is measured by the accuracy of the sym-
bolic discriminant function applied to a dataset. Variability
is introduced at each generation by randomly recombining
or swapping pieces of trees and by introducing random mu-
tations. Here, we used a fixed recombination frequency of
0.9 and a fixed mutation frequency of 0.01. Selection of trees
during evolution was carried out using a three-way tourna-
ment. With this approach, three trees or models are ran-
domly selected with replacement from the population. The
tree with the best fitness then becomes a candidate for re-
combination and/or reproduction. Parameters such as the
population size, the number of generations, the function set,
and the depth of the trees were all optimized using a full fac-
torial experimental design.

2.5 Cross Validation Strategy
SDA is a powerful and flexible modeling strategy. How-

ever, like any supervised machine learning method, SDA is
susceptible to overfitting [14]. Here, we employed a three-
way cross validation (CV) strategy that is similar to the
approach described by Rowland [29]. With this CV strat-
egy the data are randomly divided into three equal parts
labeled training, testing, and validation. Here, the best n
SDA models from a single GP run are selected based on
their accuracy in the training set. These n models are then
used to make predictions in the testing set. The n mod-
els are sorted based on their testing accuracy and the best
model selected. The single best SDA model is then evalu-
ated using the validation set. The validation accuracy is a
measure of the generalizability of the best model. In this
study we set n = 20. Once the final best model for any
particular run was selected, we reported the average of the
training, testing, and validation error for that model. This
prevents spurious results due to unusual chance partitions of
the data. It is this average accuracy that is used to compare
best models across different SDA runs.

2.6 Symbolic Modeling with SDA
The initial parameter sweep step of the 5-step SDA method

was utilized in this study as a platform to test the ability
of masks to contribute to the success of building models di-

Table 1: Summary of the function sets available to
the GP.

Set Consists of...
1 Arithmetic (+,−, ∗, /)
2 Relational (=, ! =, <, >, <=, >=, max, min)
3 Arithmetic and Relational
4 Boolean (AND, OR, NOT, NOR, IF, XOR)
5 Arithmetic and Boolean
6 Relational and Boolean
7 Arithmetic, Relational, and Boolean
8 The set of “Masks” being evaluated.
9 Arithmetic and Masks
10 Relational and Masks
11 Arithmetic, Relational, and Masks
12 Boolean and Masks
13 Arithmetic, Boolean, and Masks
14 Relational, Boolean, and Masks
15 Arithmetic, Relational, Boolean, and Masks

rected at detecting, characterizing, and interpreting epistasis
[17]. Since no one stochastic search algorithm is optimal for
every fitness landscape, the 5 step method aims to conduct
an intelligent search of the fitness landscape under an op-
timal set of parameters for the GP. The five steps include
(1) employment of a full factorial experimental design to op-
timize search parameters, (2) carrying out a coarse-grained
search using genetic programming (GP), (3) generating ex-
pert knowledge by statistically modeling the best solutions,
(4) carrying out a fine-grained stochastic search using an es-
timation of distribution algorithm based on what is learned
in step three, and (5) using function mapping and interaction
dendrograms to interpret symbolic models. This study will
utilize the first step as a rapid evaluation of masks for solving
the complex genetic modeling problem with and without the
availability of a mask function set. The 5-step SDA method
is described in more detail by Moore et al. [17].

The goal of Step 1 is to determine the optimal parameter
settings for the GP using a full factorial experimental design.
We considered population sizes of 100, 500, and 1000 trees,
generation lengths of 100, 500, and 1000 iterations, and tree
depths of one, two, and three. In addition, we considered
fifteen different combinations of mathematical functions and
masks. Table 1 identifies seven different sets of mathemat-
ical functions used previously in SDA modeling (function
sets 1-7) along with eight new function sets which incorpo-
rate “masks” (function sets 8-15). These four parameters
yield a total of 405 level combinations. For each level com-
bination we ran the GP using 10 different random seeds and
for each run recorded the best model along with its average
accuracy. A total 4050 runs were performed. The average
model prediction accuracies were obtained for all 270 runs
representative of each function. The function set with the
highest average accuracy score within sets 1-7 and 8-15 were
selected as the best “no mask” and “mask” function sets, re-
spectively and a t-test for independent samples was used to
detect significant differences in the score distributions. To
determine which of the parameters were a significant predic-
tor of GP performance we employed a four-way ANOVA for
fixed effects. Tukey’s HSD was used for posthoc analysis to
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Table 2: Key findings and parameters.
Dataset Mask? Best Average FS Depth

Mask Set Accuracy
XOR-R No 0.641786 6 3
XOR-R Yes MDR 5 0.671864 12 3
XOR-D No 0.670635 3 2
XOR-D Yes MDR 5 0.691973 9 2

AF No 0.600094 1 3
AF Yes MDR 512 0.606329 13 3

determine the optimal settings for the population size, gen-
eration length, and tree depth parameters. All results were
considered statistically significant at a type I error rate of
0.05.

2.7 Datasets
Two simulated datasets named XOR-R and XOR-D were

tested in this study along with a real case/control dataset.
Both simulated datasets contain 10 SNP attributes across
200 cases and 200 controls. XOR-R is a three locus model
combining a nonlinear interaction that is not linearly separa-
ble (XOR), with a recessive main effect model (R). XOR-D
is a three locus model combining a nonlinear interaction that
is not linearly separable (XOR), with a dominant main ef-
fect model (D). These two locus models are drawn directly
from the enumerated set of models described by Li et al.
[12]. These models share a heritability of approximately
0.05 which is within the range that might be expected for a
common, complex disease in which not all susceptibility fac-
tors are accounted for. The simulation and dataset assembly
methods are further discussed by Moore et al. [19].

The real case/control data set comes from a study by Tsai
et al. [31] which analyzed 250 patients with documented
nonfamilial structural atrial fibrillation (AF) and 250 con-
trols that were matched to cases on a 1-to-1 basis with re-
gard to age, gender, presence of left ventricular dysfunction,
and presence of significant valvular heart disease. The ACE
gene insertion/deletion (I/D) polymorphism, the T174M,
M235T, G6A, A-20C, G152A, and G217A polymorphisms
of the angiotensinogen gene, and the A1166C polymorphism
of the angiotensin II type I receptor gene were included as
attributes. Moore et al. [17] utilized this dataset to evaluate
the 5-step framework for modeling with SDA.

2.8 Software and Hardware
The SDA, and GP algorithms were both programmed

in Java as part of an open-source Symbolic Modeler soft-
ware package available by request[18]. Perl was used to
call the Java programs multiple times and parse the out-
put. All statistical analyses were performed using STATIS-
TICA. Open-source MDR software is freely available from
www.epistasis.org. All GP runs were conducted in parallel
using 100 processors from the DISCOVERY supercomputer
at Dartmouth College (http://discovery.dartmouth.edu).

3. RESULTS
A parameter sweep was completed for each of the 7 mask

sets discussed (M 512, M 96, M 48, M 6, MDR 1, MDR 5,
MDR 10) and was repeated for all three datasets described
above. In all, 21 parameter sweeps were performed. Fig-

Figure 4: Average prediction accuracies for each
function set over a single parameter sweep. Func-
tion sets 1-7 represent those without masks avail-
able, while 8-15 represent those with masks avail-
able. The dataset and mask set represented in this
figure include XOR-R and MDR 5 respectively.

ure 5 gives an example of the average prediction accura-
cies for each function set over a single parameter sweep. In
this example, Tukey’s HSD post-hoc analysis indicated that
all “mask” function sets yielded significantly higher average
prediction accuracies than function sets without masks. Ad-
ditionally, a t-test for independent samples, comparing the
best “mask” and“no mask” function set accuracies from Fig-
ure 4 indicates that the “mask” function set yields mod-
els with significantly higher average prediction accuracies
(P << 0.001). For each of the 21 parameter sweeps the
best “mask” and “no mask” function sets were identified as
previously described (data not shown). As would be ex-
pected, the same “no mask” function set was consistently
found to be the best within each dataset analysis (data not
shown). Figure 5 compares the different mask sets tested
for each dataset examined. From this figure it is clear that
the availability of masks in modeling the given datasets
tended to improve the overall average prediction accura-
cies. Analysis of the XOR-R dataset indicates that the pres-
ence of mask sets M 512, M 96, M 48, MDR 1, MDR 5,
and MDR 10 each yield significantly higher average model
prediction accuracies when compared to the best function
set with no masks (P << 0.001). Analysis of the XOR-
D dataset indicates that the presence of mask sets M 96,
M 48, MDR 1, MDR 5, and MDR 10 each yield signifi-
cantly higher average model prediction accuracies than with-
out masks (P << 0.001). Analysis of the real atrial fib-
rilation dataset indicates that the presence of mask sets
M 512, M 96, M 48, MDR 5, and MDR 10 each yield sig-
nificantly higher average model prediction accuracies than
without masks (P < 0.05). The only case where a mask
set performed significantly worse (P < 0.05) was mask set
M 6 for the XOR-D dataset. The key results taken from the
21 parameter sweeps performed are summarized in Table 2,
where the best mask set indicates which mask set performed
best for the given dataset and the average accuracy indicates
the average model accuracy across all 270 runs of the best
function set indicated. The optimized GP parameters of
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Figure 5: A comparison of the average prediction accuracy distributions for the A.) XOR-R dataset, B.)
XOR-D dataset, and C.) atrial fibrilation dataset. Each box-plot represents a distribution of 270 prediction
accuracy values for the function set selected as the “best” for a given combination of dataset and mask
set. The diamonds represent the average prediction accuracy for the respective distribution. The horizontal
dotted line gives the average prediction accuracy “no mask” distribution to which all others are compared.
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function set (FS) and depth are also indicated in Table 2.
The optimized number of generations and population size
were both found to be 500 for each of the three datasets.
For both of the simulated dataset analyses, the availability
of mask set MDR 5 yielded the highest average model pre-
diction accuracy. For the atrial fibrillation dataset analysis,
the availability of mask set MDR 5 was again successful in
significantly improving average prediction accuracy, but the
availability of mask set M 512 yielded the highest average
prediction accuracy. The parameters identified in Table 2
can be used in a course grain search as part of the 5-step
approach described by Moore et al. [17].

4. DISCUSSION AND CONCLUSION
The introduction of masks as a novel function set repre-

sents the application of expert knowledge at the basic level of
building block selection. The value of incorporating expert
knowledge in GP has been examined from a number of per-
spectives [22, 23, 3]. Success in these studies, along with sim-
ple intuition suggest that by utilizing all available knowledge
about a problem, a better solution might be more quickly
identified in the seemingly infinite search space. While Reif
et al. [27] examined the ability of complex function sets
such as square, square root, sine, and cosine to improve SDA
modeling, masks make up the most complex and customiz-
able building blocks assessed to date.

This introductory evaluation of masks has utilized a pa-
rameter sweep as a test platform and average prediction
accuracy as a metric of comparison. There are a number
of observations and conclusions to draw from this study.
First, the availability of mask building blocks successfully
improved the average prediction accuracies of complex dis-
ease models generated for both simulated and real datasets.
It should be noted that while this improvement is statisti-
cally significant, it is a relatively small improvement in terms
of number of samples correctly classified. Table 2 reflects a
classification improvement of approximately 3%, 2%, and
0.6% for datasets XOR-R, XOR-D, and AF respectively fol-
lowing the introduction of masks. The argument could be
made that any improvement in the ability to model and cor-
rectly classify patients is of value, offering greater evidence
that attributes in the model are markers of or contributors
to disease. For the purposes of this study it important to
note simply that function sets including masks performed as
well if not better than other function sets in the framework
used to test them. As such, masks represent a customizable
alternative to standard function sets which may prove to
have a considerably larger impact on success in other prob-
lem spaces yet to be explored.

Almost all mask sets were successful in improving average
prediction accuracy in a given dataset with the exception
of M 6 which consistently performed poorly with respect to
all other mask sets. This would intuitively suggest that the
ability of mask building blocks to improve model prediction
accuracy is dependent on the inclusion of masks correctly
representing trends found in the dataset. While the models
selected for M 6 were not valuable in modeling the datasets
examined, the utility of these models can not be discounted
when considering other complex problems.

The mask sets which performed consistently better than
no mask sets across all datasets examined included M 96,
M 48, MDR 5, and MDR 10. In the case of M 96 and M 48
it seems that valuable genetic interaction relationships were

preserved after reducing the redundancy present from all
512 possible models as described by Li et a. [12]. A func-
tion set with fewer masks results in a smaller search space
of potential combinations of building blocks. In the inter-
est of saving GP time in the construction of models, it is
advantageous to keep function sets as small as possible. In
the case of MDR 5 and MDR 10 which represent mask sets
customized to interactions detected in the dataset, it seems
we have identified an efficient method for the exploitation of
expert knowledge in the construction of building blocks.

MDR masks perform better or as well as other mask sets,
indicating that the simplest and most effective implementa-
tion of masks involves the customized construction of a mask
set using MDR. While the number of “best”MDR models to
include in mask sets was chosen arbitrarily, the results sug-
gest that inclusion of only the single best model may limit
the success of MDR-masks. Alternatively, for the datasets
analyzed, MDR 10 showed no significant improvement over
MDR 5 suggesting that while greater than one best two-
locus model was valuable there is some threshold at which
the addition of further two-locus MDR models fails to be of
any benefit. This threshold is likely at or around 5 two-locus
models as indicated by the success of MDR 5.

While we have addressed the question of whether masks
improve average model prediction accuracy in an SDA pa-
rameter sweep, the potential advantage of masks extends
much further. We hypothesis that utilizing genetic masks
as model building blocks will additionally hasten and sim-
plify the interpretability of complex interaction models for
the prediction of disease state. Since masks represent a pre-
constructed, two-locus interaction framework, we intuitively
expect that the interpretability of models including them
will be improved. To pursue the potential value of masks
further, our future work will include continued assessment
of the above datasets utilizing the optimized parameters in-
dicated in Table 2. The 5-step analysis outlined by Moore
provides the framework for this continued assessment.
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