
Evolving Artificial Neural Networks

using Cartesian Genetic Programming

Andrew James Turner

PhD

University of York

Electronics

September 2015

Abstract

NeuroEvolution is the application of Evolutionary Algorithms to the training of Artifi-

cial Neural Networks. NeuroEvolution is thought to possess many benefits over traditional

training methods including: the ability to train recurrent network structures, the capabil-

ity to adapt network topology, being able to create heterogeneous networks of arbitrary

transfer functions, and allowing application to reinforcement as well as supervised learning

tasks.

This thesis presents a series of rigorous empirical investigations into many of these

perceived advantages of NeuroEvolution. In this work it is demonstrated that the abil-

ity to simultaneously adapt network topology along with connection weights represents

a significant advantage of many NeuroEvolutionary methods. It is also demonstrated

that the ability to create heterogeneous networks comprising a range of transfer functions

represents a further significant advantage.

This thesis also investigates many potential benefits and drawbacks of NeuroEvolution

which have been largely overlooked in the literature. This includes the presence and role of

genetic redundancy in NeuroEvolution’s search and whether program bloat is a limitation.

The investigations presented focus on the use of a recently developed NeuroEvolution

method based on Cartesian Genetic Programming. This thesis extends Cartesian Genetic

Programming such that it can represent recurrent program structures allowing for the

creation of recurrent Artificial Neural Networks. Using this newly developed extension,

Recurrent Cartesian Genetic Programming, and its application to Artificial Neural Net-

works, are demonstrated to be extremely competitive in the domain of series forecasting.

iii

Contents

Abstract iii

Contents v

List of figures ix

List of tables xiii

Acknowledgements xvii

Declaration xix

1 Introduction 1

1.1 Structure of this Chapter . 1

1.2 Motivation . 1

1.3 Thesis Aims . 3

1.4 Thesis Contributions . 3

1.5 Thesis Outline . 5

2 NeuroEvolution 7

2.1 Structure of this Chapter . 7

2.2 Basic Principles . 7

2.3 Advantages of NeuroEvolution . 19

2.4 Scope of NeuroEvolution . 24

2.5 NeuroEvolution Encoding and Decoding . 26

2.6 Review of NeuroEvolutionary Methods . 28

2.7 Review of the NeuroEvolutionary Literature 47

2.8 Discussion . 54

3 Cartesian Genetic Programming 57

3.1 Structure of this Chapter . 57

3.2 Encoding . 57

3.3 Decoding and Executing . 59

3.4 Evolutionary Strategy . 60

3.5 Parameters . 62

3.6 Advantages of Cartesian Genetic Programming 63

3.7 Applications . 65

3.8 Extensions . 66

3.9 Related Theory . 68

3.10 Summary . 73

v

Contents

4 Cartesian Genetic Programming of Artificial Neural Networks 75

4.1 Structure of this Chapter . 75

4.2 Implementation . 76

4.3 Possible Advantages . 77

4.4 Previous Applications . 84

4.5 Initial Experiments . 85

4.6 Connection Switch Genes . 90

4.7 Program Bloat . 94

4.8 Summary . 104

5 Recurrent Cartesian Genetic Programming 105

5.1 Structure of this Chapter . 105

5.2 Background . 106

5.3 Implementation . 106

5.4 Implications of Recurrent Connections . 109

5.5 Experiments . 110

5.6 Summary . 124

6 Topology Evolution 127

6.1 Structure of this Chapter . 127

6.2 Background . 127

6.3 Is it Beneficial to Evolve Network Topology? 129

6.4 Relative Importance of Topology Evolution 139

6.5 Summary . 143

7 Evolving Heterogeneous Artificial Neural Networks 147

7.1 Structure of this Chapter . 147

7.2 Background . 148

7.3 Investigations . 149

7.4 Evolving Homogeneous Networks . 152

7.5 Evolving Heterogeneous Networks . 157

7.6 Evolving Transfer Function Parameters . 158

7.7 Evolving Heterogeneous Networks and Transfer Function Parameters 162

7.8 Box and Whisker Plots . 164

7.9 Discussion . 169

7.10 Summary . 172

8 Neutral Genetic Drift 173

8.1 Structure of this Chapter . 173

8.2 Background . 174

8.3 Redundancy in CGP . 177

8.4 Investigating Neutral Genetic Drift in CGP 182

8.5 Investigating Increasing Explicit Genetic Redundancy 192

8.6 Investigating Neutral Genetic Drift in CGPANN 196

8.7 Summary . 204

9 CGPANN Applied to Classification 207

9.1 Structure of this Chapter . 207

9.2 Background . 207

9.3 Methodology . 209

vi

Contents

9.4 Applying CGPANN to Classification . 210

9.5 Comparative Methods . 212

9.6 Benchmarks . 214

9.7 Results . 215

9.8 Discussion . 217

9.9 Summary . 219

10 Recurrent CGPANN Applied to Series Forecasting 221

10.1 Structure of this Chapter . 221

10.2 Background . 222

10.3 Recurrent CGPANN . 223

10.4 Applying CGP, RCGP, CGPANN and RCGPANN to Series Forecasting . . 224

10.5 Comparative Methods . 226

10.6 Results . 228

10.7 Discussion . 239

10.8 Summary . 241

11 Conclusions and Further Work 243

11.1 Structure of this Chapter . 243

11.2 Overall Conclusions . 243

11.3 Further Work . 250

11.4 Final Remarks . 259

Appendix 261

A Benchmarks 261

A.1 Structure of this Appendix . 261

A.2 Control . 261

A.3 Classification . 266

A.4 Boolean Circuits . 271

A.5 Symbolic Regression . 272

A.6 Forecasting . 275

B Statistical Significance Testing 279

B.1 Structure of this Appendix . 279

B.2 Background . 279

B.3 Distribution of Evolutionary Algorithm Results 280

B.4 Non-Parametric Statistical Significance Testing 281

C Cartesian Genetic Programming Library 283

C.1 Structure of this Appendix . 283

C.2 Background . 283

C.3 Overall Functionality . 284

C.4 Visualisation . 286

C.5 NeuroEvolution . 287

C.6 Recurrent Networks . 288

C.7 Licenses . 288

C.8 Using the CGP Library . 288

C.9 Discussion . 289

Abbreviations 291

vii

Contents

References 295

viii

List of Figures

2.1 Simple depiction of a biological neuron taken from www.newworldencyclopedia.

org . 9

2.2 Simple generalised model of an artificial neuron. 11

2.3 Common non-spiking neuron models. 13

2.4 Example of data which is linearly separable (a) and the XOR gate which is
not linearly separable (b). 14

2.5 Zero hidden layer feed-forward neural network with four inputs and one
output. 14

2.6 Simple ANN comprising two inputs, one hidden layer containing three neu-
rons, and one output neuron. 16

2.7 Example of a SANE individual showing that each neuron describes the
inputs and outputs to which it connects and the corresponding connection
weights. 32

2.8 Example Cellular Encoding developmental operations. (a) gives an initial
network. (b) gives an example of parallel cell division; where the mother
cell is replaced (divided) into two identical cells. (b) gives an example of
sequential cell division; where the mother cell is replaced (divided) into two
cells with the first taking the mother cells inputs, the second taking the
mother cells outputs. 36

2.9 An example NEAT genotype and its decoded phenotype. 37

2.10 Example of HyperNEAT. The first network, constructed using NEAT, is
used to assign the weights in the second based on the positions of the
two connected nodes. Here only connections between layers are shown but
typically connections between all possible nodes would be evaluated. 38

2.11 An example of a GNARL ANN. 40

2.12 EANT Genotype Phenotype mapping, taken from [143]. The Genotype (a)
is decoded as a tree from root to leaves. N gives the node to connect to
and I the input. JF and JR stand for feed forward and recurrent jumper
connections respectively and are added to the tree by assuming they increase
the arity of the current node. The corresponding phenotype is given in (b). 44

2.13 NevA Genotype Phenotype mapping, taken from [276] 45

3.1 Example CGP program with three inputs, three available nodes and two
outputs. The active genes are shown in bold with the inactive in grey. The
corresponding chromosome is as follows: 012 233 104 3 4 58

3.2 Generalised depiction of the original rows and columns form of a CGP
chromosome; shown graphically above and as a string below. Image taken
from [202] . 59

3.3 Comparison of various mutation methods on the 3 Bit Even Parity bench-
mark. Image taken from [83]. 72

ix

www.newworldencyclopedia.org
www.newworldencyclopedia.org

List of Figures

4.1 Example CGPANN program with three inputs, three available nodes and
two outputs. 76

4.2 Small topology mutation. The parent chromosome (a) has had a single
topology mutation resulting in a child (b) where node 4 is now connected
to input 0. All other nodes are left unchanged. 79

4.3 Large topology mutation. The parent chromosome (a) has had a single
topology mutation resulting in a child (b) where the output is now connected
to input 0. All other nodes are now unused. 79

4.4 Depiction that multiple inter-node connections (a) is equivalent to one con-
nection with the sum of the individual connection weights (b). 91

4.5 The bloat metric comparing standard tree-based GP (light gray) and DynOpEq
GP (black) on (a) symbolic regression and (b)(c) two real world classifica-
tion tasks. Images taken from [284]. 95

4.6 Average fitness, number of active nodes and program bloat Vs. generation
for CGP applied to the six bit even parity benchmark. 97

4.7 Average fitness, number of active nodes and program bloat Vs. generation
for CGP applied to the Pagie 1 benchmark. 98

4.8 Average fitness, number of active nodes and program bloat Vs. generation
for CGPANN applied to the double pole benchmark. 100

4.9 Average fitness, number of active nodes and program bloat Vs. generation
for CGPANN applied to the ball throwing benchmark. 101

4.10 Average fitness, number of active nodes and program bloat Vs. generation
for CGPANN applied to the Monks Problem 1 benchmark. 102

5.1 Example RCGP program corresponding to the chromosome: 212 005 134 5 107

5.2 Example RCGP program corresponding to the chromosome: 002 055 144 5 109

5.3 Depiction of the “Santa Fe Ant Trail”. Black and white represents food
and no food respectively. 112

5.4 Number of yearly recorded sunspots between 1700 and 1987. 113

5.5 Results of varying RCGP’s recurrent connection probability on the Artificial
Ant benchmark. 114

5.6 Results of varying RCGP’s recurrent connection probability on the Sunspots
benchmark: training data. 116

5.7 Results of varying RCGP’s recurrent connection probability on the Sunspots
benchmark: testing data. 116

5.8 Number sequences shown graphically. 120

5.9 Example CGP (a) and RCGP (b) Hexagonal solutions. 121

5.10 Example RCGP Lazy Caterer solutions. 121

5.11 Example CGP (a) and RCGP (b) Magic Constants solutions. 122

5.12 Example RCGP Fibonacci solution. 122

6.1 Effect of sweeping topology and topology limits for CNE and CGPANN
respectively. 134

6.2 MLP trained using resilient back propagation on the Monks Problem. Note
the larger range of finesses than displayed in Figure 6.1. 135

6.3 Solution found by CGPANN for the Double Pole Balancing benchmark. . . 137

6.4 Comparing the relative importance of connection weight evolution and
topology evolution using CGPANN on the Ball Throwing benchmark. . . . 140

6.5 Comparing the relative importance of connection weight evolution and
topology evolution using CGPANN on the Double Pole Balancing benchmark.141

x

List of Figures

6.6 Comparing the relative importance of connection weight evolution and
topology evolution using CGPANN on the Monks Problem 1 benchmark. . 141

7.1 Heaviside step function (a), Gaussian function (b) and the logistic sigmoid
function (c). With σ = 1 for the Gaussian and logistic functions. 151

7.2 Variable Gaussian function. 151
7.3 Variable logistic sigmoid function. 151
7.4 Fitnesses achieved from applying CNE to the Ball Throwing benchmark. . . 164
7.5 Generations required from applying CNE to the Ball Throwing benchmark. 164
7.6 Fitnesses achieved in applying CNE to the Full Adder benchmark. 165
7.7 Generations required from applying CNE to the Full Adder benchmark. . . 165
7.8 Fitnesses achieved in applying CNE to the Monks Problem 1 benchmark -

Training. 165
7.9 Fitnesses achieved in applying CNE to the Monks Problem 1 benchmark -

Testing. 165
7.10 Fitnesses achieved in applying CNE to the Two Spirals benchmark. 166
7.11 Fitnesses achieved in applying CNE to the Proben Cancer1 benchmark -

Training. 166
7.12 Fitnesses achieved in applying CNE to the Proben Cancer1 benchmark -

Testing. 166
7.13 Fitnesses achieved in applying CGPANN to the Ball Throwing benchmark. 166
7.14 Generations required from applying CGPANN to the Ball Throwing bench-

mark. 167
7.15 Fitnesses achieved in applying CGPANN to the Full Adder benchmark. . . 167
7.16 Generations required from applying CGPANN to the Full Adder benchmark.167
7.17 Fitnesses achieved in applying CGPANN to the Monks Problem 1 bench-

mark - Training. 167
7.18 Fitnesses achieved in applying CGPANN to the Monks Problem 1 bench-

mark - Testing. 168
7.19 Fitnesses achieved in applying CGPANN to the Two Spirals benchmark. . . 168
7.20 Fitnesses achieved in applying CGPANN to the Proben Cancer1 benchmark

- Training. 168
7.21 Fitnesses achieved in applying CGPANN to the Proben Cancer1 benchmark

- Training. 168

8.1 Implicit genetic redundancy in tree-based GP. Active nodes are shown in
black, implicitly redundant nodes in grey. 175

8.2 Example of ENGD occurring with a fitness improvement. Active genes are
given in bold, explicitly inactive in grey and implicitly inactive in dashed. . 183

8.3 Example of ENGD occurring without a fitness improvement. Active genes
are given in bold, explicitly inactive in grey and implicitly inactive in dashed.184

8.4 Example of INGD occurring with a fitness improvement. Active genes are
given in bold, explicitly inactive in grey and implicitly inactive in dashed. . 184

8.5 Example of INGD occurring without a fitness improvement. Active genes
are given in bold, explicitly inactive in grey and implicitly inactive in dashed.185

8.6 Number of available nodes versus fitness and percentage of active nodes. . . 194

9.1 Results given in Table 9.1, presented as bar charts. 216

10.1 Depiction of recurrent forecasting and the use of embedding dimension and
time delay to determine the number of inputs; D = 3. 225

xi

List of Figures

10.2 Spread of the forecasts produced using stochastic methods on the Laser
benchmark. 232

10.3 Spread of the forecasts produced using stochastic methods on the Mackey
Glass benchmark. 234

10.4 Spread of the forecasts produced using stochastic methods on the Sunspots
benchmark. 236

10.5 Laser forecasts produced using the various forecasting methods. 236
10.6 Mackey Glass forecasts produced using the various forecasting methods. . . 237
10.7 Sunspots forecasts produced using the various forecasting methods. 238

11.1 Depiction of length bias in CGP. Generated by applying CGP to a flat
fitness landscape. Image taken from [82] . 251

11.2 Results from applying RCGPANN to the configuration of the reservoir to
be used by reservoir computing. 253

A.1 Depiction of the single pole balancing benchmark. 262
A.2 Depiction of the double pole balancing benchmark. 262
A.3 Depiction of the ball throwing benchmark. 265
A.4 Depiction of the Two Spiral Classification benchmark. 271
A.5 Nguyen 10 . 273
A.6 Pagie . 274
A.7 Tower Problem . 274
A.8 Laser series forecasting benchmarks. 276
A.9 Mackey-Glass series forecasting benchmarks. 277
A.10 Sunspot series forecasting benchmarks. 277

B.1 Histogram of 1000 runs showing the number of generations required for
CGP to find a solution to the full adder task. 281

B.2 Depiction of the effect size measure. (a) shows two distribution which would
be awarded a smaller effect size and (b) a larger. 282

C.1 Example CGP chromosome displayed using saveChromosomeDot. 287

xii

List of Tables

2.1 Taxonomy of NeuroEvolutionary methods 46

2.2 Differences in the single pole benchmark implementations used in the Neu-
roEvolutionary literature. 53

3.1 Standard parameters used by CGP. 63

4.1 Comparison of results for the Double Pole Balancing benchmark 87

4.2 Comparison of results for the Ball Throwing benchmark 88

4.3 Comparison of results for the Proben 1: Cancer 1 benchmark 89

4.4 Applying CGPANN to a range of benchmarks with and without the use
of connection switch (CS) genes. The best performance is given in bold.
Statistical significance is also give with p < 0.05 given in bold. The effect
size is also given. 93

5.1 Artificial Ant: p values comparing pairs of recurrent connection probabilities.115

5.2 Sunspots training fitness: p values comparing pairs of recurrent connection
probabilities. 116

5.3 Sunspots testing fitness: p values comparing pairs of recurrent connection
probabilities. 117

5.4 Performance of CGP and RCGP finding explicit and recurrent equations
respectively which produce famous mathematical sequences. In each case
the average number of evaluations is given followed by the number of runs
which successfully solved the task in brackets. 120

5.5 GP methods applied to the Fibonacci Sequence benchmark 123

6.1 Statistical analysis of the relative importance of connection weight evolution
and topology evolution on the Ball Throwing benchmark. 142

6.2 Statistical analysis of the relative importance of connection weight evolution
and topology evolution on the Double Pole benchmark. 142

6.3 Statistical analysis of the relative importance of connection weight evolution
and topology evolution on the Monks Problem 1 benchmark. 142

7.1 Fitness achieved using homogeneous ANNs of different TFs trained using
CNE. 154

7.2 Number of generations required to find optimal solutions using homoge-
neous ANNs of different TFs trained using CNE. 154

7.3 fitness achieved using homogeneous ANNs of different TFs trained using
CGPANN. 154

7.4 Number of generations required to find optimal solutions using homoge-
neous ANNs of different TFs trained using CGPANN. 154

xiii

List of Tables

7.5 Statistical significance between the homogeneous CNE fitness results given
in Table 7.1. 154

7.6 Statistical significance between the homogeneous CNE generational results
given in Table 7.2. 155

7.7 Statistical significance between the homogeneous CGPANN fitness results
given in Table 7.3. 155

7.8 Statistical significance between the homogeneous CGPANN generational
results given in Table 7.4. 155

7.9 Effect Size between the homogeneous CNE fitness results given in Table 7.1. 155

7.10 Effect Size between the homogeneous CNE generational results given in
Table 7.2. 155

7.11 Effect Size between the homogeneous CGPANN fitness results given in Ta-
ble 7.3. 156

7.12 Effect Size between the homogeneous CGPANN generational results given
in Table 7.4. 156

7.13 Average results achieved using heterogeneous ANNs trained using CNE.
The result is given in bold if evolving heterogeneous ANNs outperformed
the average fitness of using each transfer function individually. 158

7.14 Average results achieved using heterogeneous ANNs trained using CG-
PANN. The result is given in bold if evolving heterogeneous ANNs out-
performed the average fitness of using each transfer function individually. . 158

7.15 Average fitness of ANNs of variable Gaussian TFs trained using CNE. . . . 159

7.16 Average number of generations required to find optimal solutions using
ANNs of variable Gaussian TFs trained using CNE. 160

7.17 Average fitness of ANNs of variable logistic TFs trained using CNE. 160

7.18 Average number of generations required to find optimal solutions using
ANNs of variable logistic TFs trained using CNE. 160

7.19 Average fitness of ANNs of variable Gaussian TFs trained using CGPANN. 160

7.20 Average number of generations required to find optimal solutions using
ANNs of variable Gaussian TFs trained using CGPANN. 160

7.21 Average fitness of ANNs of variable logistic TFs trained using CGPANN. . 160

7.22 Average number of generations required to find optimal solutions using
ANNs of variable logistic TFs trained using CGPANN. 161

7.23 Average fitness of variable heterogeneous ANNs trained using CNE. 163

7.24 Average number of generations required to find optimal solutions using
variable heterogeneous ANNs trained using CNE. 163

7.25 Average fitness of variable heterogeneous ANNs trained using CGPANN. . . 163

7.26 Average number of generations required to find optimal solutions using
variable heterogeneous ANNs trained using CGPANN. 163

8.1 Restrictions made to CGP used in order to investigate NGD. 186

8.2 Comparing regular CGP to only mutating active genes in order to isolate
the benefit of ENGD. In all cases a lower fitness represents a better search. 187

8.3 Comparing regular CGP to only selecting fitness improvements in order to
isolate the benefit of NGD and other forms of redundancy aiding the escape
from local optima. In all cases a lower fitness represents a better search. . . 188

8.4 Selecting only fitness improvements compared with only allowing mutations
to active genes while also only selecting fitness improvements. This isolates
the benefits of ENGD other than aiding the escape of local optima. In all
cases a lower fitness represents a better search. 189

xiv

List of Tables

8.5 Number of available nodes which resulted in the lowest errors presented in
Figure 8.6. 195

8.6 Comparing regular CGPANN to only mutating active genes in order to
isolate the benefit of ENGD. In all cases a lower fitness represents a better
search. 198

8.7 Comparing regular CGPANN to only mutating active genes in order to
isolate the benefit of ENGD. In all cases a lower number of generations
represents a better search. 198

8.8 Comparing regular CGPANN to only selecting fitness improvements in or-
der to isolate the benefit of NGD aiding the escape from local optima. In
all cases a lower fitness represents a better search. 199

8.9 Comparing regular CGPANN to only selecting fitness improvements in or-
der to isolate the benefit of NGD aiding the escape from local optima. In
all cases a lower number of generations represents a better search. 199

8.10 Selecting only fitness improvements compared with only allowing mutations
to active genes while only selecting fitness improvements. This isolates the
benefits of ENGD other than aiding the escape of local optima. In all cases
a lower fitness represents a better search. 200

8.11 Selecting only fitness improvements compared with only allowing mutations
to active genes while only selecting fitness improvements. This isolates the
benefits of ENGD other than aiding the escape of local optima. In all cases
a lower number of generations represents a better search. 200

8.12 Percentage of active nodes used by CGP and CGPANN. 201

8.13 Comparing regular CGPANN using an increased number of available nodes
to only mutating active genes in order to isolate the benefit of ENGD. In
all cases a lower fitness represents a better search. 202

8.14 Comparing regular CGPANN using an increased number of available nodes
to only mutating active genes in order to isolate the benefit of ENGD. In
all cases a lower number of generations represents a better search. 202

9.1 Classification accuracy of a range of classification methods. 215

9.2 Closer Comparison of MLPs and CGPANN 217

9.3 Previously presented classification performance of standard classification
algorithms and CGPANN on the breast cancer benchmark. 218

10.1 Parameters by CGP and its derivatives. 226

10.2 Results from applying various forecasting methods to the Laser benchmark. 231

10.3 Statistical significance testing between the stochastic methods applied to
the Laser benchmark. 231

10.4 Results from applying various forecasting methods to the Mackey-Glass
benchmark. 233

10.5 Statistical significance testing between stochastic methods on the Mackey-
Glass benchmark. 233

10.6 Results from applying various forecasting methods to the Sunspots bench-
mark. 235

10.7 Statistical significance testing between stochastic methods on the Sunspots
benchmark. 235

A.1 Pole balancing symbol definitions and commonly used values. 263

A.2 Ball throwing symbol definitions and commonly used constants. 265

xv

List of Tables

A.3 Monks Problem Robot Appearances. 270

C.1 Example CGP chromosome displayed using printChromosome. 286

xvi

Acknowledgements

I would like to acknowledge the funding provided by the EPSRC, without which this

thesis would not have been possible. I am pleased to live in a country which both values

and supports academic research.

The experience of undertaking a PhD is strongly determined by the relationship be-

tween the student and their supervisor. In this regard I consider myself highly fortunate.

Julian has not only been an exceptional supervisor, but also a mentor. He has given

academic, and life advice. I am wholly grateful for his time and company, both in a

supervisory setting, and in the early hours at conference hotel bars.

There are two particular friends which have been quintessential to my PhD experience.

Nils Morozs and Stuart Lacy, we will graduate from York not once, but twice together. I

wish you both great success.

I will be forever grateful to my Mum, Dad and Brother, my family. I don’t know their

initial feelings when I turned down a “proper job” to perpetuate my life as a student, but

they have shown nothing but loving support. I have the utmost pride in my family, and

feel fulfilled in the pride they have for me.

Katherine, we share a life here in York which I hope will never end. We love, support

and amuse each other as we ramble through life day to day. I can’t wait to see where our

ramblings take us next together.

xvii

Declaration

I declare that the research described in this thesis is original work, which I undertook at

the University of York during 2012 - 2015. This work has not previously been presented

for an award at this, or any other, University.

Some parts of this thesis have been published in journals and conference proceedings;

where items were published jointly with collaborators, the author of this thesis is respon-

sible for the material presented here. For each published item the primary author is the

first listed author.

Journal Articles and Letters

• Turner, A. J. & Miller, J. F. Introducing A Cross Platform Open Source Cartesian
Genetic Programming Library. In Genetic Programming and Evolvable Machines,
vol 16, pages 83-91, 2014.

• Turner, A. J. & Miller, J. F. NeuroEvolution: Evolving Heterogeneous Artificial
Neural Networks. In Evolutionary Intelligence, vol 7, pages 135-154, 2014.

• Turner, A. J. & Miller, J. F. Neutral Genetic Drift: an Investigation using Cartesian
Genetic Programming. In Genetic Programming and Evolvable Machines, 2015.

Conference Proceedings

• Turner, A. J. & Miller, J. F. Cartesian Genetic Programming encoded Artificial
Neural Networks: A Comparison using Three Benchmarks. In Proceedings of the
Conference on Genetic and Evolutionary Computation (GECCO-13), pages 1005-
1012, 2013.

• Turner, A. J. & Miller, J. F. The Importance of Topology Evolution in NeuroEvo-
lution: A Case Study Using Cartesian Genetic Programming of Artificial Neural
Networks. In Research and Development in Intelligent Systems XXX, pages 213-
226, 2013.

• Turner, A. J. & Miller, J. F. Cartesian Genetic Programming: Why No Bloat?. In
Genetic Programming: 17th European Conference (EuroGP-2014), pages 193-204,
2014.

xix

• Turner, A. J. & Miller, J. F. NeuroEvolution: The Importance of Transfer Function
Evolution and Heterogeneous Networks. In Proceedings of the 50th Anniversary
Convention of the AISB, pages 158-165, 2014.

• Turner, A. J. & Miller, J. F. Recurrent Cartesian Genetic Programming. In 13th
International Conference on Parallel Problem Solving from Nature (PPSN 2014),
pages 476-486, 2014.

• Turner, A. J. & Miller, J. F. Recurrent Cartesian Genetic Programming Applied
to Famous Mathematical Sequences. In Proceedings of the Seventh York Doctoral
Symposium on Computer Science & Electronics (YDS 2014), pages 37-46, 2014.

• Turner, A. J. & Miller, J. F. Recurrent Cartesian Genetic Programming Applied
to Series Forecasting. In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-15), pages 1499-1500, 2015.

xx

Chapter 1

Introduction

This chapter provides an overview of the thesis, presenting the motivation and aims of the

work, the main contributions made and a summary of the chapters presented.

1.1 Structure of this Chapter

Section 1.2 provides high level motivation for the work presented throughout this thesis.

Section 1.3 gives the high level aims of the thesis. Section 1.4 describes the significant

contributions which have been made during the thesis. Finally, Section 1.5 gives an outline

of the remaining chapters and appendixes.

1.2 Motivation

Artificial Neural Network (ANN)s and Evolutionary Algorithm (EA)s represent two pow-

erful, widely adopted, machine learning methodologies strongly inspired by biological sys-

tems. However, there is one important distinction between ANNs and EAs. ANNs repre-

sent an abstraction of biological brains which must be trained (optimised) in order to solve

a given task. Whereas EAs are an optimisation method based on Darwinian Evolution.

Interestingly, this means that these two, independent, machine learning methods can be

combined by using EAs to optimise the configuration of ANNs. This union of ANNs and

EAs is termed NeuroEvolution (NE).

The combination of EAs and ANNs is not just of academic interest but is thought to

provide a number of significant advantages over many other ANN training methods. For

instance, NE can easily be applied to the creation of feed-forward and recurrent networks,

1

Chapter 1: Introduction

it can be used to apply ANNs to supervision and reinforcement learning tasks, the depth of

the network has no influence on the learning algorithm, it can be used to evolve networks

of heterogeneous neuron transfer functions, and finally, it can be used to adapt both

connection weights as well as the network topology.

Despite the increasing popularity of NE methods, there are a number of significant gaps

in the literature; notably those concerning the perceived benefits of NE. For example, it

is often stated that one of the major advantages of NE is its ability to determine network

topology. However, there is surprisingly little empirical research which assess whether, and

to what extent, evolving network topology actually provides an advantage. Additionally,

it is often stated that the ability for NE to create heterogeneous ANNs represents an

advantageous characteristic. However, as with topology configuration, there is currently

very little empirical evidence to support this.

There are also highly significant topics within the field of EAs that are mostly absent

in the field of NE. For instance, issues concerning program bloat and the effect of genetic

redundancy are almost never considered.

Therefore, if the field of NE is to progress, these gaps in the literature must be ad-

dressed. This represents one of the key motivations of this work.

The second motivation is concerned with developing further the technique of Cartesian

Genetic Programming of Artificial Neural Networks (CGPANN), a recently developed NE

method created by Maryam Mahsal Khan et al. in 2010. CGPANN is a NE method based

on Cartesian Genetic Programming (CGP). CGP is a graph based form of Genetic Pro-

gramming (GP) which is uniquely suited to describing ANNs; due to it encoding general

directed feed-forward Multiple-Input Multiple-Output (MIMO) graphs of computational

elements. The only alterations required to apply CGP to the evolution of ANNs is the

addition of connection weights and the use of transfer functions typically associated with

ANNs. Additionally, CGP is an established GP method which has undergone much de-

velopment and theoretical study. A large proportion of this previous work applies directly

to CGPANN and therefore provides many possibilities for future ANN developments.

2

1.3 Thesis Aims

1.3 Thesis Aims

Based on the described motivations, and material presented in the literature review, a

number of thesis aims are proposed.

1. To investigate whether the ability to adapt network topology represents an advan-

tageous property of NeuroEvolution.

2. To investigate whether the ability to create heterogeneous Artificial Neural Networks

represents an advantageous property of NeuroEvolution.

3. To extend the Cartesian Genetic Programming algorithm to be capable of creating

recurrent program structures.

4. To apply the developed recurrent Cartesian Genetic Programming extension to the

evolution of recurrent Artificial Neural Networks.

5. To investigate the role of genetic redundancy on Cartesian Genetic Programming’s

evolutionary search; with a focus on its application to training Artificial Neural

Networks.

6. To investigate the suitability of applying Cartesian Genetic Programming as a train-

ing method for Artificial Neural Networks in the domains of classification and series

forecasting.

1.4 Thesis Contributions

Throughout this thesis a number of substantial contributions are made to CGP, CGPANN

and the wider field of NE. The most significant contributions are now summarised.

1. This thesis presents Recurrent Cartesian Genetic Programming (RCGP), a signifi-

cant CGP extension which enables the creation of both acyclic and cyclic program

structures. In this thesis RCGP is shown to be capable of solving tasks intractable

to standard CGP. Additionally, when applied to series forecasting, RCGP is demon-

strated to not only outperform standard CGP, but also a range of popular standard

forecasting methods.

3

Chapter 1: Introduction

2. This thesis presents the application of the RCGP extension to CGPANN in order to

facilitate the evolution of Recurrent Artificial Neural Network (RANN)s. This recur-

rent CGPANN extension is termed Recurrent Cartesian Genetic Programming of Ar-

tificial Neural Networks (RCGPANN). As with RCGP, RCGPANN is demonstrated

to be a highly effective forecasting method outperforming all standard forecasting

methods used for comparison.

3. A significant proportion of this thesis is dedicated to providing rigorous empirical

evidence of many of the perceived advantages of NE. This has been achieved for two

domains. Firstly, it has been show that the ability for many NE methods to evolve

the network topology, as well as connection weights, of ANNs represents a significant

advantage over training methods which only optimise connections weights. Results

presented indicate that the importance of topology optimisation may even be more

significant to training than connection weight optimisation. Secondly, it has been

shown that the ability of nearly all NE methods to create heterogeneous ANNs

represents a significant, and widely overlooked, advantage over training methods

which solely train homogeneous ANNs.

4. This thesis rigorously, and extensively, evaluates the role and benefit of genetic

redundancy in both CGP and CGPANN. It is shown that the presence of genetic

redundancy in CGP provides a substantial advantage to the evolutionary search;

primarily through its ability to aid the escape of local optima in the search space.

It is also shown that the benefit of genetic redundancy is substantially lower when

evolving ANNs. Theoretical explanations of this interesting discrepancy between

CGP and CGPANN are provided based on the influence of connection weights on

the search.

5. This thesis rigorously assesses CGPANN in the domains of classification and series

forecasting. In both cases the studies go beyond previous applications of CGPANN

in terms of the methodology, the range of benchmark problems employed and the

number of methods used for comparison. From these applications it is demonstrated

that CGPANN performs poorly in the domain of classification and exceptionally well

in the domain of series forecasting.

6. Finally, during this thesis an open source cross platform CGP library was developed.

This library provides a stable, tested, implementation of CGP along with all of

4

1.5 Thesis Outline

the extensions and developments made during this thesis: RCGP, CGPANN and

RCGPANN. This contribution is significant for two main reasons. Firstly, it allows

others to learn, use, research and apply all of the developments made in this thesis.

Secondly, it allows the presented experiments to be able to be replicated by others.

1.5 Thesis Outline

This section outlines the remaining chapters of this thesis.

Chapter 2 provides an introduction to NE in general, including descriptions of the

more popular NE methods. A substantial review of the NE literature is also undertaken

with the insights gained used to guide the research presented.

Chapter 3 provides a detailed description of CGP, the underlying algorithm of the

NE method of interest in this thesis; CGPANN. This description includes the basic algo-

rithm, distinguishing features, a summary of common applications and a discussion of the

extensions and theoretical work which have been developed.

Chapter 4 describes CGPANN, the NE method of interest in this thesis. This chap-

ter describes the CGPANN implementation, possible advantages over other NE methods

and previous applications. Additionally, a number of experiments are presented applying

CGPANN to standard benchmark problems, assessing previous design decisions made for

CGPANN and demonstrating that CGPANN, like CGP, is immune to program bloat.

Chapter 5 presents a new extension made to the CGP algorithm in order to enable the

encoding of cyclic program structures. This new method is termed Recurrent Cartesian

Genetic Programming and represents a superset of CGP; capable of evolving both recur-

rent and feed-forward program structures. The chapter also presents a number of initial

experiments demonstrating that RCGP is indeed capable of evolving cyclic programs.

Chapter 6 presents a number of experiments demonstrating the advantages of evolv-

ing ANN topology. This work fills a current gap in the literature where it is often assumed

that evolving ANN topology represents an advantageous property, with little empirical

evidence to support the claim.

Chapter 7 presents a number of experiments demonstrating the advantages of using

NE to evolve heterogeneous ANNs. Despite many calls in the literature for research in this

area, very little work has been previously presented which assesses the benefit of evolving

heterogeneous ANNs. This work addresses this gap in the literature.

Chapter 8 presents a number of experiments investigating the role of neutral genetic

5

Chapter 1: Introduction

drift for both CGP and CGPANN. The work demonstrates that CGP greatly benefits

from the increased genetic redundancy provided by its encoding. The work also identifies

that CGPANN benefits significantly less from neutral genetic drift than CGP, despite

being based on the same underlying algorithm.

Chapter 9 presents a rigorous evaluation of CGPANN in the domain of classification.

The work demonstrates that CGPANN performs poorly compared to a range of standard

classification techniques.

Chapter 10 presents a rigorous evaluation of RCGPANN in the domain of series

forecasting where it is shown to outperform all standard forecasting techniques used for

comparison. Additionally, CGP, RCGP and CGPANN are applied to the same tasks in

order to assess which aspects of RCGPANN contribute to its strong performance; the

recurrent extension or the application to ANNs.

Chapter 11 gives the final overall conclusions of the thesis along with proposed future

work.

Appendix A describes, in detail, the benchmarks which are used throughout this

thesis.

Appendix B describes, and justifies, the statistical significance testing methods used

when analysing the empirical investigations undertaken in this thesis.

Appendix C describes an open source cross platforms CGP implementation which

was developed during the PhD program.

6

Chapter 2

NeuroEvolution

NeuroEvolution (NE) [64,112,313] is a sub field of Machine Learning (ML) which combines

both Evolutionary Algorithm (EA)s and Artificial Neural Network (ANN)s. This chapter

introduces the field of NE with a focus on the more popular NE methods. This is followed

by a review of the wider NE literature which is used to guide the research presented

throughout this thesis.

2.1 Structure of this Chapter

Section 2.2 introduces the basic principles concerning NE along with a description of a

simplistic NE method. Section 2.3 describes a number of advantageous properties of NE

over other ANN training methods. Section 2.4 discusses the scope of NE in terms of

which aspects of ANNs it can be used to optimise. Section 2.5 describes a range encoding

schemes used by NE to describe ANNs. Section 2.6 provides a detailed review of many

popular NE methods. Section 2.7 presents a detailed literature review of the general field

of NE. Finally, Section 2.8 gives a closing discussion of the chapter.

2.2 Basic Principles

NE is the application of EAs to the training of ANNs. Therefore a brief introduction

of both EAs and ANNs is provided. This is followed by a description of using a simple

Genetic Algorithm (GA), a type of EA, as an ANN training method. This summary of the

basic principles surrounding NE is intended to act as a reminder to those already familiar

with the field, and to focus on concepts which will be relevant later in the thesis.

7

Chapter 2: NeuroEvolution

2.2.1 Evolutionary Algorithms

EAs [72, 228] represent a family of stochastic1, heuristic2 population based3 search tech-

niques based on Darwinian evolution [49]4.

EAs are initialised by creating a population of random solutions to a given problem

encoded in what are termed chromosomes or genotypes; taking the terminology from the

biology from which they are inspired. Each of the chromosomes are then decoded into

their corresponding solutions, termed phenotypes, and assigned a fitness value propor-

tional to their effectiveness at solving the given task. The fitness of each chromosome

is then used to determine which are selected, mimicking the concept of “survival of the

fittest” or “natural selection”. The selected chromosomes are then used as parents in

the creation of new child chromosomes; the unselected chromosomes are discarded. Child

chromosomes can be created from their parents via asexual or sexual reproduction. In

the asexual case, the created children are clones of the parents with random alterations

applied; these alterations are termed mutations again using biological terminology. In the

sexual case, the child chromosomes contain genetic material from two or more of the parent

chromosomes; mutation can then also be applied. This next generation of chromosomes

is then comprised of the newly created child chromosomes; with or without the selected

parents. This process of assigning fitness, selection and reproduction is then repeated until

a termination condition is reached. Typical termination conditions specify a maximum

number of generations and a target fitness value i.e. when a solution is found which is

considered satisfactory. The entire process is shown in Algorithm 1.

Algorithm 1 Basic Evolutionary Algorithm

Initialise a population of random chromosomes
while Termination Conditions not met do

Calculate chromosome fitness
Select chromosomes for reproduction
Reproduce via mutation and/or crossover

end while

1Involves a random element in the search process.
2Uses experience and/or learning to guide the search.
3Makes used of many agents working together or independently.
4Or occasionally Lamarckian Evolution [171]

8

2.2 Basic Principles

The creation of EAs is attributed to the contributions of three groups who indepen-

dently conducted research in the area unaware of each other’s work. Each of their works is

now considered a separate sub-field of EAs called: Evolutionary Programming (EP) [67],

GAs [113] and Evolutionary Strategies (ES) [237]. Interestingly however, the notion of us-

ing artificial evolution as a problem solving tool was also proposed by Alan Turing in 1948

(long before the other discoveries), his essay was dismissed by his employer, the grandson

of Charles Darwin, as a “schoolboy essay” [277]. For a more detailed and complete history

of EAs see [66].

2.2.2 Artificial Neural Networks

Like EAs, ANNs are also heavily inspired by biology and represent, to a greater or lesser

extent, a simplified abstraction of real neural networks found within the brains of animals.

ANNs comprise a weighted directed acyclic/cyclic graph where each node implements a

transfer function which approximates a biological neuron.

Biological neurons5 take the form of that shown in Figure 2.1. Each neuron gathers

at its dendrites (inputs) signals from other neuron’s axons (outputs). These input signals

propagate along the dendrites down into the soma (cell body). These signals cause the

membrane potential of the neuron to increase or decrease depending upon whether the

signal is excitatory or inhibitory respectively. If the membrane potential reaches a certain

upper threshold, the neuron fires, propagating a signal down its own axon and out to other

neurons; otherwise no output signal is produced.

Figure 2.1: Simple depiction of a biological neuron taken from www.

newworldencyclopedia.org

5The existence of neurons was first discovered by Santiago Ramón y Cajal the late 19th century which
resulted in him receiving a noble prize for his contributions

9

www.newworldencyclopedia.org
www.newworldencyclopedia.org

Chapter 2: NeuroEvolution

Signals are passed between neurons, from axons to dendrites, at synaptic connec-

tions. Synapses are the junctions between axon terminals and dendrites. They release

a neurotransmitter when excited by a signal from the axon. This neurotransmitter then

propagates across the gap between axon terminal and dendrite (synaptic cleft) causing a

signal to be induced in the dendrite. The magnitude of this signal is proportional to the

connection strength of the synapse. This signal is excitatory or inhibitory depending on

the type of synapse between axon and dendrite.

In biological neural networks the signals passed between neurons are spikes of poten-

tial difference between the ions internal and external to the neuron. ANNs which model

this spiking behaviour are referred to as Spiking Neural Networks (SNN). Neuron mod-

els commonly used by SNN include the Hodgkin-Huxley model6 [111], integrate and fire

model7 [1] and the Izhikevich neuron model [131].

However, the majority of NE methods, and ANN training methods in general, construct

ANNs consisting of non-spiking neuron models. This is most likely because simulating non-

spiking ANNs is much less computationally expensive whilst being powerful enough to be

applied to many applications. Non-spiking neuron models do however contain many of the

characteristics of their spiking counterparts. Their output is determined by their inputs

and the strength of the connection weights (synapse connections). Additionally, although

the signals passed between neurons are not actually spikes, they can be thought of as an

abstraction of this concept. For instance, if a neuron outputs 0 or 1, 1 can be considered

spiking and a 0 can be considered not spiking. Alternatively, if a neuron outputs a floating

point value in the range [0,1], this can be considered as a spiking (firing) rate; with zero

being no spikes, 0.5 being alternating spikes and no spikes, and 1.0 being continuous

spiking.

Nearly all non-spiking neuron models can be generalised to the model shown in Figure

2.2. The inputs xi are the inputs from previous neurons, the weights wi are the connection

strengths of the synapses, the function ϕ() describes the transfer function (internal logic)

of the neuron, the bias b is used for any internal thresholds, and the output y is the output

of the neuron provided by ϕ().

Non-spiking neuron transfer functions are typically a function of the weighted sum of

6The implementation of the Hodgkin-Huxley neuron model was so significant that it resulted in Alan
Lloyd Hodgkin and Andrew Huxley receiving the Nobel Prise in Physiology or Medicine in 1963.

7Interestingly the integrate and fire neuron model was developed by Louis Lapicque in 1907 [1], long
before the mechanics of biological neurons were understood.

10

2.2 Basic Principles

Figure 2.2: Simple generalised model of an artificial neuron.

inputs. The weighted sum of inputs S is equivalent to the dot product of the neuron’s

inputs as a vector X and the neuron’s connection weight as a vector W , as shown in

equation 2.1. The transfer function of a non-spiking neural model usually takes the form

of Equation 2.2, where ϕ () changes from model to model.

S = W ·X =
n∑
i=0

wixi (2.1)

y = ϕ (S − b) (2.2)

There are many neuron transfer functions found in the literature [54] but in this chapter

only the most commonly used are introduced. S will be used to denote the weighted sum

of inputs and ϕ () to denote the particular transfer function of each model.

The McCulloch and Pitts model, developed by W. McCulloch and W. Pitts [196] in

1943, is the earliest artificial neuron model. The model is also commonly referred to as

the Heaviside step response model. The McCulloch and Pitts model outputs a ‘1’ if the

weighted sum of inputs S is greater than a bias b, otherwise it outputs ‘0’. The transfer

function takes the form of Equation 2.3 and is plotted graphically in Figure 2.3; with the

bias set as zero.

ϕ (x) =

1, if x > 0

0, if x < 0

(2.3)

The Linear Combination neuron model is simpler than the McCulloch and Pitts model

but does not model the threshold nature of real biological neurons. Instead the linear

combination neuron model simply returns the weighted sum of inputs as its output. The

11

Chapter 2: NeuroEvolution

trivial transfer function is given in Equation 2.4 and plotted graphically in Figure 2.3.

ϕ (x) = x (2.4)

The logistic sigmoid function, often simply referred to as the sigmoid function in the

ANN literature, is likely the most popular neuron transfer function. It is a continuous

non-linear function which produces an output in the range [0,1]. The logistic sigmoid

function is given in Equation 2.5 and plotted in Figure 2.3.

ϕ (x) =
1

1 + e−x
(2.5)

Finally, another popular family of neuron transfer functions are radial basis functions.

A radial basis function is any function which satisfies Equation 2.6; that is to say, sym-

metrical around an origin. It can also be defined a function which only depends upon the

distance from an origin. A commonly radial bias function used by ANNs is the Gaussian

function given in Equation 2.7 and shown in Figure 2.3. The value of µ determines the

offset from the origin and the value of σ determines the width of the Gaussian curve.

φ (x) = φ (‖x‖) (2.6)

ϕ(x) = e−
(x−µ)2

2σ2 (2.7)

Although individual neuron models may be of interest from a biological standpoint,

and in some cases capable of simple tasks, they are much more powerful when configured

into networks of neurons. In fact, feed-forward networks of logistic sigmoid or radial basis

functions have been shown to be capable of universal function approximation using a finite

number of neurons; [48] and [221] respectively. Additionally, Recurrent Artificial Neural

Network (RANN)s have also been shown to be universal dynamical system approximations

[71,249]. This means ANNs and RANNs can be applied to a very wide range of applications

iff methods are available to configure their topology and connection weights. The vast

12

2.2 Basic Principles

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(a) Step Response

-10 -5 0 5 10
-10

-5

0

5

10

(b) Linear Combination

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(c) Logistic Sigmoid

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(d) Gaussian

Figure 2.3: Common non-spiking neuron models.

majority of ANN research, including NE, attempts to address this challenge.

The following sub sections describe two very distinctive, non NE, ANN training meth-

ods; back prorogation and Reservoir Computing (RC). Back prorogation is introduced as

it is the most widely adopted training method for ANNs and is reference throughout this

thesis. RC is also introduced as an interesting contrast to back prorogation, and because

it is also referenced in this thesis.

2.2.2.1 Back Propagation

The back propagation algorithm is by far the most widely used method for training multi-

layered feed-forward ANNs. Its discovery is accredited to David Rumelhart et. al. in

1986 [245], but as described in [304], its history is complicated. Before the discovery of

back propagation, ANNs were restricted to one input layer and one output layer. These

zero hidden layer networks could only be applied to tasks which were linearly separable,

Figure 2.4; such as implementing AND or OR logic gates. Zero hidden layer networks

could famously not implement an XOR logic gate; Figure 2.4. The realisation that zero

hidden layer ANNs could only solve linearly separable problems, coupled with the fact

13

Chapter 2: NeuroEvolution

(a) Linearly Separable (b) Non-linearly Separable

Figure 2.4: Example of data which is linearly separable (a) and the XOR gate which is
not linearly separable (b).

there were no training methods for multilayer networks, lead to a decline in ANN interest

during the 1970’s; until methods such as back propagation and Boltzmann machines [109]

were created.

Before the invention of back propagation, networks with zero hidden layers, Figure 2.5,

could be trained by updating the weights in order to reduce the network error 8. Equation

2.8 shows a simple weight update rule where wi is the weight between the output neuron

and the input i and ∆wi is the change in connection strength. Here each weight is increased

or decreased depending upon whether it will reduce or increase the network error. For

this update rule to operate, the change in network error is required as a function of each

connection weight.

Figure 2.5: Zero hidden layer feed-forward neural network with four inputs and one output.

The behaviour of a simple zero hidden layer network, such as Figure 2.5, is described

by Equation 2.9; where y is the network output, wi is the weight between input neuron i

8Where the network error is proportional to how badly the neural network performs on a given task
i.e. it is strictly supervised learning.

14

2.2 Basic Principles

and the output neuron, xi is the value of input neuron i, and ϕ() is the transfer function

of the output neuron. The error of this simple network is then given by Equation 2.10;

where E is the error, d is the desired output and y is the actual output. The error is given

in this strange form as it is required that it is easily differentiable; as shall be seen later.

The effect of changing each weight wi on the network error is then given by Equation

2.11. Producing the final weight update rule Equation 2.12; where ε is the leaning rate

controlling the level of exploitation and exploration. This weight update rule can then

either be applied after the ANN execute one input sample, or each ∆wi can be averaged

over the entire training set and then applied once. The process is then repeated until the

desired behaviour is observed or a training time budget is reached. It should be noted that

it is a requirement of this method that the neurons transfer function ϕ() be differentiable.

wi = wi + ∆wi (2.8)

y = ϕ

(∑
i

xi.wi

)
(2.9)

E =
1

2
(d− y)2 (2.10)

δE

δwi
=
δE

δy
.
δy

δwi
= (y − d)ϕ′(

∑
j

xj .wj).xi (2.11)

∆wi = ε(y − d)ϕ′(
∑
j

xj .wj).xi (2.12)

The back propagation algorithms follows a very similar logic to that previously pre-

sented and can be applied to networks with multiple layers, see Figure 2.6. The difference

being that the output of the network is now a function of the hidden nodes which are in

turn a function of other nodes leading back to the inputs. An equation of the form given

in Equation 2.9 can then be written for a multiple hidden layer networks and coupled with

Equation 2.10 to form an error function in terms of each connection weight. This error

function can then be differentiated with respect to each connection weight; as was done in

Equation 2.11 for the zero hidden layer case. This δE
δwi

can then be used to calculate ∆w

for each connection weight and used to train the ANN.

The algorithm is called back propagation as the error value is effectively back propa-

gated though the network in order to calculate δE
δwi

for each weight. That is, in order to

calculate ∆wi for a weight close to the inputs, all of the other δE
δwi

between this node and

the output need to have been previously calculated. The δE
δwi

are therefore calculated from

15

Chapter 2: NeuroEvolution

Figure 2.6: Simple ANN comprising two inputs, one hidden layer containing three neurons,
and one output neuron.

the outputs moving backwards towards the inputs.

2.2.2.2 Reservoir Computing

Reservoir Computing [182] is a relatively recently proposed training method for RANNs.

Within RC there are two distinct sub fields: Liquid State Machines (LSM) [185] and

Echo State Networks (ESN) [133]. LSM represents the application of RC to the training

of spiking ANNs and ESN represents its application to the training of non-spiking ANNs.

As this is thesis is focused on non-spiking ANNs, ESNs are now briefly described.

As ESN is a training method for RANNs, it is mainly applied to series forecasting or

transforming one temporal input signals into another. For instance, a popular demonstra-

tion of ESNs is the conversion of an input sinusoidal waveform into an output saw tooth

waveform.

In their basic form, ESN are initialised by generating a random9 “reservoir” of sparsely

connected neurons connected via feed-forward and recurrent connections. A proportion

of these hidden neurons also connect to the program inputs. No output neurons are

needed in the initial stages of training. The randomly generated connections are also

given randomised connection weights.

Once the reservoir has been created, each of the training set sample inputs are applied

to the network in turn, and each neuron in the reservoir updated. The state (output)

9In practice random reservoirs are rarely used in favour of reservoirs which exhibit a set of desirable
properties.

16

2.2 Basic Principles

of each neuron is recorded after each training sample is applied in a h × n matrix S;

where h is the number of hidden neurons in the reservoir and n is the number of training

samples. Note that the state of the reservoir is both a function of the current inputs and

the previous state of the reservoir due to the recurrent connections.

Once this initialisation process is complete, the output neurons are added to the net-

work. Each output neuron is connected to every hidden neuron in the reservoir. The

connection weights connecting the hidden neurons to the output neurons are specified in

an o × h matrix Wout; where o is the number of outputs and h is the number of hidden

neurons in the reservoir.

Finally the desired outputs of each training sample are stored in a o × n matrix D;

where o is the number of outputs and n is the number of training samples.

Therefore what is known is the state of the network after each applied training sample

S, and the desired outputs of each training sample D. What is needed to be determined

are the connection weights Wout which transform the corresponding states of the network

S into the desirable outputs D. The tasks can be formulated as the matrix equation given

in Equation 2.13; where the unknown variable is Wout; the output connection weights.

D = WoutS (2.13)

There are many methods available for solving Equation 2.13 in order to determine

Wout; these include linear regression methods or pseudo inverse techniques. In RC a range

of methods are used. Note that it is very unlikely that a value of Wout exists which

perfectly maps S onto D. Therefore the found value of Wout will typically produce an

approximate mapping of S onto D.

Once Wout has been determined, the output connection weights can be applied to the

network. The RANN will then, to a greater or lesser extent, transform the given training

data into the desired outputs; thus completing the training.

An interesting property of RC is that the training data only needs to be applied once

followed by solving a single, albeit large, matrix equation. This typically makes training

ANNs using RC much faster than methods such as back propagation, which requires the

training data to be applied multiple times during training.

17

Chapter 2: NeuroEvolution

2.2.3 NeuroEvolution

Now EAs and ANNs have been introduced, a simple NE method can be described. The

described NE method is based on Conventional NeuroEvolution (CNE) which is described

later in Section 2.6.1.

A simple application of EAs to the training of ANNs is the use of a standard GA to

evolve the connection weights of a fixed topology network. Take an ANN of the form

shown in Figure 2.6. Each of the connections in Figure 2.6 has an associated connection

weight (wi). Assume also that each neuron uses a logistic sigmoid transfer function.

Here the NE method uses genotypes which comprise a string of floating point values

describing the connection weights of each connection in the ANN. The genotypes are

decoded into their corresponding phenotypes by assigning the connection weights to the

predetermined topology; with the same connection weights always placed on the same

connection. A genotype of this NE method, for this given topology, therefore takes the

form of that given in Equation 2.14.

{w1, w2, w3, w4, w5, w6, w7, w8, w9} (2.14)

The fitness assigned to each genotype is then a measure of how well the decoded ANN

performed on a given task. This fitness is then used to guide selection. Mutation is

implemented by changing a given percentage of the connection weight values to a new

random value. Crossover is implemented by creating child chromosomes which contain a

proportion of the genes values from one parent, and the remainder from the other. The

initial population is created by generating genotypes of random connection weight values.

Finally, the search terminates when an ANN is found which performs suitably on the given

task; or the maximum number of generations is reached.

As can be seen in this simple example, EAs can very easily be applied to the training of

ANNs. However, even such a simple NE method has numerous advantages; as is discussed

in Section 2.3. Additionally, many NE methods go beyond the simple application of a GA

to the configuration of connection weights; as is described later in Section 2.6.

18

2.3 Advantages of NeuroEvolution

2.3 Advantages of NeuroEvolution

This section provides a number of possible advantages of using NE to train ANNs. These

advantages are summarised as follows:

• Suited to supervised and reinforcement learning applications

• Capable of training feed-forward and recurrent ANNs

• Capable of training shallow and deep topologies

• Capable of manipulating ANN topology

• No transfer function limitations

• Capable of creating homogeneous and heterogeneous ANNs

• Always returns a solution

Of course there are also disadvantages of NE. For instance, like back propagation, NE is

an iterative training process. This means that order of the training time is much larger

than for non-iterative training methods such as RC [182]. Additionally, NE is a stochastic

process which means the training time to produce its best solution varies, as does the

quality of the final solutions found.

2.3.1 Application to Reinforcement Learning

In the field of machine learning there are three main types of learning; supervised, unsu-

pervised and reinforcement. These are now briefly described.

The defining feature of supervised learning [163] is that it makes use of labelled data,

that is, each training sample takes the form (xi, yi) where xi is an n-dimensional input

vector and yi is a discrete or continuous scalar associated with the input vector. The

system must learn to classify, or predict, the value of yi based on xi. Supervised learning

systems are trained by showing sequences of training sets (xi, yi) in order for the system

can encode a relationship f() between xi and yi; yi = f(xi).

Unsupervised learning [77], in contrast with supervised learning, uses unlabelled data

xi and attempts to find patterns and trends within that data. Unsupervised learning

systems are so called as they have no predefined measure of effectiveness and hence are

unsupervised. Unsupervised learning is often used to cluster similar data sets or to predict

future data sets based on previous examples.

19

Chapter 2: NeuroEvolution

Reinforcement learning [138] is where a system has to learn to perform a given task

without any examples of desired behaviour, but where its behaviour can be given a per-

formance value. The system has to take actions based on its current, and sometimes

previous, inputs which are then given a score proportional to the desirability of the result

of those actions. For example, if a human were to balance a broom upon their hand they

have to learn in which direction to move their hand in order to keep the broom balanced.

Bad actions in a given situation would see the broom fall from its central position and

good movements would see the broom remain in, or approach, the central position. By

noting which actions in which situations result in positive behaviour a human can learn

to balance the broom. Reinforcement learning works much the same, there is no set of

training examples to learn from, instead a system is given a score indicating its current

performance i.e. the distance the broom is from vertical.

Generally the most popular training algorithms for ANNs allow ANNs to either be

applied to supervised or unsupervised learning tasks. Common supervised learning meth-

ods include back propagation [245] and radial basis function networks [180]. Common

unsupervised learning methods include Hopfield networks [116] and restricted Boltzmann

machines [260]. Additionally resent developments in deep belief neural networks, such

as the application to playing GO [257], demonstrate a mechanism for training ANNs for

reinforcement learning tasks. In such work the ANNs are trained using supervised learn-

ing methods to predict the move chosen by expert GO players given a board state. This

work effectively trained the ANNs as classifiers; a supervised learning task. The trained

networks are then further trained using policy gradient reinforcement learning [270] to

further the accuracy of the classifier. The trained networks are then used to estimate

values of board states which is in turned used by Monte Carlo tree search [46].

As NE methods are based on EAs, they assess each solution by assigning a fitness

value. This fitness value is representative of the ANN’s overall performance on a given

task. Therefore, NE allows ANNs to be applied to reinforcement learning type tasks;

tasks to which many standard ANN training methods cannot be applied. Additionally, as

supervised learning tasks can be framed as reinforcement learning tasks, by looking at the

overall performance rather than the performance on any particular sample, NE can also

be used to train ANNs for supervised learning type tasks. As EAs cannot be applied to

unsupervised learning this restriction also applies to NE.

Therefore NE represents a class of ANN training algorithms which can apply ANNs

20

2.3 Advantages of NeuroEvolution

to a wide range of applications; both supervised and reinforcement learning.

2.3.2 Recurrent Artificial Neural Networks

Another important benefit of NE is that it is not influenced by the topology of the ANN

being trained. For instance, although back propagation can be extended to be capable of

training RANN [19], by effectively “unwinding” the network, there are many unresolved

issues [182]. One such issue is that as the error signal is propagated though the ANN

it becomes weaker and the effect of training is diminished. This problem is increased if

the error signal must traverse the network multiple times following the recurrent paths.

Additionally, the computational expense of training increase proportionally to the depth

of recurrence considered. Finally, as the error is only fed back a given number of times

through the network, the result is always an approximation to the error at any given node,

not the actual error.

As NE is not a function of the ANN topology these limitations simply do not apply.

This is because NE training methods are not concerned with the internal state of the

network at any given time, only the overall behaviour. Therefore, as long as a RANN can

be applied to a problem and given some measure of fitness, it is no more complex, and

has no more limitations, than training feed-forward ANNs.

2.3.3 Deep Artificial Neural Networks

Since the creation and demonstration of deep belief networks [108] by Geoffrey Hinton

and Simon Osindero in 2006, the ability to train deep ANNs has been seen as increasingly

significant. This is heightened by the fact that it is thought that deep ANNs can more

efficiently implement a given function, in terms of the total number of nodes, than shallow

networks [27].

However, back propagation alone has been shown to struggle to train deep ANNs

[78, 178]; mainly due to the error gradient becoming smaller in magnitude as more layers

are propagated. In resent work this issue has been overcome [79] via the use of rectifier

neuron models.

Interestingly, as is described in the previous section, NE training algorithms are not a

function of the ANN topology. NE can therefore be used to train deep ANNs without any

alteration to the algorithm or use of rectifier neuron models.

21

Chapter 2: NeuroEvolution

2.3.4 Topology

It is known that the choice of topology has a large influence on the effectiveness of back

propagation [178]. Additionally, there are no formal rules regarding the optimal/suitable

choice of topology, only various “rules-of-thumb” [47]. A solution to this issue is to use

training methods which adapt and find suitable topologies during training. To this end

there are two common approaches used. 1) Constructive (growing) methods [168] start

with a small number of hidden neurons (zero or one) and constructively add neurons

during the search. 2) Destructive (pruning) [238] methods train using a large number of

hidden neurons and destructively remove those which are unnecessary after the training

is complete.

The constructive method of adding neurons is often considered suitable as it promotes

the use of a minimal network sizes; aiding the generalisation of the ANN whilst keeping the

dimensionality of the search low. When ANNs are trained on a data set for too long they

begin to become capable of more accurately classifying samples within the training set at

the expense of been able to correctly classify unseen samples. This phenomenon is referred

to as over training. The ability to avoid this behaviour is referred to as generalisation.

One method for avoiding over training is to limit the number of nodes available, ensuring

that the ANN is not capable of very accurately classifying the training set, in order to

preserve its ability to classify unseen items. For this reason constructive methods are often

used as they are likely to create smaller, rather than larger, networks. It is also common

to use regularization techniques with constructive method where the network is penalised

for being too large; again favouring smaller networks. This method is often likened to the

principle of Occam’s razor [30], where simpler solutions should be favoured over complex

solutions if they are equivalent in quality.

Destructive methods (pruning) take the opposite approach. They train excessively

large networks, which typically learn quickly and over train. Once trained, sections of the

network which contribute the least to the output are removed. This method is thought

to reduce the complexity of the network, reduce training time and aid generalisation.

Destructive methods can be applied to any ANN regardless of how they have been trained

and can therefore be used alongside other training methods, including NE [254], to aid

generalisation.

However, destructive and constructive methods have their limitations. For instance

iteratively adding neurons during the search is akin to topology hill climbing and is sub-

22

2.3 Advantages of NeuroEvolution

sequently likely to become trapped in topology local optima [15]. Destructive methods

also have the issue of the user having to decide a suitably large number of neurons and

requires careful removal of sections of the ANN post training.

In most cases however, the choice of topology is left to the user and a certain level of

trial and error is often required in order to find suitable topologies. This is where many

NE methods can offer a strong advantage. In the simplest case a standard GA [113] could

be used to manipulate the number of layers and nodes per layer of ANN which is then

trained using back propagation. This effectively removes the trial and error burden from

the user and is likely to much more effectively search the space of possible topologies than

a simple constructive method or blind trial and error.

Interestingly it has previously been shown that topology optimising/adapting NE pro-

duces results which are comparable to those achieved using back propagation and hand-

crafted topologies [36]. This demonstrates the benefit of topology optimising NE methods;

the topology is self-optimising and does not have to be hand-crafted by the user.

2.3.5 Transfer Functions

The most commonly used ANN transfer function is the logistic sigmoid. This transfer

function is likely popular because: 1) it is limited to a [0,1] range, 2) it is non-linear, 3) it

has been shown capable of universal function approximation [48] and 4) is differentiable

and therefore compatible with gradient descent type algorithms.

However, it is unlikely that the logistic sigmoid is the most suitable transfer function

for all applications. For instance, if an ANN were to be used to implement a Boolean

circuit, the step function might be more suited. In this case back propagation could not

be applied as the step function cannot be differentiated10.

Therefore an advantage of NE is that it is not dependent on the transfer functions

being used. This means that ANNs of any transfer function [55] can be trained.

10In fact the step function can be differentiated to produce a infinitely tall, infinitesimally narrow, delta
spike, but this cannot be used by the back propagation algorithm.

23

Chapter 2: NeuroEvolution

2.3.6 Heterogeneous Artificial Neural Networks

Although many ANN training methods, such as back propagation, are capable of training

heterogeneous ANNs11, typically they do not12. This may be due to the complexity it

brings to the implementation, or it may not be considered a beneficial characteristic.

Regardless, since the complexity of many NE algorithms does not depend upon the

ANNs being trained, they can be easily used to train heterogeneous ANNs.

2.3.7 Always Returns a Solutions

An advantage NE methods share with some ANN training methods is that they maintain

a current best solution during training. For instance, in a given time constraint one can

train an ANN using NE for the time available, and then use the solution found after that

given time budget.

However, some ANN training methods do not have this property. For instance if

RC [182] is not given enough time to complete, one is left without a solutions; partially

trained or otherwise.

Therefore in certain applications NE is well suited as it maintains a current best

solution during training; a benefit shared with back propagation.

2.4 Scope of NeuroEvolution

In their entirety, ANNs are described by their: connection weights, topology and neuron

transfer functions. The scope of a given NE method can therefore train an ANN by

manipulating its connections weights and/or topology and/or neuron transfer functions.

This has given rise to many NE methods optimising different aspects of ANNs.

This section discussion the various aspects of ANNs which can be manipulated by NE.

This also includes types of NE which do not manipulate ANNs directly, but create rules

which then themselves act as training methods.

11Provided the transfer functions are differentiable.
12Although many ANNs do use a linear combination neuron at the output of a network comprising

logistic sigmoid which could be considered a heterogeneous ANN.

24

2.4 Scope of NeuroEvolution

2.4.1 Weight Evolution

Much of the early work in NE evolved the connection weights of fixed topology ANNs

as a vector of real values [240]. When only evolving connection weights the topology of

the ANN must be chosen in advance by the user. Weight only evolution has many of the

drawbacks of other training methods which manipulate connection weights alone, such as

back propagation; they only search a small section of the overall ANN search space. It

has also been shown that the choice of topology has a large impact on the effectiveness of

connection weight only evolution [112]; requiring the user to try many topologies or use

task specific information to select a suitable topology in advance; information which is

often unavailable.

Weight only NE does however have many advantages over traditional gradient based

methods. Weight only NE does not require the neurons transfer functions to be differen-

tiable in order to calculate the error gradient. Gradient based methods struggle to train

deep ANN [78], due to the gradient being reduced as it is passed through the network

and at the extremes of the logistic sigmoid function; restrictions which do not apply to

NE. Additionally, weight only evolving NE can be used for reinforcement learning tasks;

something which back propagation cannot natively handle. Weight evolving NE methods

can also be applied to recurrent network structures. Finally, gradient based methods are

prone to becoming trapped in local optima and are highly dependent upon the initial

connection weights; NE is far less dependent upon the initial weights and is capable of

escaping local optima.

2.4.2 Topology Evolution

In the NE literature it is thought that topology, as well as connection weights, are highly

important in the training of ANNs13 [64, 313]. Theoretically an ANN can be thought of

in terms of a topology and connection weight search space; or as weight spaces associated

with any given topology. Therefore, using only fixed topology limits the search to one

subset weight space within the wider topology space; a possible disadvantage of methods

which only manipulate weights. Clearly, if a suitable topology is known in advance it could

be used to decrease the dimensionality of the search. However, often this is not known in

advance and since the effectiveness of the search is strongly dependent upon selecting a

13Methods which evolve connections weights and topology are sometimes refereed to as Topology and
Weight Evolving Artificial Neural Networks (TWEANNs) [267].

25

Chapter 2: NeuroEvolution

suitable topology, this is clearly a major issue of manipulating connection weights alone.

Topology evolving NE methods are therefore thought to be beneficial as they configure

the topology for a given application; without the user having to know a suitable topology in

advance of training. They may also be capable of utilising relationships between topology

and connection weights during the evolutionary search and are likely to evaluate unusual

topologies which would otherwise typically not be considered by a human designer.

2.4.3 Transfer Function Evolution

Many ANN training methods make use of only a single type of neuron transfer function;

typically logistic sigmoid or Gaussian. Additionally many ANN training methods bring

restrictions to the types of neuron transfer functions which can be used; such as back

propagation requiring the neurons to be differentiable. However, it has been shown that

the neuron transfer function strongly influences the capability of an ANN [55, 313]. In-

terestingly, NE can be used to manipulate the neurons transfer functions during training

and brings no restrictions to the types of transfer functions which can be used. Using this

method heterogeneous ANNs of many different transfer functions can be evolved resulting

in a search of the node transfer function space.

Therefore NE can be used to select suitable transfer functions for a given task and

easily create heterogeneous ANNs.

2.4.4 Learning Rule Evolution

A very different application of EAs to ANNs is not to manipulate the network itself, but

to evolve learning rules which are themselves used to train ANNs [313]. This can be

achieved using the genotypes to encode dynamic properties of the neurons, enabling them

to adapt themselves during their lifetime [25,37]. Interestingly, in [37] the use of learning

rule evolution led to the rediscovery of the delta rule (aka Widrow-Hoff rule); a form of

gradient decent used to train ANNs. Learning rule evolution has two main applications:

discovering new learning rules and enabling continuous learning.

2.5 NeuroEvolution Encoding and Decoding

This section covers the common encoding schemes used by NE to describe functioning

ANNs. The process of morphogenesis, decoding a genotype into a phenotype, is dependent

26

2.5 NeuroEvolution Encoding and Decoding

upon which aspects of the ANN each genotype describes and the type of encoding used

by the genotype.

Section 2.5.1 first describes which aspects of the final ANN can be described by each

genotype and Section 2.5.2 describes the types of encoding methods which are commonly

used.

2.5.1 Level of Encoding

Which aspects of a complete ANN are described by each individual genotype varies be-

tween NE methods. However they can typically be separated into whether each individual

genotype represents a complete ANN or subcomponents of an ANN.

2.5.1.1 Complete Neural Network

When using complete ANN encoding schemes, each genotype in the population describes

a complete ANN. This can either take the form of a vector of weights for a fixed topology

ANN or can be a complete description of weights and topology (and even node transfer

functions).

When evaluating a genotype. the assigned fitness for each genotype is simply a measure

of how effective the ANN, described by the given genotype, performs on a given task. In

this regard it is similar to traditional EAs.

2.5.1.2 Subcomponents of Neural Network

Subcomponent methods are where each genotype does not describe a complete ANN, but

describes a subcomponent of an ANN. When using subcomponent methods each genotype

typically describes an individual neuron or an individual connection weight. Complete

ANNs are then constructed by combining many individual genotypes.

When describing complete ANNs using one genotype assigning fitness is simple; as each

genotype can be evaluated separately. However, when using subcomponent methods each

genotype represents only a partial solution, and so assigning fitness is not so straightfor-

ward. The exact methods for handling fitness assignment, and other details including how

to construct a complete network from many subcomponents, vary between subcomponent

NE methods. This topic is discussed further for the subcomponent NE methods described

in Section 2.6.

27

Chapter 2: NeuroEvolution

2.5.2 Type of Encoding

Whereas the previous section described which aspect of ANNs each genotype represents,

this section describes how each genotype is transformed into its section of the final ANN.

The types of encoding used by NE mirror those commonly used by EA methods.

There are three main types of encoding used by NE (and EAs in general): direct,

indirect and developmental. Direct encoding is where the genotype and phenotype are

identical. For instance, if the weights of a neural network were to be evolved using a

direct encoding method, the weights could be described by the genotype as a string of

values. To create the phenotype these values would simply be directly applied to their

corresponding connections; no decoding is necessary.

Indirect encoding is where the genotype has to be decoded into what it describes. For

instance, a NE genotype may describe a mathematical function which is then used to

assign the weight to a given ANN. In this case the connection weight could not be directly

applied from the genotype, but calculated indirectly from the genotype.

Developmental encoding is where the genotype describes rules which are followed to

grow and adapt an ANN. Adaptation can influence the weights and topology through the

addition and removal of neurons and connections. This adaptation can also be a function

of the network’s inputs, so development can be dependent upon the environment and

change over the ANNs lifetime.

2.6 Review of NeuroEvolutionary Methods

There are many types of NE methods found in the literature. This section reviews a

range of the more popular NE methods. This review is then used to draw conclusions and

insights concerning the NE literature as a whole. A high level summary of the review is

given in Table 2.1.

To date there have been two major reviews of NE, the first in 1999 [313] and the second

in 2008 [64]. In these reviews the NE methods are categorised according to a number

of criteria. Firstly they are categorised by their representation scheme: direct, indirect

or developmental. Secondly they are categorised into whether they evolve connection

weights and/or topology and/or transfer functions and/or learning rules. Finally they are

categorised into whether they evolve feed forward and/or recurrent network topologies.

This review plans to extend those previously made by building up a taxonomy of NE

28

2.6 Review of NeuroEvolutionary Methods

methods. This will include many of the previously used categories as well as introducing

new criteria. The new criteria comprise:

• The presence of genetic redundancy

• The presence of program bloat

• Whether crossover is used

• Incremental topology adaptations

• Whether non-functioning ANNs can be created

Genetic redundancy has been widely studied in the field of EAs [74] and is thought

to offer a great advantage to the search through the process of neutral genetic drift [74].

As NE utilises EAs it is also likely to benefit from the presence of genetic redundancy.

Therefore, each NE method reviewed will be considered in the light of genetic redundancy.

Specifically, whether genetic martial can be active or inactive in the semantics of the

decoded phenotype. For all NE methods considered, it is possible for a weight connection

to be set to exactly zero. This means that all connections which lead to that connection,

if not used elsewhere, would be inactive. However, as this applies to all weight evolving

NE methods, and due to the fact that it is highly improbable for a connection gene to be

set to exactly zero, this is not considered in each case.

Many EAs, or specifically Genetic Programming (GP) methods, suffer from program

bloat [181, 256]; the uncontrolled growth in program size during the evolutionary search.

This is a major issue, specifically for tree-based GP, as it results in much longer training

times and produces final solutions which are extremely complex and computationally

expensive to execute. Additionally, the final solutions are harder to reason about limiting

what can be learnt from the discovered solutions. Again, as NE is based on EAs, it is likely

that some NE methods also suffer from program bloat. This is therefore an important

criterion to categorise NE methods by.

In the NE literature näıvely using crossover is considered a disadvantage: “One of

the main problems for NE is the competing conventions Problem, also known as the Per-

mutations Problem” [236]. “Competing conventions means having more than one way to

express a solution to a weight optimization problem with a neural network. When genomes

representing the same solution do not have the same encoding, crossover is likely to pro-

duce damaged offspring.” [266]. Therefore whether a given NE method uses crossover is

29

Chapter 2: NeuroEvolution

another useful method for categorisation, as is whether competing conventions has been

considered and what steps have been taken for its prevention.

Another often overlooked possible issue of topology evolving NE methods is the way

in which topology is adapted. As has been previously discussed, iteratively adding or

removing single nodes/connections via mutation is equivalent to hill climbing and is likely

to result in the search becoming trapped in topology local optima [15]. Although it

may often be the case that there is a continuous gradient of adding single neurons and

adapting connection weights until a optimal/suitable number of nodes is reached, it is

unlikely to always be the case. This issue can also be framed in terms of exploration

versus exploitation, with the adding of single nodes/connections resulting in a more local

search and therefore not being very explorative.

Finally, some of the NE methods discussed allow for ANNs to be described and eval-

uated which will never correctly function. For instance, if there were no connection to

any of the available inputs. Assessing the fitness of such solutions is therefore a waste of

computational time. Therefore it is of interest whether this can occur, and if so if any

measures are taken to mitigate the performance cost.

2.6.1 Conventional NeuroEvolution

CNE [240, 305] is likely the earliest form of NE and operates using a simple GA which

directly encodes the connection weights of a fixed topology network. Each genotype en-

codes the weights of a complete feed-forward or recurrent ANN which are stored as a

fixed dimension vector (genotype); a simple example is shown in Figure 2.6 with the cor-

responding genotype given in Equation 2.14. This vector can then be subject to mutation

and crossover operators similar to a standard GA.

In its most general form, CNE can also encode recurrent [305] and fully connected

ANNs, Equation 2.15; where the row and column index the weight value between each

neuron in the network. For example the value at row r and column c represents the weight

value between neuron r and neuron c in a given ANN. As values can also be specified for

recurrent connections, recurrent neural networks can also be described. To limit the types

of architectures which are allowed, specific values in the W matrix are simply ignored.

30

2.6 Review of NeuroEvolutionary Methods

W =

W00 W01 · · · W0M

W10 W11 · · · W1M

...
...

. . .
...

WN0 WN1 · · · WNM

 (2.15)

2.6.1.1 Extensions

An extension to CNE, proposed by Christian Igel [130], is the application of Covariance

Matrix Adaptation Evolutionary Strategies (CMA-ES) [99]. CMA-ES is a popular exten-

sion to ES which adapts a covariance matrix of the mutation distribution in order to make

use of any correlations between the parameters under optimisation.

Another extension sometimes employed by CNE is the addition of islands and migration

[93]. The inclusion of islands is a popular method for parallelizing EA to run on multiple

machines/cores; with each population assigned a separate processor. This method is

further taken advantage of by noting that each population is likely to converge on different

solutions. Therefore, by allowing a small number of members of each population to migrate

between populations “new blood” can be brought to each population preventing early

convergence.

These two given extensions to CNE show how techniques and advances in the EA

literature are often directly applicable to NE. This is a strong advantage of NE as the

study of EA is well established and still advancing.

2.6.2 Symbiotic Adaptive NeuroEvolution

Symbiotic Adaptive NeuroEvolution (SANE) [212] is a directly encoded, feed-forward,

limited topology evolving, NE method where each genotype represents an individual neu-

ron; a subcomponent of a complete ANN. The population therefore consists of a number

of individual neurons which must be combined in order to produce a complete network.

Each genotype represents a hidden node describing its connectivity and connection weights

with the input nodes and outputs nodes. The genotypes describe which program inputs

are used and the connection weights associated with the connections. The genotypes also

describe the output nodes to which the neuron connects along with the associated con-

nection weights. Figure 2.7 shows a single SANE individual comprising two inputs and

two outputs. As can be seen in Figure 2.7, evolution is left to determine which inputs

31

Chapter 2: NeuroEvolution

and outputs are used by each genotype. Therefore it is possible for ANNs to be described

where there is no connection to one or more of the inputs/outputs.

Input

Hidden

W1

Input

W2

Input

OutputW3

Output

W4

Output

Figure 2.7: Example of a SANE individual showing that each neuron describes the inputs
and outputs to which it connects and the corresponding connection weights.

SANE is described here as being capable of limited topology evolution as the networks

always contain one hidden layer, a set number of nodes, a set node arity and a set number

of connections to outputs. It is only the connection placement (within constraints) and

connection weights which are evolved.

The fitness assigned to each genotype is the average fitness of all the complete ANNs

evaluated in which it was contained. The complete networks are constructed by selecting

a set number of random genotypes from the population. Networks are continued to be

constructed and evaluated until each genotype has been selected a minimum number of

times. As it is likely that no individual neuron can solve a given problem, they are forced

to specialise into separate roles in order to solve the task; hence symbolic evolution. This

specialisation is also though to improve diversity within the population, making better use

of the crossover operator; the mutation operator is also used.

2.6.2.1 Extensions

An extension to SANE is to replace the standard GA with a Eugenic Algorithm [232].

Eugenic Algorithms are similar to GAs except instead of creating the next generation

by crossing over genetic material from two parents, the children are constructed using

statistics from the entire population. The application of an Eugenic Algorithm to SANE

is referred to as Eugenic Symbiotic Adaptive NeuroEvolution (EuSANE) [225].

32

2.6 Review of NeuroEvolutionary Methods

2.6.3 Enforced SubPopulation

Enforced SubPopulation (ESP) [85] is, broadly speaking, very similar to SANE. The

distinguishing difference between SANE and ESP is that ESP maintains a separate sub-

population for each neuron within the wider ANN. Crossover operations only take place

within these sub-populations and there is no migration. The complete ANNs are then

constructed by taking a single neuron from each sub-population and placing them in

the same location in the complete network. The fact they are always placed in the same

location is significant as it enables much more complex ANN structures to be possible. For

instance, recurrent neurons can be added or topologies containing more than one hidden

layer. This is an advantage over SANE which can only evolve single hidden layered feed

forward networks.

Although SANE is thought to result in specialisation over evolutionary time, ESP

enforces this from the start. ESP also ensures networks are not created which contain

many similar neurons, instead of a range of different specialisations required to solve

the given task. For these reasons ESP is considered to be a more efficient evolutionary

technique than SANE.

2.6.3.1 Extensions

Once a solutions is approached, each sub-population used by ESP will begin to converge

and diversity will be lost. This is an issue if a sub optimal solution is being converged

towards or the task to be solved changes during evolution; due to the crossover operator

becoming ineffective. In order to tackle this issue Delta-Coding [302] is often used alongside

ESP.

Delta-Coding is used to search for small changes which improve upon the best current

solution in a population. Delta-Coding is typically only used once population diversity

has been lost. Delta-Coding is achieved by selecting the best member of the population

and then creating a new sub-population of ∆-chromosome which are of the same form as

the selected chromosome, only the gene values are now ∆-values; small differences from

the selected chromosome. This new sub-population of ∆-chromosomes is evolved as usual

by taking each ∆-chromosome, adding each ∆-value to the originally selected chromosome

and evaluating its fitness. If the fitness of the originally selected chromosome is exceeded

the process is reiterated using the new fittest chromosome as the starting point.

33

Chapter 2: NeuroEvolution

2.6.4 Cooperative Synapse NeuroEvolution

Cooperative Synapse NeuroEvolution (CoSyNE) [86] is a directly encoded fixed topology

NE method which evolves partial networks at a weight level. CoSyNE operates by assign-

ing a sub-population to each weight of a user defined network; this user defines network

may be feed-forward or recurrent. The overall population P is stored as a matrix with each

column representing a sub-population p. See Equation 2.16 where there are n weights to

evolve and a sub-population size of m. A complete ANN can then be formed by reading off

any row from the P matrix which can be evaluated and assigned a fitness. Once a fitness

is assigned to each row the weakest can be removed and replaced by crossing over and

mutating the best rows in P. Up until this point CoSyNE has been operating as CNE; al-

beit framed differently. In order to co-evolve the connection weights, each sup-population

is permuted so that the weights now potentially form part of a different network the next

generation. This causes each sub-population of weights to specialise to a suitable value

which is compatible with the other weights within the wider network.

P =

W00 W10 · · · Wn0

W01 W11 · · · Wn1
...

...
. . .

...

W0m W1m · · · Wnm

 (2.16)

2.6.4.1 Extensions

Compressed CoSyNE [164] is an indirect encoding version of CoSyNE. Instead of storing

an explicit weight for each connection, a series of coefficients are stored which describe the

weights across the completed network in the frequency domain; where more coefficients can

be used to store higher frequencies more closely resembling the direct encoding form. As

this method hopes to take advantage of potentially beneficial regularities in the distribution

of connection weights, the topology of the artificial neural networks must be arrange such

as to make this possible. For this reason only fully connected recurrent networks are

used; with i inputs, one single hidden layer of n neurons and the outputs are taken as the

outputs of a predetermined set of the hidden neurons.

34

2.6 Review of NeuroEvolutionary Methods

2.6.5 Cellular Encoding

Cellular Encoding (CE) [92] is a developmental embryogenic14 NE method which can

evolve both the weights and topology of feed-forward ANNs.

Each CE genotype comprises a set of instructions which are followed in order to “grow”

an ANN. CE usually begin with one hidden neuron connected to all the inputs and outputs;

Figure 2.8 (a). This original network is then manipulated by the instructions which make

up each genotype. Instructions include parallel cell division (Figure 2.8 (b)), sequential

cell division (Figure 2.8 (c)) and many other operations which manipulate the topology

of the network, connection weights and neuron biases. The genotype is then assigned a

fitness indicating how well the constructed network performed on a given task.

As CE can produce large and small final ANNs there may be an issue with bloating.

However, no discussion was found in the literature as to whether CE does or does not

suffer from program bloat.

2.6.6 NeuroEvolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [266] is a directly encoded NE strategy

which can evolve the weights and topology of feed-forward and recurrent ANNs. Each

genotype describes a complete network and takes the form of that shown in Figure 2.9.

Each network is described by a list of nodes and a list of connections. Each node is

identified by an ID and whether it is an input, hidden or output node. Each connection

gene contains an input and output node, a connection weight, an innovation number

and whether the connection is enabled or disabled. Using these nodes and connections,

complete ANN are described; Figure 2.9.

The mutation operations used by NEAT include add node, add connection (feed for-

ward or recurrent) and mutate connection weights, input or output. Each connection

weight is mutated each generation with a given probability. The chromosomes are ini-

tialised to contain no hidden nodes with outputs directly connected to inputs. The fact

that NEAT starts with this minimal network size and only adds nodes/connections when

required is thought to provide two advantages. Firstly, it is thought to aid the search by

keeping the dimensionality of the search space as low as possible and only increasing it as

14Embryogenesis describes how an embryo develops into its fetus form. Cellular Encoding takes inspi-
ration from embryogenesis as it describes a set of rules which can be used to “grow” an artificial neural
network.

35

Chapter 2: NeuroEvolution

(a) Initial Network

(b) Parallel Cell Division

(c) Sequential Cell Division

Figure 2.8: Example Cellular Encoding developmental operations. (a) gives an initial
network. (b) gives an example of parallel cell division; where the mother cell is replaced
(divided) into two identical cells. (b) gives an example of sequential cell division; where
the mother cell is replaced (divided) into two cells with the first taking the mother cells
inputs, the second taking the mother cells outputs.

required. Secondly, it is thought to aid generalisation as the training of large networks can

easily over train on many problems; limiting the number of neurons helps combat this.

When a mutation adds a new connection it must always connect two previously un-

connected nodes. When mutation creates a new node it is always placed on a current

connection. For instance if neurons A and C were connected, the current connection would

be removed and a new neuron B added such that A connections to B which connects to

C.

It could be thought that this bias to small program size would result in NEAT not ex-

hibiting program bloat. However it has been shown that whether NEAT bloats is strongly

dictated by the choice of its parameters [274]; with typical parameter values used in early

publications causing program bloat.

NEAT also records when specific mutations occur so as to make better use of the

crossover operator and to subdivide the population into species. Whenever a new connec-

tion gene is introduced it is assigned a unique innovation number. These innovation num-

36

2.6 Review of NeuroEvolutionary Methods

(a) NEAT Genotype.

(b) Corresponding Phenotype

Figure 2.9: An example NEAT genotype and its decoded phenotype.

bers can then be used to identify similarities and differences between two genotypes; even

if their phenotypes appear quite different. Knowing which genetic material two genotypes

share helps tackle the competing conventions problem; where two genomes which describe

the same phenotype, but in different ways, undergo crossover to produce children which

no longer function like either parent. The competing conventions problem is thought to

hinder many NE methods which use crossover. By using innovation numbers NEAT can

identify, without analysis, which genetic material two genotypes share and which they

do not. Crossover is then implemented by selecting randomly between shared connection

genes, with non-shared genes inherited from the fitter parent.

NEAT also splits the population into species based on the amount of shared genetic

material they contain. This allows solutions to primarily compete against others of the

same species. The motivation for this is that new topology alterations, such as adding

nodes, may initially lessen the genotypes fitness, but could lead to higher fitnesses once

optimised. When the population is separated into species any new innovations can be

given time to optimise before they are discarded.

37

Chapter 2: NeuroEvolution

2.6.6.1 Extensions

As well as borrowing advancements from the EA literature, NE can also utilise advance-

ments from the ANN literature. An example of this is NEAT being used to evolve the

reservoir of echo state networks [39]. In this case NEAT was used to create a recurrent

reservoir which was then trained as an echo state network. The fitness after being trained

as a reservoir was then used to guide the evolution of further reservoirs.

2.6.7 Hypercube-based NeuroEvolution of Augmenting Topologies

Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) [264] is an

indirectly encoded extension to NEAT. HyperNEAT operates by using an ANN15 con-

structed by regular NEAT to assign the weights of a second ANN. This is achieved by

the first neural network having four inputs which index the position of two neurons in

the second network via their Cartesian coordinates. The output of the first network, if

above a curtain magnitude, is then used to determine the connection weight value of the

connection between the two neurons in the second network; see Figure 2.10. If the output

of the first network is below a given magnitude then no connection is created between the

two nodes.

Figure 2.10: Example of HyperNEAT. The first network, constructed using NEAT, is used
to assign the weights in the second based on the positions of the two connected nodes.
Here only connections between layers are shown but typically connections between all
possible nodes would be evaluated.

Each genotype in HyperNEAT is that of a regular NEAT genotype. To evaluate

fitness, first the genotype is decoded into its ANN. This first network is then used to

assign the weights of a second ANN. This second network is then applied to a given task

15Sometimes Compositional Pattern Producing Network (CPPN)s are also used [263].

38

2.6 Review of NeuroEvolutionary Methods

and evaluated to produce a fitness value. This fitness value is then assigned to the original

genotype.

An advantage of HyperNEAT is that it can describe arbitrarily large ANNs with a

fixed size genotype. This means networks with large number of inputs, internal nodes and

outputs do not impact on the learning algorithm. The nature of the indirect relationship

between genotype and the final network also results in symmetry, imperfect symmetry

and repetition with variations in the weight/connection distribution of the final network.

Geometric patterns of similar forms are found in biological brains and so are thought to

be advantageous.

A possible disadvantage of HyperNEAT is that it can construct networks in which there

is no complete path between any input and the outputs; resulting in a network which is

highly unlikely to be suitable for any task. This can occur if the first ANN, used to assign

weights to the second, produces an output less that a given threshold. In this case no

connection is made between the nodes under inspection. Therefore it is possible for there

to be no complete path between inputs and outputs of the second ANN. Over evolutionary

time these networks should be removed from the population, however, computational time

is spent on networks which cannot possibly solve any meaningful task.

It is interesting that the concept of HyperNEAT is not limited to the use of NEAT. For

instance it has been shown that tree-based GP can be used as a substitute for NEAT, where

the evolved program tress were then used to assign the connection weights to ANNs [35].

In this regard almost all NE and GP methods could be used in a ‘Hyper’ form to create

ANNs.

2.6.8 GeNeralized Acquisition of Recurrent Links

GeNeralized Acquisition of Recurrent Links (GNARL) [15] is one of the earliest forms of

NE which evolves both the connection weights and topology of recurrent ANNs. GNARL

is a directly encoded NE strategy where each chromosome represents a complete ANN.

GNARL operates by first initialising each chromosome to contain a random number of

disconnected neurons; within user specified ranges. Then a number of random connections

with random weights are added to the network; ensuring no connections leads to an input

or from a output. An example of a possible GNARL network is shown in Figure 2.11;

where it can be seen that constructing a network with a continuous path from inputs to

outputs is not guaranteed.

39

Chapter 2: NeuroEvolution

Figure 2.11: An example of a GNARL ANN.

Mutation operators can add/remove neurons, add/remove connections and mutate

connection weights. A neuron is added by simply placing an unconnected neuron into the

network. A neuron is removed by removing a random neuron from the network, along

with all of the connections leading to and from that neuron. A connection is added by

placing a connection between two (or the same) neurons and assigning it a connection

weight of zero. A connection is removed by simply removing a connection. Connection

weights are mutated based on a Gaussian distribution centred on the current weight with

a user defined width. The number of topology and weight mutations which take place are

a function of a user defined upper and lower bound and an annealing temperature which

lessens as the final solution is reached; with the width of the Gaussian curves used when

mutating connection weights also being a function of this temperature. No crossover is

used.

As GNARL allows multiple topology mutations to occur in the creation of a child,

it does not always add/remove a single connection/node. This means it is likely more

explorative than NE which only add/remove single connections/nodes.

Although never explicitly discussed, it appears that GNARL can contain genetic re-

dundancy in its genotypes. For instance, in Figure 2.11 it can be seen that a number of

nodes and connections do not contribute to the semantics (behaviour) of the ANN. The

genes associated with these nodes and connections are therefore genetically redundant.

40

2.6 Review of NeuroEvolutionary Methods

2.6.9 Evolutionary Programming Artificial Neural Networks

Evolutionary Programming Artificial Networks (EPNet) [314] is a directly encoded NE

method which can evolve the weights and topology of feed-forward ANNs. EPNet uses a

combination of gradient decent and EP.

The encoding scheme used by EPNet is to store every possible weight value of a

fully connected ANN in a matrix. A similar matrix is then used to store Boolean values

representing whether each connection is active; decoded into the ANN. Finally, there is

a vector which stores a Boolean value representing whether each node is active. This

direct encoding scheme can describe every possible two dimensional feed-forward network

topology; limited by a maximum width and depth. This method can also describe networks

where there is no complete connection from inputs to outputs.

EPNet starts by initialising a population of random networks and then partly training

them using a form of gradient decent and simulated annealing. Then rank-based selection

is used followed by mutation. The mutation operation takes a novel form. First further

partial training using gradient descent and simulated annealing is applied to the network.

If partial training improves the fitness, then the changes are kept and this child replaces

its parent; similar to Lamarckian evolution. If this partial training fails to improve on the

fitness, then a randomly selected number of hidden nodes are removed and the network

retrained using gradient descent and simulated annealing. This mutated and retrained

child replaces the least fit member of the population only if it is fitter. If removing nodes

fails to improve the fitness, then a random number of connections are removed and the

network is partly retrained. This mutated and re-trained child replaces the least fit member

of the population only if it is fitter. Finally if removing connections fails to improve on the

fitness then a random number of connections and nodes are added to the network and the

network partly retrained. If adding nodes and connections improves the fitness it always

replaces the least fit member of the population. The mutation stage is then complete. No

crossover is used. The process is then repeated until a suitable solution reached.

EPNet therefore allows multiple connections/nodes to be added or removed. This

means it is more explorative than NE methods which do only add/remove single connec-

tions/nodes.

Although never explicitly discussed, it appears that EPNet contains genetic redun-

dancy in its genotypes. For instance, if a connection is marked as inactive in the matrix of

connections, the corresponding connection weight is still present in the connection weight

41

Chapter 2: NeuroEvolution

matrix. Although this connection weight is not therefore decoded into the phenotype, it is

still able to undergo mutation and become active at a later stage during evolution. There-

fore EPNet genotypes can contain genetic redundancy which is also subject to neutral

genetic drift.

The use of three matrices to describe network topology and connection weights is inter-

esting as it allows for all possible two dimensional feed-forward topologies to be described;

limited by the number of rows and columns. Interestingly this could easily be extended

into three dimensions, or more, to allow for more complex network structures. Addition-

ally, if the use of gradient descent was removed from the training process, the same method

could also be used to describe RANNs. The method also represents an effective, simple

mechanism of allowing for genetic redundancy

2.6.10 Cooperative Co-evolution model for Evolving Artificial Neural

Networks

Cooperative Co-evolution Model for evolving Artificial Neural Networks (COVNET) [75]

evolves partial ANNs with each genotype representing a sub network. Each of these sub

networks is evolved in an isolated population with no migration. Although the arrange-

ment of the sub networks within the wider network is fixed, the topology of each sub

network is evolved along with the connection weights; therefore COVNET is, partially, a

topology and weight evolving NE strategy. Or an alternative view would be a topology

and weight evolving method with enforced modules. The encoding of each sub network is

direct and can describe feed-forward and recurrent networks.

Each sub network is described by a number of nodes each with a number of connections

and weights. Each COVNET sub population uses a (µ + λ)-ES, and uses the mutation

evolutionary operator; no crossover. The weights are updated using mutation and sim-

ulated annealing as a function of current fitness; the weight updates take the following

form w = w+ ∆w where ∆w is a random value which is a function of the current fitness.

Structural mutations take the form of: add node, remove node, add connection and remove

connection with the number of these operations randomly chosen from user defined ranges.

The actual structure of each sub-network, and the mutation operators applied, are similar

to GNARL. Additionally, like GNARL, COVNET allows multiple connection/nodes to

be added or removed. This means it is likely to be more explorative than NE methods

which do only add/remove single connections/nodes.

42

2.6 Review of NeuroEvolutionary Methods

As the evolved sub-networks of COVNET are very similar in form to GNARL geno-

types it is also likely it contains genetic redundancy for the same reasoning as described

previously for GNARL.

2.6.11 Evolutionary Acquisition of Neural Topologies

Evolutionary Acquisition of Neural Topologies (EANT) [143] is a directly encoded NE

method which evolves the connection weights and topology of feed forward and recurrent

ANNs.

EANT encodes full ANNs as linear genomes describing a weighted tree structure with

additional weighted jumper connections between nodes; see Figure 2.12. These jumper

connections can be feed-forward or recurrent enabling EANT to evolve RANNs. Topology

mutation involves adding or removing jumper connections or adding new sub-networks to

the tree; note that sub-network tree structures are never removed. This is done following

the same reasoning as for NEAT. The search starts with a minimally complex network

and then, if required, becomes more complex during the search. EANT also maintains

several sub-populations based on topology similarity. A newly created topology is then

given its own sub-population and only competes at a global scale after a given number of

generations. This gives new topologies the time to be trained before being considered glob-

ally. Topology mutations only take place if mutations to connection weights are seen to

no longer improve the solutions. Connection weight mutations were originally carried out

using a simple self-adapting ES, but later used CMA-ES with each sub-population main-

taining its own covariance matrix. This later version was called Evolutionary Acquisition

of Neural Topologies 2 (EANT2) [255].

Like NEAT, EANTs maintains sub-populations of newly created topologies so as they

can be evaluated before being accepted long term. Although, as has been shown for

NEAT, this method, coupled with minimal initial solutions, is not sufficient to remove

bloat without careful selection of parameters. Additionally, EANT allows the addition of

new random sub trees (not individual nodes) as well as individual connections which is

likely to amplify any presence of bloat. For these reasons EANT appears likely to suffer

from bloat.

Finally, the addition of sub trees instead of individual nodes is likely to result in both

exploitive and explorative mutations. This may represent an advantage over methods such

as NEAT which conduct a much more exploitive topology search.

43

Chapter 2: NeuroEvolution

(a) EANT Genotype.

(b) Corresponding Phenotype

Figure 2.12: EANT Genotype Phenotype mapping, taken from [143]. The Genotype (a)
is decoded as a tree from root to leaves. N gives the node to connect to and I the
input. JF and JR stand for feed forward and recurrent jumper connections respectively
and are added to the tree by assuming they increase the arity of the current node. The
corresponding phenotype is given in (b).

2.6.12 NeuroEvolutionary Algorithm

NeuroEvolutionary Algorithm (NevA) [276] is a directly encoded NE method which evolves

the connection weights and topology of feed forward and recurrent ANNs. NevA Geno-

types describe the connection weight value between every two nodes which are connected;

see Figure 2.13. The genotypes are initialised with no hidden nodes, only outputs con-

nected to inputs with connection weights in the range [-0.5,0.5]. Mutation can add or

remove both connections and nodes and set connection weight to random values. Adding

or removing connections is achieved by simply removing or adding a gene from the geno-

type. Adding a neuron is achieved by adding two new genes to the genotype, one which

connects the new neurons input to a random neuron or input and one which connects

the new neurons output to a random neuron or output. Removing a neuron involves re-

moving all genes in the genotype which reference the removed neuron. Crossover is also

utilised by selecting two parents with greater than average fitness. Child chromosomes are

created which share the similar genes of the parents and randomly selected between the

44

2.6 Review of NeuroEvolutionary Methods

Figure 2.13: NevA Genotype Phenotype mapping, taken from [276]

differences. Elitism is also used to ensure solutions are not lost.

Similarly to NEAT, the solutions are initialised to be small and only increase in com-

plexity if required. This is further enforced by biasing the probability of removing neurons

and connections to be much more likely than adding them. This bias to smaller topolo-

gies may compensate for any bloat if present. Additionally the addition/removal of one

neuron/connection per mutation operation is likely to be restrictive to a local search of

topologies.

Note: it is unclear from the description presented in [276] whether it is possible for

NevA to describe ANNs where there are no connections between inputs and outputs. It

appears this should be possible if all of the connection genes are removed. However there

may be unstated preventions for such an occurrence.

45

Chapter 2: NeuroEvolution

T
a
b

le
2.1:

T
ax

on
om

y
of

N
eu

roE
volu

tion
ary

m
eth

o
d

s

M
eth

o
d

E
n

co
d

in
g

G
en

o
ty

p
e

E
volves

In
crem

en
tal

E
n

co
d

es
A

lw
ay

s
U

tilises
C

on
tain

s
E

x
h

ib
its

L
evel

T
op

ology
T

op
ology

R
ecu

rren
t

F
u

n
ction

in
g

C
rossover

G
en

etic
P

rogram
A

d
ap

tation
s

A
N

N
s

A
N

N
s

R
ed

u
n

d
an

cy
B

loat

C
N

E
D

irect
N

etw
ork

N
o

-
Y

es
-

Y
es

N
o

-
S

A
N

E
D

irect
N

eu
ro

n
lim

ited
-

N
o

-
Y

es
N

o
-

E
S

P
D

irect
N

eu
ron

N
o

-
Y

es
-

Y
es

N
o

-
C

o
S

y
N

E
D

irect
W

eig
h
t

N
o

-
Y

es
-

Y
es

N
o

-
C

o
m

p
.

C
o
S

y
N

E
In

d
irect

W
eigh

t
N

o
-

Y
es

-
N

o
N

o
-

C
E

D
evelo

p
m

en
ta

l
N

etw
o
rk

Y
es

N
o

N
o

Y
es

N
o

N
o

?
N

E
A

T
D

irect
N

etw
ork

Y
es

Y
es

Y
es

Y
es

Y
es

N
o

T
y
p

ically
H

y
p

erN
E

A
T

In
d

irect
N

etw
ork

Y
es

N
o

Y
es

N
o

Y
es

N
o

?
G

N
A

R
L

D
irect

N
etw

ork
Y

es
N

o
Y

es
N

o
N

o
Y

es
?

E
P

N
et

D
irect

N
etw

o
rk

Y
es

N
o

N
o

N
o

N
o

Y
es

?
C

O
V

N
E

T
D

irect
S

u
b

N
etw

o
rk

M
ostly

Y
es

Y
es

N
o

N
o

Y
es

?
E

A
N

T
/E

A
N

T
2

D
irect

N
etw

ork
Y

es
N

o
Y

es
Y

es
N

o
N

o
L

ikely
N

ev
A

D
irect

N
etw

o
rk

Y
es

Y
es

Y
es

-
Y

es
N

o
U

n
likely

C
G

P
A

N
N

D
irect

N
etw

ork
Y

es
N

o
N

o
Y

es
N

o
Y

es
N

o
R

C
G

P
A

N
N

D
irect

N
etw

ork
Y

es
N

o
Y

es
N

o
N

o
Y

es
N

o

46

2.7 Review of the NeuroEvolutionary Literature

2.7 Review of the NeuroEvolutionary Literature

The previous section, Section 2.6, presented a review of many popular NE methods; this

is summarised in Table 2.1. This section reviews the NE literature generally drawing from

observations made in Section 2.6 as well as the wider literature.

2.7.1 Encoding

The vast majority of NE methods evolve directly encoded ANNs which are described by

a single genotype. That is to say most genotypes do not use indirect or developmental

methods and most genotypes do not describe individual neurons or individual connection

weights. Which of the methods is most effective is not known due to a lack of good com-

parative empirical study. What is clear, however, is that none of those which evolve at a

connection weight or neuron level fully adapt topology, and as topology is thought to be

highly significant in the training of ANNs this could be considered a disadvantage. There-

fore it appears that the perceived benefit of topology evolution has driven NE research

towards methods which encode whole networks within each genotype; in order to facilitate

topology evolution.

2.7.2 Topology Evolution

Of the NE methods which evolve topology, many use mutation operators which incremen-

tally add/remove individual connections/nodes. However, as has been discussed, this may

result in a local search of topology; possibly resulting in the search becoming trapped

in topology local optima [15]. A possible advantage of using such a method is that the

topology size is likely to grow much more slowly than the case where many connections

/ nodes can be added via a single mutation instance. As smaller networks are considered

to generalise more effectively this may be an advantageous property. However, methods

such as NEAT, which do add single connections/nodes, still exhibit program bloat unless

the parameters are carefully crafted for its prevention [274]. Therefore, it is not clear if

only allowing a small number of nodes to be added is an effective method for promoting

small program sizes. This, coupled with the fact it may add restrictions to the search

of topologies, leaves a question over whether incrementally adding/removing individual

connections/nodes is an effective method for adapting topology.

With regard to evolving recurrent ANNs, all fixed topology methods are capable of

47

Chapter 2: NeuroEvolution

utilising recurrence simply by enforcing a recurrent topology16. This is because the topol-

ogy to be evolved can simply be chosen to be recurrent by the user. For instance, although

the implementation of SANE does not allow for recurrent connections, this is a restric-

tion which can be easily lifted; by allowing each node to connect its inputs to: program

inputs, the node itself, or program outputs. With this addition SANE would be capable

of evolving RANNs; but still with the limited topology evolution.

Of the NE methods which fully evolved topology, almost all were capable of evolving

RANNs17. This is intuitive as if the connection placement is being evolved, why limit it to

only feed-forward connections unless required. For instance, there will be tasks which do

not require recurrence; in these cases it is reasonable to limit the search to feed-forward

topologies. However, in general, restrictions should only be applied if they are known to

be beneficial.

There are three consequences of unrestrained topology evolution which are not typically

discussed in the literature. Firstly, whether the same two nodes are allowed to be connected

by two or more connections. Secondly, whether a node is allowed to connect to itself via

a recurrent connection. Thirdly, whether networks can be created without a continuous

path from inputs to outputs. One reference found to these issues was in the description of

NEAT: “add connection mutation, a single new connection gene is added connecting two

previously unconnected nodes” [267]. Therefore NEAT does not allow multiple connections

between the same two nodes, nor does it allow for self-connections. However, it seems

reasonable that others may have also added such restrictions. The interesting aspect of

this, is that any restriction to the search space should be justified, and no justification was

found in the literature. For instance, it may be beneficial to allow for self-connections (as

with GNARL), or even allow two nodes to be connected by multiple connections.

Of the NE methods which evolved topology, around half were capable of describing

non-functioning ANNs i.e. those without complete paths connecting inputs to outputs.

Such ANNs are unlikely to be of use and so the fact that they can occur is likely a

disadvantage. This is an example of where the search space can be justifiably restrained.

However in a completely unrestrained system, such topologies are possible. However it

may be possible to computationally cheaply identify such topologies and not suffer the

16That is, unless they are combined with additional training methods which are not compatible with
RANNs. Such as gradient based methods.

17All except CE which could also likely be extended to include the development of recurrent connections.

48

2.7 Review of the NeuroEvolutionary Literature

computational expense of evaluating such solutions using the fitness function.

It is often argued that the ability of NE methods to adapt network topology represents

a significant advantage over many other ANNs training methods. Arguments for this

include the fact that the user does not have to know a suitable topology in advance of

training, relationships between topology and connection weights can be exploited and

topologies which would be unlikely to be chosen/designed by a human can be considered.

However, little empirical investigation was found in the literature which assessed

whether evolving topology actually offers an advantage over evolving only connection

weights. The only example found investigated applying CMA-ES, a weight only evolving

method, to a number of control benchmark tasks using a range of fixed topologies. Al-

though the work was limited, in terms of assessing the importance of topology evolution,

the results did show “that the topology of the networks considerably influences the time to

find a suitable control strategy”, [130]. It was also reported that “results with fixed network

topologies are significantly better than those reported for the best evolutionary method so

far, which adapts both the weights and the structure of the networks” [130]. However, this

is to be expected, if the topology of a weight only evolving method is swept by hand and

the best topology found compared to a topology and weight evolving method, it is likely

to produce superior results. This is because the topology search has effectively already

been completed in advance by the user and the time required to do so was not considered

in the comparison. Therefore it is unfair to compare weight only and topology and weight

evolving methods when the topology of the weight only method has been ‘pre-optimised’

by hand.

Therefore there are still many open questions surrounding the benefits of topology and

weight evolving NE methods over just weight evolving methods. For instance, it may be

the case that evolving topology results in final solutions equivalent to those found using

“standard” topologies chosen following rules of thumb [47]; and then only evolving con-

nection weights. Although it is assumed there is a complex relationship between topology

and connections weights which can be exploited by evolution, this has never been shown.

For instance it may be the case that provided the topology is sufficiently complex through

the adaptation of connection weights alone solutions may be found easily; although factors

such as over training may also be influential in determining suitable topologies. Finally, it

is not currently known whether topology adaptation or weight adaptation is more signifi-

cant to the training of ANNs. For instance, topology manipulation may provide a benefit,

49

Chapter 2: NeuroEvolution

but it could be so minor that it is not worth the additional complexity it brings to NE

methods.

2.7.3 Transfer Function Evolution

Although not widely utilised, all NE methods are capable of adapting the transfer function

used within the ANNs. This can be achieved by the inclusion of additional genes describing

the transfer function used by each node. Methods which already optimise the transfer

functions used include General Neural Networks (GNN) [179], Parallel Distributed Genetic

Programming (PDGP) [227] and Hierarchical Coevolutionary Genetic Algorithm (HCGA)

[299]. Although in each case it was simply demonstrated that evolving heterogeneous

ANNs was possible, not that doing so provided a benefit to the search.

Interestingly, the amount of research concerning the use of NE to create heterogeneous

ANNs of evolved transfer functions is very limited considering repeated discussions that

it should be researched further. “Relatively little has been done on the evolution of node

transfer functions, let alone the simultaneous evolution of both topological structure and

node transfer functions” [313], “The current emphasis in neural network research is on

learning algorithms and architectures, neglecting the importance of transfer functions” [54]

and “Selection and/or optimisation of transfer functions performed by artificial neurons

have been so far little explored ways to improve performance of neural networks in com-

plex problems” [55]. Therefore, a thorough investigation into the use of NE to create

heterogeneous ANNs is a current omission from the literature.

2.7.4 Competing Conventions

As has been discussed, it is widely believed in the literature that NE suffers from competing

conventions when employing the crossover operator. This may explain why many NE

methods do not make use of crossover. Of those which do use crossover, only NEAT, and

by extension HyperNEAT, has addressed the issue18.

However, there is very little research which actually supports the claim that compet-

ing conventions poses an issue for NE. The often cited source for competing conven-

tions [236,301] provides only a theoretic discussion of its presence; no empirical evidence.

Additionally, in a comparison of many NE recombination operators it was shown that

18Of the NE methods which have been investigated in this thesis.

50

2.7 Review of the NeuroEvolutionary Literature

“simple crossover also fared well, suggesting that the permutation problem is not serious

in practice” [98].

Additionally, there is little evidence that the use of crossover poses a benefit for NEAT.

In Kenneth Stanley’s thesis [265] it was demonstrated that the use of crossover produced

superior results for NEAT than without. However, the improvement brought about by

the use of crossover was substantially less than any other aspect of NEATs algorithm

investigated. Additionally, the only benchmark used for the investigation was the trivial

XOR task and no statistical analysis was under taken. A thesis dedicated to the permu-

tation problem (competing conventions) also failed to demonstrate any empirical benefit

from using crossover [95]. Although in [95] the aim of the thesis was the study of the

permutation problem, not whether it resulted in a worse search, the fact that this was not

demonstrated is a questionable omission.

Therefore, although in the NE literature it is believed that competing conventions

represents a major issue when making use of crossover unchecked, there is surprisingly

little empirical evidence to support this.

2.7.5 Genetic Redundancy

None of the NE methods reviewed discussed the possibility of genetic redundancy being

present or whether it aided the evolutionary search. As genetic redundancy, and neu-

tral genetic drift, are important concepts in EA, and are thought to aid the search by

facilitating the escape of local optima, this appears to be an omission in the literature.

Interestingly, many NE methods appear to contain genetic material which can be active or

inactive in determining the phenotypes semantics; see Table 2.1. Therefore many NE may

actually be benefiting from neutral genetic drift without it currently being considered.

Whether the presence of genetic redundancy is beneficial is still an open question.

However, if it were shown to be of benefit it may help in the selection of NE methods and

guide future developments.

2.7.6 Program Bloat

A significant topic in the field of GP is program bloat [181, 256]. The only instance of

bloat being referenced in relation to the reviewed NE methods was for NEAT. Although

many NE methods do not adapt topology, therefore making bloat of no concern, of those

which do, bloat could be occurring. In the case of NEAT, it was found that it does not

51

Chapter 2: NeuroEvolution

exhibit bloat provided the parameters were correctly chosen [274], or conversely, that it

does exhibit bloat if steps are not taken to prevent it. Additionally, methods such as

EANT appear extremely likely to exhibit program bloat due it being closely modelled on

tree-based GP; which is known to suffer significantly from bloat.

If it were found that many NE methods were suffering from program bloat, it could

represent a disadvantage to the field in general. Interestingly however, there could also

be parallels to non-evolutionary ANN training methods. For instance, constructive train-

ing methods which iteratively add neurons during training [169], are known to produce

non-optimal network sizes [169, 170]; where the target is the smallest possible topology

which solves the given task. The issue of constructive methods producing larger than

necessary program structures could be likened to program bloat in the GP community.

An alternative solution to the issue of choosing a suitable topology in the ANN literature

is to use excessively large networks which are easier, if slower, to train. Then, if the issue

of over training is encountered, which is often the case with large network sizes, pruning

methods [238] are then employed to reduce the network size and improve generalisation.

Again this has parallels with program bloat; even if the networks are not gaining in size

during training. Interesting the wealth of pruning algorithms available in the ANN litera-

ture may also be applied, post training, to solutions found using NE. Therefore if bloating

is found to be a concern, there are already a range of algorithms which can be used to

lessen its detrimental effects. However, there are issues with program bloat besides final

solution size, such as increased training times, which pruning does not address.

It may be the case that as soon as topology is allowed to be freely adapted program

bloat is inevitable [175], unless prevention methods are taken, and so it is a “price to

pay” for adapting topology. This may be true for both evolutionary and non-evolutionary

training methods. Irrespective, program bloat is a topic which has been largely overlooked

by the NE community and one which should be assessed and addressed if present.

2.7.7 Empirical Study

A serious issue within the field of NE is the lack of empirical comparative study. The field

appears to be mainly application driven, which although important research in its own

right, does not give insight into the underlying algorithms. For instance, if a given NE

method appears to perform well on a new application which has never been investigated

previously, it is not known how other NE would have performed; or other standard ML

52

2.7 Review of the NeuroEvolutionary Literature

Table 2.2: Differences in the single pole benchmark implementations used in the Neu-
roEvolutionary literature.

Method Control System Bias Input Pole Starting position

NEAT [88] Continuous No 4◦

CNE [87] Continuous No 4◦

NEvA [89] Bang-Bang No 0◦

SANE [211] Bang-Bang (two outputs) Yes random◦

ESP [89] Bang-Bang No 0◦

CoSyNE [87] Continuous No 4◦

CGPANN [154] Bang-Bang No not stated

methods generally. Therefore, in order to be confident that a particular algorithm is worth

considering, it must be compared to other methods; both NE methods and more general

ML methods.

Unfortunately in the NE literature there is only one benchmark which is widely used

for comparison; single/double pole balancing19; see Appendix A for a description of the

pole balancing benchmark. This makes rigorous comparisons of NE methods challenging

if not impossible. It is desirable for the NE community to create a suite of benchmarks

for comparing new and existing methods; like the steps being taken in the GP community

[197]. Additionally, statistical significance testing is rarely used nor is any comparison of

the spread of results other than using standard deviations20.

The situation is worsened by the fact that one of the two pole balancing tasks, single

pole, is far too simplistic and completely unstandardised. For instance, Kenneth Stanley,

inventor of NEAT, dismissed the single pole balancing as being too simplistic for modern

methods [265]. He also stated, though email correspondence, that the task is so simple

that the distribution of the random numbers used during the search could affect the

results as much as the learning algorithm used. Additionally, Table 2.2 shows the single

pole benchmark set-up used by a range of popular NE methods. As can be seen, the

benchmark is not standardised meaning the comparisons are of little use.

19The breast cancer classification benchmark is also occasionally used within the NE literature. However
the version of the benchmark used is inconsistent.

20Which as the spread of results are often non-normal, or at least not shown to be normal, is of limited
use.

53

Chapter 2: NeuroEvolution

2.8 Discussion

This chapter has introduced NE along with a brief discussion of the underlying technologies

which are combined; namely EAs and ANNs. This introduction is given along with the

advantageous properties of NE and related concepts.

This chapter has also provided a taxonomy of the more popular NE methods comparing

and contrasting different aspects of each method. This taxonomy is also combined with a

wider literature survey to provide a high level assessment of the NE literature. Form this

literature review a number of insights were made; these are now summarised.

The ability to adapt ANN topology is considered a major advantage of many NE

methods over more traditional training methods such as gradient decent. These benefits

are thought to include: removing the requirement for users to know a suitable topology

in advance of training, exploiting relationships between connection weights and topology

and considering topologies which would otherwise not be considered by a human designer.

However, as has been discussed, there has been little research attesting to these perceived

benefits. Much of the reasoning for why it is beneficial is based on intuition or more

theoretical possibilities, rather than empirical evidence. Therefore, more research is needed

to assess the relative benefits of using NE to adapt network topology.

Despite many calls for more research, there have been relatively few NE methods which

utilise the ability to adapt and create heterogeneous ANNs. To what extent the ability

to evolve heterogeneous ANNs represents an advantage is unknown. Therefore, as it is

a feature implementable in nearly all NE methods, more research is needed to assess its

usefulness.

It is widely cited in the NE literature that competing conventions means that the

use of crossover is detrimental unless specific measures are taken for its prevention. This

has led to many NE not employing crossover. However, the most cited reasoning that

competing conventions represents a issue are is a theoretical paper [236], with empirical

investigations [98] giving evidence to the contrary. Therefore, it has not been convincingly

demonstrated that competing conventions does represent an issue for NE when employing

crossover.

Genetic redundancy is a major topic in the field of EAs and one which has been

overlooked in the field of NE. As many NE methods appear to contain genetic redundancy,

it is likely the case that they are benefiting from its presence. However, research is required

to demonstrate that this is the case.

54

2.8 Discussion

Program bloat is a major drawback of many GP methods. As many NE methods share

features with GP, it is likely that some/many of them also suffer from program bloat.

However, there has been relatively little study of program bloat in the NE literature.

The only reference found to bloat in the NE literature was for NEAT, in which it was

demonstrated that NEAT did indeed bloat unless careful parameter choice were made.

Therefore more research is needed into the presence of bloat in NE methods.

Finally, it has been discussed that the lack of good empirical comparison, and the lack

of standardised benchmarks, is a major issue in the field of NE. This is an issue which needs

to be addressed by the community as currently it is very challenging, if not impossible,

to compare the numerous NE methods. Issues like these can be highly detrimental to a

research field and need to be addressed if NE is to be taken seriously in the wider ML

community.

55

Chapter 3

Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) [202,208] is a form of Genetic Programming (GP)

[165,228] created by Julian F Miller and Peter Thomson in 2000. This Chapter introduces

CGP along with its extensions and related theory which will be referenced throughout the

thesis.

3.1 Structure of this Chapter

This chapter describes the general operation of CGP by first describing the encoding

and decoding scheme used in Sections 3.2 and 3.3 respectively. Then the evolutionary

strategy employed along with typical parameter choices are discussed in Sections 3.4 and

3.5 respectively.

Once CGP has been introduced, a number of advantageous properties over other GP

are discussed in Section 3.6. This is followed by a number of common applications of CGP

in Section 3.7.

The Chapter then introduces more advanced CGP topics comprising a number of

extensions which have been made to the basic algorithm in Section 3.8 and a discussion

of the theoretical research related to CGP in Section 3.9.

Finally a closing summary is given in Section 3.10.

3.2 Encoding

Each CGP genotype describes a directed acyclic graph of computational nodes; see Figure

3.1. The genotypes comprise function genes (Fi), connection genes (Ci,j) and output

57

Chapter 3: Cartesian Genetic Programming

Figure 3.1: Example CGP program with three inputs, three available nodes and two
outputs. The active genes are shown in bold with the inactive in grey. The corresponding
chromosome is as follows: 012 233 104 3 4

genes (Oi); where i indexes each node in the graph and j indexes each node’s inputs. The

function genes represent indexes in a function look-up-table and describe the functionality

(transfer function) of each node. The connection genes determine where each node acquires

its inputs. Connection genes may connect a given node to any previous node in the

program, or any of the program inputs; thus obeying the acyclic constraint. The output

genes address any program input or internal node and define which nodes are used as the

program outputs.

Originally, CGP programs were organised with nodes arranged in rows and columns,

with each node indexed by its Cartesian coordinates; see Figure 3.2. However, this is an

unnecessary constraint1 as any configuration possible using a given number of rows and

columns is also possible using one row with many columns; provided the total number

of nodes remains constant. This is because CGP can evolve where each node obtains its

inputs. Consequently, it is now common to use CGP with one row and n columns; with

each node only indexed by its column as shown in Figure 3.1. A generic (one row) CGP

chromosome is given in Equation 3.1; where α is the arity of each node, n is the number

of nodes and m is the number of program outputs.

F0C0,0...C0,α−1...Fn−1Cn−1,0...Cn−1,α−1: O0...Om−1 (3.1)

An example CGP program is given in Figure 3.1 along with its corresponding chromo-

some; for clarity, and following previous conventions, the function genes are underlined.

As can be seen, all nodes are connected to previous nodes or program inputs. Not all

program inputs have to be used, enabling evolution to decide which inputs are significant.

1However adding topology constraints to CGP can often be desirable. For instance when creating
Boolean logic circuits the depth of the circuit is related to the time it takes to execute. Therefore by
limiting the depth of the circuits created, by allowing many gates in each ‘layer’, the search can be
constrained to produce faster circuits.

58

3.3 Decoding and Executing

C0,0

C0,a

F0
n

F1
n+1

C
r-1,0

C
r-1,a

F
r-1

n+r-1

C1,0

C1,a

C
r,0

C
r,a

F
r

n+r

F
r+1

n+r+1

C2r-1,0

C2r-1,a

F2r-1
n+2r-1

C
r+1,0

C
r+1,a

C
cr,0

C
cr,a

F
cr

n+cr

F
cr+1

n+cr+1

C (c+1)r-1,0

C (c+1)r-1,a

F(c+1)r-1
n+(c+1)r-1

C
cr+1,0

C
cr+1,a

0

1

n-1

O0

O
m

O1

F
0C0,0 C0,a

F
1C1,0 C1,a

F
(c+1)r-1

C (c+1)r-1,0 C (c+1)r-1,a O0O1 Om

Figure 3.2: Generalised depiction of the original rows and columns form of a CGP chro-
mosome; shown graphically above and as a string below. Image taken from [202]

An advantage of CGP over tree-based GP, again seen in Figure 3.1, is that node outputs

can be reused multiple times, rather than requiring the same value to be recalculated

if it is needed more than once. A further advantage is that CGP can easily be applied

to Multiple-Input Multiple-Output (MIMO) problems. Finally, not all nodes contribute

to the final program output; these represent the inactive nodes (described by explicitly

redundant genes) which enable variable length phenotypes and neutral genetic drift.

3.3 Decoding and Executing

CGP is often thought of as an indirect encoding scheme as there is a process of removing

the inactive genes from the genotype; the genes associated with the inactive nodes as seen

in Figure 3.1. However, as the removal of the inactive nodes is not strictly necessary for

CGP to operate2, it is strictly a direct encoding scheme.

CGP phenotypes are decoded from their genotypes by first determining the active

nodes. This is often achieved recursively. First add the nodes indexed by the output genes

to an active node list. Then, for every node added to the active node list, add all nodes to

which they also connect. If an input node is reached, or a node is encountered which has

already been added to the active node list, do not add anything to the active node list.

The active node list then contains all of the active nodes. The list is then often sorted

from low node indexes (closest to the inputs) to high node indexes (closest to the outputs).

2Removing the inactive nodes serves to speed up the execution time of the phenotypes. Their removal
does not alter the phenotypes semantics.

59

Chapter 3: Cartesian Genetic Programming

As previously mentioned, although determining which nodes are active is not strictly

necessary for CGP to operate, calculating the outputs of nodes which are never used is a

waste of computation time. Additionally, as the number of inactive nodes is typically a

large proportion of the chromosome [82, 84, 207], not calculating their output results in a

large computational saving.

CGP phenotypes are then executed by first applying a set of inputs to the input nodes.

Each node present in the active node list is then updated in index order (i). Whenever

a node calculates an output value it is made available to all other nodes which connect

to that node. Once all of the nodes in the active node list have calculated their output

value, the node(s) indexed by the output gene(s) are then read and their value(s) used as

the output(s) of the phenotype for the give set of inputs.

Although anecdotal, it appears that many consider the computational expense of de-

coding CGP chromosomes to represent a disadvantage. It may be the case that some

believe that the decoding stage is necessary each time a chromosome is executed. This is

not the case, CGP chromosomes have their active nodes determined once and then only

these nodes are ever evaluated regardless of the number of times the phenotype is exe-

cuted. It may also be the case that some believe, that even though the chromosomes only

have to be decoded once, that this is still a disadvantage over directly encoded methods

which do not require this step. However, the computational time required to determine

the active nodes in a CGP phenotype is drastically smaller that the time to run any mean-

ingful fitness evaluation, and is therefore not significant in the total running time of the

algorithm.

3.4 Evolutionary Strategy

CGP typically uses an elitist (1+λ)-ES with λ = 4 [202] coupled with point or probabilistic

mutation. It is typically thought that using such a greedy algorithm would result in a

population with poor genetic diversity, which would often, and easily, became trapped in

local optima. However, the reason such a simple algorithm is thought to be so effective

for CGP is twofold. Firstly, CGP does not typically utilise crossover, see Section 3.8.1,

which reduces the requirement to maintain a genetically diverse population. Secondly,

the reason this does not lead to CGP easily becoming trapped in local optima is due

to the inactive genes creating many plateaus in the search space. These plateaus can

then be navigated across when the search becomes trapped in local optima via neutral

60

3.4 Evolutionary Strategy

genetic drift [202,287,318]. This provides a powerful mechanism for both increasing genetic

diversity in the population, and escaping local optima; see Section 3.9.1.

The initial population of (1+λ) chromosomes is typically generated randomly by setting

each gene in each chromosome to a random valid allele. Other methods are also sometimes

employed such as seeding the populations with previously known partial solution.

CGP often makes use of point mutation [208]. Point mutation is where the number of

gene to be mutated is chosen in advance and then this many randomly chosen genes are

selected and changed to a random allele each mutation instance. The number of genes to

be mutated is often expressed as a percentage of the total number of genes. An alternative

mutation method is probabilistic mutation; where each gene in the genotype is changed

to a random allele with a given probability.

Discussions with Dr Miller, a co-inventor of CGP, uncovered that point mutation was

favoured due to it representing a faster method for selecting the genes to be mutated. For

point mutation, n random genes are chosen. For probabilistic mutation, each of the genes

must be considered in turn and a randomly generated value compared to a mutation

probability in each case. However, as the main computation expense of Evolutionary

Algorithm (EA)s is the fitness evaluation, such computational saving in the mutation

method is likely to be insignificant. Additionally, the smallest increment in mutation rate

which can be used by point mutation is the reciprocal of the total number of genes in the

chromosome. However, probabilistic mutation can use any mutation rate. Probabilistic

mutation also causes a varying number of mutations to take place each time it is applied.

For instance, it would be possible, albeit unlikely, for all of the genes to be mutated,

or none. Conceptually this could provide an advantage. Take a situation where the

population is trapped in a local optimum which requires five of the one hundred genes

to change value in order to escape. Unfortunately the point mutation rate was set as

4%, resulting in four gene alterations each instance, and so the local optima can never be

escaped. Now, if probabilistic mutation were used, although on average a 4% mutation

rate would result in four genes being mutated, it is also reasonably likely that three or

five genes would be mutated. This means that it is at least now possible to escape the

local optima. Whether this happens in practice is unknown, but considering the small

additional computation expense, the fact it could happen may be enough to favour it as

a mutation method. A final, lesser advantage is that probabilistic mutation rates means

it is trivial to set separate mutation rates for the separate type of genes; if this were at

61

Chapter 3: Cartesian Genetic Programming

any point desired. For these reasons, probabilistic mutation is the mutation method used

throughout this thesis.

3.5 Parameters

The CGP search is controlled using a number of parameters. These parameters control the

evolutionary process and dictate the maximum size of the evolved solutions along with

other topology constraints. Common CGP parameters are given in Table 3.1. Typical

values for these parameters given where relevant. The remaining parameters are dictated

by the problem under investigation i.e. the node arity (α) depends on the functions in the

look-up-table and the number of nodes (n) on the complexity of the problem; although

overestimating the number of nodes has been shown previously to be advantageous [207].

Additional parameters occasionally used by CGP [202] include: levels back and short-

cut connections. The levels back parameters limits the maximum ‘distance’ allowed be-

tween two connected nodes. For instance, if the levels back parameter was set as one, then

a given node could only connect to a node in the previous column; when using the rows

and columns form of CGP. This can be used to limit the range of topologies searched. The

short-cut connections parameter is a Boolean flag which dictates whether output genes

can directly index input nodes; if short-cut connections are allowed then outputs may map

directly to inputs. This parameter is also used to restrict the range of topologies searched.

62

3.6 Advantages of Cartesian Genetic Programming

Table 3.1: Standard parameters used by CGP.

Parameter Description Values Typical Value

Generations The maximum number of generations al-
lowed before terminating the search.

Z>0 -

Mu (µ) The number of elite parents promoted
from each generation unchanged and used
to generate the children.

Z>0 1

Lambda (λ) The number of children generated from
the µ parents.

Z>0 4

Mutation Rate The proportion of the parent which is mu-
tated when creating a child.

R[0,1] ∼ 0.03

Nodes (n) The maximum number of nodes. Z>0 -

Arity (α) The arity of each node. Z>0 -

Function Set The functions made available to the nodes. - -

3.6 Advantages of Cartesian Genetic Programming

Although CGP has not been adopted to the same extent as the more popular tree-based

GP [300], it has a number of advantageous properties over tree-based GP which often

make it a suitable alternative:

• CGP does not suffer from program bloat.

• CGP greatly benefits neutral genetic drift.

• CGP is naturally suited to MIMO tasks.

• CGP allows internally calculated values to be reused.

Each of these advantages is now discussed.

3.6.1 No Bloat

Bloat can be defined as “program growth without (significant) return in terms of fitness”

[228], that is, if program size is increasing disproportionately to fitness improvements,

then bloat is said to be occurring. Bloat is a serious issue for tree-based GP [256] which

often results in excessively large program sizes unless actively prevented through fitness

penalisation or imposed upper limits on program size. Conversely, CGP has a natural

resilience to bloat [201] and so the whole topic of bloat is not an issue when using CGP.

Although anecdotal, the author has often encountered the perception that CGP does

not (or indeed cannot) suffer from bloat due to it using a fixed sized genotype. This

is incorrect. As CGP nodes can be active or inactive in the phenotype, the size of the

63

Chapter 3: Cartesian Genetic Programming

phenotype can rise and fall. Although this is not typically considered for tree-based GP,

as the genotype and phenotype are effectively equivalent, it is the bloat of the phenotype

which is of concern. Therefore, it would be possible for CGP to bloat, which would

manifest itself as an increase in the number of active nodes; or equivalently the size of the

phenotype.

3.6.2 Heightened Neutral Genetic Drift

The encoding used by CGP results in a high proportion of the genes typically being

inactive [207]. This enables a large amount of neutral generic drift to take place. As

neutral generic drift is thought to be greatly beneficial to the evolutionary search [287,318],

allowing easier escape from local optima, this is thought to be major advantage of CGP.

3.6.3 Multiple-Input Multiple Output

Typically tree-based GP is only capable of creating programs with multiple inputs and a

single output3. Conversely CGP is directly compatible with MIMO problems.

Additionally as CGP evolves directed graphs it is not limited by the constraints of

a tree structure whilst still being able to evolve tree structures given an evolutionary

pressure to do so.

3.6.4 Reuse of Internally Calculated Values

When using tree-based GP, a given node’s output can never be read by more than one other

node. This is limiting if the same functionality is needed multiple times. For instance,

take a trigonometric task where no trigonometric functions are provided, nor the value of

π. Discovering an approximation to π is likely to be beneficial to the evolutionary search

and used throughout the evolved program. In tree-based GP, if a value of π were to be

used multiple times, then it must be rediscovered multiple times; as an internally calculate

value can only be used once.

Conversely, CGP allows the outputs of any node to be used by any other node in the

program; provided it obeys the rules of acyclic connectivity. This means that if π were

discovered the same value could be used multiple times.

3Although there are forms of tree-based GP which are compatible with multiple outputs [228, 324],
these are typically not used. Additionally these forms of GP break the tree based representation removing
many of it’s beneficial properties including simple crossover operations.

64

3.7 Applications

3.7 Applications

Although CGP was originally developed for the implementation and optimisation of digital

circuits [204, 205], it has subsequently been applied to many other domains. This section

describes a brief sample of the applications to which CGP has been applied.

When applying CGP to digital circuit implementation [204,205], the function look-up

table is populated with Boolean logic functions, {AND,OR,NAND} etc, and the arity of

each node is set to two for two input logic gates or to three for three input logic gates

etc. Using this configuration CGP has been used to evolve implementations of given truth

tables. Further to this, the size of the evolved digital circuit has been incorporated into

the fitness function [139]; where smaller circuits were favoured once the truth table is

successfully implemented. This allowed CGP to evolved smaller circuits which typically

use less power, compute faster and are cheaper to manufacture. Recently this application

of CGP to Boolean circuit synthesis was extended to make use of SAT solvers to speed

up fitness evaluations [286]. This work was shown capable of generating circuits with

hundreds of inputs and thousands of gates [286]4.

CGP has also been applied to image processing [101] where it has been shown to

be a very powerful technique. Here the function set was comprised of a large number

of previously known image processing functions; incorporating domain knowledge into

the search. The technique was termed CGP-Image Processing and has been successfully

applied to image filtering [250], edge detection [202], medical imaging and real time object

detection with varying lighting, scale and rotation.

There have also been many medical applications including assessment of Alzheimer’s

disease [105] and classification of mammograms as containing benign or malignant tumours

[115,289,294].

Additionally CGP has also found application in function optimisation [206], Artificial

life [242], Bent function synthesis5 [119] and even visual art [18].

4Zdenek Vasicek’s and Lukas Sekanina’s work on using CGP to synthesise digital circuits received the
GECCO 2015 “Humies” Gold award.

5Which received the GECCO 2014 “Humies” Bronze award.

65

Chapter 3: Cartesian Genetic Programming

3.8 Extensions

Since its first development in 2000 CGP has undergone a number of extensions. This

section describes a range of notable extensions which have been applied to CGP.

An additional significant extension to CGP is its application to training Artificial

Neural Network (ANN)s; the wider topic of this thesis. However, a discussion of this

extension is left until Chapter 4.

3.8.1 Floating Point Encoding

CGP has been previously extended such than all of the genes were encoded as floating

point, rather than integer, numbers in order to facilitate crossover [42]. Here the con-

nection, function and output genes were represented using floating point numbers in the

range [0,1]. These floating point numbers were then mapped to their corresponding typical

integer values using Equation 3.2 for the function gene values and Equation 3.3 for the

genes which correspond to node indexes (connection genes and outputs); where genei is

the floating point value of gene i, functotal is the total number of functions in the function

look-up table (LUT), nodetotal is the total number of nodes (inputs and functioning nodes)

and floor (x) returns the largest integer which is ≤ x.

floor (genei ∗ functotal) (3.2)

floor(genei ∗ nodetotal) (3.3)

Using this floating point representation crossover was implemented by averaging the

gene values of two parent chromosomes, or selecting a random value within their ranges.

This is only possible if the number of rows and columns used for each chromosome is equal.

The work presented in [42], and subsequent work in [198], demonstrated that using

a floating point representation to facilitate crossover showed an advantage on a range of

symbolic regression tasks. This was also confirmed by the author via a unpublished masters

dissertation [278]. However, the authors masters dissertation [278] also demonstrated that

crossover implemented via a floating point representation showed no advantage generally

when a wider number of task domains were studied. No explanation for the discontinuity

was found.

66

3.8 Extensions

3.8.2 Self Modifying CGP

Self Modifying Cartesian Genetic Programming (SMCGP) [103, 104] is a developmental

extension to CGP. Each SMCGP chromosome begins by describing a valid CGP pheno-

type which includes nodes which adapt the phenotype configuration upon execution. As

an example, one SMCGP node type, upon execution, copies a section of the phenotype

and inserts it elsewhere in the phenotype.

SMCGP has been applied to scalable tasks such as generating the parity bit for arbi-

trary sized bit strings. On the first iteration the phenotype would generate the parity bit

for a one bit string and on the second iteration a two bit string and so on. SMCGP has

also been applied to predicting the digits of π and e to very high precision [102].

3.8.3 Multi-Chromosome CGP

A multi-chromosome version of CGP [293] was developed where each member of the popu-

lation is described by multiple chromosomes. Here an individual chromosome is responsible

for each output of a given task. For instance, if multi-chromosome CGP were applied to

implementing a two output circuit, there would be two chromosomes, one for each output.

Each of these chromosomes represents a standard CGP program with no interconnections

between them.

Although multi-chromosome CGP can be used to lower the dimensionality of the

search, it also removes code reuse. CGP enables code reuse by allowing sections of the

program to contribute to multiple outputs. For instance, if two outputs were both reliant

on two inputs being active and then on separate secondary criteria, multi-chromosome

CGP would have to separately evolve logic to check if these two inputs were high in both

chromosomes. Whereas in regular CGP this would only have to be evolved once and then

the result reused. Therefore lowering the dimensionality of the search by using multiple

chromosomes comes at the cost of limiting code reuse. Which of these two behaviours is

of greater benefit, is likely task dependent.

3.8.4 Modular CGP

Modular Cartesian Genetic Programming (MCGP), also termed Embedded Cartesian Ge-

netic Programming (ECGP), [292] is an extension to CGP which allows Automatically

Defined Functions (ADF) [166] through module acquisition. Here sections of the CGP

chromosomes are selected and added to the function look-up-table to be used as a func-

67

Chapter 3: Cartesian Genetic Programming

tion by other nodes. These captured sections of CGP chromosome are termed modules.

The power of module acquisition is that it allows the reuse of potentially useful pieces of

code as functions. For instance, if MCGP were applied to evolving digital circuits without

the XOR logic gate being available, MCGP could, potentially, create an XOR gate and

use it throughout the network as a function. The captured modules are also subject to

mutations such as those used by regular CGP; with additional mutation operations more

specific to MCGP.

3.8.5 Balanced CGP

Balanced Cartesian Genetic Programming (BCGP) [316] is the application of Biogeography-

Based Optimisation (BBO) [258] mechanisms to CGP. This is undertaken by allowing

migration of genetic material between solutions; similar to crossover in the EA literature.

The work also employed a mutation operator which considers the genetic material of the

entire population; not just the individual being mutated. The motivation is to create a

more balanced distribution of exploration and exploitation for CGP.

Although the results presented in [316] appear very promising, the only class of problem

investigated was symbolic regression. Interestingly, this is also the only type of task which

regular crossover applied to CGP has been shown to be beneficial [42, 198]. Therefore

important future work for BCGP is to identify if the previously observed benefits also

extend to tasks other than symbolic regression.

3.9 Related Theory

As well as empirical investigation there has also been substantial theoretical research

surrounding CGP. This research has not only resulted in a better understanding of the

operations taking place but has also influenced subsequent development. This section

describes some of the main theoretical work surrounding CGP.

3.9.1 Neutrality and Genetic Drift

The fact that CGP naturally contains inactive genes enables it to make use of neutral

genetic drift [202, 287, 318, 320]. Neutral genetic drift is where genetic material in the

chromosome has no effect on the phenotype’s semantics but is subject to mutation which

is passed on to subsequent generations. This process can be useful for the evolutionary

68

3.9 Related Theory

search. Take, for example, a population which is stable in a local optimum. Almost all

change in the active genes cause a decrease in fitness and so are penalised and not passed

on to the next generation. Any mutation in the inactive genes, however, has no effect on

the phenotype and are passes on from generation to generation. This process results in

a population with very similar active genetic material but possibly very diverse inactive

genetic material. Now, in this situation, any mutation which activates previously inactive

genetic material can have a very different effect depending upon the individual mutated;

as the inactive genetic differs between individuals. This means that a very wide range

of possibilities are available to the next generation. If there were no inactive genes, or

all of the inactive genes were very similar, the number of possibilities would be vastly

reduced. The ability of a population to accesses a much wider range of solution in one

generation is advantageous in two regards. Firstly, if there are environmental changes, the

next generation is sampling a much wider set of new solutions and so is more likely to find

new optima quickly. Secondly, the population is much more likely to escape local optima

again because it is sampling a much wider area of the solution space; whilst remaining

“trapped” in the local optima.

3.9.2 Length Bias

It has been shown by Brian Goldman [82,84] that CGP has a bias to networks of a certain

size; typically a low percentage of the available nodes. This is because every node connects

to previous nodes in the graph. This means that the number of nodes which can connect

to the nodes ‘closest’ to the inputs, low node index (i), is far higher than the number

of nodes which can connect to nodes ‘closest’ to the outputs, high node index (i). This

means that the probability of a give node being active is directly proportional to its node

index; position in the genotype. This results in the distribution of randomly created CGP

chromosomes, or mutations to chromosomes, not being even across the possible number of

active nodes. This finding is also in keeping with previous research which noted that CGP

typically uses a very low percentage of active nodes [207]. The exact number of active

nodes to which there is a bias is a function of the number of inputs, number of available

nodes, the arity of each node and the number of outputs.

Although methods which lessened length bias, by rearranging the active nodes during

the search [82, 84], were presented, it may be the case that length bias actually offers an

advantage. For instance, biases in a search are usually considered a disadvantage when the

69

Chapter 3: Cartesian Genetic Programming

applied task is a black box; as one does not know whether a bias to a given topology will

be appropriate. However, for classification tasks, smaller solutions are often favoured over

larger as they typically perform better on unseen data; mirroring the concept of Occams

razor [30]. Additionally, smaller solutions are often favoured generally because (a) they

are quicker to execute and (b) they are easier to understand and reason about. Finally,

a bias towards certain topologies does not limit the topologies which can be found given

sufficient evolutionary pressure. In this regard if a task requires a number of nodes larger or

smaller than the number to which there is a bias, this is still possible. Therefore, although

results were presented which showed removing length bias produced better results on

problems specifically designed to require a very large percentage of the possible nodes to

be active [82,84], on many real world applications, length bias may actually be of benefit.

3.9.3 Resilience to Bloat

As has been previously discussed, in Section 3.6, one of the advantages of CGP over other

GP methods is that it does not exhibit program bloat [201]. Although the cause of bloat

in GP is still debated [261], there are three main hypotheses: the protective hypothesis,

the drift hypothesis and the removal bias hypothesis.

The drift hypothesis is as follows. When a population is trapped in a local optimum,

many of the parent’s children will have the same or very similar fitness. A method often

used by EAs is to replace parents with their children if their fitnesss are equal or very

similar; with the aim to improve genetic diversity and escape the local optima with future

mutations. If adding or removing a small number of nodes does not lessen the fitness, then

the children can be larger or smaller. Additionally, it has been shown that for a given

chromosome size, there exists more solutions with the same fitness which are larger than

smaller [261]. Therefore, there exists an evolutionary pressure to increase the size of the

network when trapped in local optima.

In the CGP literature there are two rival hypotheses as to why CGP does not suffer

from bloat. One based on the role of neutral genetic drift [201] and the other on length

bias [82,84].

The first hypothesis is that CGP does not suffer from bloat due to the presence of

inactive genes meaning that the drift hypothesis no longer applies. It is argued in [201]

that CGP does not suffer from bloat due to the high levels of genetic redundancy. Their

argument is that when a population is trapped in a local optimum, the majority of the

70

3.9 Related Theory

mutations which do not course a reduction in the fitness, will be mutations affecting

inactive genes; as opposed to active genes. As mutations to active genes are likely to be

disruptive to the operation of the phenotype, this results in a lower fitness. Therefore,

when CGP is trapped in a local optima, it is more likely to mutate inactive genes than

increase the number of active genes. Mutating inactive genes does not cause the phenotype

to become larger, using more active genes does. Therefore CGP does not suffer from bloat.

The second hypothesis is that CGP does not suffer from bloat due to length bias

causing an evolutionary pressure to topologies of a certain size. It is though that this bias

overcomes the pressure to bloat to greater sizes; regardless of what is actually causing the

pressure to bloat.

3.9.4 Better Mutation

Typically the most computationally expensive aspect of an EA is evaluating the fitness

function. As CGP chromosomes contain many inactive genes two chromosomes are often

genotypically different but phenotypically the same. This can easily occur when creating a

child through mutation. If the mutation only changes inactive genes, then the parent and

child will be phenotypically identical. Evaluating the fitness of this phenotypically identical

child is therefore a waste of computational time [83]. This result has been analysed to

create more efficient mutation methods which do not result in wasted fitness evaluations

[83].

In order to combat these wasted fitness function evaluations three new mutation meth-

ods have been proposed [83]. The first method, skip, is to simply assign the parents fitness

to the child if they are phenotypically identical i.e. skip the fitness evaluation. This can

easily be achieved by keeping track of whether any active genes have been mutated; if only

inactive genes are mutated, then skip.

The second method, accumulate, attempts to increase the rate of neutral genetic drift.

This is achieved by first creating a child from the parent using regular mutation. If this

child is phenotypically identical to the parent, do not evaluate it but treat it as a parent

and use it to create a new child. This process is repeated until a child is created which is

phenotypically different. The final child is then evaluated using the fitness function. If it

is fitter than the parent than it replaces it, else the parent which was used to create this

final child replaces the original parent. This causes a large amount of neutral genetic drift

while ensuring only phenotypically different chromosomes are evaluated.

71

Chapter 3: Cartesian Genetic Programming

Figure 3.3: Comparison of various mutation methods on the 3 Bit Even Parity benchmark.
Image taken from [83].

The third method, single, attempts to always produce children which are phenotypi-

cally different. This is achieved by continuing to mutate random genes until a single active

gene is mutated; at this point the mutation stops. This ensures each child is phenotypi-

cally different from its parents. Single also has the advantage that it represents a mutation

method which does not require the user to specify a mutation rate.

The three new mutation methods were compared in [83] and a typical example result

on the three bit parity task is given in Figure 3.3. As can be seen, skip never performs

worse than normal mutation and significantly reduces evaluation time. It is therefore an

important development for CGP.

It can also be seen that the additional neutral genetic drift brought about by accumu-

late does not improve over skip; which is also utilised by accumulate. It can therefore be

seen that increasing the levels of neutral genetic drift does not improve the search. It was

later shown that CGP rarely re-activates an inactive node without it first being mutated

. Using accumulate to increase the level of neutral genetic drift is therefore likely having

little effect; as the genes made active have already typically been mutated at least once

anyway.

Finally, it can be seen in Figure 3.3 that single mutation method performs very well

and does not require the user to specify a mutation rate; a significant advantage. However,

in the experiments presented in [84] the following parameters were used: 3000 nodes each

with an arity of two. From [207] it is known that these parameters, on this benchmark,

72

3.10 Summary

result in around 5% of the nodes being active on average. This means on average 20 nodes

will be mutated before an active node is reached and the mutation terminates. Mutating 20

nodes in 3000 represents an effective mutation rate of 0.67%; with the additional constraint

that at least one active gene will always be mutated.

This means using the parameters chosen in [83], single is effectively equivalent to

using a mutation rate of 0.67% coupled with the advantage of skip; chromosomes are

only evaluated which have changes to active nodes. However, if more or less nodes were

used, or a higher or lower arity, single would result in a different effective mutation rate.

Therefore, although single appears to have the advantage of removing a parameter choice

from the user, it effectively chooses a mutation rate based on the configuration of the

chromosomes; which is still chosen by the user. Additionally, there is also no guarantee

that the effective mutation rate determined by single will be effective; for instance when

using a smaller/larger number of available nodes or a smaller/ larger node arity. Therefore

more research is needed into the single mutation method before it can be recommended

generally.

3.10 Summary

This chapter has provided a background to CGP. The basic technique has been introduced

along with typical parameter choices and common applications. Additionally a number

of extensions to the original algorithm have been described as well as theoretical research

relating to CGP.

73

Chapter 4

Cartesian Genetic Programming

of Artificial Neural Networks

Cartesian Genetic Programming of Artificial Neural Networks (CGPANN), originally de-

veloped by, M Khan in 2010 [154] is a NeuroEvolution (NE) method based on the ap-

plication of Cartesian Genetic Programming (CGP) to the training of Artificial Neural

Network (ANN)s.

This chapter introduces and presents CGPANN as used throughout this thesis along

with a collection of initial experiments.

4.1 Structure of this Chapter

Section 4.2 introduces the NE method CGPANN. Section 4.3 gives a discussion of the

possible advantageous properties of CGPANN. Section 4.4 gives a summary of previous

applications of CGPANN.

The Chapter then presents a number of initial experiments concerning the use of

CGPANN. Section 4.5 presents the application of CGPANN to a number of standard

benchmarks tasks. Section 4.6 investigates the suitability of connection switch genes; an

additional gene type added to previous implementations of CGPANN. Section 4.7 then

presents an investigation into whether CGPANN, like CGP, has a natural resistance to

program bloat. Finally Section 4.8 gives a closing summary of the Chapter.

75

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

4.2 Implementation

CGP is adapted to evolving ANNs simply by the inclusion of connection weight genes

(Wi,j) for every connection gene (Ci,j) in the chromosome. This alteration, coupled with

the use of typical ANN transfer functions (such as logistic sigmoid), and a higher node

arity than that typically used by CGP, is all that is needed to encode ANNs using CGP.

This alteration results in a genotype of the form given in Equation 4.1; using the less

constrained one row form of CGP. Where the symbol definitions are as follows: Fi are the

node function genes, Ci,j are the connection genes, Wi,j are the connection weights genes,

Oi are the output genes, i indexes each node in the graph, j indexes each node’s inputs,

n is the number of available nodes, α is the node arity and m is the number of outputs.

A simple example CGPANN phenotype is shown in Figure 4.1. Note that no connection

weight genes are associated with the output gene(s). Although this would be possible, in

CGP the output gene(s) only index the nodes which are themselves used as outputs, and

do not represent computational entities in their own right.

F0C0,0W0,0...C0,α−1W0,α−1.....Fn−1Cn−1,0Wn−1,0...Cn−1,α−1Wn−1,α−1: O0...Om−1 (4.1)

Figure 4.1: Example CGPANN program with three inputs, three available nodes and two
outputs.

The initialisation of CGPANN genotypes is almost identical to that of standard CGP.

The only difference is the initialisation of the newly added connection weight genes. The

connection weights are initialised randomly from an evenly distributed1 user defined range

e.g. ±1 or ±5.

Mutations also follow the same procedure as for standard CGP. With mutation to

connection weight genes following the same procedure as for initialisation; changed to

1Although other distributions could also be used.

76

4.3 Possible Advantages

a random value from an evenly distributed user defined range. The selection of which

connection weight genes are to be mutated depends upon the mutation method used;

typically point or probabilistic mutation. In the work presented throughout this thesis,

probabilistic mutation is used. Therefore each connection weight gene is mutated with a

give user defined probability.

CGPANN genotypes are decoded into their phenotypes via the same mechanism as

described for CGP; Section 3.3. The additional connection weight genes are decoded and

assigned to their corresponding connections; at least for those associated with active nodes.

Similarly, CGPANN phenotypes are executed via the same mechanism as described for

CGP, Section 3.3. Except that the inputs to each functional node are first multiplied

by their corresponding connection weight before being passed into, and processed by, the

node transfer function.

In the work presented here CGPANN uses the same Evolutionary Strategies (ES) as

for CGP, namely a (1 + λ)-ES.

Interestingly, CGP has also been applied to creating ANNs using a very different

method to that described. In work presented by G. Khan [147], multiple regular CGP

chromosomes were used to describe different aspect of a biologically plausible neuron.

This application of CGP to ANNs was termed Cartesian Genetic Programming Compu-

tational Network (CGPCN). In CGPCN groups of neurons, described by multiple CGP

chromosomes, are placed together and depending upon their chromosomes, the neuron’s

dendrites and axons grow, live or die. These dynamic ANNs were inspired by biological

brains and when applied to wumpus world [246], a popular artificial intelligence problem,

were shown to exhibit continuous learning throughout the task. CGPCN has also been

applied to co-evolving two agents which played checkers [148] with promising results.

4.3 Possible Advantages

CGPANN potentially has a number of advantages over many other NE methods. This

section discusses a range of interesting properties which come from applying CGP to the

training of ANNs. Some of these advantages carry over from advantages which apply to

the underlying CGP algorithm.

• CGP is naturally suited to describing ANNs

• CGPANN allows a non-local search of topology

77

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

• CGPANN allows custom topology constraints

• CGPANN can evolve recurrent ANNs

• CGPANN is likely not to suffer from program bloat

• CGPANN is likely to benefit from neutral genetic drift

• CGPANN does not utilise crossover

• CGPANN can benefit from previous CGP extensions

• CGPANN can benefit from theory relating to CGP

4.3.1 Naturally Suited

As CGP evolves directed acyclic computation graphs, and ANNs are an instance of a

directed acyclic computation graph, it is naturally suited to evolving ANNs. The only

distinguishing feature of ANNs is that the connections have associated connection weights

i.e. ANNs are an instance of a weighted directed computational graph. However, as has

been described, this is a trivial addition to CGP.

Although a weighted form of tree-based Genetic Programming (GP), such as [275],

could be applied as a NE method, it would only be capable of evolving rather limited

tree-based ANNs. This means node output values would not be able to be used multiple

times; as with CGPANN and ANNs generally. Additionally, the ANNs would only sup-

port a single output; unless more atypical forms of tree-based GP were used [324]. This

makes CGP much more suited to evolving ANNs than many other GP methods including

standard tree-based GP.

4.3.2 Non-Local Search of Topologies

A common technique for manipulating topology used by many NE methods is to start

with a minimal network and iteratively add/remove individual nodes/connections during

the evolutionary search. This has the possible advantage of first searching over smaller

topology instances and only becoming larger if there is evolutionary pressure to do so;

promoting simpler solutions potentially aiding generalisation. However, adding individual

neurons/connections via mutation is akin to a local search of topology, which is likely to

be prone to becoming trapped in topology local optima [15].

78

4.3 Possible Advantages

(a) Parent

(b) Child

Figure 4.2: Small topology mutation. The parent chromosome (a) has had a single topol-
ogy mutation resulting in a child (b) where node 4 is now connected to input 0. All other
nodes are left unchanged.

(a) Parent

(b) Child

Figure 4.3: Large topology mutation. The parent chromosome (a) has had a single topol-
ogy mutation resulting in a child (b) where the output is now connected to input 0. All
other nodes are now unused.

The mechanism by which CGPANN evolves topology means that mutation can cause

small or large structural changes; see Figures 4.2 and 4.3 respectively. This means that,

at least in theory, CGPANN could more easily escape topology local optima.

79

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

Additionally, although CGPANN does not start with minimal solutions and grow

larger, there is a length bias [82] to a given, often small, number of active nodes. This

could therefore aid with generalisation.

4.3.3 Topology Constraints

Another topology benefit of CGPANN is that it can also be used to easily evolve topology

under given user constraints. If the original rows and columns forms of CGP is used,

CGPANN can restrain the search to topologies of a given width or depth. This can

have a number of advantages. For instance, if it were known that the final application

had n parallel processors to run the ANNs created by CGPANN. CGPANN could be

configured to never contain more than n nodes in a given layer; by setting the number of

rows and columns and the levels back parameter accordingly. Additionally, if there were a

constraint that the final ANNs must run in a time budget of m node evaluates, CGPANN

could evolve solutions with n rows, m columns and levels back equal to one; thus meeting

the time restraint by utilising the parallel hardware. Under these conditions CGPANN is

free to evolve topology within the computational constrains of the final application.

Additionally, if the evolved ANNs were to be implemented in hardware, there may be

limited connectivity between nodes. For instance a node in a given layer may only have

connections to nodes in the previous layer, or the previous two layers. In this scenario

CGPANN could evolve ANNs with CGPs levels-back parameter set as one or two (see

Section 3.5); again allowing topology evolution within real world constrains; this time

connectivity limitations.

It may also be possible to limit the topologies which can be reached using other topol-

ogy and weight evolving NE methods. For instance, Evolutionary Programming Artificial

Networks (EPNet) could be used where the disallowed connections could be set in the

matrix of connections and never allowed to be altered during mutation. Additionally,

Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) could also be

used by not allowed certain connections to be present in the final ANNs regardless of the

output of the NeuroEvolution of Augmenting Topologies (NEAT) program constructing

the network. However, for other NE methods, such as NEAT, Cellular Encoding (CE) or

GeNeralized Acquisition of Recurrent Links (GNARL), restricting the created topologies

would require analysis of the constructed phenotypes and then retrospective prevention,

rather than certain topologies never being possible.

80

4.3 Possible Advantages

4.3.4 Recurrence

As is shown later in Chapter 5, CGP can be easily extended to be capable of describing

cyclic program structures. As this same extension can also be applied to CGPANN it too

is capable of evolving Recurrent Artificial Neural Network (RANN)s; as is demonstrated

in Chapter 10.

Although many other NE methods can also create RANNs, such as Conventional Neu-

roEvolution (CNE), GNARL or NEAT, this means the ability of CGPANN to create

RANNs is not an exceptional feature. However, if it was not present it could be consid-

ered a limitation.

4.3.5 Program Bloat

Due to an absence of discussion in the literature, it is unknown whether many topol-

ogy optimising NE methods suffer from program bloat; See Table 2.1. It does however

appear likely that many methods, such as Evolutionary Acquisition of Neural Topolo-

gies (EANT)’s tree-based representations which utilises sub branch crossover, would be

likely to bloat.

One of the main theories concerning why GP in general suffers from bloat is the drift

hypothesis [261]; described in Section 3.6.1. As the drift hypothesis applies to many of

the topology evolving NE method it appears likely that they would also / do suffer from

program bloat. However many NE method bias the search towards smaller topologies, for

instance by making the likelihood of removing a node much higher than adding a node.

Therefore without empirical investigation it is unknown whether these methods do or do

not suffer from program bloat.

Whether CGPANN, like CGP, is resilient to bloat is investigated in Section 4.7.

4.3.6 Neutral Genetic Drift

One of the distinguishing features of CGP is the high proportion of inactive genetic ma-

terial aiding the search though the process of neutral genetic drift; see Section 3.6.2. As

CGPANN contains all of the properties of CGP which enable neutral genetic drift, it too

is likely to benefit from its presence.

The role of neutral genetic drift in CGP and CGPANN is investigated in detail in

Chapter 7.

81

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

4.3.7 No Crossover

Previous research has investigated using CGPANN with the crossover evolutionary opera-

tor [191]. This work utilised the same floating point representation as previously used for

CGP [42, 198, 278]. However, in the results presented [191], it was shown that the use of

crossover provided no benefit to CGPANN.

In the NE literature crossover is also often considered a disadvantage: “One of the

main problems for NE is the Competing Conventions Problem, also known as the Per-

mutations Problem [236]. “Competing conventions means having more than one way to

express a solution to a weight optimization problem with a neural network. When genomes

representing the same solution do not have the same encoding, crossover is likely to pro-

duce damaged offspring.” [266]. Although, as is discussed in Section 2.7.4, the evidence

for believing that competing conventions is a problem for NE is not as strong as is often

suggested in the literature. Additionally, methods which have been shown to prevent the

issue of competing conventions, such as NEAT, are typically very complex.

Therefore, in this thesis, CGPANN is implemented without crossover due to it em-

pirically being shown not to be beneficial and because of the possible issue of competing

conventions; even if the evidence for its detriment is not strong. However, this does not

represent a disadvantage of CGPANN. It has been shown that CGP makes use of neutral

genetic drift to aid the escape of local optima without requiring large populations or the

use of crossover; see Section 3.9.1. Additionally, this results in a much simpler algorithm

as not only does crossover not have to be implemented, but no complexities have to be

added to combat the possible issue of competing conventions.

4.3.8 Extensions

As is described in Section 3.8, CGP has had a number of extensions applied the base algo-

rithm since its original formulation in 2000. Many, if not all, of the extensions described

would also be applicable to CGPANN. An example of this has already been described

where CGP’s crossover extension [42,198,278] was applied to CGPANN [191].

Another interesting possibility would be to applying the Modular Cartesian Genetic

Programming (MCGP) extension to CGPANN. The application of MCGP would enable

the evolution of Modular Neural Network (MNN) where whole sections of the ANN can be

captured and reused throughout the wider ANN. Interestingly, the modules created from

applying MCGP to ANNs would be very different from what are currently termed MNN.

82

4.3 Possible Advantages

In the ANN literature, MNNs are typically enforced by selecting n modules and training

them independently; or alternatively by identifying modules if they happen to be present

in trained ANN. For instance in an extension to EPNet [173], the beginning of modules are

identified and their shared nodes actively removed to enforce pure MNNs. The modules

created by applying MCGP to ANNs would always be pure (no interconnections) and

could also be repeated multiple times throughout the MNN.

It would also be possible to apply the Self Modifying Cartesian Genetic Programming

(SMCGP) extension to CGPANN thus evolving ANNs which grew and self-adapted during

their lifetime; possibly allowing similar application to that of CGPCN.

Additionally it would be possible to apply the multi-chromosome CGP extension in or-

der to describe ANNs using many chromosomes. This would results in a multi-chromosome

NE method such as those described in [195].

What these extensions demonstrate is that by basing a NE method on a mature

Evolutionary Algorithm (EA), many of the previous developments can be directly applied

and potentially benefited from. Additionally, any future developments to CGP are also

likely applicable, such as better use of neutral genetic drift or the discovery of more suitable

mutation operators; such as those discussed in [83]. Similarly any developments made to

CGPANN can likely be “back-ported” to the underlying CGP algorithm.

Finally, although CGPANN is based on CGP, it does not mean that it cannot also

benefit from extensions made to other GP methods. For example, tree-based GP has

been previously combined with reinforcement Q-learning [295] and applied to the domain

of maze searching [53]. In such work it was possible to facilitate both Lamarckian [171]

and/or Baldwinian evolution2 [21] through continuous learning and adaptation during fit-

ness evaluation. Interestingly, a similar combination of CGPANN and Q-learning may

also be viable. This could be achieved by using CGPANN to transform input data into

the states of a Q-table to be adapted by Q-learning; possibly lowering the dimension-

ality or providing more tractable state information. Alternatively, CGPANN could be

used to selected between differing Q-tables depending upon the current inputs; more sim-

ilarly matching the work in [53]. Therefore, not only can CGPANN benefit from CGP

developments and extensions, but it can also benefit from developments in the wider GP

community.

2Where Baldwinian evolution considers the ability of an individual to learn during its lifetime with
regard to the likelihood of it reproducing and passing on this ability to the next generation.

83

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

4.3.9 Previous Theory

One of the advantages of basing a NE method on an established EA is that existing theory

can often be directly applied in order reason about the behaviour of the new method.

An example of this is the previously developed theory concerning the presence of length

bias in CGP; see Section 3.9.2. The rationale behind why CGP exhibits a length bias

directly applies to CGPANN. Although the larger arity typically used by ANNs means

that the length to which there is a bias will be different to when only one or two node

inputs are used. Additionally, the presence of a bias may provide a benefit to CGPANN,

as the type of application to which ANNs are often applied include classification, symbolic

regression and forecasting; tasks which typically suffer from over training. Having a length

bias restraining the growth/size of the network may therefore be an advantage by aiding

generalisation.

Additionally, the mutation operators described in Section 3.9.4 will also directly apply

to CGPANN. However as many of the methods indirectly make assumptions about the

node arity used they may not be as beneficial. For instance, as discussed in Section

3.9.4, the reason the single mutation method may have been so effective is because it was

equivalent to a 0.67% mutation rate; based on the average number of active nodes for the

particular parameters used. However, using a larger arity will shift the length bias so more

nodes on average are active; loosely because more connections means more things can be

connected to. This means using the higher arity associated with ANNs would result in

single having a much lower effective mutation rate; as there are more active genes the

chances of randomly selecting one is higher. Therefore the influence of a higher arity may

diminish the effectiveness of the single mutation method. However, mutation methods

such as skip will still be likely to offer a significant advantage.

4.4 Previous Applications

In addition to the work presented in this thesis, CGPANN has also been previously applied

to a range of application; both real world and “toy”.

CGPANN has previously been applied to both the single and double pole balancing

control problems; [154] and [156] respectively. A form of recurrence has also been previ-

ously added to CGPANN, in the form of an enforced Jordan network3, which has been

3Where one or more program outputs are fed back as inputs.

84

4.5 Initial Experiments

applied to a form of the double pole balancing where velocity information is withheld; see

Appendix A.

CGPANN has been applied to a range of classification tasks including the breast cancer

data set [5, 191] provided by the University of Wisconsin Hospital [189]. Additional clas-

sification applications include classification of arrhythmia [6] and detecting breast cancer

in mammograms [7].

Additionally, CGPANN has been applied to forecasting using both purely feed forward

topologies and those which enforced a Jordan architecture. Forecasting applications in-

clude predicting client requests in Cloud Data centres [12], estimating the fame size for

multimedia streaming applications [146, 151, 280], predicting foreign currency exchange

rates [214], forecasting short-term daily peak electric power supply load [149, 152] and

assessing the sustainability of new food products [11].

4.5 Initial Experiments

This section describes a number of initial experiments applying CGPANN to a range of

standard benchmark tasks. These experiments serve to demonstrate the basic application

of CGPANN to standard benchmarks. It also allows the performance of CGPANN to be

compared against other NE methods.

Although CGPANN has been previously applied to two of the benchmarks used here

(double pole balancing and breast cancer classification), the experiments are repeated for a

number of reasons. Firstly, the previous CGPANN results included the use of connections

switch genes. This is an unnecessary addition to CGP which is not required to evolve

ANNs; as shown in Section 4.6. Secondly, the implementation of the benchmarks used

in previous application of CGPANN does not match that typically used; this makes the

previous comparisons less valid. Thirdly, these initial experiments serve to demonstrate

the functionality of the CGPANN implementation used throughout this thesis before it is

extended and applied to more challenging applications.

4.5.1 Double Pole Balancing

The double pole balancing benchmark is a popular benchmark commonly used within the

NE community; described in Appendix A. It is also more standardised than its single pole

counterpart, making it more useful as a benchmarking task; see Section 2.7.7.

85

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

As the pole balancing benchmark requires the production of both positive and negative

outputs the bipolar logistic sigmoid function is typically used; as it is here. The bipolar

logistic sigmoid function is the logistic sigmoid ‘stretched’ to the range ±1; Equation 4.2.

Additionally, the majority of the NE methods applied to the double pole balancing used

a connection weight of ±1. Although this may not be an optimal choice, as the majority

of the other NE methods this restriction of weights, it should be considered part of the

benchmark. This is because if two methods produce differing results but both use differing

connection weight ranges, it would not be known if this were because of the algorithmic

differences or the connection weight range used.

f(x) =
1− e−x

1 + e−x
(4.2)

CGPANN has been previously applied to the double, and single, pole balancing tasks

in [154] and [156] respectively. In such work CGPANN showed remarkable results for both

tasks, solving them faster (in terms of number of evaluations) than any other NE method.

However, due to implementational differences in the benchmark, the usefulness of the result

is diminished. For instance when M. Khan et al. conducted their experiments they used

both logistic and radial basis function transfer functions rather than just logistic transfer

functions. They also implemented a “bang-bang” control system rather than the typical

continuous force control system; see Appendix A for details of the two control systems.

As it is unknown what effect these differences have on the difficulty of the benchmark, the

results cannot be used in a fair comparison with other NE methods.

Like many of the other NE methods applied to this task, the parameters used here for

CGPANN were optimised before presenting results. The parameters found which produced

the best results were: a mutation rate of five percent, one hundred available nodes each

with an arity of thirty. The evolutionary strategy was left unchanged as (1 + 4)-ES.

Following the most commonly used conventions, a continuous control system was used

with the magnitude of the applied force to always made to be greater than 1
256 × 10N; see

Appendix A.

The results of applying CGPANN to the double pole balancing benchmark, averaged

over 100 runs, are given in Table 4.1 where it is compared to many other NE results.

As can be seen in Table 4.1, CGPANN compares very well, outperforming many pop-

ular NE methods including: Symbiotic Adaptive NeuroEvolution (SANE), Enforced Sub-

Population (ESP) and NEAT. CGPANN also produces comparable results to Coopera-

86

4.5 Initial Experiments

Table 4.1: Comparison of results for the Double Pole Balancing benchmark

Method Evaluations Standard Deviation Averaged Over

EP [305] 307200 - -
CE [93] 34000 - >30
CNE [90] 22100 - 50
EuSAIN [225] ≈19000 - 100
SAIN [90] 12600 - 50
Q-MPL [90] 10583 - 50
ESP [90] 3800 - 50
NEAT [266] 3578 2704 120
NEvA [276] 2177 - 50
CGPANN 1111 1476 100
CoSyNE [87] 954 - 50
CMA-ES [130] 895 - 50
DXNN [252] 725 - 100
DirE [93] 410 - >30

tive Synapse NeuroEvolution (CoSyNE) and Covariance Matrix Adaptation Evolutionary

Strategies (CMA-ES) but requires significantly more evaluations than Deus Ex Neural

Network (DXNN) and Directly Encoded NeuroEvolution (DirE). As the complete results

of the other methods are not available, no statistical significance testing can be undertaken;

the standard deviations are often given, but as the distributions are typically non-normal,

their usefulness is diminished4.

Unfortunately the benchmark implementation used by some of the other NE methods

differed from the typical implementation meaning a true comparison is not possible. These

differences include: NEAT used their own modified sigmoid function, DirE included an

extra unit bias input, ESP used a weight range of [−6, 6] and CoSyNE [−10, 10]; the

others used a range of [−1, 1] as did CGPANN in the results presented here. It is likely

that the transfer function, extra bias input and connection weight ranges will have an

effect on the difficulty of this benchmark, but to what extent is not known. Therefore

this diminishes the comparison. As previously discussed in Section 2.7.7, the lack of

standardised benchmarks in the NE literature is a major issue and one which needs to be

addressed if fair comparative NE studies can be undertaken.

4In fact as can be seen from the CGPANN results in Table 4.1, the standard deviation is larger than
the mean. This demonstrates that the data is non-normal in distribution.

87

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

Table 4.2: Comparison of results for the Ball Throwing benchmark

Method Evaluations Standard Deviation Averaged Over

CoSyNE [164] 10224 - 100
Compressed CoSyNE [164] 8220 - 100
CGPANN 6069 5990 100

4.5.2 Ball Throwing

Although not as widely adopted as the double pole balancing benchmark, the ball throwing

benchmark has been used by one of the more popular NE methods, CoSyNE, and a derived

method, Compressed CoSyNE. Although this makes for a small comparison, it does help

evaluate CGPANN and provides further results for future NE to compare against. It is also

an example of the type of task to which ANNs typically cannot be applied, a reinforcement

learning type task, and so, like the double pole balancing, serves to showcase NE. The

ball throwing benchmark is described in Appendix A.

For this benchmark, the CGPANN parameters were also varied in order to find suitable

values. The parameters which produced the best results were as follows: a mutation

rate of ten percent, a maximum of forty nodes each with a maximum arity of ten. The

evolutionary strategy was left unchanged as (1+4)-ES as was the connection weight range

as ±1. Using these parameters ninety-eight of the one hundred runs found a solution in

the allowed 20001 evaluations.

The results of applying CGPANN to the ball throwing benchmark, averaged over 100

runs, are given in Table 4.2. It can be seen from Table 4.2 that CGPANN outperformed

both CoSyNE and Compressed CoSyNE in terms of the number of evaluations, with two

of the one hundred runs failing to find solutions.

4.5.3 Proben1 - Cancer

The Proben 1 - cancer benchmark is a popular classification task often used in the field

of ANNs; see Appendix A. Unfortunately there are many version of the breast cancer

data set and many papers present, and compare, results using very different experimental

set-ups. This phenomena of popular classification benchmarks splitting up into many

separate versions has previously been documented for the Iris dataset [28] and also serves

to diminish the worth of the benchmark, limiting the number of fair comparisons which

can be made. Here the results presented use the Proben 1 version of the cancer dataset

and follow the methodology laid out in the Proben 1 document [229].

88

4.5 Initial Experiments

Table 4.3: Comparison of results for the Proben 1: Cancer 1 benchmark

Method Proben Compliant % Train Err % Test Err

LM [94] No 5.5 12.2
MLP [235] No - 6
SCG [94] No 0.2 5.4

MLP [213] No - 5.18
RAIC [97] No - 5.01

NEFCLASS [213] No - 4.94
SFC [2] No - 4.43

C4.5 [97] No - 4
LLS [94] No 4.0 4.0

Fuzzy-GA [223] No 3.00 3.98
CMAC ANN [312] Yes 0.59 3.94

RBFNN-Kalman [251] No - 3.6
BP [224] Yes - 3.506
GDX [94] No 2.3 3.3

RBFNN-RLS [251] No - 3.2
LLWNN-RLS [251] No - 2.8
AR + ANN [141] No - 2.6

SBS-BP-PSO [120] No - 2.49
ACS [224] Yes - 2.184

CGPANN Yes 2.34 2.18
MFNNCA [140] Yes 24.86 2.00

GA-MOO-ANN [9] Yes - 1.9
M-RAN [317] Yes - 1.72
LP MSM [188] No 0.0 1.7
LS-SVM [226] No - 1.47

MFN [317] Yes - 1.38
EPNet [314] No 3.773 1.376

LSA machine [10] No - 1.2
SBS-BP-LM [120] No - 1.17

HS [144] No - 0.71

In this study CGPANN is naively applied to the classification task with no steps taken

to prevent over training. CGPANN was trained using the training set and then evaluated

on the testing set. A more rigorous application of CGPANN as a classification method is

presented in Chapter 9.

The parameters which produced the best training performance used a mutation rate

of one percent, a maximum of one hundred nodes each with a maximum arity of forty.

The evolutionary strategy was left unchanged as (1 + 4)-ES. The search was given 5000

generations; 20001 evaluations. The average result from using these parameters, average

over fifty runs, are given in Table 4.3 along with the results of many other methods.

Most of the results published in the literature, given in Table 4.3, do not conform to

89

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

the Proben1 documentation [229]. Although there is no expectation for other researchers

to have used a specific form of the benchmarks over another, the fact that there is a large

range of implementations weakens any comparisons which can be made and diminishes the

benefit of using benchmark problems. Of the results which do not follow the methodology

of the Proben1 document, the methods used vary and are not standardised. The differences

include: size of the data set, pre-processing of the data, sizes of training, validation and

test sets, different permutations of the data set and differing fitness functions used. Of

the results which do follow the Proben1 document, some split the testing dataset into

testing and validation; this is allowed and documented by the Proben1 standards. This

validation dataset can then be used to test how well each solution has generalised and

is used as an early stopping criterion. An early stopping criteria was not used by the

CGPANN presented here; however CMAC ANN, MFNNCA and GA-MOO-NN did use

an early stopping criterion. Additionally MFNNCA investigated using a range of training

epochs and presented the results which performed best on the testing data. This is of

course invalid, and removes the point of using a testing set to assess generalisation.

4.5.4 Discussion

As can be seen in the presented results, overall CGPANN performs reasonably well on the

double pole balancing compared to many other NE methods, performs very well on the

ball throwing and performs well on the Proben1: Cancer1 benchmark compared to a wide

range of Machine Learning (ML) methods.

This section has also repeated previous experiments applying CGPANN to a number

of benchmarks. Although the results are not as impressive as previously presented, the

implementation of the benchmarks was much more standardised and CGPANN was still

shown to be a competitive technique. The results therefore demonstrate that the basic

application of CGP as a training method for ANNs produces good initial results and is

worthy of further investigation.

4.6 Connection Switch Genes

In the original implementation of CGPANN [154] by M. Khan, binary valued connections

switch genes were added to CGPANN in order to enable variable node arity. These

connection switch genes were added to every node input and could be set as open or

90

4.6 Connection Switch Genes

(a) Multiple Connections (b) Equivalent Network

Figure 4.4: Depiction that multiple inter-node connections (a) is equivalent to one con-
nection with the sum of the individual connection weights (b).

closed; effectively adding and removing the connection. With the presence of connection

switch genes the user specifies a maximum node arity, allowing evolution to determine the

number of connections actually used within the [0,α] range; where α is the maximum node

arity.

The rationale behind variable arity is that neurons can have a wide range of arities;

unlike GP nodes which typically have fixed arity. Connection switch genes therefore

represent a simple method of implementing variable node arity during evolution.

However, even without the inclusion of connection switch genes CGPANN could be

argued to be capable of evolving node arity. This is because CGPANN places no limitation

on which previous nodes a give node connects to. For instance, it is possible for two nodes

to be connected by multiple connections. Figure 4.4 (a) gives a simplified example. In this

case multiple connections between the same two nodes is equivalent to one connection with

the sum of the individual connection weights; as shown in Figure 4.4 (b). It could also

be argued that all NE methods can evolve node arity by thinking of connection weights

as representing ‘fuzzy’ connections. This however is not considered in this section as for

weights values other than zero there is still technically a connection. Additionally, the

arity of each node could also be adapted by mutation setting the connection weight value

of a given connection to zero. However, as the probability of mutation setting a connection

weight value to exactly zero is very low, this is not considered here.

This means that CGPANN can effectively vary each nodes arity by exhibiting mul-

tiple connections between the same two nodes. However, this behaviour means that the

maximum connection weight range set by the user can be exceeded. For instance, if the

connection weight range was set as ±1, the presence of multiple connections between the

same two nodes would effectively increase the range to ±(1×α); where α is the node arity.

If allowing the connection weight range to exceed that set by the user is considered unde-

91

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

sirable, alternative decoding strategies could be used for its prevention. For instance, only

the first of multiple connections between two nodes could be decoded from the genotype

into the phenotype; thus, allowing variable arity whilst disallowing the connection weight

range to be exceeded. Alternatively, the average connection weight of multiple connections

between two nodes could be used.

Interestingly however, even when connection switch genes are used it is still possible

for the node arity to effectively vary using the same mechanism described. Therefore the

effective connection weight range can also still be exceeded. Interestingly, no previous

discussion of this artefact has been presented for any of the NE methods investigated.

However, unless actively prevented, the behaviour would be possible in many topology

adapting NE methods.

Finally, the presence of connection switch genes means that it is possible for CGPANN

genotypes to describe phenotypes where there is no continuous connection from inputs

to outputs. For instance, if the node index by an output gene had all of its connection

switches set to open i.e. not connected. Although such solutions would likely score low

fitness and be quickly dropped from the population, it does add knowingly poor solutions

to the solution space.

4.6.1 Empirical Investigation

Although theoretically it appears that connection switch genes may not be required in

order to allow CGPANN to evolve the arity of each node, they still may be of benefit

to the search. Additionally, previous use of connection switch genes in [154] did not

provide empirical evidence as to whether or not they aided CGPANN’s evolutionary search.

Therefore this chapter provides an empirical investigation into the use of connection switch

genes on CGPANNs evolutionary search.

In order to assess whether connection switch genes are beneficial for CGPANN, a simple

experiment is now presented. The experiment applies CGPANN to a range of benchmark

tasks with and without the use of connection switch genes. The results are then presented

along with statistical significance testing. The statistical significance testing methods

utilised are described in appendix B.

In all cases CGPANN uses following parameters: (1 + 4)-ES, 1000 generations, 50

runs, 4% probabilistic mutation, fifty nodes, ±5 connection weight range, a node arity of

ten and a function set consisting of only the logistic sigmoid. The number of generations

92

4.6 Connection Switch Genes

is kept low so many runs failed to find a solution. This means that the average fitness

achieved can be compared. An alternative strategy would be to allow a very large number

of generations and compare the number of evaluations required to reach a given fitness

value. As comparing fitness requires less computational time, and means benchmarks can

be used with no known best fitness, the former method of evaluation is used. The number

of nodes is also kept relatively low to increase the difficulty of the task.

The benchmarks used for this investigation are: ball throwing, double pole balancing,

full adder and monks problem 1. These benchmarks are described in Appendix A. For

clarity, for the first three benchmarks, ball throwing, double pole balancing and full adder,

a higher fitness represent a better solution. In the remaining case of monks problem 1, a

lower fitness represents a better solution.

The results of the investigation are presented in Table 4.4. As can be seen in Table 4.4,

for half of the benchmarks investigated the use of connection switch genes produced better

results and for the other half they produced worse results. In the cases where connection

switch genes were shown to improve the results, no statistical significance was found. In

the cases where connection switch genes were show to worsen the results, the difference

was statistically significant. Finally in all cases the effect size was small.

Table 4.4: Applying CGPANN to a range of benchmarks with and without the use of con-
nection switch (CS) genes. The best performance is given in bold. Statistical significance
is also give with p < 0.05 given in bold. The effect size is also given.

Benchmark Without CS With CS U-test KS-test Effect Size

Ball Throwing 7.04 6.09 7.00E-3 3.17E-2 0.6226
Double Pole balancing 96015 98007 5.68E-1 1.00E-0 0.51
Full Adder 15.94 15.64 1.30E-3 9.51E-2 0.6188
Monks Problem 1 3.89 2.94 2.68E-1 6.78E-1 0.5594

4.6.2 Discussion

The results presented in Table 4.4 demonstrate that the use of connection switch genes have

no real influence on the search for CGPANN. The only statistically significant difference

seen is that, on average, they worsen the results slightly. It has also been noted that

CGPANN can effectively evolve node arity without the presence of connections switch

genes. These reasons, coupled with the fact that using connections switch genes allows

CGPANN to create networks where there is no connection between inputs and outputs, led

to the decision not to include connection switch genes in the work presented throughout

93

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

this thesis.

4.7 Program Bloat

An important property of CGP is that it does not suffer from program bloat, as is discussed

in Section 3.6.1. As bloat is an undesirable property of EAs, or more specifically GP, it

is important that this characteristic of CGP is also present in CGPANN. This section

presents an empirical investigation which assess if this is the case.

Bloat can be defined as “program growth without (significant) return in terms of fit-

ness” [228], that is, if program length is increasing disproportionately to fitness improve-

ments, then bloat is said to be occurring. This definition has been formally stated as a

metric which measures the amount of bloat on any given generation [284]. Here a variation

on this bloat equation is used; given in Equations 4.3-4.5:

N(g) =
Â(g)− Ā(0)

Ā(0)
(4.3)

D(g) =
F̄ (0)− F̂ (g)

F̄ (0)
(4.4)

B(g) =
N(g)

D(g)
(4.5)

Where B(g) is the bloat at generation g, Â(g) is the number of active nodes used by the

fittest member of the population at generation g, Ā(0) is the average number of active

nodes used by the population at generation 0, F̄ (0) is the average fitness of the population

at generation 0 and F̂ (g) is the fitness of the fittest member of the population at generation

g. Equation 4.5 holds when the target is to minimise the fitness to zero. When the fitness

is to be maximised the fitness values can be amended by subtracting the current fitness

from the target fitness; thus transforming the problem into a minimisation task. The

equation gives the ratio of increase in program size to improvement in fitness since the

initial population. If the program size is increasing disproportionately to fitness, then the

bloat value will also increase; thus indicating bloat.

The bloat equation given in [284] was adapted here to show the amount of bloat

exhibited by the fittest member of the population; as opposed to the average bloat of the

population. There are two reasons for this alteration: 1) CGP uses a (1 + λ)-ES without

crossover, and so the only solution of interest is the current fittest. 2) The small population

94

4.7 Program Bloat

(a) f(x) = log(x) (b) %F (c) LD50

Figure 4.5: The bloat metric comparing standard tree-based GP (light gray) and DynOpEq
GP (black) on (a) symbolic regression and (b)(c) two real world classification tasks. Images
taken from [284].

sizes typically used by CGP leads to very noisy level of average active nodes and fitness

values which are hard to analyse graphically; at least without applying further averaging.

It is worth noting that the value of bloat gives the ratio of program size and fitness

compared to the random initial population. This means that a consistent bloat value of x

for n generations indicates no bloat over those n generations. If the bloat value x increases

over n generations this indicates program bloat. Therefore it is increasing x which indicates

bloat; not necessarily high values of bloat. A high but stable value of x indicates that the

solutions are disproportionally larger than randomly created initial solutions, compared to

the fitnesses of the initial solutions, but that their size is not increasing disproportionally

to fitness.

Figure 4.5 gives three examples of the unaltered bloat metric when used by the original

authors; see [284] for further details of their experimental implementation. As can be seen

in Figure 4.5, bloat is easily detected by a high continuous increase in the bloat metric.

Although it has been previously identified that CGP does not suffer from program

bloat [201], previous research did not use a formal measure of bloat, such as those given

in Equations 4.3-4.5; only raw program size. Although this is unlikely to influence the

conclusions, it is more rigorous to consider program size in relation to fitness. Additionally,

as stated in [201] with regard to CGP: “Experiments performed indicate that implicit

intron growth is not a problem and no measures need to be taken to suppress it (at least

for some Boolean problems).”. That is to say, problems other than Boolean functions have

not been investigated. For these reasons the presence of bloat is evaluated first for CGP,

95

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

which is then also used for comparison when assessing CGPANN.

4.7.1 CGP

When investigating program bloat in CGP, the Boolean benchmark of six bit even parity

and the symbolic regression task Pagie 1 are used; see Appendix A. Although a wider

selection of benchmarks would be more rigorous, as this work is to supplement previous

results [201], and to serve as a comparison to CGPANN, it is sufficient.

The six bit even parity benchmark is a Boolean benchmark task of creating a digital

circuit which generates the even parity bit for a given six bit string; See Appendix A.4.

The task is to maximise the number of correct parity bits generated over all possible inputs

representing a maximum fitness of 26 = 64. The function set contains: {AND, NAND,

OR, NOR}; the XOR and NXOR gates are omitted to increase the difficulty of the tasks.

The Pagie 1 is a symbolic regression tasks described in Appendix A.5.2. Here the

function set contains: + − × % en and ln(|n|) and the goal is to minimise the sum of

absolute error.

For both benchmarks the parameters used are as follows: (1 + 4)-ES, three percent

probabilistic mutation, one hundred nodes, ten thousand generations and fifty runs.

The results of applying CGP to the two benchmarks are given in Figures 4.6 and 4.7

for the six bit parity and Pagie benchmarks respectively. Each figure gives the fitness

achieved, the number of active nodes and the level of bloat at each generation all averaged

over fifty runs.

As can be seen in Figures 4.6 and 4.7, CGP is not exhibiting program bloat. The level

of bloat is low and, most importantly, stable throughout the evolutionary search. In the

case of the six bit parity it can be seen that the level of bloat is initially high but falls

and becomes stable as the generations elapse. A possible explanation of this could be due

to the average random program size containing an insufficiently small number of nodes

to solve the task. In which case there would be an evolutionary pressure to increase the

program size. Once the program size is sufficiently large the problem is then tractable.

Regardless, it can be seen than in the long term CGP is not bloating when applied to the

parity task. In the case of the Pagie symbolic regression task it can be that there is a slight

increase in the level of bloat during the beginning of the search. However, as the actual

increase is so minor, it is unlikely to cause any meaningful consequences. Additionally,

the level of bloat appears to stabilise as the number of generations elapse.

96

4.7 Program Bloat

0 2000 4000 6000 8000 10000
30

35

40

45

50

F
itn

es
s

CGP - Regular

0 2000 4000 6000 8000 10000
5

10

15

20

25

N
od

es

0 2000 4000 6000 8000 10000
0
5

10
15
20
25

Generation

B
lo

at

Figure 4.6: Average fitness, number of active nodes and program bloat Vs. generation for
CGP applied to the six bit even parity benchmark.

97

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

0 2000 4000 6000 8000 10000
100
200
300
400
500
600
700
800

F
itn

es
s

CGP - Regular

0 2000 4000 6000 8000 10000
10
12
14
16
18
20

N
od

es

0 2000 4000 6000 8000 10000
-0.2

0
0.2
0.4
0.6
0.8

Generation

B
lo

at

Figure 4.7: Average fitness, number of active nodes and program bloat Vs. generation for
CGP applied to the Pagie 1 benchmark.

98

4.7 Program Bloat

4.7.2 CGPANN

The experiments undertaken for CGP are now presented for CGPANN. In this case,

CGPANN is applied to the double pole, ball throwing and Monks Problem 1 benchmarks.

The double pole balancing and ball throwing are control reinforcement learning type chal-

lenges and the Monks Problem 1 is a classification task; See Appendix A for further

details.

The parameters used for the CGPANN experiments are: (1 + 4)-ES, three percent

probabilistic mutation, one hundred nodes, ten thousand generations and fifty runs. The

arity of each node was set as five and the connection weight range as ±5. In the case

of the double pole balancing the transfer function used was the bipolar logistic sigmoid,

Equation 4.2, for the other two benchmarks the regular (unipolar) logistic sigmoid is used.

The results of applying CGPANN to the three benchmarks are given in Figures 4.8 -

4.10. In these figures it can be seen that CGPANN is also not exhibiting program bloat.

In each case the level of bloat is low and stable. Again, as for CGP, the level of bloat can

be seen to vary slightly, such as in Figure 4.9, but the variation is minor compared to that

seen for tree-based GP in Figure 4.5.

4.7.3 Discussion

This section has confirmed the result that CGP does not suffer from program bloat. The

analysis of bloat in relation to both fitness and program size used here provides a more

rigorous study than previously presented [201]. Additionally, the experiments considered

domains other than implementing Boolean circuits. Although the number of benchmarks

used was small, the analysis was intended to supplement previous results and provide a

comparison for CGPANN.

It was also shown that CGPANN, like CGP, does not suffer from program bloat.

Although expected, it is an important result as bloat can be a major drawback of GP

methods; resulting in slower run times and excessively large final solutions. Additionally

it is thought that larger (bloated) programs generalise less easily.

The fact that CGPANN has been shown here not to suffer from program bloat rep-

resents an advantageous property. Other popular NE methods such as NEAT have been

previously shown to suffer from program bloat [274]; unless careful consideration is taken

with regard to the parameter choices. Additionally, it appears likely that NE methods

such as CE, GNARL and EANT would also suffer from program bloat unless additional

99

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

0 2000 4000 6000 8000 10000
0

20000

40000

60000

80000

100000

F
itn

es
s

0 2000 4000 6000 8000 10000
24.5

25

25.5

26

26.5

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
-5
-4
-3
-2
-1
0
1

Generation

B
lo

at

Figure 4.8: Average fitness, number of active nodes and program bloat Vs. generation for
CGPANN applied to the double pole benchmark.

100

4.7 Program Bloat

0 2000 4000 6000 8000 10000
2

3

4

5

6

F
itn

es
s

0 2000 4000 6000 8000 10000
38

39

40

41

42

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

Generation

B
lo

at

Figure 4.9: Average fitness, number of active nodes and program bloat Vs. generation for
CGPANN applied to the ball throwing benchmark.

101

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

0 2000 4000 6000 8000 10000
0

10

20

30

40

F
itn

es
s

0 2000 4000 6000 8000 10000
19

19.5
20

20.5
21

21.5
22

A
ct

iv
e

N
od

es

0 2000 4000 6000 8000 10000
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1

Generation

B
lo

at

Figure 4.10: Average fitness, number of active nodes and program bloat Vs. generation
for CGPANN applied to the Monks Problem 1 benchmark.

102

4.7 Program Bloat

prevention methods were taken; although additional research is required to confirm this.

103

Chapter 4: Cartesian Genetic Programming of Artificial Neural Networks

4.8 Summary

This chapter has described CGPANN as used throughout the remainder of this thesis.

This description has been contrasted with previous implementations which introduced a

new connection switch gene type. Results presented in this Chapter have demonstrated

that the previously proposed connection switch gene are not necessary for CGPANN to

evolve node arity. It has also been empirically demonstrated that the use of connection

switch genes has a slight negative influence on CGPANN’s effectiveness. For these reasons

they are considered unnecessary and are not used in the work presented in this thesis.

Additionally, CGPANN has been applied to a number of benchmark NE tasks in order

to evaluate its performance. As was discussed, previous applications of CGPANN to these

tasks provided invalid comparisons due to non-standardised implication of the benchmarks.

The results presented here, although less impressive than those presented previously, fairly

demonstrate CGPANN as a highly competitive NE method.

A number of possible benefits of using CGP to evolve ANNs have also been discussed.

Among these was the resilience to program bloat. This possible benefit was confirmed in

Section 4.7. As other popular NE methods such as NEAT have been previously demon-

strated to suffer from bloat, and other methods appears very likely to also suffer, this

could represent a strong advantage for the use of CGPANN.

104

Chapter 5

Recurrent Cartesian Genetic

Programming

One of the goals of this thesis is to apply Cartesian Genetic Programming of Artifi-

cial Neural Networks (CGPANN) to the evolution of Recurrent Artificial Neural Net-

work (RANN)s. The first step to achieving this is to adapt Cartesian Genetic Program-

ming (CGP) to be capable of creating recurrent program structures. This chapter describes

a new extension of CGP termed Recurrent Cartesian Genetic Programming (RCGP) which

implements this desired extension. The chapter also evaluates RCGP on a number of

benchmark tasks demonstrating functionality and investigating the newly introduced pa-

rameter recurrent connection probability.

5.1 Structure of this Chapter

Section 5.2 provides a background discussion of recurrence in relation to CGP. Section

5.3 describes the newly proposed RCGP extension. Section 5.4 discusses a number of

important implications of the new recurrent extension. Section 5.5 presents a number of

experiments contrasting CGP and RCGP along with an investigation into the necessity of

the new recurrent connection probability parameter. Finally, Section 5.6 gives a closing

summary.

105

Chapter 5: Recurrent Cartesian Genetic Programming

5.2 Background

Although RCGP has never been formally presented, it has been previously discussed as a

possible extension to CGP: “The representation of graphs used in CGP is easily adapted

to encode cyclic graphs. One merely needs to remove the restriction that alleles for a

particular node have to take values less than the position (address) of the node.” [202].

A form of CGP has also been used in combination with a Jordan type architec-

ture1 [136] for allowing feedback [155]. In [155] the application was CGPANN [153, 279].

Although using Jordan type architectures represents a simple method for allowing recur-

rent connections, it does so in a very restricted form. For instance, the user must decide

in advance how many and what type of recurrent connections will be used2.

Additionally, an alternative approach to enabling recurrence in CGP was used in com-

bination with multi-chromosome CGP [294]. Recurrence was created by allowing con-

nection between the multiple chromosomes so as to allow simple, restrained, cycles. The

application was to utilise CGP to create transistor circuits [294].

Here the main motivation of creating RCGP is so it can later be applied to CGPANN

in order to evolve RANNs. However, there are advantages to RCGP in its own right. For

instance, as the inclusion of recurrent connections brings a form of memory to CGP, it can

be applied to a much wider range of tasks. Such applications include partially observable

tasks; those where the inputs do not contain enough information to directly produce

the correct outputs. Partially observable tasks require the program to infer additional

state information from current and previous inputs. Currently standard CGP could not

be successfully applied to partially observable tasks whereas RCGP may be capable of

inferring the necessary hidden state information by utilising recurrence to implement a

form of memory.

5.3 Implementation

In standard CGP, the connection genes (Ci,j) are restricted so as to only allow acyclic

connections i.e. nodes can only connect their inputs to nodes with a lower index i than

themselves; where i indexes each node and j each nodes input. In RCGP, this restriction

1A Jordan architecture is where one or more program outputs are made available as program inputs.
2In some cases choosing the number and type of recurrent connections could be an advantage, for

instance if the user knew in advance how many recurrent connections a given task requires. However for
more general black box learning, having a fixed number of recurrent connections is likely a disadvantage.

106

5.3 Implementation

Figure 5.1: Example RCGP program corresponding to the chromosome: 212 005 134 5

is lifted so as to allow connections between a given node and any node in the program,

including itself, or program inputs. Therefore, connection genes can take any value be-

tween zero and the number of inputs plus the number of available nodes. An example

program which could be generated using RCGP is given in Figure 5.1 along with the

corresponding chromosome. As can be seen in Figure 5.1, the RCGP phenotype contains

both feed-forward and recurrent connections. Although not shown in Figure 5.1, RCGP

chromosomes, like CGP chromosomes, can also contain inactive genes and do not have to

connect to all of the available inputs.

RCGP phenotypes are executed following a similar method to CGP phenotypes. First

a set of program inputs are applied. Then, starting at the active node closest to the

inputs (low node index i), each node calculates its output value, in turn, based on its

inputs. Once all active nodes have been updated, the program outputs are read. However,

with the presence of recurrent connections, the output value of a node can be read before

it has been calculated. To accommodate this, all nodes are initialised to output a default

value until they calculate their own output. The initial output value used throughout this

thesis is zero. Therefore when executing a RCGP phenotype the following process is used:

1. set all active nodes to output zero

2. apply the next set of program inputs

3. update all active nodes once in index order

4. read the program outputs

5. repeat from 2 until all sets of program inputs have been applied

It is important to note that each node in the phenotype is updated once for each set

of applied program inputs followed by the output being read. It would also be possible

to execute the program multiple times for each set of program inputs. In such a case,

107

Chapter 5: Recurrent Cartesian Genetic Programming

the average of the program outputs, or the settled program outputs3, could be used.

The method described here was chosen for its simplicity, speed, and because there is no

guarantee that the program outputs would ever settle/converge.

An artefact of placing no constraints on connection gene values is, on average, con-

nection gene mutations will result in as many feed-forward connections as recurrent. As

it is unlikely that many tasks will require fifty percent of connections to be recurrent,

this places a bias to possibly unsuitable areas of the solution space. For this reason, a

new parameter is introduced which controls the likelihood of connection gene mutations

creating recurrent connections. This parameter is called recurrent connection probability.

A recurrent connection probability of zero percent results in only feed-forward connections

i.e. regular CGP; of which RCGP is a superset. A recurrent connection probability of fifty

percent results in mutations causing as many feed-forward connections as recurrent i.e.

RCGP without the new parameter. A recurrent connection probability of ten percent still

allows recurrence, but with a bias to a much lower level of recurrence than without using

the new parameter. A recurrent connection probability of one hundred percent results in

only recurrent connections; which is unlikely to be of use. It should be noted that this

parameter does not directly control the number of recurrent connections, only the proba-

bility of mutation creating recurrent connections. That is to say, although the recurrent

connection probability may be set at a given value, the final solutions can contain more

or less that this proportion of recurrent connections; or theoretically none at all.

When creating the initial population for RCGP, the random connection genes values

are also chosen considering the recurrent connection probability. That is to say, the

randomly generated chromosomes also contain recurrence, with the level of recurrence

being determined by the recurrent connection probability.

An important property of CGP is that the active nodes can be determined before

executing the program. This is significant as a high proportion of nodes are often inactive

[207] and calculating their outputs wastes computation time. To determine which nodes

are active the following algorithm is used [202]: 1) add each program output node to a

list of active nodes 2) for each node added to the active node list, add the nodes to which

they also connect 3) if the inputs are reached, do not add anything to the active node list.

Determining the active nodes for RCGP follows a similar algorithm except only nodes

3Where settled output refers to the converged program output value(s) after many updates of the active
nodes whilst applying the same program inputs.

108

5.4 Implications of Recurrent Connections

which are not currently present in the active node list are added. This extra criterion

breaks cycles enabling active nodes to be easily determined for RCGP.

5.4 Implications of Recurrent Connections

The introduction of recurrent connections to CGP has a number of interesting implications

for the algorithm. These implications are now discussed.

An interesting implication of RCGP, is that it is now possible for chromosomes to

describe phenotypes where none of the active nodes connect to the program inputs; See

Figure 5.2. These programs are therefore unsuited to any realistic task. However such

programs are likely to score a low fitness and be quickly dropped from the population.

Figure 5.2: Example RCGP program corresponding to the chromosome: 002 055 144 5

Another implication of allowing recurrent connections occurs when applying RCGP to

tasks where each set of inputs are unrelated. For example, suppose we are trying to evolve

a program that can implement a parity circuit. Typically we think of each line of the truth

table as being independent of one another (i.e. the order in which the inputs are applied

is unimportant). However, if the fitness function always tests each line of the truth table

in the same order, RCGP could, in principle, learn to produce the correct output bits

without implementing a parity circuit. This could be achieved by implementing a state

machine which just happens to produce the correct outputs when the correct sequence

of inputs is applied. Additionally, a quick experiment demonstrated that RCGP could

“solve” the six bit parity benchmark with a single fixed input of value 1; by implementing

such a state machine.

This second implication has further consequences for fitness function design. For in-

stance, it may appear that a simple method for preventing RCGP learning to “predict”

the correct outputs sequence would be to randomise the order in which the inputs are ap-

plied. However, take again the parity task, if in a given population one recurrent solution

happens to produce a state machine which scores well given its random input ordering,

109

Chapter 5: Recurrent Cartesian Genetic Programming

this solution is not in fact a good parity circuit (which is strictly non-recurrent) but does

score well. As CGP typically uses an elitist (1+λ)-ES, this high scoring but poor solution

will be retained. Now all of the produced children, even if they are identical, are likely to

perform worse because the order of applied inputs will be different (random). This means

that not only is the poor solution retained, but it pollutes subsequent child solutions.

One possible solution to this issue is to assess the fitness of solutions using multiple ran-

dom input orderings. This method sacrifices convergence time (longer fitness evaluations)

for diminishing risk of this issue occurring. An alternative solution is to use a non-elitist

(µ, λ)-ES. However it is known that CGP is much more efficient using a (1 +λ)-ES than a

(µ, λ)-ES [202]. Additionally, this means that genuinely good solutions can be easily lost.

It is therefore highly important that RCGP should only be applied to tasks where the

series of inputs are related, such as in time series prediction or control tasks, otherwise

additional precautions are required to prevent this undesirable behaviour. However, in

most cases it is known in advance whether a recurrent solution may be of benefit i.e.

classification does not require recurrence whereas a control system may.

5.5 Experiments

A number of experiments are now presented which investigate the newly proposed recur-

rent CGP extension. The experiments have three aims. Firstly, to investigate whether

or not RCGP outperforms standard acyclic CGP on tasks specifically designed to benefit

from recurrence. This is to demonstrate that RCGP is capable of utilising the ability

to create recurrent solutions. Secondly, to investigate the effect of varying the recurrent

connection parameter. This is investigated with the aim of determining whether the new

recurrent connection parameter is necessary, and to what extent it affects the search. As

with many Evolutionary Algorithm (EA) methods, the presence of many parameters is

both beneficial and detrimental; it allows fine control, but often suitable values are not

known. Therefore the addition of new parameters should be justified. Finally, the solu-

tions created by RCGP are inspected to gain insight into the evolved structures and to

confirm that recurrence is being utilised.

110

5.5 Experiments

5.5.1 Experiment 1

This first experiment has two roles. Firstly, is to demonstrate that RCGP can successfully

utilise recurrent connections on tasks which benefit from their inclusive. This is achieved

by comparing the performance of CGP and RCGP on tasks which require recurrent con-

nections. Secondly, it is to investigate the effect of varying the recurrent connection

probability in order to determine if the new parameter is beneficial, or indeed necessary.

5.5.1.1 Set Up

In this experiment CGP and RCGP both use typical CGP parameters: (1 + 4)-ES, 10,000

generations, 50 runs, 3% probabilistic mutation, one hundred available nodes each with a

node arity of two. The recurrent connection probability will be swept over the following

percentages [0,5,10,20,30,40,50]; with 0% representing standard acyclic CGP. The bench-

marks used for the experiments and the associated function sets are described in Section

5.5.1.2.

If RCGP achieves statistically significantly better fitness than CGP on the given tasks,

then it will demonstrate that RCGP is a suitable extension to CGP when applied to tasks

which require recurrent connections. Additionally, if any value of recurrent connection

probability produces a statistically significantly better fitness than fifty percent, it will

demonstrate that the new parameter is a suitable method of controlling the bias of recur-

rence. This is because RCGP without the recurrent connection probability parameter is

equivalent to using RCGP with a recurrent connection probability of fifty percent. There-

fore, if any value of recurrent connection probability produces a better search than fifty

percent it shows that this new parameter can positively influence the search.

5.5.1.2 Benchmarks

For this experiment two benchmarks are chosen which are specifically designed to benefit

from recurrent connections, namely Artificial Ant and a modified version of Sunspots fore-

casting. This is to force any ability to create effective recurrent solutions to be highlighted.

The Artificial Ant problem [134] is a classic, challenging [177], benchmark commonly

used by Genetic Programming (GP) [165]. The task is to design a controller which navi-

gates an ant around a toroidal Cartesian map maximising food intake. The ant can only

perceive whether the location ahead of is current position contains food. Each time step

the ant undertakes one of four actions: move forward, turn left 90◦, turn right 90◦ or do

111

Chapter 5: Recurrent Cartesian Genetic Programming

Figure 5.3: Depiction of the “Santa Fe Ant Trail”. Black and white represents food and
no food respectively.

nothing. If the ant occupies the same position as a piece of food that food is “eaten” and

removed from the map. The map used here is the “Santa Fe Ant Trail” [165] given in

Figure 5.3.

Here the form of the controller differs from that commonly used by GP [165]. The

evolved program’s inputs describe if the location ahead contains food and the program’s

outputs are decoded into one of the possible four actions; this is interestingly not dissimilar

to its original implementation [134]. Other GP implementations [165] create programs

where the program inputs are the possible actions and the program outputs are unused.

The function set used by the nodes causes the inputs (actions) to either be implemented

outright or to be conditional on whether food is ahead. Once the program outputs are

reached the program starts over4. CGP has also previously been applied to the benchmark

in its more commonly used form [208].

Here, the evolved controllers have two mutually exclusive inputs, whereby the first

input is set as ‘1’ if the location ahead of the ant contains food, else it is set as ‘0’. The

controller has two outputs, where: [1 1] is decoded as move forward, [0 1] as turn right, [1

0] as turn left and [0 0] as do nothing. The ant starts in the top left (0, 0) of the toroidal

map facing east and is allowed 400 time steps to consume as much food as possible. The

amount of food eaten is then used as the fitness measure; out of a maximum 89. The

4This way of approaching the artificial ant problem appears to be a rather inelegant way of accommo-
dating the fact that standard tree-based GP cannot create state machine or have any form of memory.

112

5.5 Experiments

1700 1750 1800 1850 1900 1950
0

50

100

150

200

Year

N
um

 S
un

 S
po

ts

Figure 5.4: Number of yearly recorded sunspots between 1700 and 1987.

function set used comprises of the four Boolean logic gates: AND, OR, NOT, and XOR.

The Sunspots benchmark [253] is a commonly used [157] time series prediction bench-

mark which describes the number of observed sunspots dating back to 1700. The data was

recorded by the SIDC-team, at the World Data Center for the Sunspot Index, Royal Ob-

servatory of Belgium [253]. The dataset contains the yearly number of recorded sunspots

between 1700 and 1987; given in Figure 5.4. The first 221 years (1700-1920) are used as

the training set with the remaining 67 years (1921-1987) used as the testing set.

Most series forecasters which are applied to the Sunspots benchmark use multiple

inputs consisting of the current and previous years number of sunspots. However, here

only one input is used which gives the current number of sunspots. This restriction to one

input is imposed to force the task to become less tractable without internal recurrence.

This restriction also makes the task much more challenging since any trends in the data

must be calculated internally as the data is passed in year by year. The single output is

the predicted number of sunspots 35 years ahead of the current input. The single input to

the series forecaster is normalised into a [0, 1] range by dividing by two hundred; a value

greater than the highest number of sunspots in any observed year. The single output is

also multiplied by two hundred before being used as the predicted number of sunspots.

The fitness measure is the Mean Absolute Error (MAE) given by: 1
N

∑N
i=1 |ei| where N

is the number of samples and e is the difference between the actual and predicted number

of sunspots. The function set used for this task comprises of ten symbolic expressions:

113

Chapter 5: Recurrent Cartesian Genetic Programming

0 10 20 30 40 50
10

20

30

40

50

60

70

80

Recurrent Connection probability (%)

F
oo

d
E

at
en

(a) Average Fitness

0 5 10 20 30 40 50
0

20

40

60

80

100

Recurrent Connection probability (%)

M
A

E

(b) Box and Whisker Plots

Figure 5.5: Results of varying RCGP’s recurrent connection probability on the Artificial
Ant benchmark.

x1 + x2, x1 − x2, x1 × x2, xi ÷ xj , |x1|, x21, x31, ex1 , sin(x1) and cos(x1). Where x1 and x2

are the two inputs to each node and the division operator is protected so as to return one

when dividing by zero.

5.5.1.3 Results

The results of the described experiment on the two benchmarks are now presented. In

each case the average fitness verses the recurrent connection probability is plotted. This

gives a high level view of the results. Additionally, the spread of the data is also plotted

as box and whisker plots for a more detailed view of the data; with outliers marked as

follows: ‘+’ represents fitnesses between 1.5 and 3 times the interquartile range and ‘◦’

represents fitnesses greater than 3 times the interquartile range. Finally, the pairwise dif-

ferences between using each set of recurrent connection probability is analysis for statistical

significance using the non-parametric Mann-Whitney U-test with ρ ≤ 0.05 representing

statistical significance.

The average fitness achieved, and the spread of fitnesses, are given in Figure 5.5 for

the Artificial Ant benchmark; where a higher fitness represent a better solution. As can

be clearly seen in Figure 5.5, allowing recurrent connections consistently produces a much

better fitness than not; where zero percent recurrent connection probability represents no

recurrence i.e. standard acyclic CGP. Additionally, it can be seen that the fitness achieved

varies substantially with varying levels of recurrent connection probability.

The statistical analysis of the results given in Figure 5.5 are given in Table 5.1. As

114

5.5 Experiments

Table 5.1: Artificial Ant: p values comparing pairs of recurrent connection probabilities.

0% 5% 10% 20% 30% 40% 50%

0% 1 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
5% - 1 8.85E-1 3.79E-1 4.78E-3 4.97E-6 8.83E-5
10% - - 1 2.60E-1 1.47E-3 1.38E-6 2.42E-5
20% - - - 1 9.22E-3 3.53E-5 2.63E-4
30% - - - - 1 6.86E-2 1.76E-1
40% - - - - - 1 6.29E-1
50% - - - - - - 1

can be seen in Table 5.1, the difference between CGP and RCGP is statically significant,

diminishing small p values, for all levels of recurrence investigated. Additionally, it can

be seen that many values of recurrent connection probability produced a statistically

significantly better fitness score than using a fifty percent recurrent connection probability.

The results of the Sunspots benchmark follow the same format as for the Artificial

Ant benchmark, except for the presence of both training and testing performance. Al-

though here we are only concerned with differences caused by the presence of recurrence,

and not generalisation performance, both training and testing are presented for complete-

ness. Later, in Chapter 10, RCGP is rigorously assessed as a forecasting method where

generalisation is the overall measure of merit.

The average training fitness achieved, and the spread of training fitnesses, are given in

Figure 5.6 for the Sunspots benchmark; where a lower MAE represents a better solution.

As can be clearly seen in Figure 5.6, allowing recurrent connections consistently leads to

a much superior fitness than not allowing recurrent connections. Additionally, it can be

seen that the fitness achieved varies with the level of recurrent connection probability;

although not to the same extent as for the Artificial Ant benchmark.

The statistical analysis of the results given in Figure 5.6 are given in Table 5.2. It

can be seen in Table 5.2 that the difference between CGP and RCGP is statistically

significant for all levels of recurrence investigated. Additionally it can be seen that one

value of recurrent connection probability, five percent, produced a statistically significantly

better fitness score that using a fifty percent recurrent connection probability. There were

also many instances of statistically significant differences between other levels of recurrent

connection probability.

The average testing performance on the Sunspots benchmark is given in Figure 5.7

with the statistical analysis given in Table 5.3. It can be seen that there is still a large,

statistically significant, difference between CGP and RCGP when assessed on the testing

115

Chapter 5: Recurrent Cartesian Genetic Programming

0 10 20 30 40 50
22

23

24

25

26

27

28

Recurrent Connection probability (%)

F
oo

d
E

at
en

(a) Average Fitness

0 5 10 20 30 40 50
18

20

22

24

26

28

Recurrent Connection probability (%)

M
A

E

(b) Box and Whisker Plots

Figure 5.6: Results of varying RCGP’s recurrent connection probability on the Sunspots
benchmark: training data.

Table 5.2: Sunspots training fitness: p values comparing pairs of recurrent connection
probabilities.

0% 5% 10% 20% 30% 40% 50%

0% 1 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
5% - 1 4.99E-2 1.89E-2 2.68E-3 4.04E-5 5.76E-3
10% - - 1 6.72E-1 3.76E-1 3.23E-2 3.13E-1
20% - - - 1 6.62E-1 1.39E-1 4.59E-1
30% - - - - 1 2.37E-1 8.71E-1
40% - - - - - 1 3.91E-1
50% - - - - - - 1

0 10 20 30 40 50
37

38

39

40

41

42

43

Recurrent Connection probability (%)

M
A

E

(a) Average Fitness

0 5 10 20 30 40 50
30

35

40

45

50

55

Recurrent Connection probability (%)

M
A

E

(b) Box Plots

Figure 5.7: Results of varying RCGP’s recurrent connection probability on the Sunspots
benchmark: testing data.

116

5.5 Experiments

Table 5.3: Sunspots testing fitness: p values comparing pairs of recurrent connection
probabilities.

0% 5% 10% 20% 30% 40% 50%

0% 1 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0
5% - 1 7.12E-1 8.42E-2 5.74E-1 3.16E-1 2.81E-1
10% - - 1 5.40E-2 8.82E-1 1.37E-1 1.69E-1
20% - - - 1 3.34E-3 6.08E-1 6.47E-1
30% - - - - 1 7.70E-2 1.39E-1
40% - - - - - 1 9.53E-1
50% - - - - - - 1

data. However, there is no statistically significant difference between fifty percent recurrent

connection probability and any other levels of recurrence. There are still however two

instance of statistically significant difference between other levels of recurrence.

5.5.1.4 Discussion

One of the goals of the experiment presented is to determine if RCGP could successfully

utilise the available recurrent connections. This was investigated by comparing standard

acyclic CGP and RCGP on a number of tasks which required, or would greatly benefit

from, recurrence in the solutions.

For both of the benchmarks investigated it can be seen that RCGP drastically, and

statistically significantly, outperformed CGP. This demonstrates that RCGP is capable

of effectively using the available recurrent connections.

An additional goal was to investigate whether the proposed recurrent connection prob-

ability is a suitable, or indeed necessary, new parameter for biasing the level of recurrence.

Again as can be seen in the results, for both the Artificial Ant and Sunspots, there were

levels of recurrent connection probability which outperformed a fifty percent recurrent

connection probability; with statistical significance. This demonstrates that the level of

recurrence present without the use of a recurrent connection probability is not neces-

sarily suitable. This in turn demonstrates that the use of the new recurrent connection

probability is a useful addition to RCGP for biasing the level of recurrence.

5.5.2 Experiment 2

The second part of the experimental investigation is to inspect solutions found using

RCGP to see if any insights can be gained. The experiments also continue the comparison

between CGP and RCGP, but now to applications which can be solved both with and

117

Chapter 5: Recurrent Cartesian Genetic Programming

without recurrence. Finally, a small comparison is also presented between RCGP and

other GP methods capable of creating recurrent program structures.

5.5.2.1 Set Up

In this experiment CGP and RCGP will both use the following parameters: (1 + 4)-ES,

1,000,000 generations, 50 runs, 5% probabilistic mutation, 20 nodes each with a node arity

of two. In the case of RCGP the recurrent connection probability is set as 10%.

The number of nodes is kept low, despite larger numbers likely producing better results

[207], so the final solutions can be more easily inspected. For instance reasoning about

solutions comprising up to 100 nodes (with recurrent connections) is far more challenging

than for 20 nodes.

5.5.2.2 Benchmarks

The benchmarks chosen for this investigation are all concerned with producing explicit or

recurrent symbolic equations which predict famous mathematical sequences. This is an

interesting comparison for CGP and RCGP as all the sequences chosen have both explicit

and recurrent forms5.

When using CGP, the single input to the phenotypes is n and the expected output is

the nth value in the sequence. When using RCGP the single input is fixed at the value

of one and the phenotype is updated multiple times to produce a sequence of numbers.

When the phenotype is updated n times it should produce, in order, the first n values in

the sequence. It would also be possible to use RCGP and input the value n instead of the

constant one. In this case RCGP could produce explicit as well as recurrent solutions. Here

however, RCGP is forced to produce recurrent solutions to a) exaggerate any differences

between CGP and RCGP and b) so that the inspected solutions are more likely to contain

recurrence.

The function set used by both CGP and RCGP contains: addition, subtraction, mul-

tiplication and protected division.

The mathematical sequences used for comparison comprise: hexagonal numbers, the

lazy caterers sequence, the magic constants and the Fibonacci sequence. Each of these is

5Mathematical sequences can be defined in two forms, either explicitly or recursively. An explicit
equation returns the nth value in a sequence when passed the value of n. A recursive equation returns the
nth value in a sequence upon its nth iteration.

118

5.5 Experiments

now introduced.

The Hexagonal number sequence, A000384 from [259], is the number of evenly dis-

tanced dots which make up a sequence of hexagons and all the hexagons it contains; see

Figure 5.8. It is defined explicitly by Equation 5.1 where n ≥ 1. This produces the

following sequence: 1,6,15,28,45,66,91,120,153,190,...

y(n) =
2n(2n− 1)

2
(5.1)

The Lazy Caterers Sequence (or more formally the central polygonal numbers), A000124

from [259], is the number of pieces a cake can be divided into with n cuts. The sequence

is shown graphically in Figure 5.8 and described explicitly by Equations 5.2; where n ≥ 0.

This produces the following sequence: 1,2,4,7,11,16,22,29,37,46,...

y(n) =
n2 + n+ 2

2
(5.2)

The sequence of Magic Constants, A006003 from [259], are the minimum values

each row, column and diagonal of a n × n magic square6 can sum to. The magic

squares corresponding to n=3, 4 and 5 are given in Figure 5.8. The sequence is de-

scribed explicitly by Equations 5.3; where n ≥ 1. This produces the following sequence:

1,5,15,34,65,111,175,260,369,505,...

y(n) =
n(n2 + 1)

2
(5.3)

The Fibonacci sequence, A000045 from [259], is such that each value is the sum of

the previous two values; with the first two values set as one. The sequence is described

explicitly in Equation 5.4, but is more commonly given recursively such as in Equation

5.5. This produces the following sequence: 1,1,2,3,5,8,13,21,34,55,...

y(n) =
(1 +

√
5)n − (1−

√
5)n

2n
√

5
(5.4)

y(n) =

1, if n ≤ 1

y(n− 1) + y(n− 2), otherwise

(5.5)

6A magic square is an n×n grid of numbers where the sum of each row, column and diagonal are equal.

119

Chapter 5: Recurrent Cartesian Genetic Programming

(a) Hexagonal Numbers (n=1,2,3,4)

(b) Lazy Caterers Numbers (n=0,1,2,3)

(c) Magic Constants (n=3,4,5)

Figure 5.8: Number sequences shown graphically.

5.5.2.3 Results

The results of applying CGP and RCGP to the mathematical sequences benchmarks are

given in Table 5.4. The statistical significance between CGP and RCGP is also given

using the non-parametric Mann-Whitney U-test with ρ ≤ 0.05 representing statistical

significance.

Table 5.4: Performance of CGP and RCGP finding explicit and recurrent equations respec-
tively which produce famous mathematical sequences. In each case the average number
of evaluations is given followed by the number of runs which successfully solved the task
in brackets.

Sequence CGP RCGP U-Test (p)

Hexagonal 2,481 (50/50) 39,279 (50/50) 6.15E-13
Lazy Caterers - (0/50) 7,626 (48/50) -

Magic Constants 557,592 (50/50) 686,929 (43/50) 7.25E-1
Fibonacci - (0/50) 27,075 (50/50) -

A number of solution found using CGP and RCGP are now presented. In all cases the

functioning nodes are labelled with their node index and their function. When executing

the programs, the nodes are updated in index order. The inputs to each node are also

120

5.5 Experiments

labelled with their input ordering. This is significant in the case of division and subtraction.

For the divide function, the input labelled (0) is the numerator and the input labelled (1)

is the denominator. For the subtract function, the input labelled (1) is subtracted from

the input labelled (0).

Two example solutions found for the hexagonal benchmark are given in Figure 5.9 for

CGP and RCGP respectively. As no lazy caterers solutions were found using CGP only a

solution for RCGP is presented in Figure 5.10. Two example solutions found on the magic

constants benchmark are given in Figure 5.11 for CGP and RCGP respectively. Finally

as no Fibonacci solutions were found using CGP therefore only a solution for RCGP is

presented in Figure 5.12.

Input 0

(0) mul (0)

 (1)
(2) sub (1)

(1) add
 (0)
 (1) (0)

Output 0

(a) CGP

Input 0
(0) sub

 (0)

 (1)

(1) mul
 (0)

 (1)

(4) add (1)

(2) sub
 (1)

(3) add
 (0)
 (1)

 (0)

(7) add (0)

(5) add
 (0)

(6) add
 (1)

 (0)

Output 0

 (0)

 (1)

 (1)

(b) RCGP

Figure 5.9: Example CGP (a) and RCGP (b) Hexagonal solutions.

Input 0

(0) div (0)

 (1)

(1) div
 (1)

(2) div

 (0)

 (0)

(5) sub

 (0)

 (1) (4) sub
 (1)

(3) div (1)
 (0)

(6) sub (0)

 (0)

 (1)

Output 0
 (1)

Figure 5.10: Example RCGP Lazy Caterer solutions.

121

Chapter 5: Recurrent Cartesian Genetic Programming

Input 0

(0) div (0)

 (1)
(2) div

 (0)

(3) mul
 (0)

 (1)

(5) sub

 (1)

(1) add (0)
 (1)

 (1)
(4) mul (1)

 (0)

 (0)

(6) sub
 (0)

 (1) Output 0

(a) CGP

Input 0

(0) add

 (0)

(1) add

 (1)

(6) add

 (1)

(5) add

 (1)

(2) add (0)
 (1)

(4) sub

 (0)

(7) sub (1)

 (1)

(3) add

 (0)

Output 0

 (0)

 (1)

 (0)

 (0)

 (0)
 (1)

(b) RCGP

Figure 5.11: Example CGP (a) and RCGP (b) Magic Constants solutions.

Input 0

(0) div (0)

 (1)
(1) add

 (0)
(2) add

 (0)

(3) sub

 (1)

(6) mul

 (0)

 (1) (7) mul

 (0)

 (0) (1)(5) add (1)

 (1)

(4) mul (1) (0)

 (0)

 (1)

Output 0

Figure 5.12: Example RCGP Fibonacci solution.

Although the aim of this chapter is not to compare RCGP to other methods capable of

creating recurrent solutions, as other GP methods have also been previously applied to the

Fibonacci sequence a comparison can easily be made. However, it should be noted that

the implementations used vary between methods e.g. the length of the sequences used,

the use of training and testing sets, and the percentage of runs which found a solution.

Therefore only a superficial comparison can be made. The results of this comparison

are given in Table 5.5 where RCGP is shown to be very competitive. Interestingly the

comparative methods include an alternative extension to CGP, Self Modifying Cartesian

122

5.5 Experiments

Genetic Programming (SMCGP)7.

Table 5.5: GP methods applied to the Fibonacci Sequence benchmark

Method Evaluations

RCGP 27,075
Multi-niche Genetic Programming [216] ∼200,000
Probabilistic Adaptive Mapping Developmental GP [307] 212,000
SMCGP [100] ∼1,000,000
Machine Language Programs [122] ∼1,000,000
Object-Oriented GP [3] ∼20,000,000

5.5.3 Discussion

As can be seen from the results in Table 5.4, using CGP to find explicit solutions and

RCGP to find recurrent solutions has a marked effected on the tractability of the tasks.

In all cases RCGP found recurrent solutions in the majority of runs, whereas CGP only

found solutions for two of the four sequences. This again demonstrates that there are tasks

to which RCGP is more suited than CGP; even when CGP is capable of solving the task.

It is likely however that the performance of CGP would have been improved if given more

available nodes and/or number of generations; although this is likely also be the case for

RCGP.

In the case of the hexagonal sequence, CGP strongly outperformed RCGP with statis-

tical significance. This demonstrates that although RCGP could solve this task, CGP was

more suited to the challenge. That is to say, it appears that the task is more easily solved

explicitly than recursively. As the set up for these experiments forced RCGP to produce

recurrent solutions, by fixing the single input as one, it had so be solved recursively rather

using the easier explicit form. In general RCGP can evolve solutions with or without

recurrent connections and so this is not a limitation of RCGP. In fact if it were not known

whether recurrence was required, or whether the task was more tractable with/without

recurrence, RCGP could be applied and allowed to follow the easiest evolutionary gradi-

ent; resulting in an explicit or recurrent solution. Although whether this would actuality

occur is speculative.

From inspection of the RCGP solutions, it was noticed that many solutions contained

addition nodes with their outputs fed back as an input; such as node (5) in Figure 5.12.

7Although RCGP and SMCGP are described here as alternative extensions, they may actually be
compatible with one another. This would create a recurrent form of SMCGP.

123

Chapter 5: Recurrent Cartesian Genetic Programming

As all nodes are initialised to output zero before they calculate their own output value,

this has the effect of implementing a summation; where the output of node (5) is the

running sum of all the previous outputs of node (4). This interesting behaviour also holds

for subtraction. However it does not hold for multiplication as the node is also initialised

to output zero; if a multiplication node’s output were fed back as an input it would forever

output zero. It is therefore possible that simpler recurrent equations could be formed if

multiplication nodes could be used to store the product of previous inputs; akin to how

addition nodes store the summation. This can be achieved by initialising multiplication

nodes to output one, not zero, until they have calculated their own output value. Then

multiplication nodes could be arranged such that they produce the product of previous

inputs. It is therefore recommended that future developments of RCGP consider what

initial output values different node functions should use to make best use of their presence.

Alternatively, the value to which each node is initialised could also be determined by the

evolutionary process.

Being capable of implementing summation operations indicates additional possible

applications of RCGP. For instance, a summation operation is the discrete equivalent

of an integral in the continuous domain. Additionally, RCGP is likely also capable of

implementing a moving averaging function; for instance by keeping a sum of the previous

two inputs and dividing the sum by two. Again calculating a moving average in the

discrete domain has symmetries with calculating the gradient in the continuous domain.

It therefore appears that RCGP could create equations which can calculate gradients and

integrals; or at least approximations. This may mean that RCGP can be applied to tasks

where the solution required is a differential equation.

Finally, it was shown that RCGP represents a highly competitive method of creating

equations which produce the Fibonacci sequence; outperforming all other methods used

for comparison. Although in this chapter only a single comparison was made to other

methods, this at least indicates that RCGP is a powerful method for creating recurrent

program structures.

5.6 Summary

This chapter has introduced a new extension to CGP which enables the creation of re-

current program structures. In both sets of experiments presented it has been shown

that RCGP is capable of utilising recurrent connections and that for certain tasks this

124

5.6 Summary

provides a strong advantage over CGP. It was also shown that RCGP represents a pow-

erful method compared to other GP techniques capable of creating recurrent solutions;

although the comparison was limited.

From the inspection of evolved solutions in can be seen that RCGP does indeed create

recurrent solutions. It was also noted that many solutions contained addition nodes with

the output fed back as an input, thus implementing a summation. As this was only

possible due to the initial value used, the choice of initial values should be a consideration

in future works.

As RCGP was introduced here solely so it can later be applied to CGPANN, there

are many open questions left uninvestigated. For instance, it is not known how strongly

the bias produced by the recurrent connection probability influences the search and final

solutions. For example, it may be the case that using a recurrent probability of x actually

produces final solutions with x percent recurrent connections regardless of application; in

which case the bias is too strong overcoming other evolutionary pressures. Additionally,

it may be the case that many tasks can be solved more efficiently, in terms of the number

of nodes, when recurrence is allowed. If this were the case then tasks could be solved

with fewer nodes reducing the dimensionality of the search, possibly leading to increased

convergence time. However, it may also be the case the presence of recurrence creates

more challenging fitness landscapes increasing the difficulty of the search. Finally, it is not

yet known what value of recurrent connection probability is likely to be suitable. Although

certainly task dependent, it may be the case that for the majority of tasks a value around

x is reasonable. For instance, when selecting a mutation value for CGP a value between

1% and 10% would be considered responsible; whereas a value <0.1% or >20% would

be considered strange. This intuition is not yet available for the recurrent connection

probability.

125

Chapter 6

Topology Evolution

One of the often stated benefits of NeuroEvolution (NE) is the ability to evolve the topol-

ogy of Artificial Neural Network (ANN). However, in the literature there is no rigorous

study assessing whether evolving topology actually provides any benefit. This chapter

aims to fill this void by investigating whether the ability to adapt network topology does

indeed represent an advantageous property for NE. This investigation also includes an

assessment of the relative importance/benefit of evolving network topology compared to

connection weights.

6.1 Structure of this Chapter

Section 6.2 provides a background to topology evolution in the field of NE with a focus on

the perceived benefits of topology adaptation. Section 6.3 presents an experiment inves-

tigating whether the ability to adapt topology does indeed provide a benefit for topology

evolving NE methods. Section 6.4 continues by investigating the relative importance of

topology and connection weight evolution. Finally Section 6.5 presents a closing summary

of the investigations.

6.2 Background

NE methods are often categorised into two groups, those which do, and those which do

not, adapt network topology [64, 313]; to the authors knowledge all NE methods adapt

connection weights. Theoretically, training an ANN can be thought of in terms of searching

a topology and weight space; or a weight spaces associated with each given topology. Using

127

Chapter 6: Topology Evolution

only fixed topologies therefore limits the search to one subset weight space within the wider

search space.

It is often assumed in the NE literature that the ability to evolve topology offers an

advantage over only weight adapting methods [64,313]; such as back propagation and NE

method which only adapt connection weights. These advantages include 1) not requiring a

suitable topology to be known in advance of training1, 2) utilising topologies which would

be unlikely to be considered by a human designer, and 3) exploiting relationships between

topology and connections weights during evolution.

Although it is often thought that topology and connection weight evolution offers a

significant advantage over weight evolution alone, to the authors knowledge there are no

publications which truly compare the two approaches. Initial work in [130] present a lim-

ited set of results on varying the topology for Covariance Matrix Adaptation Evolutionary

Strategies (CMA-ES); a weight only evolving NE method. In such work it was shown

that the choice of topology did strongly influence the results founds. Additionally, it is

also known that the choice of topology has a large influence on the performance of ANNs

trained using back propagation type algorithms [178]. However, this prior work alone is

insufficient to truly assess the benefit of topology evolving NE methods.

It may be possible to assess the benefit of evolving topology by comparing results of

NE methods which do and do not evolve network topology found in the literature. How-

ever, it is difficult to draw empirical conclusions about the benefit of evolving topology

as techniques use different Evolutionary Strategies (ES) and different encodings to de-

scribe the ANNs during evolution. When, for example, a weight and topology evolving

NE technique outperforms a weight only technique, we may assume that the increase in

performance was due to its ability to evolve topologies, but it could equally be due to other

implementational differences. For instance, the weight only evolving method Symbiotic

Adaptive NeuroEvolution (SANE) [212] evolves ANNs at a neuron level, with the complete

networks assembled using neurons selected from the population. In contrast, the weight

and topology evolving method NeuroEvolution of Augmenting Topologies (NEAT) [267]

evolves ANNs at a network level and employs strategies to track when ancestral changes

take place in order to more effectively make use of the crossover operator. So when it is

1“What is usually done in practice is that the developer trains a number of networks with different sizes,
and then the smallest network that can fulfill all or most of the required performance requirements is selected.
This amounts to a tedious process of trial and errors that seems to be unfortunately unavoidable.” [183]

128

6.3 Is it Beneficial to Evolve Network Topology?

shown that NEAT outperforms SANE on a given benchmark [267], it is not clear if this is

due to the ability to evolve topology or due to other differences between the two methods,

or both.

Additionally, when results are presented using a weight only evolving method, the

topology used has typically been ‘optimised’ by hand before presenting the results. There-

fore comparing these results to a topology and weight evolving method is unfair as the

tasks are different. In one case, a suitable topology is provided and the task is to find

suitable connection weights, and in the other, neither a suitable topology nor connection

weights are provided and both must be found.

Finally, to the author’s knowledge there are no NE techniques which solely rely on the

evolution of topology with no alterations to connection weights. It is therefore difficult

to assess the relative benefits/importance of connection weight evolution and topology

evolution.

Therefore, there are important open questions regarding topology optimising NE meth-

ods. Firstly, whether or not it is beneficial to evolve network topology. Secondly, whether

topology or connection weight evolution is more significant to the training of ANNs; when

using NE.

6.3 Is it Beneficial to Evolve Network Topology?

This section presents a set of experiments investigating the benefit of using NE to adapt

ANN topology. This is undertaken via a comparison between Conventional NeuroEvolu-

tion (CNE), a weight only evolving NE method, and Cartesian Genetic Programming of

Artificial Neural Networks (CGPANN), a weight and topology evolving NE method. As

has been previously discussed, this investigation will focus on three perceived benefits of

topology evolving methods: 1) that it removes the requirement to know a suitable topol-

ogy in advance of training, 2) that it allows evolution utilises topologies unlikely to be

considered by a human designer, and 3) that it allows evolution to exploit relationships

between topology and connection weights resulting in a more effective search.

Firstly, the influence of topology on CNE, a weight only evolving method, is inves-

tigated. This is undertaken by applying CNE to a number of benchmark tasks using a

range of topologies. This is to identify if the onus on the user to select a suitable topology

represents a disadvantage. For instance, it may be the case that the choice of topology

has little effect on the solutions found; demonstrating that there is no need to use evolu-

129

Chapter 6: Topology Evolution

tion to find suitable topologies. However, it may be the case that the choice of topology

has a large influence on the solutions found, demonstrating that there is scope for using

evolution to find suitable topologies.

The results of investigating CNE using a range of topologies are also compared to the

use of CGPANN; a topology and weight evolving NE method. This is to assess if the

ability to adapt network topology can be used to alleviate the requirement on the user to

select a suitable topology. Recall that although CGPANN is free to adapt topology, it does

so within user defined topology limits. For instance, the user defines a maximum number

of nodes or specifies a maximum number of rows and columns; see Chapter 3. Therefore,

with CNE the user must specify a fixed topology, but with CGPANN, the user must

specify maximum topology limits. If the choice of topology limits for CGPANN influences

the suitability of the solutions found more than the choice of the fixed topology for CNE,

then it would have failed to lessen the onus on the user to specify a suitable topology.

If the influence on the solutions found is equal, then there is little reason for the added

complexity of adapting network topology. However, if the influence on the effectiveness of

the search is reduced when specifying CGPANN topology limits, then it demonstrates that

adapting topology lessens the onus on the user to know a suitable topology in advance of

training.

Note that the comparison is not between the best solutions found using CNE and the

best solutions found CGPANN. This is because the tasks assigned to CNE and CGPANN

are different. In the case of CNE, the task is to optimise the connection weights of a

given topology. Whereas in the case of CGPANN, the task is to optimise both connection

weights and topology. What is being compared is the effect of varying the fixed topology

for CNE, and the effect of varying the topology limits for CGPANN, on the solutions

which are found.

Secondly, whether or not topology adapting NE methods result in the use of topologies

unlikely to be considered by a human designer is investigated. However, this is challenging

due to it not being known what a human designer would consider. Therefore the definition

used here for topologies which would be considered by a human designer is that they can

be described using the standard layers and nodes per layer formation often used by ANNs.

That is to say, if they can be described in the format of “three fully connected hidden

layers containing ten, five and five neurons respectively”. If effective topologies are found

which cannot be described by this standard topology description, then it will be concluded

130

6.3 Is it Beneficial to Evolve Network Topology?

that they would have been unlikely to be considered by a human designer.

Finally, whether topology adapting NE methods benefit from the ability to exploit

relationships between topology and connection weights during the search is investigated.

An indication of this behaviour would be demonstrated if any of the CGPANN experiments

outperformed the best CNE result. This is because when CNE is provided with a suitable

topology, it only has to optimise the connections weights. However, CGPANN always

has to optimise the connection weights and topology; a harder task. If simultaneously

optimising topology and connection weight results in a fitness landscape which is easier to

navigate, CGPANN could still outperform CNE even if the task was “harder”. Therefore,

if CGPANN is shown to outperform CNE, even when the best found topology is used,

it would indicate that relationships between connection weights and topology are being

exploited by the search. The reason this would only be an indication of this behaviour

is because CGPANN has access to topologies not investigated for CNE. For instance, it

may be the case that a highly effective topology was never tested for CNE, but could be

reached using CGPANN. If this were the case, CGPANN could be seen to outperform the

best CNE topology without exploiting any relationships between topology and connections

weights.

6.3.1 Experimental Setup

In the case of CNE, the number of layers and nodes per layer are both swept over the range

[1,2,3,..,19,20] resulting in 400 separate topologies investigated. Typically, when using

CGPANN the user must specify a maximum number of nodes, of which only a proportion

are used. This is based on the “one row” form of Cartesian Genetic Programming (CGP);

See Chapter 3. However, to make for simple comparisons with CNE, here the “rows and

columns” form of CGPANN is used. Therefore, in the case of CGPANN the number of

rows and columns are also both swept over the same range [1,2,3,..,19,20]. In both cases,

CNE and CGPANN, each experiment is run for 5000 generations and repeated fifty times

in order to produce a reliable arithmetic mean fitness which are used for comparison.

It was previously stated that assessing the benefit of evolving topology by comparing

the results of different NE methods is challenging due to implementation differences other

than the ability to evolve topology. Here both CNE and CGPANN use a (1 + 4)-ES, a

five percent weight gene probabilistic mutation rate, no crossover and a connection weight

range of ±10. In the case of CNE, the topologies are fixed and fully connected between

131

Chapter 6: Topology Evolution

layers. In the case of CGPANN, the topology is free to evolve within the constraints of

the given number of rows and columns and using a maximum node arity of ten.

As discussed in Chapter 4, when CGPANN evolves topology it is possible for two nodes

to be connected by multiple connections. Previously this was left unchanged as CGPANN

was assessed in it ‘raw’ form. However, an implication of this is that the maximum

connection weight range can exceed that set by the user; as two connections between two

nodes is equivalent to one connection with the sum of the individual connection weights.

However, the maximum connection weight range used may make a task easier or harder

to solve. As the experiments here are trying to isolate, as much as possible, the effect of

topology evolution, this effect should be removed. Therefore in the experiments presented,

only the first of multiple connections between two nodes are decoded into the phenotype.

This means that the arity of each node is under the control of evolution, up to the given

maximum (ten). It also means that the maximum connection weight range set by the user

cannot be exceeded.

Although there are still differences between CNE and CGPANN, the differences have

been minimised. In fact, in this work CNE was implemented by constraining the CGPANN

implementation; by setting the initial chromosome to be of a given configuration and then

disallowing topology mutations. Other than the specified initial topology, and the lack of

topology mutations, the implementations of CNE and CGPANN are identical.

In this investigation three benchmark tasks are employed: Ball Throwing, Double

Pole Balancing and the Monks Problem 1. Each of these benchmarks is described in

Appendix A. In the case of the Ball Throwing and the Double Pole balancing, a higher

fitness represents a better solution. In the case of the Monks Problem 1, a lower fitness

represents a better solution. Additionally, in the case of the Monks Problem 1 benchmark,

the fitnesses presented are those achieved on the training set. The generalisation ability is

not considered here to simplify the experiments; otherwise early stopping methods would

need to be employed. A rigorous evaluation of CGPANN as a classification method, where

the figure of merit is the ability to generalise to unseen data, is given in Chapter 9. The

logistic sigmoid is used for both CNE and CGPANN in the case of the Ball Throwing

and the Monks Problem 1. In the case of the Double Pole Balancing, the bipolar logistic

sigmoid is used; the regular logistic sigmoid scaled to a ±1 range.

132

6.3 Is it Beneficial to Evolve Network Topology?

6.3.2 Results

The results of the described experiment are given in Figure 6.1. The Figure shows heat

maps of the fitness achieved using CNE and CGPANN over a range of topologies and

topology limits respectively. In the cases of Ball Throwing and the Double Pole Balancing

higher fitnesses represent better solution, in the case of the Monks Problem 1 lower fitnesses

represent better solutions.

First, the effect of varying CNEs topology is evaluated; sub figures (a), (c) and (e)

of Figure 6.1. As can be seen in Figure 6.1, the choice of topology has a large influence

on the effectiveness of CNE’s search. It is also interesting to note the types of topologies

which performed well. Typically, in the ANN literature one or two hidden layers are used;

with the number of nodes per layer ’optimised’ by hand. Whereas from the CNE results

presented in Figure 6.1, the best topologies for the Ball Throwing benchmark used around

five hidden layers. On the Double Pole Balancing task, much deeper networks were found

to be of benefit, all the way up to the maximum of 20 layers. A similar trend is also been

for the Monks Problem 1 where the range of suitable layers extends into deeper topologies.

The fact that the Double Pole Balancing produced better results using topologies which

would not typically be considered demonstrates the danger of relying on user defined

topologies. Additionally, even if a suitable number of layers can be ‘guessed’ it still does

not mean a suitable number of nodes per layer is known. In the case of the ball throwing

benchmark, it can be seen that a larger number of nodes per layer (&5) produced better

results, whereas in the case of the Monks problem 1, larger numbers of nodes per layer

(&10) produced worse results.

It has been previously demonstrated, in work such as [178], that the performance

of ANNs trained using back propagation are also strongly influenced by the topology

used. Here, for completeness, the same experiment is also undertaken using back propaga-

tion. The work used the Fast Artificial Neural Network Library (FANN) library [217] and

trained Multilayer Perceptrons (MLP) of logistic sigmoid functions using resilient back

propagation [241] for 1000 epochs. As back propagation is typically not compatible with

reinforcement tasks, only results on the Monks Problem 1 can be presented; which are

given in Figure 6.2.

As can be seen in Figure 6.2, the effectiveness of the training ANNs using back propa-

gation is also strongly dependent on topology. Interestingly however, the topologies which

produced the best results differ to those found suitable using CNE. This is interesting

133

Chapter 6: Topology Evolution

5 10 15

5

10

15

20

Layers

N
od

es
 P

er
 L

ay
er

(a) CNE - Ball Throwing

5 10 15

5

10

15

Columns
R

ow
s

0

2

4

6

8

10

(b) CGPANN - Ball Throwing

5 10 15

5

10

15

Layers

N
od

es
 P

er
 L

ay
er

(c) CNE - Double Pole Balancing

5 10 15

5

10

15

Columns

R
ow

s

0

20000

40000

60000

80000

100000

(d) CGPANN - Double Pole Balancing

5 10 15

5

10

15

Layers

N
od

es
 P

er
 L

ay
er

(e) CNE - Monks Problem 1

5 10 15

5

10

15

Columns

R
ow

s

0

10

20

30

40

50

(f) CGPANN - Monks Problem 1

Figure 6.1: Effect of sweeping topology and topology limits for CNE and CGPANN re-
spectively.

134

6.3 Is it Beneficial to Evolve Network Topology?

5 10 15

5

10

15

Layers

N
od

es
 P

er
 L

ay
er

0

20

40

60

80

100

120

Figure 6.2: MLP trained using resilient back propagation on the Monks Problem. Note
the larger range of finesses than displayed in Figure 6.1.

because it indicates that a suitable choice of topology is not only a function of a given task,

but also the training method used. This has a significant consequence, current rules of

thumb for network design [47] may not be applicable to NE. This is because they assume

the use of back propagation as the training method. However, as only one benchmark is

used here for comparison, further work would be needed to confirm this.

The results from applying CGPANN with varying topology limits are now evaluated;

given in sub figures (b), (d) and (f) of Figure 6.1. When using CGPANN it can be seen

that the effectiveness of the search is much more uniform across the range of topology

limits investigated. This has an important implication. Even if a suitable topology is not

known in advance, topology evolving methods can be used to find suitable solutions. That

is to say, poor results can be avoided even if a suitable topology is not known. This is

an often quoted advantage of topology and weight evolving methods which is explicitly

demonstrated here.

Recall that in the case of CGPANN, topology limits must be provided. If the limits

are set too small then certain tasks will be less tractable; as can be seen in the lower left

of the sub figures in Figure 6.1. Additionally, as the limits are increased the search space

widens. It is likely the case that the optimal limits are task dependent. However, as can

be seen in Figure 6.1, the gradient between good and bad CNE topologies is much higher

than for good and bad CGPANN topology limits. This is the advantageous property. The

135

Chapter 6: Topology Evolution

requirements of knowing a suitable topology is drastically relaxed, meaning CGPANN is

likely to perform better than CNE when a suitable topology must be “guessed”.

It can also be seen in Figure 6.1, on the Ball Throwing and Monks Problem 1 bench-

marks, that ANNs trained using CNE with a suitable topology produces better solutions

than using CGPANN and evolving topology. This is not a surprising result. The task of

searching for a suitable topology and connection weights is more substantial than optimis-

ing the connection weights of an already suitable topology. Comparing one with the other

is unfair as the best result produced using CNE does not contain the computation cost

of searching all the topologies in order to find the most suited. The benefit of topology

optimisation is not that it produces a better solution even when a suitable topology is

known. The advantage is that it can find suitable topologies when a suitable topology is

not known. To this end, CGPANN appears to be capable of finding suiting topologies;

seen in the reasonably uniform fitness across topology limits.

However, a very interesting result is seen for the Double Pole Balancing benchmark.

CGPANN produced better results than the best CNE topology across a wide range of

topology limits. This indicates that CGPANN’s evolutionary search may have been im-

proved by the ability to simultaneously adapt topology and connection weights; a perceived

advantage of topology optimising NE. However, as CGPANN has access to topologies not

investigated for CNE, it may also be the case that CGPANN was utilising topologies un-

available to CNE. For this reason the result only indicates that CGPANN is benefit from

the simultaneous evolution of connection weights and topology. Although if it is the case

the CGPANN outperformed CNE due to accessing topologies not investigated by CNE,

then this demonstrates an alternative advantage of evolving topology. It utilises topologies

not typically considered.

Finally, one of the quoted benefits of topology evolving NE methods is that it can create

topologies which are unlikely to be considered by a human designer. Figure 6.3 gives a

sample solution which was found for the Double Pole benchmark from the CGPANN

results. As can be seen, the topology is highly unusual, in that it does not consist of layers

and nodes per layer and the node arity is varied. Although it is difficult to argue whether

a given topology could have been considered by a human designer, it is clear that the

topologies found can be atypical compared to those usually used by ANNs.

136

6.3 Is it Beneficial to Evolve Network Topology?

Figure 6.3: Solution found by CGPANN for the Double Pole Balancing benchmark.

6.3.3 Discussion

The results presented for CNE in Figure 6.1 demonstrates that the choice of topology has

a large influence on the effectiveness of the trained ANNs. This confirms previously seen

results for CMA-ES [130]. This results has also been seen previously using back propaga-

tion [178] which is in-line with the results seen in Figure 6.2. Although, from comparisons

between Figures 6.1 and Figure 6.2, it appears that suitable topologies are both task

and training method dependent. This potentially limits the usefulness of previous ANN

topology rules of thumb [47] for NE training methods.

It was also shown in Figure 6.1, that when using CGPANN to evolve ANNs, the

requirement on the user to know a suitable topology in advance of training is drastically

relaxed. This demonstrates that topology and weight evolving NE methods can indeed be

used to find suitable topologies when a suitable topology is not known. Additionally, this

result is also likely to extend to other similar NE methods such as GeNeralized Acquisition

of Recurrent Links (GNARL); where topology limits must be specified for the initial

population.

It was also shown in Figure 6.3, that when allowing evolution to adapt network topol-

ogy, topologies can be found which are unlikely to be considered by a human designer.

That is to say, the range of topologies typically investigated is must less constrained.

There was also an indication that CGPANN may have been exploiting evolutionary

paths created through the combined evolution of connection weights and topology. This

was demonstrated by many CGPANN experiments outperforming all of the CNE topolo-

137

Chapter 6: Topology Evolution

gies investigated on the Double Pole Balancing benchmark. However, it may also have

been due to CGPANN having access to topologies not consider for CNE. Therefore, in-

teresting future work would be to take the CGPANN solutions which outperformed CNE,

randomise the connections weight, and re-evolve them using CNE. If CNE failed to equal

or better the solution found using CGPANN, it would provide evidence that CGPANN

was exploiting relationships between connection weights and topology. However, if CNE

performed equally or better, it would be evidence that CGPANN outperformed CNE by

utilising topologies not considered for CNE.

Interestingly, if it were found that CGPANN outperformed CNE due to having ac-

cess to topologies not considered by CNE, then this itself would represent an advantage

of optimising topology. Alternatively, if CGPANN outperformed CNE due it exploiting

relationships between connections weights and topology, then this is also an advantage of

optimising topology. Regardless of the cause, the fact that CGPANN was seen to outper-

form CNE, even when a large number of topologies were considered, clearly demonstrates

that there is an advantage to evolving network topology.

However, there are a class of topology evolving NE methods which have not been

considered in the work presented, those which start with minimally sized solutions and

continuously add and remove nodes during training. Such NE methods include NEAT,

Cooperative Co-evolution Model for evolving Artificial Neural Networks (COVNET) and

NeuroEvolutionary Algorithm (NevA). Interesting future work would be to investigate

such methods to identify how they compare to fixed topology methods and topology

restrained methods. It may be the case that topology limited methods represent a com-

promise between fully constrained and unconstrained topology evolution. For instance, if

a suitable topology were known then fixed topology methods could be used. If it were

known that a suitable topology was likely to lie within certain limits, then evolving topol-

ogy within these limits is likely to be beneficial. Finally, if it were completely unknown

what topologies were suitable, allowing evolution to search the entire space of topologies

is likely to be beneficial; like methods such as GNARL. This is an example of how user

defined knowledge can be used to restrict the search space to known suitable areas.

One caveat, however, is methods such as NEAT, COVNET and NevA are unlikely

to freely evolve topologies without any bias. This means that they are unlikely to be

searching over all possible topologies. This is due to them iteratively adding/removing

nodes/connections starting from a minimal form. This is undertaken to bias the search to

138

6.4 Relative Importance of Topology Evolution

smaller topologies which are considered to generalise more effectively to unseen data. This

can also be thought of as limiting the search with user defined knowledge. Additionally,

such methods are likely to become trapped in topology local optima [15], and so may not

be as free to evolve topology as would be desired.

A possible criticism of this work could be that CGPANN does not truly evolve topol-

ogy because the possible topologies are always constrained by upper limits. However, to

the author’s knowledge there are no NE methods which are truly unconstrained. For in-

stance, even methods such as GNARL or NEAT which can iteratively add nodes are also

effectively limited. This is because the length of the runs is finite. If GNARL started with

twenty nodes and added a new node on every generation up to the maximum number

of generations, then the possible maximum number of nodes would be twenty plus the

maximum number of generations. Therefore the reachable search space does not contain

every possible network. It is just more explicit for CGPANN.

6.4 Relative Importance of Topology Evolution

In the NE literature it is often assumed that topology evolution is highly important to

the evolutionary search. However, its relative importance to connection weight evolution

is currently unknown. This section aims to fill this gap in literature by investigating the

relative importance of weight evolution and topology evolution.

Here the importance of topology evolution is investigated by using CGPANN under

the following constraints:

1. Only evolving connection weights.

2. Only evolving topology.

3. Evolving both connection weights and topology.

In each case the connection weights and topologies are randomly initialised; within the

limits described in the following section. In the first constraint, the randomly gener-

ated topologies remained fixed and only the connection weights are evolved. In the sec-

ond constraint, the randomly generated weights remained fixed and only the topology is

evolved. In the third constraint, both the randomly generated weights and topologies are

evolved. By looking at the final fitnesses produced under each constraint, over a range of

benchmarks, the relative importance of connection weight and topology evolution can be

assessed.

139

Chapter 6: Topology Evolution

6.4.1 Experimental Setup

CGPANN is limited to only evolving topology or connection weights by using probabilistic

mutation and setting the mutation rate of connection genes or weight genes to zero percent

respectively. For instance, to stop topology evolution, the connection genes and output

genes are never mutated. Similarly, to prevent connection weight evolution, connection

weight genes are never mutated.

The CGPANN parameters used are as follows: a maximum of 1000 generations, 50

runs, a (1 + 4)-ES, 30 nodes (in the single row format), a connection weight range of ±10

and an arity of 10; where only the first of multiple connections between nodes are decoded

into the phenotype. The benchmarks used for this investigation are the same as were

used in the previous section; Section 6.3.1. In all cases the logistic sigmoid or the bipolar

logistic sigmoid was used; as described in Section 6.3.1.

6.4.2 Results

The results of restricting CGPANN to evolving only connection weights, only topology,

and evolving both connection weights and topology, are given in Figures 6.4, 6.5 and 6.6 for

the Ball Throwing, Double Pole Balancing and Monks Problem 1 benchmarks respectively.

In the case of the Ball Throwing and the Double Pole Balancing a higher fitness represents

a better solutions, in the case of the Monks Problem 1 a lower fitness represents a better

solution.

0 2 4 6 8 10 12 14
0

2

4

6

8

10

Mutation %

F
itn

es
s

(h
ig

he
r

is
 b

et
te

r)

Weights Only
Topology Only
Weights & Topology

Figure 6.4: Comparing the relative importance of connection weight evolution and topol-
ogy evolution using CGPANN on the Ball Throwing benchmark.

140

6.4 Relative Importance of Topology Evolution

0 2 4 6 8 10 12 14
0

20000

40000

60000

80000

100000

Mutation %

F
itn

es
s

(h
ig

he
r

is
 b

et
te

r)

Weights Only
Topology Only
Weights & Topology

Figure 6.5: Comparing the relative importance of connection weight evolution and topol-
ogy evolution using CGPANN on the Double Pole Balancing benchmark.

0 2 4 6 8 10 12 14
10

15

20

25

30

35

40

45

Mutation %

F
itn

es
s

(lo
w

er
 is

 b
et

te
r)

Weights Only
Topology Only
Weights & Topology

Figure 6.6: Comparing the relative importance of connection weight evolution and topol-
ogy evolution using CGPANN on the Monks Problem 1 benchmark.

The results are also analysed using non-parametric statistical tests; See Appendix B.

The results of these statistical tests are given In Tables 6.1, 6.2 and 6.3 for the Ball

Throwing, Double Pole Balancing and Monks Problem 1 benchmarks respectively. To

simplify the analysis, the statistical significance testing is only undertaken for mutation

rates of 3 and 5 percent.

A number of interesting and surprising features can be seen in the results presented.

141

Chapter 6: Topology Evolution

Firstly, evolving the connection weights of random fixed topologies produced a significantly

worse search than evolving the topology of random fixed connection weights; with most

cases being statically significant with a medium or greater effect size. This is a surprising

result as it indicates that topology is more important to the training of ANNs than con-

nection weights. Secondly, there is a large difference between evolving connection weights

and topology and just evolving connection weights; with evolving connection weights and

topology producing a much better search with statistical significance and often large effect

sizes. This indicates that the ability to evolve topology is having a large influence on the

search. Finally there is little difference between evolving connection weights and topology

with just evolving topology. This indicates that the ability to evolve connection weights

has little effect over and above the ability to evolve topology.

Table 6.1: Statistical analysis of the relative importance of connection weight evolution
and topology evolution on the Ball Throwing benchmark.

Comparison Mutation % U-test KS A

Weights and Topology with Topology 3 5.74E-2 9.51E-2 0.609
Weights and Topology with Topology 5 4.33E-1 5.08E-1 0.546
Weights and Topology with Weights 3 2.30E-2 3.17E-2 0.631
Weights and Topology with Weights 5 1.06E-3 2.11E-3 0.689
Weights with Topology 3 5.19E-1 3.58E-1 0.537
Weights with Topology 5 9.12E-3 5.60E-2 0.650

Table 6.2: Statistical analysis of the relative importance of connection weight evolution
and topology evolution on the Double Pole benchmark.

Comparison Mutation % U-test KS A

Weights and Topology with Topology 3 1.76E-1 3.58E-1 0.574
Weights and Topology with Topology 5 1.41E-1 5.08E-1 0.576
Weights and Topology with Weights 3 2.31E-6 2.76E-6 0.766
Weights and Topology with Weights 5 2.59E-3 1.71E-2 0.661
Weights with Topology 3 4.43E-5 1.78E-4 0.734
Weights with Topology 5 8.11E-2 3.12E-2 0.596

Table 6.3: Statistical analysis of the relative importance of connection weight evolution
and topology evolution on the Monks Problem 1 benchmark.

Comparison Mutation % U-test KS A

Weights and Topology with Topology 3 1.24E-1 2.41E-1 0.589
Weights and Topology with Topology 5 5.93E-1 3.58E-1 0.531
Weights and Topology with Weights 3 9.46E-6 1.78E-4 0.757
Weights and Topology with Weights 5 2.67E-5 2.76E-5 0.743
Weights with Topology 3 8.35E-4 4.43E-3 0.694
Weights with Topology 5 2.48E-5 4.23E-4 0.744

142

6.5 Summary

6.4.3 Discussion

This section has demonstrated that the ability to evolve topology is very significant to

the evolutionary search; at least for CGPANN. The surprising result was seen that the

ability to evolve topology may in fact be more important to the search than the ability to

optimise connection weights.

Although in real applications random topologies would never be used2, the aim of this

experiment was to identify the relative importance of topology and connection weights

generally; not necessarily in the presence of user knowledge.

Additionally, the random topologies generated using CGPANN are unlikely to be

evenly distributed across all possible topologies due to length bias [84]. Although the

topologies are random, some configurations will be more probable than others. Therefore

this experiment could be improved by ensuring that the random topologies came from

an even distribution; rather than using the typical CGPANN method for initialising new

chromosomes. Additionally, the range of random topologies was limited to a maximum

of 30 nodes with a maximum node arity of 10. However, in the same regard so were the

range of connection weights limited to ±10.

However, despite these limitations, it certainly appears that topology has a large in-

fluence on the effectiveness of the search for CGPANN and this is likely to extend to other

topology optimising NE methods. Additionally, it appears that topology optimisation is

more important than weight optimisation in the general case i.e. without additional user

knowledge. Therefore, it can be said, for CGPANN at least, that topology optimisation

is more significant to training than weight evolution; when considering random topologies

and random connection weights.

6.5 Summary

This chapter has investigated previous claims that adapting topology represents a number

of advantageous properties for NE [64, 313]. The chapter has provided evidence for these

claims, filling a previous gap in the literature.

Firstly, it has previously been assumed that the adaptation of topology is advantageous

due to it removing the requirement for the user to know suitable topologies in advance of

training. This chapter has demonstrated that when using CNE, a weight only evolving

2Many rules of thumb [47] can be followed to indicate suitable topologies

143

Chapter 6: Topology Evolution

method, that not only was the achieved fitness highly related to topology, but that the

gradient of fitnesses between suited and ill-suited topologies was very high. That is to say,

there was little room for error when choosing a suitable topology.

However, in the case of CGPANN, although the user must select topology limits, the

gradient of fitnesses was very low between suited and ill-suited limits. That is to say,

the requirement to select a good topology was far more relaxed. Therefore, the ability to

evolve topology does indeed represent an advantage in that it lowers the requirement of

the user to know a suitable topology in advance of training.

This ability could be a further advantage given that it was also shown that suitable

topologies were both a function of the application and the training method used. That is to

say, which topologies were suitable varied between the use of CNE and back propagation.

Therefore, previous methods for predicting suitable topologies may not be applicable to

NE; or indeed outside of the context of back propagation.

Another previously proposed benefit of topology and weight evolving methods is that

relationships between topology and connection weights can be exploited by evolution lead-

ing to better overall searches/solutions. Although not conclusive, results presented provide

an indication of this effect. This was seen in the results from applying CNE and CGPANN

to the Double Pole Balancing benchmark. On this benchmark CGPANN was seen to pro-

duce better results than CNE, even when using the best found topology for CNE. This

indicates that CGPANN was able to utilise the ability of adjusting both connection weights

and topology. The reason that this only indicates this effect, and does not prove it, is be-

cause CGPANN has access to topologies not tested for CNE. Therefore it may also be the

case the topologies accessible to CGPANN, and not tested for CNE, were highly suited to

the task resulting in the better results seen.

Additionally, it is thought that evolving topology can create/utilise configurations

which would not typically be considered by a human designer. Although this is a difficult

possible benefit to assess, an example solution was demonstrated which does not conform

to the typical layers and nodes per layer format. Additionally, as has just been discussed,

the cause of CGPANN outperforming CNE on the Double Pole Balancing benchmark may

also be evidence of evolving topology having access to beneficial topologies unlikely to be

considered by a human designer.

Finally, the relative importance of connection weight evolution and topology evolution

was not previously known. Here the relative benefits have been assessed by comparing

144

6.5 Summary

evolving the connection weights of random topologies with evolving the topology of ran-

dom connection weights. It was shown that, at least for CGPANN, that topology is

more significant to training than connection weights. Although random topologies are not

typically used, it may help guide future developments and understanding of ANNs. For

instance, currently most ANN training methods are initialised with random connection

weights and what is thought to be a suitable topology. Whereas it may be equally fea-

sible to initialise connection weights to what are thought to be suitable values and then

adapt topology. Although this concept appears counter intuitive, if topology has more

influence on the training than connection weights (at least in the random case), why focus

on the connection weights? It is also interesting that, to the author’s knowledge, all ANN

training methods adjust connection weights with a smaller subset also adjusting topology.

However, if it were the case that topology was more significant to training, the focus may

be wrong. It may be the case that by default all ANNs training methods should adjust

topology with some methods also adjusting connection weights.

It may also be the case that NE represents a highly effective method for determining

network topology, but is ill suited to configuring connection weights. If this is the case,

combinations of NE with back propagation, such as previously used by NEAT [41] and

Evolutionary Programming Artificial Networks (EPNet) [314], may represent a suitable

direction for NE research. By utilising NE methods ability to configure topology with

back propagations ability to configure connection weights. However it is important to

note that combining NE with back propagation removes many of the advantage properties

of NE; such as being applicable to Recurrent Artificial Neural Network (RANN)s, being

able to use arbitrary transfer functions and being applicable to reinforcement type learning

tasks. Therefore the combination of NE with back propagation does not come without

disadvantages.

This chapter has helped answer many open questions concerning topology evolution

and has given evidence to previous claims. It can now be more confidently argued that the

ability of topology adapting NE methods to optimise topology is a significant advantage

over only evolving connection weights. Additionally it has been shown, at least in the

random case, that evolving topology may be more important to NE training than evolving

connection weights.

145

Chapter 7

Evolving Heterogeneous Artificial

Neural Networks

One of the often overlooked features of NeuroEvolution (NE) methods is their ability to

create heterogeneous Artificial Neural Network (ANN)s. Heterogeneous ANNs are those

which comprise of two or more different types of neuron Transfer Function (TF); for

instance a combination of logistic sigmoid and Gaussian. This chapter assesses whether

the ability to create heterogeneous ANNs is advantageous for NE.

7.1 Structure of this Chapter

Section 7.2 provides a background of using NE to evolving heterogeneous ANNs. Section

7.3 describes a number of experiments investigating the use of NE method for evolving

heterogeneous ANNs. Section 7.4 presents the results of experiments which investigate the

influence the choice of TF has when training homogeneous networks using NE. Sections

7.5 and 7.6 present the results of investigations into two separate methods of training

heterogeneous ANNs using NE. A combination of these two methods is also presented in

Section 7.7. Finally, a discussion of the presented results is given in Section 7.9 with a

closing summary in Section 7.10.

147

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

7.2 Background

One of the interesting, but less commonly utilised, features of NE is that it can be used

to optimise the TF of each neuron within heterogeneous ANNs1. However, this capability

has been widely overlooked in recent research. Indeed, at the turn of the 21st century

many ANN publications stated that more research was required concerning the optimisa-

tion of TFs: “Relatively little has been done on the evolution of node transfer functions,

let alone the simultaneous evolution of both topological structure and node transfer func-

tions” [313], “The current emphasis in neural network research is on learning algorithms

and architectures, neglecting the importance of transfer functions” [54] and “Selection

and/or optimisation of transfer functions performed by artificial neurons have been so far

little explored ways to improve performance of neural networks in complex problems” [55].

However, a search of the literature reveals that there has been little active research in this

area. This chapter intends to fill this gap in the literature by showing how NE can easily

optimise neuron TFs during evolution and that doing so is beneficial.

There are many ANN TFs found in the literature [55]. However, the majority of NE

implementations only evolve homogeneous ANNs of logistic sigmoid or Gaussian func-

tions, which have both been shown capable of universal approximation; [118] and [221]

respectively. Of those which do evolve heterogeneous ANNs, there are two main methods.

The first method selects the TF of each neuron from a predetermined list of TFs. NE

training methods which use this method include General Neural Networks (GNN) [179];

which randomly adds or removes logistic or Gaussian TFs using an evolutionary program-

ming method. GNN is also a hybrid approach which makes use of back propagation during

training. Other NE methods which select specific TFs for each neuron include Parallel

Distributed Genetic Programming (PDGP) [227], modified Hierarchical Coevolutionary

Genetic Algorithm (HCGA) [299] and Cartesian Genetic Programming of Artificial Neu-

ral Networks (CGPANN) [153]. These methods use genes to encode which TF is used by

each neuron. These genes are then subject to mutation and/or crossover during evolution.

The second method optimises ANNs of TFs which are each described by a number of

parameters [55]. The training methods then optimise these parameters for each individual

neuron. A simple version of this technique has been used by CGPANN [191]; where the

1Homogeneous ANNs are ANNs where each neuron’s TF is identical. Heterogeneous ANNs are ANNs
is where one or more of the neuron’s TF is different.

148

7.3 Investigations

widths of Gaussian functions were optimised for each neuron. Again, the parameter(s)

associated with each neuron’s TF were encoded in the chromosome by the inclusion of

additional gene(s). A more complex version of this method was used in [20], where each

neuron’s TF was itself an evolved tree-based genetic program. This method allowed for

an almost limitless variation of TFs. Another example where each neuron is described by

a number of genes, is state-enhanced neural networks [209], where the dynamics of each

neuron are evolved.

Until now however, there has been little research which empirically and rigorously

investigates whether the ability for NE to evolve heterogeneous ANNs actually provides

any benefit. This is important research, as if it is shown to be beneficial it could easily be

adopted by other NE methods; as the described methods just require additional genes for

each neuron. As discussed, there are two ways in which NE can evolve TFs: 1) by choosing

the TF of each neuron from a predetermined list or 2) by optimising parameters associated

with each individual neuron. Additionally these two methods can be combined by allowing

evolution to both select the TF for each neuron and optimises parameters associated with

that TF. Here both of these methods are investigated along with their combination.

The investigation uses two NE strategies and compares the results to evolving regular

homogeneous ANNs.

7.3 Investigations

The investigation presented on evolving heterogeneous ANNs using NE takes four parts.

The first is to identify whether, and to what extent, the choice of TF impacts on the ef-

fectiveness of NE when evolving homogeneous ANNs. The second investigates if evolving

heterogeneous ANNs, by allowing evolution to select each neuron’s TF from a predeter-

mined list, outperforms evolving homogeneous ANNs. The third investigates if using NE

to optimise parameters associated with each neuron’s TF outperforms evolving homoge-

neous ANNs. Finally, the fourth investigates using NE to both select each neuron’s TF

from a predetermined list and optimise parameters associated with that TF.

The remainder of this section introduces the NE methods employed by the investiga-

tion, the TFs made available and the benchmarks used.

149

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

7.3.1 NeuroEvolutionary Methods

In order to ensure that any conclusions reached are not specific to a particular type of NE

method, the investigations are undertaken using two separate NE methods. The chosen

NE methods include Conventional NeuroEvolution (CNE) and CGPANN. CNE is a simple

NE method which evolves only the connection weights of fixed topology ANNs; see Section

2.6.1. As described in Chapter 4, CGPANN is a more complex NE method which evolves

both the connection weights and topology of ANNs. These two NE methods represent the

two main types of NE; those which evolve only connection weights and those which evolve

connection weights and topology.

For both CNE and CGPANN, the following parameters are used: 50 runs, 100,000

generations, a (1+4)-ES, a connection weight range of ±5, 3% probabilistic mutation and

no crossover. When using CNE, three hidden layers are used, each containing ten neurons;

plus one input layer and one output layer. The arity of each neuron is such that the ANNs

are fully connected between layers. When using CGPANN, the maximum number of nodes

is set as thirty each with a maximum arity of ten; the one row from of CGPANN is used

with multiple connections between pairs of nodes allowed.

7.3.2 Transfer Functions

The TFs used in this investigation are the Heaviside step function, Equation 7.1, the

Gaussian function, Equation 7.2, and the logistic sigmoid function, Equation 7.3. Each of

these TFs is also shown graphically in Figure 7.1. These particular TFs were selected as

they are, or have been, commonly used by ANNs.

f(x) =

1, if x ≥ 0

0, otherwise

(7.1)

f(x) = exp

(
− x2

2σ2

)
(7.2)

f(x) =
1

1 + e−σx
(7.3)

150

7.3 Investigations

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(a) Heaviside step function

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(b) Gaussian function

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(c) Logistic sigmoid function

Figure 7.1: Heaviside step function (a), Gaussian function (b) and the logistic sigmoid
function (c). With σ = 1 for the Gaussian and logistic functions.

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(a) σ = 1

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(b) σ = 2

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(c) σ = 3

Figure 7.2: Variable Gaussian function.

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(a) σ = 1

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(b) σ = 2

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

(c) σ = 3

Figure 7.3: Variable logistic sigmoid function.

As can be seen in Equations 7.2 and 7.3, the Gaussian and logistic functions have been

given in a form which contains a σ variable. Where σ = 1 gives the typical form of these

TFs. When using NE to evolve parameters associated with each neuron’s TF, it is this

σ value which is evolved/adapted. Figures 7.2 and 7.3 show the Gaussian and logistic

function respectively for a range of σ values.

151

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

7.3.3 Benchmarks

In order to draw strong conclusions regarding whether it is beneficial to evolve TFs, it is

necessary to examine its effectiveness on a wide range of benchmarks. For this purpose five

benchmarks are employed. The chosen benchmarks mainly include supervised learning

classification tasks, a common application of ANNs, but also include a reinforcement

learning control task.

Despite many of the described benchmarks being classification tasks, they each use

their own type of fitness function. Although this adds complexity, the fitness functions

used here are those typically used with these benchmarks. This is done to continue the

standard use of these benchmarks; which is important when comparing machine learning

methods generally.

The following benchmarks are employed: Ball Throwing, Full Adder, Monks Problem

1, Two Spirals and Proben: Cancer 1. These benchmarks are all described in Appendix

A. For reference, the fitness for the ball throwing task the distance the controller throws

the ball, with higher values representing a fitter solution. In the case of the full adder,

the fitness score is the number of correct output bits generated over all possible input

conditions, with higher values representing a fitter solution. In the case of the Monks

Problem the fitness is the percentage of misclassified robots, with lower values representing

a better solution. In the case of the Two Spirals the fitness is the number of points

misclassified, with lower values representing a fitter solution. Finally, in the case of the

Proben:1 Cancer, the fitness is the squared error percentage, with lower values representing

a fitter solution.

7.4 Evolving Homogeneous Networks

The first experiment identifies whether, and to what extent, the choice of TF impacts on

the effectiveness of training homogeneous ANNs using NE. As previously discussed, the

three TFs used for this investigation are the Heaviside step, Gaussian and logistic sigmoid

functions; see Section 7.3.2.

The average fitness achieved when using each TF is given for the five benchmarks

in Tables 7.1 and 7.3; when using CNE and CGPANN respectively. The average fitness

value is given in bold if it represents the best fitness for the given benchmark; indicating

the most suited TF. When appropriate, the fitness is given for the training and testing

152

7.4 Evolving Homogeneous Networks

sets. Where the testing fitness is the average fitness achieved by each of the fifty runs on

the testing set after training on the training set is complete. The statistical significance

between the fitnesses achieved using each TF are given in Tables 7.5 and 7.7; when using

CNE and CGPANN respectively. When the difference is statistically significant, p ≤ 0.05,

the value is given in bold. The effect sizes of the differences between the fitnesses are also

given in Tables 7.9 and 7.11; when using CNE and CGPANN respectively. When the effect

size is of medium or greater importance the value is given in bold. For a justification and

description of the statistical significance measures used, see Appendix B.

In all cases a perfect solutions was found for the Full Adder benchmark and similarly

in many cases for the Ball Throwing benchmark. When perfect solutions are found no

comparisons can be made in terms of the fitnesses achieved. For this reason, the number

of generations required to find perfect solutions are also presented for these cases. Tables

7.2 and 7.4 give the average number of generations required by CNE and CGPANN re-

spectively for the cases where perfect solutions were found. These generation results are

analysed using the same statistical significance testing as before, given in Tables 7.6 and

7.10 for CNE and Tables 7.8 and 7.12 for CGPANN.

From the results given in Tables 7.1 - 7.4, it can be seen, for both CNE and CGPANN,

that the choice of TF has a large impact on the effectiveness of NE. Additionally, in the

majority of cases these differences are shown to be statistically significant with a medium

or large effect size; Tables 7.5 - 7.12. This confirms that the choice of TF has a large

impact on the effectiveness of evolving homogeneous ANNs when trained using NE.

A further interesting result, also seen in Tables 7.1 - 7.4, is that despite being the least

commonly used of the three TFs, the Heaviside step function produced the best results in

many cases. It can also be seen that the best TF was often also dependent on both the

task and the NE method used.

In the case of CGPANN, all TFs found a solution to the Ball Throwing benchmark;

throwing the ball a distance of ≥ 9.5 m. Interestingly however, some TFs managed, on

average, to throw the ball much further than the 9.5 m target. This could be framed as

greater generalisation. However this aspect of the ball throwing results are not analysed

further in this chapter.

153

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

Table 7.1: Fitness achieved using homogeneous ANNs of different TFs trained using CNE.

Benchmark Step Gaussian Logistic Average

Ball Throwing 9.71 9.30 5.89 8.30
Full Adder 16.00 16.00 16.00 16.00

Monks Problem 1 Train 0.065 14.016 0.258 4.80
Monks Problem 1 Test 18.991 39.116 14.981 24.363

Two Spirals 54.64 34.04 74.58 54.42
Proben1: Cancer Train 5.185 2.389 1.798 3.124
Proben1: Cancer Test 12.816 6.736 3.034 7.529

Table 7.2: Number of generations required to find optimal solutions using homogeneous
ANNs of different TFs trained using CNE.

Benchmark Step Gaussian Logistic Average

Ball Throwing 20365.44 - - -
Full Adder 132.94 317.04 476.54 308.84

Table 7.3: fitness achieved using homogeneous ANNs of different TFs trained using CG-
PANN.

Benchmark Step Gaussian Logistic Average

Ball Throwing 9.72 9.58 9.65 9.65
Full Adder 16.00 16.00 16.00 16.00

Monks Problem 1 Train 0.210 15.161 0.952 5.44
Monks Problem 1 Test 4.398 19.532 4.352 9.43

Two Spirals 39.56 49.28 71.28 53.37
Proben1: Cancer Train 0.457 1.364 1.429 1.083
Proben1: Cancer Test 3.678 2.989 2.218 2.962

Table 7.4: Number of generations required to find optimal solutions using homogeneous
ANNs of different TFs trained using CGPANN.

Benchmark Step Gaussian Logistic Average

Ball Throwing 487.76 9850.46 20401.14 10246.45
Full Adder 386.60 729.20 1092.50 736.10

Table 7.5: Statistical significance between the homogeneous CNE fitness results given in
Table 7.1.

Benchmark Step Vs. Gaussian Step Vs. Logistic Gaussian Vs. Logistic

Ball Throwing 2.65E-1 8.19E-19 1.13E-14
Full Adder - - -

Monks Problem 1 Train 1.16E-19 1.81E-1 3.30E-19
Monks Problem 1 Test 6.97E-18 1.49E-04 6.96E-18

Two Spirals 4.42E-18 4.30E-18 6.55E-18
Proben1: Cancer Train 1.15E-14 5.59E-18 6.76E-3
Proben1: Cancer Test 4.90E-14 6.29E-18 5.98E-14

154

7.4 Evolving Homogeneous Networks

Table 7.6: Statistical significance between the homogeneous CNE generational results
given in Table 7.2.

Benchmark Step Vs. Gaussian Step Vs. Logistic Gaussian Vs. Logistic

Full Adder 1.19E-07 1.26E-10 4.63E-2

Table 7.7: Statistical significance between the homogeneous CGPANN fitness results given
in Table 7.3.

Benchmark Step Vs. Gaussian Step Vs. Logistic Gaussian Vs. Logistic

Ball Throwing 7.25E-5 7.36E-2 8.20E-3
Full Adder - - -

Monks Problem 1 Train 1.42E-13 9.90E-2 1.35E-11
Monks Problem 1 Test 1.96E-9 9.17E-1 2.94E-9

Two Spirals 6.36E-10 6.61E-18 4.39E-17
Proben1: Cancer Train 1.36E-16 1.11E-17 7.16E-2
Proben1: Cancer Test 9.10E-3 2.48E-9 1.78E-3

Table 7.8: Statistical significance between the homogeneous CGPANN generational results
given in Table 7.4.

Benchmark Step Vs. Gaussian Step Vs. Logistic Gaussian Vs. Logistic

Ball Throwing 5.69E-15 4.06E-14 2.04E-3
Full Adder 8.25E-1 3.03E-4 8.89E-3

Table 7.9: Effect Size between the homogeneous CNE fitness results given in Table 7.1.

Benchmark Step Vs. Gaussian Step Vs. Logistic Gaussian Vs. Logistic

Ball Throwing 0.90600 0.98840 0.92600
Full Adder 0.50000 0.50000 0.50000

Monks Problem 1 Train 1.00000 0.54400 1.00000
Monks Problem 1 Test 1.00000 0.72020 1.00000

Two Spirals 1.00000 1.00000 1.00000
Proben1: Cancer Train 0.94760 1.00000 0.65560
Proben1: Cancer Test 0.93680 0.99980 0.93420

Table 7.10: Effect Size between the homogeneous CNE generational results given in Table
7.2.

Benchmark Step Vs. Gaussian Step Vs. Logistic Gaussian Vs. Logistic

Full Adder 0.80740 0.87340 0.61580

155

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

Table 7.11: Effect Size between the homogeneous CGPANN fitness results given in Table
7.3.

Benchmark Step Vs. Gaussian Step Vs. Logistic Gaussian Vs. Logistic

Ball Throwing 0.73040 0.60400 0.65360
Full Adder 0.50000 0.50000 0.50000

Monks Problem 1 Train 0.87360 0.53960 0.85060
Monks Problem 1 Test 0.84540 0.50620 0.84120

Two Spirals 0.85840 1 0.98740
Proben1: Cancer Train 0.97580 0.99260 0.60320
Proben1: Cancer Test 0.65000 0.84240 0.67920

Table 7.12: Effect Size between the homogeneous CGPANN generational results given in
Table 7.4.

Benchmark Step Vs. Gaussian Step Vs. Logistic Gaussian Vs. Logistic

Ball Throwing 0.95340 0.93880 0.67920
Full Adder 0.51300 0.70980 0.65200

156

7.5 Evolving Heterogeneous Networks

7.5 Evolving Heterogeneous Networks

The second experiment identifies if allowing NE to evolve heterogeneous ANNs, by se-

lecting each neuron’s TF from a predetermined list, produces better results than evolving

homogeneous ANNs. Evolving the TF used by each neuron is considered beneficial if the

result is better than the average of using each TF individually. This measure is chosen

because when approaching a new task, it not generally known which TF would be most

suited, therefore a TF would have to be selected arbitrarily (randomly). However, when

evolving heterogeneous ANNs, the need to make this choice is removed, and hence it

should be considered beneficial if it outperforms the average random choice of TF.

The average fitnesses from evolving homogeneous ANNs, using each TF individually

for the five benchmarks, are given in Tables 7.1 and 7.3 for CNE and CGPANN receptively.

In the cases where a perfect solution is always found, the required number of generations

is also given and used for the comparison; Tables 7.2 and 7.4.

The results of allowing CNE and CGPANN to evolve heterogeneous ANNs are given

in Tables 7.13 and 7.14 respectively. Where appropriate, both the average fitness achieved

and the average number of generations required to reach that fitness is given. In Tables

7.13 and 7.14 the results are given in bold if the fitness is better, or equal, to the average

of using each TF individually; or the average number of generations required to find a

perfect solution is equal or lower. The percentage of neurons which use each TF is also

given in Tables 7.13 and 7.14; this is only for the active nodes in the case of CGPANN.

No statistical analysis is undertaken for this experiment as the comparison is against the

average result of using each TF individually.

As can be seen in Tables 7.13 and 7.14, in the majority of cases evolving hetero-

geneous ANNs outperformed the average result of evolving homogeneous ANNs. This

indicates that evolving heterogeneous ANNs is typically a better strategy than evolving

homogeneous ANNs. This holds unless the user knows in advance which TF is most suited

to a given task; in which case that TF should be used.

157

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

Table 7.13: Average results achieved using heterogeneous ANNs trained using CNE. The
result is given in bold if evolving heterogeneous ANNs outperformed the average fitness
of using each transfer function individually.

Benchmark Train Test Generations Step Gaussian Logistic

Ball Throwing 9.71 - 2931.04 34.3% 34.1% 31.6%
Full Adder 16.00 - 201.90 32.3% 36.0% 31.7%

Monks Problem 1 3.597 27.30 - 33.2% 34.5% 32.4%
Two Spirals 38.52 - - 37.2% 32.7% 30.1%

Proben1: Cancer 1.505 4.379 - 33.6% 30.1% 36.3%

Table 7.14: Average results achieved using heterogeneous ANNs trained using CGPANN.
The result is given in bold if evolving heterogeneous ANNs outperformed the average
fitness of using each transfer function individually.

Benchmark Train Test Generations Step Gaussian Logistic

Ball Throwing 9.68 - 1000.76 31.4% 34.0% 34.5%
Full Adder 16.00 - 698.10 32.5% 35.2% 32.3%

Monks Problem 1 1.226 6.139 - 38.4% 27.3% 34.3%
Two Spirals 50.20 - - 34.0% 34.3% 31.8%

Proben1: Cancer 1.086 3.126 - 34.9% 33.5% 31.6%

7.6 Evolving Transfer Function Parameters

The third experiment is to identify if creating heterogeneous ANNs by optimising param-

eters associated with each neuron’s TF is beneficial for NE. As previously discussed, the

parameters to be optimised vary the shape of the Gaussian and logistic functions; see

Section 7.3.2. In each case, the ANNs are comprised of the same TF, Gaussian or logistic,

but a parameter controlling the shape of each neuron’s TF is evolved. Here the parameter

values for each TF are limited to the set {1, 2, 3}, see Equations 7.2 and 7.3; but this is

not a requirement of the method.

Evolving parameters associated with each neuron’s TF will be considered beneficial if it

produces stronger results than the use of the non-parameterised counterpart e.g. if variable

Gaussian produces stronger results than the standard Gaussian TF. This comparison is

used as it isolates the aspect of interest; whether the ability to vary the shape of each

neuron’s TF provides any benefit.

The average fitnesses achieved using variable Gaussian and variable logistic functions

are given in Tables 7.15 and 7.17 respectively when using CNE. In cases where the target

fitness is always reached, the average number of generations required are given in Tables

7.16 and 7.18. Similarly, Tables 7.19 and 7.21 give the fitnesses achieved when using

CGPANN. Again, in cases where the target fitness is always reached, the average number

158

7.6 Evolving Transfer Function Parameters

of generations required are given in Tables 7.20 and 7.22. In all cases the results are

compared against those obtained using the non-variable form of the TFs. In the given

tables, a bold fitness/number of generations indicates the best performance; standard or

variable TFs. Additionally, a bold value for the U-test indicates statistical significance

and a bold value for the effect size indicates a medium or large effect size.

As can be seen in Tables 7.15-7.22, in the majority of cases, the variable version of

the TF outperformed the non-variable form. Additionally, many instances where the

variable form is superior are also shown to be statistically significance with a medium to

large effect size. Only four of the twenty cases show the non-variable form outperforming

the variable form with statistical significance and medium to large effect size. Eleven

of the twenty cases showed the variable form outperforms the non-variable form with

statistical significance with a medium to large effect size. Of the remaining five cases, one

showed variable TFs offered a weak disadvantage and the remainder showed no significant

difference2. Therefore, using variable TFs is shown to offer a significant improvement in

the majority of cases.

The differences can also be given in terms of the NE method used. In seven of the

ten cases which used CNE, the variable TFs offered an advantage compared with three

cases offering a disadvantage. For CGPANN, five out of the ten cases showed variable

TFs offered an advantage compared to one of the ten cases showing a disadvantage. The

results can also be given in terms of the TF employed. In six of the ten cases the variable

logistic TF offered an advantage and in two cases a disadvantage. In five of the ten cases

the variable Gaussian TF offered an advantage and in three cases a disadvantage.

Table 7.15: Average fitness of ANNs of variable Gaussian TFs trained using CNE.

Benchmark Gaussian Variable Gaussian U-test Effect Size

Ball Throwing 9.30 9.58 1.20E-04 0.72340
Full Adder 16.00 16.00 - 0.50000

Monks Problem 1 Train 14.016 13.500 0.54481 0.53520
Monks Problem 1 Test 39.116 37.634 3.25E-2 0.62420

Two Spirals 34.04 49.36 5.42E-15 0.95340
Proben1: Cancer Train 2.389 1.512 2.41E-07 0.79700
Proben1: Cancer Test 6.736 3.598 1.10E-10 0.87320

2In the case where training and testing results are given the training result is used for comparison. This
is because no steps to combat over training were made. Chapter 9 presents a more rigorous evaluation of
CGPANN as a classification method.

159

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

Table 7.16: Average number of generations required to find optimal solutions using ANNs
of variable Gaussian TFs trained using CNE.

Benchmark Gaussian Variable Gaussian U-test Effect Size

Full Adder 317.04 221.08 6.54E-3 0.65800

Table 7.17: Average fitness of ANNs of variable logistic TFs trained using CNE.

Benchmark Logistic Variable Logistic U-test Effect Size

Ball Throwing 5.89 9.62 3.22E-18 0.98000
Full Adder 16.00 16.00 - 0.50000

Monks Problem 1 Train 0.258 0.710 1.67E-2 0.60720
Monks Problem 1 Test 14.981 19.218 8.04E-04 0.69460

Two Spirals 74.58 58.70 6.51E-18 1.00000
Proben1: Cancer Train 1.798 1.684 0.124 0.58800
Proben1: Cancer Test 3.034 3.598 1.74E-2 0.63660

Table 7.18: Average number of generations required to find optimal solutions using ANNs
of variable logistic TFs trained using CNE.

Benchmark Logistic Variable Logistic U-test Effect Size

Full Adder 132.94 270.18 1.61E-3 0.68320

Table 7.19: Average fitness of ANNs of variable Gaussian TFs trained using CGPANN.

Benchmark Gaussian Variable Gaussian U-test Effect Size

Ball Throwing 9.58 9.60 3.72E-1 0.55200
Full Adder 16.00 16.00 - 0.50000

Monks Problem 1 Train 15.161 6.725 2.72E-4 0.69980
Monks Problem 1 Test 19.532 11.903 6.41E-4 0.69380

Two Spirals 49.28 54.78 8.02E-5 0.72880
Proben1: Cancer Train 1.364 1.375 4.69E-1 0.54160
Proben1: Cancer Test 2.989 2.690 2.71E-1 0.56340

Table 7.20: Average number of generations required to find optimal solutions using ANNs
of variable Gaussian TFs trained using CGPANN.

Benchmark Gaussian Variable Gaussian U-test Effect Size

Ball Throwing 9850.46 4730.86 1.12E-1 0.59240
Full Adder 729.20 507.98 7.75E-1 0.51680

Table 7.21: Average fitness of ANNs of variable logistic TFs trained using CGPANN.

Benchmark Logistic Variable Logistic U-test Effect Size

Ball Throwing 9.65 9.66 7.17E-1 0.52120
Full Adder 16.00 16.00 - 0.50000

Monks Problem 1 Train 0.952 0.290 2.25E-1 0.53000
Monks Problem 1 Test 4.352 4.287 9.42E-1 0.50440

Two Spirals 71.28 63.00 2.81E-9 0.84460
Proben1: Cancer Train 1.429 1.082 5.03E-7 0.78760
Proben1: Cancer Test 2.218 2.966 7.39E-4 0.69220

160

7.6 Evolving Transfer Function Parameters

Table 7.22: Average number of generations required to find optimal solutions using ANNs
of variable logistic TFs trained using CGPANN.

Benchmark Logistic Variable Logistic U-test Effect Size

Ball Throwing 20401.14 1959.20 2.53E-9 0.84600
Full Adder 1092.50 630.16 9.32E-2 0.59760

161

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

7.7 Evolving Heterogeneous Networks and Transfer Func-

tion Parameters

The fourth experiment investigates the evolution of heterogeneous ANNs while also opti-

mising parameters associated with each neuron’s TF. The function set contains the step,

Gaussian and logistic functions where the Gaussian and logistic functions can have their

σ values in the range {1,2,3}; the step function is not parameterised.

Evolving heterogeneous ANNs which also optimise TF parameters will be considered

beneficial if it produces stronger results than the use of the non-parameterised heteroge-

neous counterpart; given in Section 7.5. This comparison is made to identify if including

variable TFs can improve again upon the use of heterogeneous ANNs.

The results of evolving heterogeneous ANNs with variable TF parameters are given

in Tables 7.23 and 7.25 when using CNE and CGPANN respectively. The tables give

the average fitness for applying heterogeneous ANN with variable TFs to each of the

five benchmarks. The average fitness is given in bold if it represents a better average

fitness than that found when evolving non-parameterised heterogeneous ANNs. The U-

test and effect size are also in the same format as previously in Section 7.6. Additionally,

as undertaken previously, if perfect solutions are always found, the number of generations

required to find perfect solutions is also give so as to allow comparison. These results are

given in Tables 7.24 and 7.26 for CNE and CGPANN respectively.

As can be seen in Tables 7.23-7.26, in the majority of cases the addition of vary-

ing TF parameters to evolving heterogeneous ANNs does not improve the performance.

When using CNE it produced statistically significant superior results for the Ball Throw-

ing benchmark and produced statistically significant worse results for the Two Spirals

benchmark. When using CGPANN it produced no statistically significant superior results

and produced statistically significantly worse results for the Two Spirals benchmark. In

all other cases there was no statistical significance between the two techniques. It can

therefore be concluded that the addition of variable TFs to evolving heterogeneous ANNs

does not improve the performance over the use of non-variable TFs.

162

7.7 Evolving Heterogeneous Networks and Transfer Function Parameters

Table 7.23: Average fitness of variable heterogeneous ANNs trained using CNE.

Benchmark Heterogeneous Variable Heterogeneous U-test Effect Size

Ball Throwing 9.71 9.67 0.230 0.56980
Full Adder 16.00 16.00 - 0.50000

Monks Problem 1 Train 3.597 3.387 7.00E-1 0.52240
Monks Problem 1 Test 27.30 25.065 5.93E-2 0.60960

Two Spirals 38.52 49.86 5.58E-12 0.89960
Proben1: Cancer Train 1.505 1.383 1.31E-1 0.58660
Proben1: Cancer Test 4.379 3.287 4.71E-04 0.70160

Table 7.24: Average number of generations required to find optimal solutions using variable
heterogeneous ANNs trained using CNE.

Benchmark Heterogeneous Variable Heterogeneous U-test Effect Size

Ball Throwing 2931.04 2288.98 2.57E-2 0.62960
Full Adder 201.90 282.22 5.36E-2 0.61220

Table 7.25: Average fitness of variable heterogeneous ANNs trained using CGPANN.

Benchmark Heterogeneous Variable Heterogeneous U-test Effect Size

Ball Throwing 9.68 9.67 3.78E-1 0.55140
Full Adder 16.00 16.00 - 0.50000

Monks Problem 1 Train 1.226 0.8226 7.82E-1 0.50960
Monks Problem 1 Test 6.139 6.907 2.44E-1 0.56780

Two Spirals 50.20 58.50 4.52E-9 0.84000
Proben1: Cancer Train 1.086 1.086 4.42E-1 0.54420
Proben1: Cancer Test 3.126 3.126 9.75E-1 0.50200

Table 7.26: Average number of generations required to find optimal solutions using variable
heterogeneous ANNs trained using CGPANN.

Benchmark Heterogeneous Variable Heterogeneous U-test Effect Size

Ball Throwing 1000.76 1025.80 5.06E-1 0.53880
Full Adder 698.10 480.40 2.52E-1 0.56660

163

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

7.8 Box and Whisker Plots

For high-level inspection, all of the previously given results are presented as box and

whisker plots. Where the boxes represent the lower and upper quartile ranges and the

whiskers are set as 1.5 times the interquartile range. Points greater than 1.5 times the

interquartile range are labelled with a red ‘+’ and points greater than 3 times the in-

terquartile range labelled with a red ‘◦’. The median of each plot is given as a solid red

line and the arithmetic mean is given as a dashed black line.

The average homogeneous fitness, given in Section 7.4, is also given as a dashed green

line spanning the three homogeneous functions; step, Gaussian and logistic. The average

homogeneous fitness is calculated as the arithmetic mean of the arithmetic means of the

fitnesses achieved for the step, Gaussian and logistic function.

As a perfect fitness was often achieved for the Ball Throwing and the Full Adder

benchmarks, the average number of generations to find the perfect solution are also given

as box and whisker plots.

The CNE results are given in Figures 7.4-7.12 and the CGPANN results are given in

Figures 7.13-7.21.

5

6

7

8

9

10

11

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

D
is

ta
n
c
e
 T

h
ro

w
n
 (

m
)

Figure 7.4: Fitnesses achieved from applying CNE to the Ball Throwing benchmark.

0

20000

40000

60000

80000

100000

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

G
e
n
e
ra

ti
o
n
s

Figure 7.5: Generations required from applying CNE to the Ball Throwing benchmark.

164

7.8 Box and Whisker Plots

13

13.5

14

14.5

15

15.5

16

16.5

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
o
rr

e
c
t
O

u
tp

u
ts

Figure 7.6: Fitnesses achieved in applying CNE to the Full Adder benchmark.

0

500

1000

1500

2000

2500

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

G
e
n
e
ra

ti
o
n
s

Figure 7.7: Generations required from applying CNE to the Full Adder benchmark.

0

5

10

15

20

25

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

%

Figure 7.8: Fitnesses achieved in applying CNE to the Monks Problem 1 benchmark -
Training.

0

10

20

30

40

50

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

%

Figure 7.9: Fitnesses achieved in applying CNE to the Monks Problem 1 benchmark -
Testing.

165

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

20

30

40

50

60

70

80

90

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

N
u
m

b
e
r

o
f
M

is
c
la

s
s
if
ic

a
ti
o
n
s

Figure 7.10: Fitnesses achieved in applying CNE to the Two Spirals benchmark.

0

2

4

6

8

10

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

%

Figure 7.11: Fitnesses achieved in applying CNE to the Proben Cancer1 benchmark -
Training.

0

10

20

30

40

50

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

%

Figure 7.12: Fitnesses achieved in applying CNE to the Proben Cancer1 benchmark -
Testing.

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

D
is

ta
n
c
e
 T

h
ro

w
n
 (

m
)

Figure 7.13: Fitnesses achieved in applying CGPANN to the Ball Throwing benchmark.

166

7.8 Box and Whisker Plots

0

20000

40000

60000

80000

100000

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

G
e
n
e
ra

ti
o
n
s

Figure 7.14: Generations required from applying CGPANN to the Ball Throwing bench-
mark.

13

13.5

14

14.5

15

15.5

16

16.5

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
o
rr

e
c
t
O

u
tp

u
ts

Figure 7.15: Fitnesses achieved in applying CGPANN to the Full Adder benchmark.

0

1000

2000

3000

4000

5000

6000

7000

8000

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

G
e
n
e
ra

ti
o
n
s

Figure 7.16: Generations required from applying CGPANN to the Full Adder benchmark.

0

5

10

15

20

25

30

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

%

Figure 7.17: Fitnesses achieved in applying CGPANN to the Monks Problem 1 benchmark
- Training.

167

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

0

10

20

30

40

50

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

%

Figure 7.18: Fitnesses achieved in applying CGPANN to the Monks Problem 1 benchmark
- Testing.

20

30

40

50

60

70

80

90

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

N
u
m

b
e
r

o
f
M

is
c
la

s
s
if
ic

a
ti
o
n
s

Figure 7.19: Fitnesses achieved in applying CGPANN to the Two Spirals benchmark.

0

0.5

1

1.5

2

2.5

3

3.5

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

%

Figure 7.20: Fitnesses achieved in applying CGPANN to the Proben Cancer1 benchmark
- Training.

0

1

2

3

4

5

6

7

Step Gaussian Logistic Heterogeneous Gaussian Var Logistic Var Heterogeneous Var

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

%

Figure 7.21: Fitnesses achieved in applying CGPANN to the Proben Cancer1 benchmark
- Training.

168

7.9 Discussion

7.9 Discussion

This chapter has empirically demonstrated that when using NE to create homogeneous

ANNs, the choice of TF has a large impact on the fitness of the solutions found. It was

also shown that no single TF produced the best results in all cases. Therefore when

using homogeneous ANNs, one must accept possibly inferior results, or repeat training

using a range of TFs. This chapter has also empirically demonstrated that, on average,

evolving heterogeneous ANNs produces better results than the average of using each TF

individually. Additionally, it has been shown that optimising parameters associated with

each neuron’s TF produces better results, on average, than using the typical fixed TFs.

Interestingly however, a combination of evolving heterogeneous ANNs where each neuron’s

TF can also be adapted was shown not to produce better results than simply evolving

heterogeneous ANNs of static TFs.

The results presented in Section 7.4 demonstrate that the choice of TF has a large

impact on the effectiveness of NE. This is an intuitive result as it is likely that particular

TFs are more or less suited to given tasks; it appears to mirror the ‘No Free Lunch’

theorem [310] but concerning TFs. However, although intuitive, it is a significant result

as a user is unlikely to know, in advance of training, which TF is most suited to a given

task. Additionally, it was seen that the most suited TF was also dependent upon the NE

training method used; increasing the difficulty of knowing a suited TF ahead of training.

A further interesting, and unexpected result, is that in many cases the Heaviside step

function was found to be the most effective TF; particularly for CGPANN. The step

function was the original TF used by the 1943 McCulloch and Pitts neuron models [196].

The fact that the step function is incompatible with back propagation algorithms and

is only suited to tasks with binary outputs is probably the reason other TFs have been

favoured. Here, however, it has been shown that when using NE the Heaviside step

function is still a suitable TF for contemporary ANNs; provided the task is compatible

with binary outputs.

It is also worth noting that, at least when using NE, simply using the logistic sigmoid

TF does not result in the best results in the majority of cases. This is significant as it

appears from the literature that the logistics sigmoid is the most favoured TF.

The second experiment demonstrated that allowing NE to evolve heterogeneous ANNs

produced better results, on average, than the average result obtained by evolving homoge-

neous ANNs of each TF. This is significant because, as the first experiment demonstrates,

169

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

the choice of TF has a large impact on the effectiveness of the final ANNs. This, coupled

with the fact there is no way of knowing which TF will be most suited to a given task in

advance of training, puts homogeneous ANNs at a disadvantage. The importance of this

result is heightened by the fact that the majority of NE methods are probably capable of

evolving heterogeneous ANNs. The evolution of heterogeneous ANNs may even be further

improved by the inclusion of additional TFs not considered here; and as NE places no

restrictions on the types of TFs used, the range of possible TF is vast. It may even be the

case that certain TFs complement each other while others may not.

A further result from the second experiment concerns the percentage of neurons which

used each type of TF in the evolved heterogeneous ANNs. Interestingly, it was never

the case that one type of TF strongly dominated the networks. If this had occurred,

it would have indicated that evolution has found a particular TF to be the most suited

toward the given task. There is, however, reasonable variation in the percentages of each

type of TF used for CNE applied to the Full Adder and Two Spirals benchmarks and

CGPANN applied to the Monks Problem1 benchmark. This demonstrates that in certain

conditions, there is an evolutionary pressure to use a particular type of TF i.e. it is not

simply random. The fact that a particular TF was not favoured in many cases may also

indicate that evolution is combining the functionality of all the TFs, or there is no strong

evolutionary pressure pushing away from a random (typically even) mixture.

The third experiment demonstrated that, in the majority of cases, using NE to optimise

parameters associated with each neuron provided superior results compared to using non-

parameterised TFs. This is also an important result as the inclusion of an additional gene

(or genes) which alter the characteristics of each neuron’s TF is again likely compatible

with all NE methods.

It was also seen in the third experiment that the logistic sigmoid TF benefited from

being parameterised significantly more than the Gaussian TF. This was despite the non-

parameterised Gaussian TF producing worse results than the logistic TF overall i.e. there

was more room for improvement. It therefore appears that the logistic TF strongly benefits

from being parametrised. It could be the case however that this result is dependent on the

range of values the TF parameters can take; which was not investigated here. For instance

the Gaussian TF may work best over a much smaller or much larger range of values.

Combining the results that the Heaviside step function was found to be highly effective,

and the fact the logistic sigmoid was shown to benefit the most from parameterisation,

170

7.9 Discussion

leads to an interesting insight. As the value of σ is increased for the logistic sigmoid

function, it more closely approximates the Heaviside step function. This may explain the

significant benefits seen from using the parameterised logistic sigmoid. It also highlights

the benefit of allowing NE to evolve the “shape” of the TF.

In Sections 7.5 and 7.6 evolving heterogeneous ANNs and evolving parameters asso-

ciated with each neuron’s TF were individually demonstrated to be beneficial for NE.

However, in Section 7.7 it was shown that when combined they produced no additional

benefit, on average, over evolving heterogeneous ANNs with fixed TF parameters. It may

be the case that using parameterised TFs and heterogeneous ANN produce similar ben-

efits, and therefore no additional benefits are introduced by their combination. It could

also be possible that performance depends subtly on evolutionary parameter settings so

that when these methods are combined new parameter settings are required for optimum

performance. It could also be the case that their combination does provide a benefit,

but it was not observed due to the limited number of evaluations the experiments were

ran over, or limited difficulty of the tasks. That is to say, there may well be a benefit on

more challenging tasks, or towards the end of evolutionary searches where improving upon

the current fitness becomes increasingly difficult. Further research would be required to

determine this.

As mentioned in Section 7.2, homogeneous ANNs comprised of logistic or Gaussian TFs

can be universal approximators. This means that with the correct topology and connection

weight values, standard homogeneous ANNs are capable of implementing everything which

heterogeneous ANNs can also implement. However, this fact says nothing about how

efficiently standard homogeneous ANNs can implement certain configurations. Where

here the term efficiently refers to the computational effort needed to configure the ANNs.

Therefore the fact that ANNs are universal approximators is not enough to be considered

useful. It is also necessary that the ANNs can easily be configured to a given task. To

this end it appears that heterogeneous ANNs are, on average, more efficiently configurable

using NE methods.

Although this chapter has demonstrated using NE to evolve heterogeneous ANNs it

only used a limited set of TFs and optimised only a single parameter associated with

each neuron over a small range of values. Further research should therefore investigate

additional TFs and allow for more complex TFs described by multiple parameters; such

as those described in [20]. Although certain TFs have been shown to be universal approx-

171

Chapter 7: Evolving Heterogeneous Artificial Neural Networks

imators this tells us nothing about how “trainable” / “evolvable” they are. For instance

other TFs, such as the step function, were demonstrated to produce better results than

other universal approximator TFs.

Finally, as results have been presented using two NE methods, CNE and CGPANN,

it may appear appropriate to draw conclusions concerning their relative performance.

However, drawing comparisons between topology and non-topology optimising methods

is challenging. This is because in the non-topology case the task is to only find suitable

connection weights, whereas in the topology optimising case the challenge is to find a

suitable topology and suitable connections weights. Therefore the task assigned to the

topology optimising case is more challenging; or at least different. Additionally, the per-

formance of CNE is a strong function of the topology used; as is shown in Chapter 6.

Whereas the performance of CGPANN is less of a function of the topology limits used;

again shown in Chapter 6. Therefore, whether or not CNE outperforms CGPANN is also

a strong function of the topology used by CNE. However, in this work the topology used

by CNE was not optimised for each benchmark; and remained fixed throughout. There-

fore, although the experimental methodology is sufficient to assess the relative benefits

of evolving heterogeneous ANNs, it is not sufficient to assess the relative performances of

CNE and CGPANN.

7.10 Summary

The use of NE to optimise the weights and topology of ANNs is well established and of-

fers a number of advantages over traditional training methods; such as back propagation.

However, the use of NE to create heterogeneous ANNs has so far been under researched

and underutilised. This chapter has demonstrated the use of two methods for allowing

NE to create heterogeneous ANNs. That is, selecting each neuron’s TF from a predeter-

mined list of TFs or by optimising parameters associated with each neuron’s TF. The

chapter has also shown that the effectiveness of using NE to train homogeneous ANNs is

highly dependent on the selected TF. Using NE to optimise each neuron’s TF has been

empirically demonstrated to alleviate this issue.

The results presented in this chapter are significant as the methods described for

creating heterogeneous ANNs are likely to be compatible with all NE methods. That is,

almost all NE method could benefit from evolving heterogeneous ANNs.

172

Chapter 8

Neutral Genetic Drift

This chapter investigates the role of explicit genetic redundancy in Cartesian Genetic

Programming (CGP) and Cartesian Genetic Programming of Artificial Neural Networks

(CGPANN). This is undertaken to allow a more thorough evaluation of the benefits of

genetically inactive material in CGP than has previously been presented, and to identify

if CGPANN also benefits from its presence. The investigation is also used to make an

assessment as to whether explicit genetic redundancy is beneficial to NeuroEvolution (NE)

generally.

8.1 Structure of this Chapter

Section 8.2 provides a background to Neutral Genetic Drift (NGD) with a focus on its

influence on Genetic Programming (GP); specifically CGP. Section 8.3 presents an in-

depth discussion of the literature surrounding the influence of genetic redundancy on

CGP’s evolutionary search.

Section 8.4 presents an investigation into the influence of NGD on CGP’s search pro-

cess. Section 8.5 investigates the effectiveness of an often used method for increasing the

level of genetic redundancy in CGP. Section 8.6 then repeats the experiments presented

in Section 8.4, but in the context of CGPANN.

A closing summary of the chapter is then given in Section 8.7.

173

Chapter 8: Neutral Genetic Drift

8.2 Background

Sewall Wright first introduced the notion that natural evolution is searching over a space

of possible solutions [311]. This space of solutions, commonly referred to as a fitness

landscape, gives the fitness of each solution in relation to one another. This concept

was later adopted by the machine learning literature, most prominently in the field of

Evolutionary Algorithm (EA)s [174].

One of the insights gained from visualising the fitness landscape is the idea of local

optima. These are sub-optimal areas of the search space where most, if not all, local solu-

tions are worse than the current solution. As a result, escaping local optima is challenging.

Typically mutation is thought of as the mechanism for escaping local optima, but mutation

alone is often insufficient depending upon the local fitness landscape. Another mechanism

for escaping local optima is provided by the presence of NGD. NGD was also first proposed

in the domain of evolutionary biology by Motoo Kimura [158]. NGD is where mutations

are made to a genotype which do not influence its semantics, but are preserved during

selection and passed onto the next generation. This causes the position within the fitness

landscape to change without requiring fitness improving mutations. Once in a new area

of the fitness landscape, the possible solutions accessible through mutation are different

to what was possible before the neutral mutation(s) had taken place. Therefore, when in

local optima, the presence of NGD causes the number of possible solutions one mutation

away to vary, thus aiding the escape from local optima.

An additional consequence of NGD is that it can also occur when the search is not

trapped in local optima. This occurs when neutral mutations take place at the same time

as fitness improving mutations (i.e. the inactive mutations ‘hitch-hike’). Although in this

scenario NGD cannot be aiding the escape from local optima, it may still be influencing

the evolutionary search.

It is important to understand and utilise the role of NGD in GP [165, 228], and EAs

in general, as it represents a powerful mechanism for searching the fitness landscape.

Additionally, as more challenging applications are investigated the benefits of NGD become

more significant. This is because more challenging applications are likely to represent

fitness landscapes with more numerous local optima. As NGD is thought to aid the escape

from local optima, it becomes increasingly significant as the difficulty of the landscape

increases.

174

8.2 Background

In tree-based GP it is common to refer to inactive/redundant genes1 as being those

which are present in the genotype but which do not influence the semantics. An example

of this form of genetic redundancy is where a section of the phenotype is multiplied by zero

and hence does not contribute to the programs output; see Figure 8.1. In this chapter,

this type of redundancy is referred to as implicit genetic redundancy as the genes are

decoded into the phenotype, so in that sense are active, however they do not contribute

to the semantics of the phenotype. Here NGD of implicitly redundant genetic material is

referred to Implicit Neutral Genetic Drift (INGD) to distinguish it from NGD in general

and other forms of NGD. Other GP methods which contain implicit genetic redundancy

include Push Genetic Programming (Push-GP), which uses a stack based representation in

which evolved programs manipulate program and data via stacks [262], since instructions

can be left on the CODE or EXEC stacks which are ignored.

+

x *

+ 0

y z

Figure 8.1: Implicit genetic redundancy in tree-based GP. Active nodes are shown in black,
implicitly redundant nodes in grey.

Interestingly, other forms of GP contain a more explicit form of genetic redundancy.

Here explicit genetic redundancy refers to genes which are removed during the decoding

of genotypes into phenotypes. For instance, CGP, previously discussed in Chapter 3,

contains inactive genes. Linear Genetic Programming (LGP) [33], a register based form

of GP, also contains inactive genes which are not decoded into the phenotype. Both

CGP and LGP employ a genotype-phenotype mapping which removes explicitly redundant

1The terms inactive genes and redundant genes are used interchangeably and refer to genes which do
not influence the semantics and/or the phenotype.

175

Chapter 8: Neutral Genetic Drift

genes [320] or structurally non-effective operations [33] respectively. This form of genetic

redundancy is referred to as explicit genetic redundancy. Again as before, NGD acting

on explicitly redundant genetic material is referred to as Explicit Neutral Genetic Drift

(ENGD). Additionally, forms of GP like CGP and LGP also contain implicit genetic

redundancy via the same mechanism described for tree-based GP, and so also exhibit

INGD.

One of the difficulties in studying NGD is identifying which genes are genetically

redundant. For instance, identifying implicitly redundant genes in tree-based GP is chal-

lenging [29] as it involves analysing the semantics of the program. However, identifying

explicitly inactive genes in CGP is trivial as they are the genes not associated with the

nodes connecting inputs to outputs. This makes CGP a useful tool for investigating the

role of NGD. As is shown in this chapter, by using a range of restrictions to CGP, various

aspects of INGD and ENGD can be isolated and studied independently.

Previous research investigating NGD in CGP [202,287] examined the effect of removing

NGD by preventing the selection of child chromosomes over their parents if they have equal

fitness. The rational being, that if neutral mutations cannot be passed on without fitness

improvements, they cannot be used to escape local optima. However, this methodology

prevents all forms of NGD and any other forms of non-genetic redundancy aiding the

escape from local optima. The experiments undertaken did not isolate the benefit of

ENGD; the type of NGD present in CGP but not in tree-based GP. Additionally, the

methodology did not consider potential benefits of NGD other than escaping local optima;

such as NGD occurring at the same time as fitness improving mutations to active genes.

Other studies into the role of genetic redundancy for CGP investigated the effect of

increasing the levels of explicit genetic redundancy [207]. This was achieved by increasing

the number of available nodes which increased the proportion of inactive genes. The work

reported that increasing the level of explicit genetic redundancy, by increasing the number

of available nodes, consistently improved the evolutionary search. However, it is clear that

this tread cannot continue indefinitely since it implies that using an infinite number of

nodes would solve a given task in zero time. An alternative explanation, other than the

increase in explicit genetic redundancy, has also since been presented. It speculates that

the reason using high numbers of available nodes is beneficial, is because it compensates

for the length bias present in CGP [82,84]; see Section 3.9.2.

The contribution of this chapter is a substantial evaluation of the role of NGD in CGP.

176

8.3 Redundancy in CGP

The benefits of both INGD and ENGD are rigorously evaluated including aspects other

than aiding the escape from local optima. Additionally, past experiments are repeated and

extended in order to confirm previous results whilst offering further insights. Although

the focus of this chapter is NGD in CGP, the results presented are relevant to other GP

and EA techniques which also contain genetic redundancy.

The chapter also investigates the role of NGD in CGPANN. As was discussed in Chap-

ter 2, the presence and effect of NGD in NE methods have so far not been considered in the

literature. As NE algorithms are based on EAs, which are thought to benefit from NGD,

it appears likely that NE would also benefit. Additionally, it appears that many NE meth-

ods also contain explicit genetic redundancy; such as GeNeralized Acquisition of Recurrent

Links (GNARL) [15], Evolutionary Programming Artificial Networks (EPNet) [314] and

Cooperative Co-evolution Model for evolving Artificial Neural Networks (COVNET) [75];

see Section 2.6.

8.3 Redundancy in CGP

The role of redundancy in EAss, and its impact on neutrality, has been widely studied:

[22, 23, 57–59, 68, 69, 73, 123, 124, 243, 306] and recently reviewed [74]. There are many

forms of redundancy in GP. For instance, as has been previously discussed, genes can

be explicitly or implicitly redundant. It is possible for many genotypes to produce the

same phenotypes; this creates redundancy in the genotype-phenotype mapping. It is

also possible for many genotypes to produce phenotypes with the same semantics. This

creates redundancy in the genotype-semantic mapping. Additionally, the solution spaces

themselves can contain redundancy with many possible solutions being awarded equal

fitness; even if they represent very different solutions. Finally, redundancy can occur in

the imprecision of implementing abstract computer programs on real world hardware. For

instance, the imprecision of floating point operations causing two differing solutions to be

awarded the same fitness.

CGP chromosomes contain genes which are ignored in the construction of the pheno-

type. These inactive genes are therefore genetically redundant. However, such redundant

genes can later become active via mutation. For instance a mutation could cause an active

node to connect to a previously inactive node, thus making the inactive node active. This

type of genetic redundancy is referred to as explicit genetic redundancy because the genes

are explicitly removed during the genotype-phenotype decoding stage. As discussed, im-

177

Chapter 8: Neutral Genetic Drift

plicit genetic redundancy is also possible in CGP where a section of the phenotype has no

influence on its semantics.

It is worth noting that it has been previously claimed that the presence of explicit

genetic redundancy in CGP helps the evolutionary search on “needle in the haystack” type

problems [319]. However, this was refuted and an alternative explanation given [44] where

it was concluded that explicit genetic redundancy does not aid the evolutionary search on

needle-in-haystack type problems. However, this conclusion said nothing about the merits

or demerits of explicit genetic redundancy in CGP generally i.e. when applied to tasks

which are not needle-in-haystack problems. That is to say, explicit genetic redundancy

could be, and is indeed shown here to be, generally beneficial.

Additionally, in recent work by Z. Vassicek [286] the role of neutral mutations were

investigated in relation to the application of CGP to the minimisation of Boolean circuits.

In their work three criteria for the prevention of neutral mutations were proposed: “(1)

inactive gates are never modified; (2) it is not possible to connect an active gate (or primary

output) to an inactive gate; (3) the gene which encodes the connection of the second input

of a single-input gate is never mutated.”. However, their second criterion means their

methodology is not solely investigating the benefit of neutral mutations. This is because

connecting an active node to an inactive node does not constitute a neutral mutation;

as no inactive genes have been mutated (changed allele). Vassicek found their proposed

method for preventing neutral mutations, using the three described constraints, showed

no impact on the results of CGP applied to minimising Boolean circuits. They therefore

concluded that neutral mutations were of no benefit to CGP. However, in Vassicek’s work,

the growth of the phenotype size resulted in a worse fitness; as their application was circuit

minimisation. Note that in order for neutral mutations to be able to influence the search,

inactive genes must be allowed to become active; thus often initially increasing the size

of the solution. As in Vassalages work the growth in phenotype size was penalised by the

fitness function used, it is not surprising that the prevention of neutral mutation was seen

to have little influence on the search. Therefore, Vassicek’s work does not demonstrate

that explicit genetic redundancy is of no use generally; for instance when not actively

penalising any instance of growth in solution size.

The remainder of this section discusses NGD with a focus on CGP followed by a

discussion of previous work which has attempted to increase the levels of genetic re-

dundancy in CGP. For a further discussion of genetic redundancy and NGD in CGP

178

8.3 Redundancy in CGP

see [202,287,318,320].

8.3.1 Neutral Genetic Drift

The idea that NGD might be beneficial was first proposed in the field of biological evolution

in a highly influential paper Neutral Theory of Molecular Evolution [158]. The arguments

given apply to NGD caused by both implicit and explicit genetic redundancy.

NGD describes the change in inactive genetic material during evolution. The neutral

refers to it having no effect on the semantics of the phenotype, the genetic refers to it

acting upon the genetic material and the drift refers to the genetic material drifting i.e. it

is changing in an unguided manner. One of the reasons NGD is thought to be important

is because it can lead to genetically (not phenotypically) diverse populations even when

trapped in local optima.

Consider an evolutionary run which has reached a local optimum. Over time the

population will converge on the best found solution. This is because, when trapped in a

local optimum, most mutations will create worse children than their parents and therefore

only children which are genetically similar to their parents are selected and survive. This

causes the entire population to become genetically similar. If all members of the population

are genetically similar, then the number of possible solutions which can be reached via

mutation (or crossover) in one generation is vastly reduced. Thus escaping the local

optimum becomes increasingly unlikely.

When redundant genes are present, the active genes will still converge but there is no

pressure for the inactive genes to converge; as they do not affect fitness and are not guided

by selection. This causes the active genetic material to converge, but the inactive genetic

material to randomly drift. This results in a population with similar active genes but

differing inactive genes. As mutation (or crossover) can result in inactive genes becoming

active, the number of solutions accessible in one generation is therefore much larger, and

more dynamic, than without the inactive genes; thus making the escape of the local

optima more probable. For this reason, inactive genes are thought to be beneficial due to

the process of NGD aiding the escape of local optima.

An alternative view on the influence of NGD is through the effect redundant genes

have on the search space. As redundant genes, by definition, do not affect the fitness,

they create plateaus of equal fitness in the search space. These plateaus can be randomly

drifted across when mutations of inactive/redundant genes occur. Depending upon the

179

Chapter 8: Neutral Genetic Drift

position on the plateau, different solutions may be possible via mutation. For instance, an

inactive node may produce behaviour (a) if made active in one area of the search space or

behaviour (b) if made active in another area of the search space. Again this can be seen

to cause the possible solutions one mutation away to vary when trapped in local optima.

Since CGP typically uses a (1+λ)-ES, all the children are created by mutating the

single selected parent. Usually using such a greedy strategy would result in a search

becoming very easily trapped in local optima. However, as has been discussed, CGP

contains inactive genes which are subject to NGD. When in a local optima, any children

created from the parent via mutations to inactive genes alone will have the same fitness as

the parent; as they are semantically identical. An important aspect of the CGP algorithm

is that children are selected over parents if they have equal fitness. Therefore the solution

selected may have the same fitness, but different inactive genetic material to the parent.

This causes the possible solutions accessible through mutation to change from generation

to generation and thus help escape the local optima.

A further behaviour of NGD is its ability to alter inactive genes even when not trapped

in local optima. For instance, when redundant genes are mutated at the same time as

beneficial fitness improving mutations are made to active genes. In this case the changes

to the inactive genes are also passed on to the selected child. This results in the possible

solutions one mutation away being different to what they would have been had the neutral

mutation not taken place. This effectively means that the plateaus in the search space

can be drifted across even when not trapped in a local optimum.

As the genotypes of other forms of GP also contain implicit genetic redundancy, they

too benefit from INGD. Likewise, CGP genotypes also contain implicit genetic redundancy

and so also benefit from INGD.

In the wider field of EAs, it is often argued that the benefit of genetic redundancy

is related to its ability to protect from damaging mutations [218, 282, 291]. For instance,

when using a (µ, λ)-ES each new generation is entirely comprised of children; no parents.

If the mutation rate were sufficiently high, then the majority of the children would be

drastically different from their parents. In this case good solutions may be easily lost from

one generation to the next. Mutations to inactive genes do not change the phenotypes

semantics. Therefore inactive genes help regulate the amount of semantic altering muta-

tions. This is thought to help prevent good solutions from being so easily lost. However,

using redundant genes to absorb excess mutations appears to be equivalent to using a

180

8.3 Redundancy in CGP

lower mutation rate [160]. It may also be the case that a varying level of genetic redun-

dancy results in a varying number of semantic altering mutations. However, this could

be simply achieved by using different mutation methods; for instance a variable mutation

rate. Regardless of whether this aspect of genetic redundancy is beneficial, CGP typically

uses a (1 + λ)-ES so there is no danger of losing the best solution from one generation to

the next. Additionally, in the experiments reported in this chapter, probabilistic mutation

is used; which already allows a variable number of mutations to occur; see Section 3.4.

8.3.2 Increasing Genetic Redundancy

It has been previously reported [207] that high levels of explicit genetic redundancy (95%)

produce the best evolutionary search for CGP. In their work the percentage of inactive

nodes was controlled by varying the number of available nodes. As CGP typically uses

a fraction of the available nodes, increasing the number of available nodes has the effect

of increasing the percentage of inactive nodes (genetic redundancy). The work showed

that by increasing the number of available nodes the percentage of active nodes decreased

and the effectiveness of the evolutionary search increased. The paper concluded that

the increased genetic redundancy was responsible for the improved evolutionary search.

Unfortunately, the paper did not expose the full relationship between the effectiveness

of the evolutionary search and the percentage of active nodes. For instance, from their

presented results one could be left with the impression that increasing the number of

available nodes always improved the convergence time. However, intuitively this cannot

be true since it implies that using an unbounded number of nodes would solve a given

task in the first generation; a clear falsehood since the initial population is randomly

initialized. Therefore, there should be a point at which increasing the number of nodes no

longer improves the evolutionary search.

It has also been shown that CGP is naturally biased to phenotypes of a given size

[82, 84]; typically a small percentage of the available nodes. Although this does result

in high levels of explicit genetic redundancy, it was shown that the active nodes are

concentrated towards the inputs (low nodes indexes) and the inactive nodes towards the

outputs (high nodes indexes). This results in few redundant genes between the active genes

limiting the possible benefits of the redundant genes; as the vast majority of inactive genes

are extremely unlikely to ever be made active. It was speculated in [82,84] that using very

high numbers of available nodes, such as in [207], may be effective because it compensates

181

Chapter 8: Neutral Genetic Drift

for the lack of inactive nodes between the active. Due to using high numbers of nodes

increasing the likelihood of there being some inactive nodes between the active. Therefore,

an increased fitness is seen as the number of available nodes is increased.

8.4 Investigating Neutral Genetic Drift in CGP

Investigating INGD is challenging in tree-based GP due to the difficulty in identifying

implicitly redundant genes. For instance, in Figure 8.1, the addition of y and z is only

redundant because it is then later multiplied by zero. Although likely possible, detecting all

instance of this type of redundancy would be very difficult and computationally expensive.

Conversely, investigating the role of explicit genetic redundancy present in CGP is much

simpler. This is because the explicitly inactive genes can easily be identified; they are

the genes not associated with the active nodes connecting inputs to outputs. It is this

difference which is central to how CGP can be used to investigate NGD in general.

As previously discussed, NGD can be separated into two forms, namely INGD and

ENGD. Additionally NGD poses two possible advantages/behaviours, the ability to help

escape local optima by following plateaus in the search space and the ability to follow the

same plateaus simultaneously with positive mutations to active genes. Interestingly, these

two behaviours are related to the transfer of neutral mutation from parents to children.

For instance, in order for NGD to help escape local optima, neutral mutations must be

able to be passed on when the child’s fitness is equal to that of its parents. Additionally,

for NGD to be able to change the inactive genes alongside positive mutations, neutral

mutations must be passed on when the child’s fitness is greater than its parents. Therefore

the behaviour of NGD, implicit or explicit, is determined by when neutral mutations are

passed on.

This means that there are four possible behaviours of NGD in total: ENGD occurring

with fitness improvements, ENGD occurring without fitness improvements, INGD occur-

ring with fitness improvements and finally INGD occurring without fitness improvements.

These four behaviours are discussed in more detail for clarity.

In all the following figures presented, Figures 8.2 - 8.5, active nodes are given as solid

black, explicitly inactive nodes as a solid grey and implicitly inactive nodes as a dashed

black. Additionally (a) represents a given parent and (b) represents a possible child which

would have been selected over the given parent. The chromosomes of parent and child are

also given with the function genes underlined and the differences highlighted in bold. Also

182

8.4 Investigating Neutral Genetic Drift in CGP

note that in all cases the first input to the chromosomes is set as zero, thus facilitating

implicit genetic redundancy.

Figure 8.2 depicts an example of ENGD taking place at the same time as a fitness

improving mutation. As can be seen in Figure 8.2, the child differs from the parent in

two regards; both an explicitly inactive gene and an active gene have been mutated. This

has resulted in a fitter solution which is why it is selected and therefore why the neutral

mutation was passed on to the next generation.

(a) Parent: 012 203 002 155 4 5, fitness = x

(b) Selected Child: 012 203 042 135 4 5, fitness > x

Figure 8.2: Example of ENGD occurring with a fitness improvement. Active genes are
given in bold, explicitly inactive in grey and implicitly inactive in dashed.

Figure 8.3 depicts ENGD taking place without a fitness improvement. In this case the

selected child differs from the parent in one mutation to an explicitly inactive gene; again

marked in bold in the chromosome. This mutation resulted in a child of equal fitness to

the parent which is then selected because it is not worse than the parent. This behaviour

is only possible when children are selected over their parents when they have equal fitness.

This aspect of NGD is thought to help the escape of local optima.

183

Chapter 8: Neutral Genetic Drift

(a) Parent: 012 203 002 155 4 5, fitness = x

(b) Selected Child: 012 203 002 055 4 5, fitness = x

Figure 8.3: Example of ENGD occurring without a fitness improvement. Active genes are
given in bold, explicitly inactive in grey and implicitly inactive in dashed.

Figure 8.4 depicts INGD taking place at the same time as a fitness improving mutation.

In this case the child differs from the parent due to one mutation to an implicitly inactive

gene and one mutation to an active gene. These mutations resulted in a child of greater

fitness than the parent which is why it is selected. In this case it can also be seen that

the active mutation resulted in inactive genes becoming active. However this does not

constitute NGD as no explicitly neutral genes have changed. Making inactive genes active

is not an instance of NGD.

(a) Parent: 012 203 002 155 4 5, fitness = x

(b) Selected Child: 011 203 002 155 4 6, fitness > x

Figure 8.4: Example of INGD occurring with a fitness improvement. Active genes are
given in bold, explicitly inactive in grey and implicitly inactive in dashed.

Finally, Figure 8.5 depicts INGD taking place without a fitness improving mutation.

In this case the child differs from the parent due to one mutation to an implicitly inactive

gene. Again, in this case the child is selected over the parent because it has equal fitness.

184

8.4 Investigating Neutral Genetic Drift in CGP

This behaviour of INGD is thought to help escape local optima.

(a) Parent: 012 203 002 155 4 5, fitness = x

(b) Selected Child: 011 203 002 155 4 5, fitness = x

Figure 8.5: Example of INGD occurring without a fitness improvement. Active genes are
given in bold, explicitly inactive in grey and implicitly inactive in dashed.

Now the four behaviours of NGD have been defined, methods for isolation are intro-

duced. For reference, these methods are summarised in Table 8.1 along with the aspects

of NGD they isolate. The presence of types of non-genetic redundancy is also included

in Table 8.1. Where non-genetic redundancy comprises redundancy in the phenotype-

semantic mapping (i.e. two separate solutions which exhibit the same behaviours) and

redundancy in the semantics-fitness mapping (i.e. two distinct behaviours being awarded

the same fitness). These types of redundancy are separated as they are not genetic, but

do influence the search.

The first method used for comparison is regular CGP; CGP with no alterations. Reg-

ular CGP is listed in Table 8.1 where it can be seen that it exhibits all of the behaviours

of NGD discussed as well as all other forms of redundancy.

The second method, also given in Table 8.1, is to only mutate active genes, never

inactive. This method is the same as standard CGP with one exception; explicitly in-

active genes are never mutated. This is easily achieved for CGP as explicitly inactive

genes are those genes not associated with the path of nodes connecting inputs to out-

puts. Once mutations obey this constraint, both behaviours of ENGD are prevented but

both behaviours of INGD and other forms of redundancy are retained. This is because it

completely prevents any change to explicitly inactive genes.

The third method, again given in Table 8.1, is to only select fitness improvements.

This method is the same as standard CGP except that children are only selected over

their parents iff they have an improved fitness; not equal or worse. This alteration there-

185

Chapter 8: Neutral Genetic Drift

Table 8.1: Restrictions made to CGP used in order to investigate NGD.

Behaviour
Regular

CGP
Only Mutate
Active Genes

Only Fitness
Improvements

Only Mutate Active
Genes and Only

Fitness Improvements

ENGD with
fitness improvement

Yes No Yes No

ENGD without
fitness improvement

Yes No No No

INGD with
fitness improvement

Yes Yes Yes Yes

INGD without
fitness improvement

Yes Yes No No

Non-genetic redundancy Yes Yes No No

fore prevents both ENGD and INGD occurring unless it is accompanied by a fitness

improving mutation. Only selecting child chromosomes with fitness greater than their

parents prevents NGD, implicit and explicit, and other forms of redundancy from aiding

the escape from local optima. It does however leave the possible benefit of NGD taking

place alongside fitness improving mutations.

The final method combines the previous two described methods; only mutating ac-

tive genes and only selecting fitness improvements. This removes all benefits of NGD,

implicit and explicit, and non-genetic redundancy except specifically INGD taking place

simultaneously with fitness improvements.

Using these described restrictions to CGP, a series of experiments are proposed and

presented which isolate various aspects of NGD.

During the investigations, the following CGP parameters are used: 50 runs, 100,000

generations, a (1 + 4)-ES, 3 percent probabilistic mutation, no crossover, a node arity

of two, 100 nodes and a function set dependent upon the benchmark. The benchmarks

used comprise: Double Pole (+,−,×,÷), Full Adder 4 bit (AND, NAND, OR, NOR),

Multiplier 4 bit (AND, NAND, OR, NOR), Nguyen 10 (+,−,×, ÷, sin, cos, exp, log),

Pagie 1 (+,−,×,÷), Parity 8 Bit (AND, NAND, OR, NOR) and the Tower Problem

(+,−,×, ÷, sin, cos, exp, log). All of these benchmarks are described in Appendix A.

8.4.1 Experiments

The first experiment is to isolate the overall benefit of ENGD. This is achieved by com-

paring the difference in performance between regular CGP and CGP when only active

genes are mutated. These two methods differ only in the presence of ENGD and therefore

186

8.4 Investigating Neutral Genetic Drift in CGP

isolate the benefit of ENGD. This comparison is given in Table 8.2 for the benchmarks

described in Section A.

Table 8.2: Comparing regular CGP to only mutating active genes in order to isolate the
benefit of ENGD. In all cases a lower fitness represents a better search.

Benchmark
Regular

CGP
Only Mutate
Active Genes

U-Test Effect Size

Double Pole 32517 58273 3.97E-3 0.65840
Full Adder 4 bit 352.92 400.06 1.16E-2 0.64660
Multiplier 4 bit 301.84 314.86 1.29E-2 0.64440
Nguyen 10 0.78 1.60 3.88E-1 0.54780
Pagie 1 73.13 105.97 1.32E-2 0.64400
Parity 8 Bit 45.08 68.22 1.01E-6 0.78380
Tower Problem 174404 241640 1.66E-11 0.89080

As can be seen in Table 8.2, in all cases the presence of ENGD resulted in a more

effective evolutionary search. Additionally, in all but one case the difference resulted in

a medium or large effect size with statistical significance. This clearly demonstrates that

the presence of ENGD is greatly beneficial to the evolutionary search; at least in the case

of CGP. It can therefore be concluded that the ability of ENGD to escape local optima,

or the ability to mutate explicitly inactive genes at the same time as positive mutations,

or both, is beneficial to the evolutionary search. Additionally, as INGD is present in both

of the methods used for comparison, it can be seen that the benefit of ENGD is additional

to that already provided by INGD.

The second experiment investigates whether redundancy, both implicit and explicit

genetic redundancy and other non-genetic redundancy, provides an ability to aid the escape

from local optima. This is achieved by comparing the difference in performance between

regular CGP and CGP in which only fitness improvements are allowed to be selected i.e.

children are only selected over parents iff they are fitter. These two methods differ only

in that the former (regular CGP) has the ability to pass on neutral mutations without the

presence of beneficial mutations; a requirement for use in escaping local optima.

This experiment is similar to that undertaken in [202,287]; however there are important

differences. For instance, the range of benchmarks is much larger and statistical analysis

is used to confirm any differences. Additionally, in [202,287] the experiment was proposed

to remove all benefits of NGD. However, as discussed, it actually only removes the benefit

of NGD, and other forms of redundancy, aiding the escape from local optima. For instance

NGD can still occur when neutral genes are mutated along with beneficial mutations to

187

Chapter 8: Neutral Genetic Drift

active genes. Here the results of the experiment are analysed with regard to only what is

isolated.

As can be seen in Table 8.3, in all cases allowing NGD and other forms of redundancy

to escape local optima produces a superior evolutionary search with statistical significance.

Additionally, in all but two cases this difference resulted in a large effect size; with the

other two resulting in one medium effect size and one small. It can therefore be concluded

that the ability of NGD and other forms of redundancy to assist in escape from local

optima is a major advantage; at least in the case of CGP.

Table 8.3: Comparing regular CGP to only selecting fitness improvements in order to
isolate the benefit of NGD and other forms of redundancy aiding the escape from local
optima. In all cases a lower fitness represents a better search.

Benchmark
Regular

CGP
Only Fitness

Improvements
U-Test Effect Size

Double Pole 32517 52225 2.62E-2 0.61920
Full Adder 4 bit 352.92 698.66 1.83E-17 0.99360
Multiplier 4 bit 301.84 402.68 4.05E-17 0.98820
Nguyen 10 0.78 1.77 6.42E-3 0.65280
Pagie 1 73.13 152.56 1.21E-8 0.83080
Parity 8 Bit 45.08 117.98 6.89E-18 1
Tower Problem 174404 218169 4.58E-12 0.90160

The third experiment investigates the benefit of ENGD when not being used to escape

local optima. For instance, the benefit of ENGD occurring at the same time as other

beneficial mutations. This is achieved by comparing the difference between only allowing

fitness improvements to be passed on with only allowing mutations to active genes whilst

also only allowing fitness improvements to be passed on. For clarity this is a comparison

between the methods in the final two columns of Table 8.1. These two methods differ

only in the ability of ENGD to occur in combination with fitness improving mutations to

active genes.

As can be seen in Table 8.4, removing the benefit of ENGD occurring alongside ben-

eficial mutations consistently produced inferior results with statistical significance in all

but one case. However, in the majority of cases, all but two, the effect size was small.

Therefore it appears that although ENGD does have benefit other than assisting in the

escape from local optima, this benefit is comparatively small.

188

8.4 Investigating Neutral Genetic Drift in CGP

Table 8.4: Selecting only fitness improvements compared with only allowing mutations to
active genes while also only selecting fitness improvements. This isolates the benefits of
ENGD other than aiding the escape of local optima. In all cases a lower fitness represents
a better search.

Benchmark
Only Fitness

Improvements
Only Mutate Active Genes,
Only Fitness Improvements

U-Test Effect Size

Double Pole 52225 69017 3.30E-2 0.62160
Full Adder 4 bit 698.66 745.36 3.33E-2 0.62380
Multiplier 4 bit 402.68 410.04 4.46E-1 0.54440
Nguyen 10 1.77 4.70 7.11E-3 0.65480
Pagie 1 152.56 175.88 1.72E-1 0.57940
Parity 8 Bit 117.98 120.80 2.74E-2 0.62780
Tower Problem 218169 260060 1.90E-6 0.77640

8.4.2 Discussion

From the experiments presented, three properties of NGD and non-genetic redundancy in

CGP have been identified. It has been shown that ENGD is greatly beneficial to CGP.

It has been shown that the ability of NGD, and non-genetic redundancy, to escape local

optima represent the most beneficial aspect of redundancy. Finally, it has been shown that

ENGD occurring when not trapped in local optima also provides a benefit to the search.

For many years it has been thought that ENGD is highly beneficial to CGP. However,

previous work investigating the effect of ENGD did so by preventing both INGD, ENGD,

along with non-genetic redundancy, from escaping local optima [202,287]. Therefore pre-

vious research did not isolate the effect of ENGD, nor did it consider benefits other than

escaping local optima. In the work presented here the role of specifically ENGD has been

isolated and demonstrated to be of great benefit. Although this means that the hypothesis

of ENGD being beneficial to the evolutionary search remains the same, the evidence for

believing this has changed.

It has also been identified that ENGD provides a small benefit to the evolutionary

search when taking place alongside positive mutations to active genes. This is an aspect

of ENGD not previously considered. A possible explanation for this benefit could lie in

the effect it has on the positioning within the search space. Mutating inactive genes along

with active genes could cause the semantics of the solution to alter only slightly but place

the solution in a very different area of the search space; in terms of what solutions are

reachable in the next generation. Although highly speculative, this could be causing a

wider area of the solution space to be sampled during the evolutionary search; as it is not

limited to the solutions which can only be reached (or easily reached) via successive fitness

189

Chapter 8: Neutral Genetic Drift

improving mutations to active genes.

An important insight from the experiments presented is that it is now known that the

benefits of ENGD are additive to INGD and non-genetic redundancy; at least in the case

of CGP. This was shown to be the case as preventing ENGD, whilst preserving INGD and

non-genetic redundancy, produced a worse evolutionary search. This is important as it

demonstrates that the presence of specifically explicit genetic redundancy is advantageous

to the evolutionary search. Therefore other GP methods which also contain explicit genetic

redundancy, such as LGP [33], could also be benefiting from ENGD. Interesting future

work would be to repeat the experiments presented here using other GP methods which

contain explicit genetic redundancy. This would identify if the results are general or

specific to CGP. In addition, the work suggests that if explicitly neutral genes could

be added to other GP methods, it could lead to a more effective search. For instance,

if “connection switch genes”2 were introduced on links between nodes in tree-based GP

that could connect or disconnect sub-trees, then all genes in switched off sub-trees would

become explicitly inactive. This could enable tree-based GP to benefit from ENGD.

The fact that the presence of ENGD in CGP was shown to provide a benefit indicates

that the amount of genetic redundancy provided implicitly is not sufficient to fully utilise

NGD. Therefore it may be the case that other GP methods, such as tree-based GP, do

not fully utilise NGD. Although the amount of useful explicit genetic redundancy present

in CGP is unlikely to be optimal, the presence of explicit genetic redundancy is providing

a further benefit.

Interestingly, it could be the case that increasing or decreasing the amount of mutation

to explicitly inactive genetic material would improve the evolutionary search of CGP. For

instance, it has been shown in this chapter that never mutating explicitly inactive genes

significantly worsens the evolutionary search. This method is equivalent to an explicitly

inactive gene mutation rate of 0%. When mutations were allowed to alter explicitly inactive

genetic material, the same mutation rate was used as for the active genes; 3%. However,

there is no reason to assume that this is a suitable mutation rate to make best use of

explicit genetic redundancy. For instance, it could be the case that a much larger or

smaller mutation rate for inactive genes typically produces better results. Additionally, it

may be the case that different explicitly inactive genetic mutation rates produce the best

search depending upon whether the search is trapped in a local optimum. Interestingly,

2Such as those used previously for CGPANN [154].

190

8.4 Investigating Neutral Genetic Drift in CGP

previous results presented in [84] demonstrated that heightening the level of mutation to

inactive genes failed to improve the performance of CGP. However, as the method used

the newly proposed accumulate mutation method, it is not clear what percentage of genes

were actually mutated.

A related topic is whether partial solutions are maintained within the inactive genes

ready to be reactivated at a later stage. For instance, on dynamic fitness landscapes a

reasonable solution could be found to be no longer suitable. This may lead to sections of

the chromosome becoming inactive whilst looking for a new suitable solution. Now if the

fitness landscape continues to change then the old solution, still present in the inactive

genetic material, may once again be beneficial. However, this time, instead of completely

rediscovering the solution, the old solution can be reactivated (‘remembered’). Whether

this would actually occur is speculative, and it has been shown that CGP rarely reactivates

a previously active node without it first being mutated [84]. However, it does demonstrate

additional possible behaviours of explicitly inactive genes, other than NGD, which could

also be manipulated.

The fact that NGD was shown to aid the escape from local optima is an important

result as it indicates that it may be increasingly beneficial on more challenging tasks. This

is because one of the reasons a given task is more challenging than another is due to the

number local optima in the search space and how difficult they are to escape. Therefore,

methods which aid the escape of local optima are likely to be of greater benefit on more

challenging fitness landscapes. Future work should therefore investigate applying CGP to

increasingly difficult problem instances whilst repeating the experiments presented here.

This would identify if NGD does become increasingly beneficial on harder tasks.

One of the reasons the research presented here is possible is due to the ease of which

explicitly inactive genes in CGP can be identified. This makes the study of NGD much

simpler. Additionally, if it were found that certain characteristics were desirable in inactive

genetic material, such as specific mutation methods, this could be easily implemented for

explicit genetic redundancy. Therefore, although many methods, such as tree-based GP,

do contain implicit genetic redundancy, empirically studying its role is harder. It remains

for future investigation whether there is an effective method for identifying implicitly

inactive genetic redundancy in tree-based GP. Notwithstanding this, the speed at which

explicitly inactive genetic redundancy can be identified may still be significant in further

work.

191

Chapter 8: Neutral Genetic Drift

It has been discussed that the reason CGP can be so effective using a simple (1+λ)-ES

is that high levels of genetic redundancy facilitate the escape from local optima. More

typically, GP methods use large populations of diverse genetic material and utilise the

crossover operator. This method is thought to prevent the population becoming trapped

in local optima due to it sampling a wider area of the search space. For instance, if

an individual (or group of individuals) does become trapped, due to the diversity of the

other members of the population, the search can still progress. Additionally, due to

crossover, those stuck in the local optima may later be recombined with solutions outside

of the local optima, resulting in their children escaping. Therefore, a possible criticism

of the work presented here could be that the only reason CGP benefits so strongly from

explicit genetic redundancy is that is does not utilise crossover to help escape local optima.

However, publications investigating the use of crossover for CGP are mixed as to whether

it offers an advantage [42, 191, 198, 202, 278], indicating that the benefits of crossover are

not that substantial compared to other GP methods. Whereas it has been shown that

the benefits of explicit genetic redundancy are substantial for CGP. However, to confirm

that explicit genetic redundancy is not simply compensating for the fact that crossover is

not utilised by CGP, important future work would be to apply the same experiments as

presented here using CGP with crossover. If it were shown that explicit genetic redundancy

still provided a benefit when crossover was employed, it would demonstrate that it is not

simply compensating for the fact crossover is not typically used. However, if it were shown

that explicit genetic redundancy no longer provides a benefit when crossover is used, it

would demonstrate that explicit genetic redundancy is indeed compensating for the fact

crossover is not employed.

8.5 Investigating Increasing Explicit Genetic Redundancy

As has been discussed in Section 8.3, it has been previously presented that CGP produces a

more effective search as increased numbers of available nodes are used [207]. The proposed

explanation was that using more available nodes increased the level of explicit genetic

redundancy which led to a more effective evolutionary search. However, an alternative

explanation was later presented arguing that the additional genetic redundancy would be

unlikely to be ever used, due to its position within the genotype, and that the observed

benefit was due to the high levels of available nodes compensating for length bias [82,84].

Regardless of the explanation, it still stands that using an increased number of available

192

8.5 Investigating Increasing Explicit Genetic Redundancy

nodes was seen to improve the evolutionary search for CGP. Additionally, as previous

work did not show the full trend of this relationship (i.e. it did not allow large enough

genotypes) it is difficult to draw further conclusions. Once the full trend is identified it

may be possible to distinguish between the two explanations as to why allowing larger

genotypes is more effective.

Here, when investigating the effect of increasing the number of available nodes, the

same benchmarks and function sets are used as described in Section 8.4. During the

investigation the following CGP parameters are used: 50 runs, 10,000 generations, a (1+4)-

ES, 3 percent probabilistic mutation, no crossover, a node arity of two. The number of

available nodes investigated are in the range one to one hundred thousand; note previous

research studied the relationship up to four thousand available nodes [207].

8.5.1 Experiments

The experiment presented is an extension of previously presented works [207] that investi-

gated the effect of increasing the number of available nodes on CGPs evolutionary search.

The experiment extends previous work in a number of regards. The number of bench-

marks is much larger, the range of problem types is larger, the benchmarks are much more

challenging and, most importantly, the range of the number of available nodes is much

larger.

The results of varying the number of available nodes are given in Figure 8.6 for all of

the benchmarks described. Each of the individual subplots show the fitness achieved and

the percentage of active nodes versus the number of available nodes; note the logarithmic

scale on the x-axis. Both fitness and percentage of active nodes are presented so the

relationship between the levels of explicit genetic redundancy and the effectiveness of the

evolutionary search can be compared.

For reference, the number of available nodes which resulted in the lowest errors achieved

in Figure 8.6 are given in Table 8.5. However, it should be noted that these values are

likely to be a function of the evolutionary parameters used, and so should not be taken as

the definitive best number of available nodes when applying CGP to these tasks.

193

Chapter 8: Neutral Genetic Drift

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
50000

60000

70000

80000

90000

100000

E
rr

o
r

(s
o
lid

)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
0

20

40

60

80

100

Available Nodes

%
 A

c
ti
v
e
 N

o
d
e
s
 (

d
a
s
h
e
d
)

(a) Double Pole

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
600

700

800

900

1000

1100

1200

E
rr

o
r

(s
o
lid

)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
0

20

40

60

80

100

Available Nodes

%
 A

c
ti
v
e
 N

o
d
e
s
 (

d
a
s
h
e
d
)

(b) Full Adder 4 bit

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
300

400

500

600

700

800

E
rr

o
r

(s
o
lid

)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
0

20

40

60

80

100

Available Nodes

%
 A

c
ti
v
e
 N

o
d
e
s
 (

d
a
s
h
e
d
)

(c) Multiplier 4 bit

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
0

5

10

15

20

25

30

E
rr

o
r

(s
o
lid

)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
0

20

40

60

80

100

Available Nodes

%
 A

c
ti
v
e
 N

o
d
e
s
 (

d
a
s
h
e
d
)

(d) Nguyen 10

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
100

150

200

250

300

350

400

450

E
rr

o
r

(s
o
lid

)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
0

20

40

60

80

100

Available Nodes

%
 A

c
ti
v
e
 N

o
d
e
s
 (

d
a
s
h
e
d
)

(e) Pagie 1

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
80

90

100

110

120

130

E
rr

o
r

(s
o
lid

)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
0

20

40

60

80

100

Available Nodes

%
 A

c
ti
v
e
 N

o
d
e
s
 (

d
a
s
h
e
d
)

(f) Parity 8 Bit

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
200000

220000

240000

260000

280000

300000

320000

340000

E
rr

o
r

(s
o
lid

)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5
0

20

40

60

80

100

Available Nodes

%
 A

c
ti
v
e
 N

o
d
e
s
 (

d
a
s
h
e
d
)

(g) Tower Problem

Figure 8.6: Number of available nodes versus fitness and percentage of active nodes.

194

8.5 Investigating Increasing Explicit Genetic Redundancy

Table 8.5: Number of available nodes which resulted in the lowest errors presented in
Figure 8.6.

Benchmark Nodes

Double Pole 50
Full Adder 4 bit 300
Multiplier 4 bit 100
Nguyen 10 100
Pagie 1 500
Parity 8 Bit 500
Tower Problem 3000

A number of interesting features can be identified in Figure 8.6. Firstly, consider the

fitness achieved under variation in the number of available nodes. It can be seen that in

each case the fitness first improves as the number of available nodes is increased, until

an optimum is reached, and then the fitness worsens as the number of available nodes

continues to increase.

In the case of the percentage of available nodes, the general trend is to start at ap-

proximately 100% and then continuously fall, following an approximate sigmoid curve, as

the number of available nodes is increased; asymptotically approaching zero percent.

It can also be seen that initially the fitness achieved is closely correlated with the

percentage of active nodes. This accounts for the conclusions reached in [207]. However,

beyond the optimal number of available nodes, the percentage of active nodes continues

to fall but the achieved fitness worsens. That is to say, it is not the case that increasing

the percentage of inactive nodes improves the evolutionary search for CGP. Nor is it that

case that increasing the number of available nodes indefinitely improves the evolutionary

search for CGP. It appears that the effectiveness of the evolutionary search is determined

by the number of available nodes but this is not correlated with the percentage of inactive

nodes.

8.5.2 Discussion

From Figure 8.6, it can be seen that increasing the number of available nodes does cause

the percentage of active nodes to decrease. Additionally, increasing the number of avail-

able nodes also initially improves the evolutionary search for CGP. This agrees with the

findings in [207] and what lead to their conclusions. However, as the number of available

nodes continues to increase, the percentage of activate nodes continues to fall but the ef-

fectiveness of the evolutionary search begins to worsen. This disproves the theory that the

195

Chapter 8: Neutral Genetic Drift

effectiveness of the evolutionary search is correlated with the level of genetic redundancy.

It has been previously shown that CGP exhibits a length bias towards using a particular

number of active nodes [82, 84]. This length bias is a function of the number of inputs,

the number of nodes, the arity of each node and the number of outputs. Therefore, by

varying the number of available nodes one is effectively varying the number of nodes to

which there is a bias. As there is likely an optimal number of nodes for a given task, it is

logical that as the bias to a number of nodes is increases, the performance first improves to

an optimum and then worsens. In this regard, the number of available nodes is like many

other evolutionary parameters whose optimal value is task dependent. Note that this

result does not contradict the evidence for the benefit of explicit genetic redundancy. It

is only that explicit genetic redundancy introduced by increasing the number of available

nodes is not beneficial. As was described in [82, 84], the majority of these inactive genes

will describe nodes with a high index (positioned towards the outputs), and will be very

unlikely to ever be made active. That is to say, the level of explicit genetic redundancy

is increased, but in such a way that it is rarely used. Therefore, increasing the number of

available nodes is not an effective method of increasing the levels of genetic redundancy.

Additionally, from the plots given in Figure 8.6 it does not appear that 95% genetic

redundancy provides the best evolutionary search for CGP; as was proposed in [207].

This result corrects a previous misconception that continuously increasing the number

of available nodes is beneficial to CGP’s evolutionary search [207]. Additionally, this

result, coupled with previous research [82, 84], demonstrates that increasing the number

of available nodes is not an effective method of increasing the levels of useful genetic

redundancy in CGP.

8.6 Investigating Neutral Genetic Drift in CGPANN

So far this chapter has focused on the influence of NGD on CGP’s evolutionary search.

This section now investigates the role of NGD for CGPANN.

As has been previously discussed in Chapter 2, the role of NGD in NE has so far

been overlooked. These experiments are therefore significant as they are the first, to the

author’s knowledge, to investigate the possible benefits of NGD for NE.

Like CGP, CGPANN contains both implicit and explicit genetic redundancy. There-

fore it seems likely that CGPANN will also benefit from its presence. However, there are

important distinctions between the two techniques which may influence the effect of NGD

196

8.6 Investigating Neutral Genetic Drift in CGPANN

in CGPANN. Firstly, Artificial Neural Network (ANN) typically uses a higher node arity

than GP methods. This higher arity is likely to result in CGPANN chromosomes contain-

ing a higher proportion of active genes; as length bias is a function of node arity [82, 84].

Secondly, ANNs use connection weights which are likely to allow evolution finer control in

the search space.

It has been previously discussed that unconstrained, CGPANN allows multiple connec-

tions between the same two nodes. As this can sometimes produce undesirable behaviour,

such as the maximum weight range set by the user being exceeded, methods for it pre-

vention have been presented. One such method is achieved by only decoding the first of

multiple connections between the same two nodes into the phenotype. This is interesting

in the context of genetic redundancy, as the additional connection genes and associated

connection weight genes are now genetically redundant. Additionally, as this decoding

stage is required in order for the genotype to describe its corresponding phenotype, it

means that in this case, CGPANN could be described as an indirect encoding scheme.

However, for simplicity disallowing multiple connections between the same two nodes is

not investigated in this chapter.

When using CGPANN the following default parameters are used: 50 runs, 100,000

generations, a (1 + 4)-ES, 5 percent probabilistic mutation, no crossover, a connection

weight range of ±5, logistic sigmoid transfer function, 100 nodes each with an arity of 5.

The benchmarks used comprise: Ball Throwing, Double Pole, Full Adder 4 Bit, Mul-

tiplier 4 bit, Monks Problem 1, Nguyen 10, Pagie 1, Parity 6 Bit, Parity 7 Bit, Parity

8 Bit and Two Spirals. All the benchmarks used are described in Appendix A. In cases

where the benchmarks require both positive and negative outputs the logistic sigmoid was

‘stretched’ to a ±1 range. In cases where the benchmarks required inputs/outputs greater

than ±1, the inputs/outputs are linearly mapped into a ±1 range using the maximum and

minimum un-normalised values. Additionally, in the case of the Ball Throwing benchmark

the fitness achieved were subtracted from 10 in order to make it a minimisation task, simi-

larly for the Double Pole Balancing benchmark. This ensures that in all cases lower fitness

values represents a better solution consistently across all the benchmark used.

8.6.1 Experiments

The experiments presented investigate the role of NGD in CGPANN following the same

methodology as those presented for CGP in Section 8.4. For this reason they will not be

197

Chapter 8: Neutral Genetic Drift

reintroduced.

The first experiment is to isolate the overall benefit of ENGD. This is achieved by

comparing the difference in performance between regular CGPANN and CGPANN when

only active genes are mutated. These two methods differ only in the presence of ENGD

and therefore isolate the benefit of ENGD. This comparison is given in Table 8.6. In the

case of the Double Pole Balancing benchmark all of the fifty runs found a perfect solution

in the allowed 100,000 generations. Therefore, in order to assess the relative performances

the average number of generations to find perfect solutions must be compared. These

results are given in Table 8.7.

Table 8.6: Comparing regular CGPANN to only mutating active genes in order to isolate
the benefit of ENGD. In all cases a lower fitness represents a better search.

Benchmark
Regular

CGPANN
Only Mutate
Active Genes

U-Test Effect Size

Ball Throwing 2.02 2.50 5.02E-1 0.53720
Double Pole 0 0 - -
Full Adder 4 Bit 776.88 783.58 7.20E-1 0.52100
Multiplier 4 bit 510.84 502.20 2.40E-1 0.56840
Monks Problem 1 0.82 0.77 7.70E-1 0.50940
Nguyen 10 3.14 3.22 7.91E-1 0.51560
Pagie 1 198.03 198.16 3.72E-1 0.55200
Parity 6 Bit 14.94 15.78 2.23E-1 0.57060
Parity 7 Bit 39.72 40.56 1.19E-1 0.58780
Parity 8 Bit 92.74 94.62 4.57E-1 0.54120
Two Spirals 73.62 73.44 8.68E-1 0.50980

Table 8.7: Comparing regular CGPANN to only mutating active genes in order to isolate
the benefit of ENGD. In all cases a lower number of generations represents a better search.

Benchmark
Regular

CGPANN
Only Mutate
Active Genes

U-Test Effect Size

Double Pole 1081 1369 2.60E-1 0.56560

As can be seen in Tables 8.6 and 8.7, in all cases the presence of ENGD has no notable

impact on the effectiveness of the search. In some cases the search is marginally better

and in others worse. In no cases are the differences statistically significant and in no cases

is the effect size greater than small. It therefore appears that ENGD provides no benefit

for CGPANN.

The second experiment investigates whether NGD, both implicit and explicit, and other

forms of redundancy, aid the escape from local optima. This is achieved by comparing the

difference in performance between regular CGPANN and CGPANN in which only fitness

198

8.6 Investigating Neutral Genetic Drift in CGPANN

improvements are allowed to be selected. These two methods differ only in that the former

(regular CGPANN) has the ability to pass on neutral mutations without the presence of

beneficial mutations; a requirement for use in escaping local optima. This comparison is

given in Table 8.8 with the generational results given in Table 8.9 for the Double Pole

Balancing.

Table 8.8: Comparing regular CGPANN to only selecting fitness improvements in order
to isolate the benefit of NGD aiding the escape from local optima. In all cases a lower
fitness represents a better search.

Benchmark
Regular

CGPANN
Only Fitness

Improvements
U-Test Effect Size

Ball Throwing 2.02 2.83 5.22E-2 0.60560
Double Pole 0 0 - -
Full Adder 4 bit 776.88 774.70 6.27E-1 0.52840
Multiplier 4 bit 510.84 513.38 3.79E-1 0.55120
Monks Problem 0.82 7.94 1.39E-13 0.90200
Nguyen 10 3.14 3.22 7.51E-1 0.51860
Pagie 1 198.03 197.20 6.97E-1 0.52280
Parity 6 Bit 14.94 21.20 2.40E-15 0.95500
Parity 7 Bit 39.72 46.14 2.23E-11 0.88100
Parity 8 Bit 92.74 97.76 1.30E-5 0.74960
Tower Problem
Two Spirals 73.62 76.58 2.74E-4 0.71060

Table 8.9: Comparing regular CGPANN to only selecting fitness improvements in order
to isolate the benefit of NGD aiding the escape from local optima. In all cases a lower
number of generations represents a better search.

Benchmark
Regular

CGPANN
Only Fitness

Improvements
U-Test Effect Size

Double Pole 1081 597 1.83E-1 0.57740

As can be seen in Tables 8.8 and 8.9 results are mixed. For around half of the bench-

marks investigated the ability for NGD and other type of redundancy to escape local

optima provided no notable benefit. For the remaining half of the benchmarks however,

the ability to escape local optima provided a substantial benefit with statistical signifi-

cance and a large effect size. It therefore appears that the ability to escape local optima

is beneficial to CGPANN; but to a much lesser extent than for CGP.

The third experiment investigates the benefit of ENGD when not being used to escape

local optima. For instance, the benefit of ENGD occurring at the same time as other

beneficial mutations. This is achieved by comparing the difference between only allowing

fitness improvements to be passed on with only allowing mutations to active genes whilst

199

Chapter 8: Neutral Genetic Drift

also only allowing fitness improvements to be passed on. These two methods differ only in

the ability of ENGD to occur in combination with fitness improving mutations to active

genes. This comparison is given in Table 8.10 with the generational results given in Table

8.11 for the Double Pole Balancing.

Table 8.10: Selecting only fitness improvements compared with only allowing mutations
to active genes while only selecting fitness improvements. This isolates the benefits of
ENGD other than aiding the escape of local optima. In all cases a lower fitness represents
a better search.

Benchmark
Only Fitness

Improvements
Only Mutate Active Genes,
Only Fitness Improvements

U-Test Effect Size

Ball Throwing 2.83 3.29 2.95E-1 0.55200
Double Pole 0 1228 3.27E-1 0.51000
Full Adder 4 bit 774.70 784.12 4.59E-1 0.54320
Multiplier 4 bit 513.38 513.84 8.17E-1 0.51360
Monks Problem 1 7.94 8.13 9.72E-1 0.50220
Nguyen 10 3.22 3.05 4.57E-1 0.54340
Pagie 1 197.20 197.90 9.59E-2 0.59680
Parity 6 Bit 21.20 21.24 3.81E-1 0.54880
Parity 7 Bit 46.14 45.88 3.60E-1 0.55100
Parity 8 Bit 97.76 96.32 3.96E-1 0.54900
Two Spirals 76.58 77.08 5.20E-1 0.53740

Table 8.11: Selecting only fitness improvements compared with only allowing mutations to
active genes while only selecting fitness improvements. This isolates the benefits of ENGD
other than aiding the escape of local optima. In all cases a lower number of generations
represents a better search.

Benchmark
Only Fitness

Improvements
Only Mutate Active Genes,
Only Fitness Improvements

U-Test Effect Size

Double Pole 596.56 4268.66 1.01E-2 0.64940

As can be seen in Tables 8.10 and 8.11, removing the benefit of ENGD occurring

together with other beneficial mutations never impacted the search with any statistical

significance or meaningful effect size. Therefore it appears that there is no benefit of

ENGD occurring alongside positive mutations.

8.6.2 Further Experiments

As can be seen from the previous set of experiments, it appears that the benefit of ENGD

is greatly diminished when CGP is applied to optimising ANNs; CGPANN. To confirm

this result an extension to Section 8.6.1 is now presented.

In order for NGD to be of benefit there must be inactive genes which can drift. It

200

8.6 Investigating Neutral Genetic Drift in CGPANN

may therefore be the case that CGPANN contain insufficient levels of genetic redundancy

(compared to CGP) such that it no longer beneficial. This is due to the higher arity

increasing the percentage of nodes to which there is a length bias. To confirm this,

the percentage of active nodes used by CGP and CGPANN in Sections 8.4 and 8.6.1

respectively are given in Table 8.12.

Table 8.12: Percentage of active nodes used by CGP and CGPANN.

CGP CGPANN CGPANN
Benchmark 100 Nodes 100 Nodes 200 Nodes

Ball Throwing - 36.30 % 28.93 %
Double Pole 13.68 % 25.80 % 18.42 %
Full Adder 4 bit 39.44 % 52.74 % 42.49 %
Multiplier 4 bit 45.42 % 59.06 % 51.15 %
Monks Problem 1 - 19.14 % 20.93 %
Nguyen 10 15.74 % 22.88 % 25.19 %
Pagie 1 24.20 % 31.74 % 28.07 %
Parity 6 Bit - 29.16 % 25.02 %
Parity 7 Bit - 30.22 % 24.45 %
Parity 8 Bit 31.62 % 31.92 % 24.63 %
Tower Problem 23.70 % - -
Two Spirals - 31.48 % 22.88 %

As can be seen in Table 8.12, there is a notable difference between the percentage of

active nodes used by CGP and CGPANN; with CGP chromosomes containing a lower

percentage of active genes.

To compensate for this difference in the levels of genetic redundancy, the same CGPANN

experiments are repeated using 200 nodes. This is undertaken to increase the level of

genetic redundancy. The average percentage of active nodes used when the number of

available nodes is increased to 200 is also given in Table 8.12. As can be seen, although

in most cases increasing the number of available nodes did cause the percentage of active

nodes to fall, in others it had little effect; or even a marginal increase.

Only the first of the previous experiments is now repeated, whether or not ENGD

offers an advantage to the evolutionary search with the increased level of explicit genetic

redundancy. This experiment is to isolate the overall benefit of ENGD. This is achieved by

comparing the difference in performance between regular CGPANN and CGPANN when

only active genes are mutated. Again in the case of the Double Pole Balancing the average

number of generations to find a solution is used for comparison. The results are given in

Tables 8.13 and 8.14.

As can be seen in Tables 8.13 and 8.14, even with the increased number of nodes there

201

Chapter 8: Neutral Genetic Drift

Table 8.13: Comparing regular CGPANN using an increased number of available nodes
to only mutating active genes in order to isolate the benefit of ENGD. In all cases a lower
fitness represents a better search.

Benchmark
Regular

CGPANN
Only Mutate
Active Genes

U-Test Effect Size

Ball Throwing 2.49 2.65 6.71E-1 0.52280
Double Pole 0 0 - -
Full Adder 4 Bit 825.20 827.22 7.93E-1 0.51540
Multiplier 4 bit 517.44 526.30 5.80E-2 0.61020
Monks Problem 1 0.301 0.21 9.80E-1 0.50080
Nguyen 10 19.89 19.92 8.55E-1 0.51080
Pagie 1 198.59 199.44 1.10E-1 0.59320
Parity 6 Bit 16.60 16.16 5.63E-1 0.53360
Parity 7 Bit 41.16 42.24 2.19E-1 0.56880
Parity 8 Bit 93.76 94.30 3.72E-1 0.54980
Two Spirals 74.48 74.58 9.37E-1 0.50480

Table 8.14: Comparing regular CGPANN using an increased number of available nodes
to only mutating active genes in order to isolate the benefit of ENGD. In all cases a lower
number of generations represents a better search.

Benchmark
Regular

CGPANN
Only Mutate
Active Genes

U-Test Effect Size

Double Pole 960 2506 3.24E-1 0.55740

is no notable benefit of ENGD for CGPANN. In no case was the difference statistically

significant and in no case was the effect size greater than small. It therefore appears that

ENGD still has no benefit for CGPANN; even with the increased genetic redundancy.

Therefore it can be seen that the reduced level of inactive genes was not the reason

CGPANN did not benefit from ENGD to the same extent as CGP.

8.6.3 Discussion

An interesting result was seen when investigating the effect of NGD in CGPANN compared

to CGP. The overall benefit of NGD and other forms of redundancy was much lower for

CGPANN than for CGP. With the benefit of ENGD being completely absent. This is

a surprising result as the underlying algorithm for both methods is the same. The only

differences are the use of connection weight genes, higher node arity and the transfer

functions employed. Therefore the reason for this distinction is likely due to one of these

differences.

The effect of the higher arity causing a lower average number of explicitly inactive

genes was investigated, where it was shown not to be the cause of ENGD being ineffective.

202

8.6 Investigating Neutral Genetic Drift in CGPANN

However, as increasing the number of available nodes does not proportionately increase

the number of inactive nodes between the active nodes, this effort may never have been

likely to increase the benefit of ENGD. Additionally, as explicitly inactive genes only make

up a proportion of the types of redundancy which can be used to help escape local optima,

the fact that CGPANN exhibits a lower percentage of explicit genetic redundancy does

not explain the highly reduced effect from NGD and other forms of redundancy generally.

This leaves the presence of connection weights and the differing transfer functions as the

possible causes of the asymmetry.

Although the transfer function used may be having an influence, the author believes

the difference is mainly due to the use of connection weight genes compensating for a

possible limitation in CGP.

When mutations are applied in standard CGP, they either change the structure of the

program or the computation undertaken in the nodes; or both. Both of these changes

are likely to have a large influence on the semantics, resulting in a very different fitness

score. However, CGPANN contains connection weights, and so another possible mutation

is available; mutating connections weight values. Now it appears intuitive than mutations

to connection weights can have both a small and a large influence on the semantics;

depending upon how far the new connection weight values lies from the old. This provides

the possibility of mutations which are more likely to have a small influence on semantics.

Now, if there is a bias to larger mutations then it becomes easier to become trapped in an

area of the search space; because the search is inherently more random. That is to say, it

is less likely to exploit a local search to improve on the current solution and more likely

to conduct a more global search. Therefore, CGP may be more likely to become trapped

in areas of the search space, even if they are not local optima, than CGPANN. This is

because CGPANN has the capability to conduct a more local search. As NGD provides

a mechanism for aiding the escape when trapped in a region of the search space, it may

not be as beneficial to CGPANN simply because it is less likely to become trapped. For

this reason, CGPANN and other forms of NE may not benefit as greatly from NGD as

GP methods.

If it is the case that the presence of connection weight genes results in a search which is

less likely to become trapped in areas of the search space, then any benefit of NGD aiding

the escape of these areas would be diminished; as is seen in the results. Additionally, as

explicit genetic redundancy represents only a proportion of the redundancy available, the

203

Chapter 8: Neutral Genetic Drift

benefit of its effect specifically could be diminished to the point it could not be detected.

This was supported by the results.

In the case of NE in general, it appears that as other NE methods also utilise connection

weights, they would also not benefit as strongly from NGD and non-genetic redundancy.

Therefore, the presence of explicit genetic redundancy in methods such as GNARL, EPNet

and COVNET may not provide a significant advantage.

However, as the benefit of NGD is thought to increase as the difficulty of the application

increase, NGD may still hold a benefit for NE. It may be the case that the benchmarks

investigated here were not challenging enough, or the search was not allowed to run for

long enough, for its benefit to be identified. For instance, if an experiment were left for a

sufficiently long time, CGPANN may reach an actual local optimum by conducting a local

search. At this point NGD may once again be beneficial. Such investigations are left as

further work.

8.7 Summary

The work presented has undertaken a detailed analysis of the role of NGD in CGP and

CGPANN. Previous misconceptions have been corrected and further insights made.

It is now known that the level of genetic redundancy provided implicitly is not suffi-

cient to best utilise NGD in CGP. It has been shown that the presence of explicit genetic

redundancy offers a significant further advantage. It is also likely that other forms of EA

which contain explicit genetic redundancy are also benefiting from its presence. Addition-

ally, other forms of EA which do not contain explicit genetic redundancy may benefit from

its inclusion.

It has also been shown that isolating and manipulating explicit genetic redundancy is

far easier than controlling implicit genetic redundancy. This makes the study of explicit

genetic redundancy much simpler and enables easy adaptation to make best use of its

presence. For instance, by varying its mutation rate to increase or decrease the rate of

drift. This may lead to explicit genetic redundancy being more desirable than implicit

redundancy, if it can be fully utilised and controlled.

Additional benefits of NGD for CGP, other than escaping local optima, have also been

empirically isolated and demonstrated to aid the evolutionary search. This benefit is the

ability to “drift” along plateaus in the search space even when not trapped in a local

optima.

204

8.7 Summary

It has also been shown for CGP that increasing the number of available nodes is not an

effective method for increasing the benefit of genetic redundancy. It appears that for CGP,

there is a task dependent optimum number of available node, above and below which, the

search worsens. Rather than the previous belief that increasing the number of available

nodes always benefits the search.

From the results from investigating ENGD in CGPANN, it was seen that the benefits

are completely absent. Additionally, it was shown that the benefit of all types of redun-

dancy aiding the escape of local optima, not just ENGD, is greatly diminished; although

still present. A possible explanation has been proposed which suggests that the connec-

tion weight genes present in CGPANN allow for more local, finer mutations to take place.

These mutations may aid the navigation of the search space meaning the search is less

likely to become trapped. In this regard it may be the case that NGD is compensating for

a limitation of CGP; in that it can only make relativity large scale mutations. Although

further research would be required to truly assess if this is the case.

If this hypothesis is correct, then it may help inform future developments in GP. For

instance, the inclusion of mechanisms to help conduct a more local search may be greatly

beneficial to GP methods; such as the inclusion of connection weights.

This work has opened the discussion concerning NGD in NE. It has also shown that

currently it appears that NE does not benefit from genetic redundancy to the same extent

as GP generally; which may be due to a limitation in GP.

205

Chapter 9

CGPANN Applied to

Classification

This chapter presents a rigorous evaluation of the application of Cartesian Genetic Pro-

gramming of Artificial Neural Networks (CGPANN) to the domain of classification. This

evaluation involves the comparison of CGPANN with a wide range of standard classifica-

tion methods over a wide range of benchmark tasks.

9.1 Structure of this Chapter

Section 9.2 provides a summary of previous applications of CGPANN to classification

and identifies where further research is needed. Section 9.3 describes the methodology

used to ensure a fair evaluation of CGPANN as a classification method. Section 9.4

describes how CGPANN is applied to the task of classification. Sections 9.5 and 9.6

describe the standard classification methods used for comparison and the benchmarks

which are employed. Section 9.7 presents the results of the described experiments with

Sections 9.8 and 9.9 giving a discussion of the findings and a closing summary.

9.2 Background

This section provides a background to previous applications of CGPANN to the domain

of classification. Previous studies of CGPANN as a classification method have mainly

focused on real world applications, rather than comparing CGPANN with other standard

classification methods. Form these results it is not possible to assess the suitability of

207

Chapter 9: CGPANN Applied to Classification

CGPANN as a classification technique; as it is not known how other methods would have

performed. For instance A. Ahmad has previously used CGPANN to classify arrhythmia

[6] as well as the detection of cancerous cells from mammogram scans [7].

Works which have compared CGPANN to other standard classification methods [5, 8,

191], have so far only utilised a single benchmark task; breast cancer classification. Again

this means it is not possible to assess CGPANN as a classification method; as a single

benchmark is insufficient to draw meaningful conclusions.

Additionally, in previous applications of CGPANN to the breast cancer benchmark, the

results presented for CGPANN were those found after optimising CGPANN parameters

on the testing set performance [5, 8]; specifically the number of nodes used. This is very

bad practice which removes the purpose of a testing set. Selection of any form, including

parameter settings, should never be based on the testing set performance. This drastically

weakens the rigour of previous studies.

Therefore, although CGPANN has been previously applied to classification, so far the

comparisons to other methods have been fairly weak. This chapter presents a much more

rigorous evaluation of CGPANN as a classification method, including comparisons to a

wide range of standard classification methods using a wide range of benchmark tasks.

A major issue in comparative classification studies is the difficulty in ensuring the

implementation of the benchmarks is the same in each case. For instance, it has been

previously noted for the Iris benchmark, that so many version of the dataset exist, that it

is difficult to know which results are, and which are not, comparable [28]. Additionally,

even if the same version of the datasets are used, differences in which samples are used for

training and which for testing can have a huge influence on performance. For instance, an

extreme, albeit unrealistic, example would be a situation where all instances of a particular

class were absent in the training set. Therefore it is important that when comparing

classification methods, the training and testing split is the same for every comparative

method; both in terms of the proportion of the data in the training and testing sets, and

in terms of the actual samples which comprise each split. Finally, it is important that

equal levels of effort is spent optimising the parameters for each comparative method.

Contrasting two methods when for one substantial time has been spent optimising the

parameters, and for the other it has not, is not a fair comparison.

This chapter aims to present a much fairer evaluation of CGPANN as a classification

method than has been previously presented. This is undertaken by ensuring that all

208

9.3 Methodology

of the previously described issues are considered. Overall this is achieved by personally

conducting experiments using CGPANN and a range of comparative methods. That is to

say, all of the results present are the results of experimentation done by the author i.e. not

taken from the literature. This ensures that the same methodology for finding suitable

parameters can be used (leave group out cross validation), the same version of the dataset

can be used with the same split of training and testing samples. Additionally, a much

wider range of benchmark tasks are considered than has been previously for CGPANN.

This makes for a much more rigorous, and fairer, evaluation of CGPANN as a classification

technique.

9.3 Methodology

When benchmarking new classification methods it is paramount that the comparisons

made to other methods are rigorous and fair. To ensure fairness of comparisons between

different classification methods a number of steps need to be taken. Firstly, the training

and testing set split of each benchmark should be the same for all classification techniques

compared. Secondly, in cases where classification methods require parameter tuning, the

same parameter tuning method should be used in each case. It would be unfair to compare

method A which used un-optimised parameters with method B where great care had been

taken to find near optimal parameters. Thirdly, in the case of stochastic methods the

arithmetic mean of many runs should be presented so the typical performance is used

for comparison. Finally, a reasonable number of benchmarks should be considered so the

typical performance of each method can be evaluated.

In the work presented in this chapter, each method’s parameters are found using leave

group out cross validation (also referred to as holdout) [161]. When using leave group

out cross validation, the training set is separated into a training set and a validation set.

The validation set is the ‘group left out’. The classification methods are trained on the

training set using a range of parameter configurations. The performance of the produced

classifiers is then validated on the validation set which is used as a figure of merit for the

given parameters. Using this method a range of parameters can be assessed with the final

chosen parameters being those with the best performance on the validation set.

Once the parameters have been determined, each classification method is then trained

on all of the training data, including the validation set, using the best found parameters.

The trained classifiers are then assessed on the testing data with the classification accuracy

209

Chapter 9: CGPANN Applied to Classification

on the testing data used as the performance indicator. This final testing classification

accuracy can then be used to compare separate classification methods.

Here, no early stopping [230] or other over training preventions are used by any of the

classification methods. This is for two reasons. Firstly, the techniques used for preventing

over fitting differ between classification techniques. Additionally, there are often many

alternative over fitting prevention techniques for each classification method. This makes

comparisons more challenging and less general to the underlying classification method.

Secondly, optimising the parameters can be considered an indirect method for preventing

over training. For instance, the parameters which produce classifiers which generalise the

best on the validation set are those chosen for the final assessment. Therefore over training

can be prevented through the correct choice of parameters.

9.4 Applying CGPANN to Classification

CGPANN is easily applied to classification and requires no alteration to the general al-

gorithm. The number of chromosome inputs are set as the number of attributes used by

each sample in the data set. These attributes are always floating point values in the range

[0, 1]. This is ensured to be the case by linearly mapping the attribute values into the

[0, 1] range using the maximum and minimum values in the training set; no information

from the testing set should be used. In cases where the attributes are categorical, each

category is given an integer representation starting at zero which is incremented for each

new category in the training data. For instance if an attribute could have a value of ‘A’,

‘B’ or ‘C’, these would be mapped to values of 0, 1 and 2. Then these integer values are

normalised into a [0, 1] range as previously described.

The number of chromosome outputs is set as the number of classification categories;

with each output representing a separate class. When a samples normalised attributes are

applied to the inputs, and the phenotype executed, the class corresponding to the output

with the largest value is interpreted as the predicted class.

It would also have been possible to use a single output with the produced single value

determining the class. For instance, in the case of binary classification, output values less

than 0.5 it could be interpreted as class A, and greater or equal as class B. However, using

this output decoding is likely to influence the difficulty of the task. For instance, if the

task were to classify a plant species, does species ‘A’ more smoothly ‘flow’ into species ‘B’

or ‘C’? Do any of the species ‘flow’ into one another? For this reason a separate output

210

9.4 Applying CGPANN to Classification

was used to indicate each classification category.

The fitness assigned to each chromosome is simply the classification accuracy i.e. the

proportion of the samples which were classified correctly. Although other classification

metrics, such as Cohen’s kappa [43] measure or Matthews correlation coefficient [194],

could also be used, here classification accuracy is used for its simplicity and wide adoption1.

It would also have been possible to use a fitness function which assigns a fitness measure

of the Mean Square Error (MSE) between the outputs and the target classes. For instance

if there were three classes, an example output could be {0.1, 0.5, 0.9} and an example

target output could be {0, 0, 1} i.e. the third class is the correct class. This would result

in a mean squared error of 0.09; ((0.1 − 0.0)2 + (0.5 − 0.0)2 + (0.9 − 1.0)2)/3. Although

this measure does not use the classification accuracy, it would produce an evolutionary

pressure to create outputs which, when decoded as before, by taking the highest output as

the predicted class, performed as a classifier. Additionally, in this case the output values

would represent a confidence in the classification. This is because there is an evolutionary

pressure to set the outputs corresponding to the incorrect classes as low as possible, and

the output corresponding to the correct class as high was possible2. For example, if the

outputs produced were {0.4, 0.4, 0.5} this could be interpreted as the third class with little

confidence. Whereas if the outputs produced were {1.0, 0.2, 0.1} this could be interpreted

as the first class with high confidence. However, as the comparisons presented here are

not concerned with confidence, only accuracy, this form of fitness function is not used.

It does however demonstrate the flexibility of using Evolutionary Algorithm (EA) based

methods; the fitness function can be adapted to differing requirements.

As described in Section 9.3, the parameters used when comparing the classifi-

cation methods are determined using leave group out cross validation. When us-

ing CGPANN the parameters investigated are in the following ranges: generation

{50, 100, 1000, 10000, 100000, 1000000}, mutation rates {0.01, 0.03, 0.05, 0.1}, number of

available nodes {10, 50, 100, 200, 500}, node arities of {5, 10, 20} and connection weight

ranges of {1, 5, 10}. In all cases a (1+4)-ES was used and the neuron transfer function

chosen was the logistic sigmoid. Additionally, all connections between active nodes were

used in the phenotype i.e. multiple connection between pairs of nodes were allowed.

1For instance, a range of libraries are used to compare various classification methods; all of which
provide the option to use standard classification accuracy as the measure of fitness.

2There may even be an evolutionary pressure to set all the outputs close to 0.5 in cases of uncertainty

211

Chapter 9: CGPANN Applied to Classification

9.5 Comparative Methods

In order to assess the suitability of CGPANN as a classification method it must be com-

pared to a wide range of standard classification techniques. In the work presented, the

implementation of the comparative classification methods were accessed through the Caret

Package [70] for the R programming language [234]. The Caret Package provides a common

Application Programming Interface (API) for interfacing with a wide range of R classifi-

cation packages. The Caret Package also provides functionally for using leave group out

cross validation to optimise the parameters used by each classification method. This is

achieved by the Caret Package internally storing sensible upper and lower limits for each

parameter of each classification method. The user then specifies how coarsely this range of

parameter values is swept over. For all the comparative classification methods presented

here, each parameter is swept over an evenly distributed set of 10 values

The classification methods used for comparison are now described.

9.5.1 Recursive Partitioning Decision Trees

Many Recursive Partitioning Decision Trees (RPDT) methods are used for comparison

as they represent one of the more popular classification methods. The method referred

to here as RPDT is a standard implementation provided in the rpart package [271, 272].

The rpart package chooses the splitting method based on features of the training data.

The possible splitting methods comprise anova, Poisson, class or exp. When selecting

suitable parameters for RPDT, Caret varies the value of the complexity parameter. The

complexity parameter specified a cost of using additional leaf nodes in the tree. Therefore

small complexity parameter values favours larger trees (possibly over fitting), and large

complexity parameter values favour smaller trees (possibly under fitting).

9.5.2 Multilayer Perceptrons

Another popular classification method is the use of Artificial Neural Network (ANN)s

trained using back propagation. This method is commonly referred to as Multilayer Per-

ceptrons (MLP)s. Since CGPANN is an ANN training method it is important to include

the more common training method for ANNs. Here the nnet package [288] is used to train

ANNs using back propagation. The nnet package trains single hidden layer ANNs with

or without skip-layer connections (connections from outputs straight to inputs). When

212

9.5 Comparative Methods

selecting suitable parameters for the MLPs, Caret varies the size of the network (number

of hidden nodes) and the decay parameter (learning rate).

9.5.3 Supervised Self Organizing Maps

Although Kohonen’s Self Organizing Maps (SOM) are typically an unsupervised learning

method, a supervised learning version has recently been developed [199]. Supervised SOM

are also referred to as Bi-Directional Kohonen maps. The Supervised SOM used here are

provided by the kohonen package [296]. When selecting suitable parameters for the SOM,

Caret varies the x and y dimension, the initial weights and the topology.

9.5.4 C4.5

The second from of RPDT used is C4.5 [233]. Here the C4.5 implementation is from the

RWeka [117] package, a R wrapper for the Weka library [308], and is termed J48. J48 uses

C4.5 to create pruned or unpruned decision trees. When selecting suitable parameters for

the J48 package, Caret varies the pruning confidence.

9.5.5 C5.0

The third form of RPDT employed is an extension to C4.5 termed C5.0 [167]. The

implementation of C5.0 used here is from the C50 package [167]. When selecting suitable

parameters for the C50 package, Caret varies the number of boosting iterations (if any),

the model uses (full decision tree or a collection of rules) and whether winnowing is used

(true or false).

9.5.6 Support Vector Machines

Support Vector Machines (SVM) [45] are another popular standard classification method.

Here the SVM implementation used is that provided by the kernlab Package [142]. The

kernlab package provides many implementations which use differing kernels. Here the

results of both linear (svmLinear) and polynomial (svmPoly) are presented. When select-

ing suitable parameters for svmLinear and svmPoly, Caret varies the cost of constraints

violation in both cases and also the degree and scale of the polynomials in the svmPoly

case.

213

Chapter 9: CGPANN Applied to Classification

9.5.7 K Nearest Neighbours

The K Nearest Neighbours (KNN) algorithm is another popular classification (and re-

gression) method [63]. Here a weighted version of KNN is used which is provided in the

kknn package [248]. When selecting suitable parameters for kknn, Caret varies the value

of k, the Minkowski distance and the kernel used (rectangular, triangular, epanechnikov,

biweight, triweight, cos, inv, Gaussian, rank and optimal).

9.5.8 Partial Least Squares

The final method used for comparison is Partial Least Squares (PLS) [309]. The imple-

mentation of PLS used here is widekernelpls from the pls Package [200]. When selecting

suitable parameters for pls, Caret varies ncomp (the number of components to be used in

the modelling).

9.6 Benchmarks

In order to draw strong conclusion concerning the effectiveness of CGPANN as a classifi-

cation method, a reasonable number of benchmarks must be employed. To this end, seven

standard benchmarks are used: Breast Cancer, DNA, Glass, Ionosphere, Iris, Olives and

Segmentation. Each of these benchmarks is described in Appendix A.

For all of the classification benchmarks used, the samples are first separated into

training and testing sets; 75% training and 25% testing. The data is separated such

that the training and testing sets contain approximately the same proportion of each class

as in the original set. For instance, if the dataset contains 30% class A and 70% class B,

then both the training and testing sets will also comprise of approximately 30% class A

and 70% class B. Additionally, the same data split is always used for each method.

When using leave group out to determine suitable parameters for each method, the

training data is further separated into training and validation sets. The split is always

75% training and 25% validation. For clarity, this means that the validation set actually

represents 18.75% of the entire initial dataset. The proportion of each class in the training

and validation sets is also made to be approximately equal to the original dataset. Again

the same split is used for all classification methods and for each parameter evaluation.

214

9.7 Results

9.7 Results

The results of comparing CGPANN to a number of standard classification methods are

now presented. In each case CGPANN is repeated 50 times so reasonable averages can be

used. In the case of the other stochastic methods the experiments are repeated 25 times.

The results of applying the ten classification methods to the seven benchmarks are

presented in Table 9.1. The method(s) which produced the best results on each benchmark

are given in bold. Additionally, for easy high-level inspection the same results are provided

as bar charts in Figure 9.1.

As can be seen in Table 9.1, and Figure 9.1, CGPANN does not perform well compared

to standard classification techniques. In two cases CGPANN produced the worse result

of all methods investigated. Additionally, in only one case is CGPANN shown to perform

better than the average of all the classification methods investigated.

Finally, a closer evaluation of the relative performance of CGPANN and MLP is pre-

sented. This is undertaken because both CGPANN and MLP represent training methods

for ANNs. This analysis is given in Table 9.2. In Table 9.2 it can be seen that in all cases

the difference between CGPANN and MLP is statistically significant with a large effect

size. Additionally, in five of the seven cases MLP outperformed CGPANN; with CGPANN

outperforming MLP in the remaining two cases. It therefore appears that MLP represent

a superior training method than CGPANN in the domain of classification.

Table 9.1: Classification accuracy of a range of classification methods.

Method Cancer DNA Glass Ionosphere Iris Olives Segmentation

RPDT 0.9529 0.9069 0.7115 0.8851 0.6667 1.0000 0.8790
MLP 0.9991 0.9978 0.8000 0.9991 0.9722 0.6137 0.7490
SOM 0.9729 0.9382 0.9023 0.8460 0.9711 0.9120 0.7852
C5.0 1.0000 0.9987 1.0000 0.9885 0.9444 1.0000 0.9802
C4.5 0.9824 0.9774 0.9808 1.0000 0.9722 0.9786 0.9405
SVM (lin) 1.0000 0.9987 0.6731 0.9080 0.9444 0.9786 0.8492
SVM (poly) 0.9882 0.9987 0.9038 0.9770 1.0000 0.9929 0.8770
KNN 1.0000 0.9119 0.9038 1.0000 0.9722 0.9929 0.9187
PLS 0.9765 0.9585 0.6346 0.8506 0.8333 0.8643 0.7917
CGPANN 0.9731 0.8990 0.5950 0.8901 0.9378 0.9234 0.8214

Average 0.9845 0.9586 0.8105 0.9344 0.9214 0.9256 0.8592

215

Chapter 9: CGPANN Applied to Classification

RPDT MLP SOM C5.0 C4.5 SVM l SVM p KNN PLS CGPANN

0.92

0.94

0.96

0.98

1

(a) Breast Cancer

RPDT MLP SOM C5.0 C4.5 SVM l SVM p KNN PLS CGPANN

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

(b) DNA

RPDT MLP SOM C5.0 C4.5 SVM l SVM p KNN PLS CGPANN

0.6

0.7

0.8

0.9

1

(c) Glass

RPDT MLP SOM C5.0 C4.5 SVM l SVM p KNN PLS CGPANN

0.8

0.85

0.9

0.95

1

(d) Ionosphere

RPDT MLP SOM C5.0 C4.5 SVM l SVM p KNN PLS CGPANN

0.7

0.8

0.9

1

(e) Iris

RPDT MLP SOM C5.0 C4.5 SVM l SVM p KNN PLS CGPANN

0.6

0.7

0.8

0.9

1

(f) Olives

RPDT MLP SOM C5.0 C4.5 SVM l SVM p KNN PLS CGPANN
0.7

0.75

0.8

0.85

0.9

0.95

1

(g) Segmentation

Figure 9.1: Results given in Table 9.1, presented as bar charts.

216

9.8 Discussion

Table 9.2: Closer Comparison of MLPs and CGPANN

Benchmark MLP CGPANN U-test Effect Size

Cancer 0.9991 0.9731 2.57E-12 0.98880
DNA 0.9978 0.8990 1.99E-12 1.00000
Glass 0.8000 0.5950 5.08E-12 0.99040
Ionosphere 0.9991 0.8901 7.27E-13 1.00000
Iris 0.9722 0.9378 8.83E-14 1.00000
Olives 0.6137 0.9234 2.00E-12 1.00000
Segmentation 0.7490 0.8214 2.16E-12 1.00000

9.8 Discussion

As can be seen from Section 9.7, CGPANN does not represent an effective method in

the domain of classification. Although in most cases CGPANN did produce classifiers

which performed reasonably, they were never competitive with the majority of the other

methods used for comparison. Additionally, when specifically compared to MLP, an alter-

native popular method for training ANNs, it is shown that in the majority of cases MLP

outperformed CGPANN.

Therefore, it appears conclusive that CGPANN performs poorly in the domain of

classification. This result applies generally in the field of classification and specifically

compared to other methods for training ANNs.

Interestingly, a search of the literature reveals that there is surprisingly little com-

parative study of the use of NeuroEvolution (NE) with standard methods in the domain

of classification. However, it has been shown previously that NeuroEvolution of Aug-

menting Topologies (NEAT) also performed very poorly as a classification method when

compared to standard back propagation [41]. Interestingly, a combination of NEAT and

back propagation has previously been shown to outperform standard back propagation

alone [41]. Additionally, an alternative NE method was also seen to outperform standard

back propagation only when combined with back propagation [210].

It therefore appears, due to the lack of publications, the fact that other NE have been

shown to perform poorly, the common combination with back propagation, and the poor

results presented in this chapter, that standard NE does not perform well in the domain

of classification.

However, this result does not demonstrate that NE is not useful in other domains. For

instance, NE has been shown to be extremely effective in the domain of reinforcement

type control tasks [64, 112, 313]. Additionally, CGPANN is shown in Chapter 10 to be

217

Chapter 9: CGPANN Applied to Classification

extremely effective in the domain of series forecasting. Therefore, although it may be the

case that NE is not effective in the domain of classification, it does not mean it is not

effective in other domains.

Interestingly, the results obtained here using CGPANN on the breast cancer dataset are

very similar to those presented previously for CGPANN [5,8,191]; here 97.3%, 98% in [5,8]

and 97.2% in [191]. However, in previous research it was concluded that CGPANN was

a highly competitive classification method [5, 8, 191]; whereas here it has been concluded

that CGPANN performs very poorly. It appears this discrepancy lies not in the presented

performance of CGPANN, but in results presented for the comparative methods; see Table

9.3.

Table 9.3: Previously presented classification performance of standard classification algo-
rithms and CGPANN on the breast cancer benchmark.

Benchmark Presented here Presented in [5, 8]

MLP 0.9991 0.96
SVM (linear) 1.0000 0.94
KNN 1.0000 0.97
CGPANN 0.9731 0.98

As can be seen in Table 9.3, the performance of the comparative methods presented

in [5, 8] are substantially and consistently worse than has been presented here. This led

to CGPANN previously being reported as a highly effective classification method.

It is important to note that the performance of the comparative classification methods

presented in [5, 8] were all taken from other sources. However, it is clear that the perfor-

mance of these other methods has been misrepresented, leading to CGPANN previously

being show to be more effective than it truly is. Although the cause of this discrepancy

is unknown, it is likely due to the experimental set up used. For instance, it may be the

case that the versions of the datasets, or the data split, or the methods used to determine

the parameters used were different; resulting in a drastically different performance being

presented. Regardless of the cause, it serves to confirm the importance of conducting fair

and rigorous comparative studies.

Finally, it may be the case that the presented methodology for comparing classifica-

tion methods is unfair; despite being the standard used in the Machine Learning (ML)

literature. For instance, in the EA community it is common to compare the number of

evaluations required to reach a given level of fitness, or the fitness which is reach after a

given number of evaluations. The justification of this type of comparison is that algorithms

218

9.9 Summary

are compared given the same level of computational expense. It is assumed that compu-

tation expense is proportional to the number of fitness evaluations. However, in the wider

ML literature, classification methods are compared solely on their testing performance;

regardless of the computational overhead in reaching that performance.

However, if algorithm A outperformed algorithm B, in terms of classification error, but

required significantly more computational resources to produce this better accuracy, is it

a superior algorithm? It appears that some measure of classification accuracy in relation

to the computational cost should be considered.

The challenge is how to measure computational cost. Simply using “wall clock time”

or the number of arithmetic and logical operations performed is not appropriate as they

are a function of the algorithm, the specific hardware used, how well optimised the imple-

mentation is, and the programming language. This is why the number evaluations is used

in the field of EA; as it is implementation agnostic. However, the notion of evaluations

does not apply outside of the field of EAs. Another measure of computational expense is

epochs; as used by back prorogation. However, again the notion of epochs has little mean-

ing to other ML methods. Finding a fair measure of computational expense suited to all

classification methods is therefore an open challenge for the machine learning community.

Until this is found, comparisons can only rely on final testing performance.

Note that this discussion on comparing classification methods is not implying that

CGPANN would perform better under differing figures of merit. Methods based on EAs

are typically computationally expensive due to their generational and stochastic nature.

In fact, it may be the case that CGPANN compares more unfavourably given computa-

tional expense considerations. This discussion is presented as the author believes there is

currently a general issue concerning how classification methods are compared in the ML

literature.

9.9 Summary

This chapter has presented an investigation into the suitability of CGPANN as a classi-

fication method. Here it has been shown that CGPANN does not represent an effective

classification method; consistently producing one of the worse classifiers of the ten methods

investigated.

Previous applications of CGPANN to classification have been discussed along with

reasons why previous publications falsely reported CGPANN as a highly competitive clas-

219

Chapter 9: CGPANN Applied to Classification

sification method. The main cause of this discrepancy is likely due to the performance of

other classification methods being understated. The reason for this understating is likely

due to differences in benchmark implementation. To this end, the results presented in this

chapter are much more rigorous than those presented previously for CGPANN.

Additionally, it has been suggested that NE may be ineffective as a classification

method generally. For instance, there is very little published work applying NE to classi-

fication. Of the work which has been published, the popular NEAT method was shown to

be ineffective at classification unless combined with back propagation; as were other NE

methods.

Therefore, important future work is the combination of CGPANN and back propa-

gation. As this union has been shown to be highly effective for other NE methods [41,

210,314], it is likely to result in a more effective classification performance for CGPANN.

Additionally, the application of a wider number of NE methods to classification would

confirm the hypothesis that it is generally ill-suited as a classification method.

220

Chapter 10

Recurrent CGPANN Applied to

Series Forecasting

This chapter describes and presents the application of Recurrent Cartesian Genetic Pro-

gramming of Artificial Neural Networks (RCGPANN) to the domain of series forecast-

ing. As well as comparisons to a range of standard forecasting techniques, RCGPANN

is also compared to Cartesian Genetic Programming (CGP), Recurrent Cartesian Ge-

netic Programming (RCGP) and Cartesian Genetic Programming of Artificial Neural Net-

works (CGPANN). These comparisons identify which of the utilised CGP extensions are

beneficial in the domain of series forecasting.

10.1 Structure of this Chapter

Section 10.2 provides a background to NeuroEvolution (NE) applied to series forecast-

ing with a specific focus on previous applications of CGPANN. Section 10.3 describes

how CGPANN is extended to be capable of evolving Recurrent Artificial Neural Net-

work (RANN). Section 10.4 describes how CGP, RCGP, CGPANN and RCGPANN are

applied as a series forecasting method. Section 10.5 described the standard forecasting

methods which are used for comparison in assessing the suitability of RCGPANN as a

series forecasting methods. Section 10.6 presents the results of applying the forecasting

methods on a number of standard benchmark tasks. Finally, Section 10.7 gives a discussion

of the presented results and Section 10.8 gives a closing summary of the chapter.

221

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

10.2 Background

The aim of this chapter is to introduce and investigate the suitability of RCGPANN.

The application used for this evaluation of RCGPANN is series forecasting [50, 127]. Se-

ries forecasting is an important application of machine learning and statistical modelling

techniques, including Genetic Programming (GP) [76, 137, 176, 247] and Artificial Neural

Network (ANN)s [110, 322, 323], finding application in many disciplines including: eco-

nomics, politics and planning.

Series forecasting is also a common application of NE [52,149,267] including CGPANN

[149, 239]. Additionally, an alternative recurrent form of CGPANN, using an imposed

Jordan type architecture1 [136], has also previously been used to create a form of recurrent

CGPANN; again with application to series forecasting [150, 321]. Although this method

is not based on RCGP and is much more limited in terms of the topologies which can be

produced. For instance, the user must decide, in advance of training, how many recurrent

connections will be used. Previous applications of CGPANN to series forecasting also

makes use of connection switch genes. However, as is discussed in Chapter 4.6, these

are an unnecessary addition to CGPANN. The RCGPANN used in this chapter is the

application of RCGP, described in Chapter 5, to the training of RANN; not simply the

use of an imposed Jordan structure.

Additionally, a number of issues can be identified in previous comparisons of a recurrent

form of CGPANN with other series forecasting methods [321]. For instance, the number

of nodes used in previously presented results [150, 321] were chosen as they produced the

best testing performance. However, this practice breaks the very reason for using training

and testing sets; to assess generalisation to unseen data. No level of selection should be

based on testing performance, including the number of available nodes. This means that

the comparisons made to other methods, such as presented in [150,321], become invalid.

In this chapter the performance of RCGPANN is evaluated as a series forecasting

method by comparing its effectiveness with two näıvely and three more complex stan-

dard forecasting techniques: random walk forecasting (RWF), Mean Forecast (MEAN),

Exponential Smoothing (ETS), Autoregressive Integrated Moving Average (ARIMA) and

Multilayer Perceptrons (MLP) respectively. The comparison with at least two naive and

two complex standard forecasting methods, including ARIMA, follows the methodology

1A topology where certain outputs are made available as inputs.

222

10.3 Recurrent CGPANN

recommended by Hyndman [127], an acknowledged expert in the field of forecasting, on

benchmarking new forecasting methods2. Comparisons to MLPs are also made as they

represent the current standard approach for training ANNs.

This chapter also examines the performance of standard CGP, RCGP and CGPANN

as series forecasting methods. This enables an evaluation of the various extensions which

have been applied to CGP in order to create RCGPANN. Firstly, the benefit of the

recurrent extension is evaluated by comparing CGP and RCGP as well as comparing

CGPANN with RCGPANN. Secondly the benefit of optimising ANNs, rather than using

standard mathematical functions commonly used by GP, is evaluated by comparing CGP

and CGPANN as well as RCGP and RCGPANN. These comparisons allow insight into

which aspects of the RCGPANN approach are beneficial.

10.3 Recurrent CGPANN

RCGPANN is implemented by applying the same recurrent extension used by RCGP, see

Chapter 5, to CGPANN, see Chapter 4. This is undertaken to allow CGPANN to evolve

RANNs. The modifications required to extend CGPANN to RCGPANN are the same as

those required to extend CGP to RCGP. The requirement of all connection genes to be

acyclic is lifted and the probability of mutation creating recurrent connections is controlled

via a recurrent connection probability. As with RCGP, the chromosomes are executed by

applying each set of inputs, updating each active node/neuron once in index order (i),

and then reading the outputs. Again, as with RCGP, this can result in node/neuron

outputs being read before they have been calculated. Therefore, again as with RCGP,

each node/neuron is set to output zero until they have calculated their own output value.

Once these changes have been incorporated, RCGPANN can be used to evolve recur-

rent ANNs. It is important to note that RCGPANN can create feed-forward and recurrent

ANNs; as allowing recurrent connections does not force evolution to use them. Addition-

ally, RCGPANN can be easily restricted to creating only feed-forward ANNs by setting the

recurrent connection probability to zero. RCGPANN is therefore a superset of CGPANN.

2This particular advice is given on his personal blog http://robjhyndman.com/hyndsight/

benchmarks/.

223

http://robjhyndman.com/hyndsight/benchmarks/
http://robjhyndman.com/hyndsight/benchmarks/

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

10.4 Applying CGP, RCGP, CGPANN and RCGPANN to

Series Forecasting

In this chapter CGP, RCGP, CGPANN and RCGPANN are applied to series forecasting

using a recursive forecasting method [106, 135]. This method involves the feedback of

previously made forecasts as inputs to be used in the prediction of subsequent forecasts.

Using this method it is possible to make forecasts to any given horizon.

A common technique used by forecasting techniques is to calculate the embedding

dimension (D) and time delay (T) of the training data. This provides a suitable number

of past data points, and a suitable number of time steps between these data points, in

order to accurately predict the next data point. For instance if D = 4 and T = 2 then

the inputs would be [x(t), x(t− 2), x(t− 4), x(t− 6)]; where t indexes each sample in the

series x() and the task is to predict x(t + 1). Here, suitable embedding dimensions and

time delays are found for each benchmark and these determine the number of past values

to be used as inputs. The embedding dimensions and time delays are found using the pdc

package [34] for the R programming language [234]3.

As an example, Figure 10.1 shows how recursive forecasting using multiple previous

values is used. Here D = 3 and T is left unspecified. The buffer, containing x(t − 4)

through to x(t), is initially populated with known observed values which are replaced with

predicted values during the recursive forecasting process. The inputs to the network are

initially taken from the known observed values, but as the forecast progresses into the

future, the inputs are taken from the buffer of previously made forecasts.

A minor disadvantage of using multiple inputs determined by D and T is that it reduces

the amount of training data which can be used. For instance if D = 2 and T = 2 at time

t = 0, x(t− 2) is before the start of the training data and so x(t+ 1) cannot be predicted.

The fitness function used in this chapter represents how well the solutions recursively

predict sections of the training data. This is achieved by recursively predicting the next

fifty samples4 from t = 50, t = 100, ..., t = 950. The predictions start from t = 50 and

not t = 0 to compensate for the use of embedding dimensions and time delays removing

the first few samples from the training data. The fitness awarded is the Mean Square

3For reference the exact function used was entropy.heuristic.
4The number of predictions could take any value. Fifty was used here as a compromise between

forecasting to a similar horizon required by the testing data and allowing for a reasonable number of
separate forecasts.

224

10.4 Applying CGP, RCGP, CGPANN and RCGPANN to Series Forecasting

Figure 10.1: Depiction of recurrent forecasting and the use of embedding dimension and
time delay to determine the number of inputs; D = 3.

Error (MSE) between the predicted and observed values.

Unlike feed-forward programs, when using RCGP and RCGPANN the outputs are a

function of the current inputs and the current program state (internal node outputs).

This means the program must be ‘primed’ before it can be used to make forecasts. The

priming process is to apply previous observed values to the program, in sequence, and

execute the program in each case. The outputs are not used. This causes the internal

nodes to calculate suitable values before the forecasting begins. Here, when using RCGP

and RCGPANN, the previous 50 samples from each starting point are applied to the

network before making future predictions. For instance, if the predictions were to be from

t = 150 then all the values from t = 100 to t = 150 are applied in turn and the program

executed in each case. Once this is undertaken, the forecasting process can begin.

A disadvantage of many machine learning techniques is that they can easily over train

on the training data and consequently lose their ability to generalise. CGP and its deriva-

tives are no exception and are also likely to suffer from over-training when applied to

series forecasting. For this reason, a validation scheme is used to prevent over-training.

Here, generalisation is assessed by recording how well the solutions perform beyond the

forecast horizon used during training. Starting at times t1 = 100, t2 = 200, ..., t9 = 900

the programs are used to make forecasts up to a horizon of 100 samples. The MSE of the

forecasts occurring between a time horizon of ti + 50 samples and ti + 100 samples are

then used as a validation fitness score.

The validation score could be used by any of a range of early stopping techniques [230]

in order to prevent over-training. However, the choice of early stopping technique is likely

225

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

Table 10.1: Parameters by CGP and its derivatives.

Parameter CGP RCGP CGPANN RCGPANN

Evolutionary Strategy (1+4)-ES (1+4)-ES (1+4)-ES (1+4)-ES
Max Generations 10,000 10,000 10,000 10,000
Mutation Scheme probabilistic probabilistic probabilistic probabilistic
Mutation Rate 3% 3% 1% 1%
Recurrence 0% 10% 0% 10%
Number of Nodes 100 100 100 100
Node Arity 2 2 5 5
Weight Range - - ±5 ±5
Transfer Function(s) +,−,∗,/,sin, +,−,∗,/,sin, logistic logistic

cos,exp,log cos,exp,log

to influence results. For this reason, here, the chromosome which is awarded the best

validation score is retained throughout evolution and is used as the final chromosome

to be assessed using the testing data. For instance, if the chromosome with the best

validation score was found on generation 100, after the maximum number of generations

have elapsed, this chromosome is used as the final chromosome to be evaluated on the

testing data. Although this means the training does not stop early, in terms of the overall

training time, it does help prevent over training.

In the work presented, the parameters specified in Table 10.1 are used. These parame-

ters are relatively ‘off-the-shelf’ choices and have not been optimised for each benchmark.

CGPANN uses a lower mutation rate to accommodate the fact it is more suited to gradual

hill climbing though the adjustment of connection weights; standard CGP relies on slightly

larger beneficial mutations.

10.5 Comparative Methods

A number of comparative methods are used to evaluate the performance of RCGPANN; as

well as CGP, RCGP and CGPANN. These comparative methods comprise RWF, MEAN,

ETS, ARIMA and MLPs. These methods are used to compare RCGPANN to standard

forecasting techniques and to the more common method of training ANNs.

10.5.1 Random Walk Forecasting

The random walk forecasting method is a very simple näıve forecasting technique which

is useful to compare new forecasting methods against; as any newly proposed forecasting

method should at least be able to outperform it. RWF predicts that all future unknown

226

10.5 Comparative Methods

values are equal to the last observed value.

10.5.2 Mean

The mean forecasting method is again a very simple näıve forecasting technique which is

also useful to compare new forecasting methods against. The mean forecasting method

predicts that all future values are equal to the arithmetic mean of the observed values i.e.

the training set.

10.5.3 Exponential Smoothing

Exponential smoothing [114] is a popular forecasting technique which, in its simplest form,

bases its prediction on a weighted average of previous observations. Commonly the further

ahead the prediction is from the last observation the more previous values are used in the

weighted average.

The exponential smoothing used in this chapter is from the Forecast package [128] for

the R programming language [234]. When creating exponential smoothing models the ets

function is used to find suitable parameters using the methods described in [126].

10.5.4 Autoregressive Integrated Moving Average

Autoregressive integrated moving average 5 [32] is a popular generalised forecasting tech-

nique. ARIMA models use a collection of three forecasting techniques: autoregressive

(AR), integrated (I) and moving average (MA); hence ARIMA. ARIMA models are often

written in the form ARIMA(p,d,q), with the p, d and q values referring to the AR, I and

MA aspects of the ARIMA model respectively. By using different p,d and q parameters

ARIMA models can implement a wide range of forecasting techniques including random

walk, random trend, autoregressive and exponential smoothing models.

The ARIMA implementation used in this chapter is from the Forecast package [128]

for the R programming language [234]. When creating ARIMA models the auto.arima

function [125] is used to find suitable p, d and q parameters as well as further sub param-

eters associated with the specific model. The auto.arima function uses a variation of the

Hyndman and Khandakar algorithm [125] to obtain a suitable ARIMA model.

5Also referred to as Box-Jenkins after the original authors.

227

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

10.5.5 Multilayer Perceptron

Multilayer Perceptrons are a standard ANN training method which makes use of the back

propagation algorithm. When applied to series forecasting it is common practice to use

multiple inputs determined by the embedding dimension and time delay of the series; so

this is undertaken here.

The MLP implementation used in this chapter is the Fast Artificial Neural Network

Library (FANN) [217]. The FANN library is configured to use standard fully connected

ANNs of unipolar logistic sigmoid transfer functions trained using a variant on back prop-

agation called resilient back propagation (Rprop) [241] for 1000 epochs. As back propa-

gation does not optimise topology, a range topologies are investigated comprising one and

two hidden layers of five, ten, twenty and fifty nodes per hidden layers (eight separate

topologies in total).

As MLPs use a strictly supervised learning method they must be trained using input-

output pairs. However, this style of learning is not directly compatible with recursive

forecasting. This is because future forecasts are made using previously made forecasts.

When using previous forecasts as inputs, the input-output pairs do not represent a correct

learning example; as the inputs are based on a previous prediction. In this case the ANN

would be trained using incorrect data.

Therefore, here, the MLPs are trained for one-step-ahead prediction; always using valid

input-output pairs. The recursive forecasting performance of the ANN is then recorded

after each epoch by using the ANN to recursively predict the next 100 samples starting

at t = 100, t = 200, ..., t = 900. After the maximum number of epochs have elapsed the

configuration which resulted in the best recursive forecasting performance is then returned

as the final trained ANN. This method effectively trains for one-step-ahead prediction and

uses the recursive forecasting performance to prevent over-training.

10.6 Results

The results presented investigate the suitability of RCGPANN as a series forecasting

method. This is achieved by comparing RCGPANN with a range of standard series fore-

casting methods; described in Section 10.5. Additionally, the two extensions to CGP

utilised by RCGPANN, recurrence and application to ANNs, are also investigated by

applying CGP, RCGP and CGPANN to series forecasting.

228

10.6 Results

Three standard benchmark tasks are used in this comparative study: Laser, Mackey-

Glass and Sunspots. These benchmarks are all described in Appendix A.

There are many measurements found in the literature which are used to assess the

performance of forecasting methods [17,129]. However, in the machine learning literature

the most commonly used methods are the MSE, Root Mean Square Error (RMSE) and

the Normalised Mean Square Error (NMSE). For this reason MSE and NMSE are used6;

despite other measurements possibly being more representative of forecasting accuracy

[17,129].

The MSE and NMSE are given in Equations 10.1 and 10.2 respectively where: N is

the number of predicted samples, pi is the ith predicted value, oi is the ith observed value

and ō is the average of all the observed values. Note that the NMSE measurement gives

the MSE normalised by the MSE which would be achieved if all predictions were equal to

the arithmetic mean of the observed values.

MSE =
1

N

N∑
i=1

(pi − oi)2 (10.1)

NMSE =

N∑
i=1

(pi − oi)2

N∑
i=1

(oi − ō)2

 (10.2)

The forecasts produced by the various forecasting methods are evaluated on the test-

ing data using the two measures described. For the stochastic methods (CGP, RCGP,

CGPANN, RCGPANN and MLP) the average7 performance of 50 runs is used for com-

parison; as this represents typical performance. Additionally, the testing performance of

the run which scored the best training fitness is also presented. In a real world scenario,

this is likely to be the forecaster which would be used. Note this is not the solution which

produced the best testing fitness, as selection should never be (and typically cannot be)

based on testing performance.

In the case of MLPs, many topologies were investigated. Here, the results of using

the best topology are presented. The best topology is determined by the average training

performance; not the testing performance which would typically not be known in advance.

Specifically the recursive prediction performance on the training set is used as this more

6As RMSE is simply the root of the MSE value it is not also explicitly presented.
7Arithmetic mean.

229

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

closely matches the final application.

Again, in the case of the stochastic methods, statistical significance testing is used to

assess any differences. The non-parametric Mann-Whitney U-test and the non-parametric

Kolmogorov-Smirnoff test (KS) are used to test for statistical significance; with ρ ≤ 0.05

representing statistical significance. Additionally the effect-size, as defined in [285], is

also used to indicate the importance of any statistical difference; with values > 0.56

indicating a small effect size, > 0.64 a medium and > 0.71 a large. For a more in-depth

description of these statistical significance measures, and a justification of their use, see

Appendix B. The spread of results are also given graphically as box and whisker plots for

visual inspection; with outliers marked as follows: ‘+’ represents forecasts between 1.5

and 3 times the interquartile range and ‘◦’ represents forecasts greater than 3 times the

interquartile range.

The forecasts produced by each method are also given in Figures 10.5, 10.6 and 10.7;

for each benchmark respectively. In the case of the stochastic methods, the best forecast,

as previously defined, is presented.

10.6.1 Laser

The results of applying the investigated series forecasting methods to the Laser benchmark

are given in Table 10.2. In the case of the stochastic methods, Table 10.3 gives the

statistical analysis and Figure 10.2 gives the box and whisker plots. The forecasts produced

are plotted in Figure 10.5.

The MLP topology which produced the best recursive forecast on the training set

used two hidden layers each containing five nodes. The ARIMA model produced was

ARIMA(5,0,4) with non-zero mean.

Overall it can be seen in Table 10.2 that RCGPANN produce the best average forecast

of all the other methods used for comparison.

When comparing CGPANN and MLPs as training methods for feed-forward ANNs,

it can be seen that, on average, CGPANN strongly outperformed MLP with statistical

significance and a medium effect size. This indicates that CGPANN is providing a superior

training method to MLPs.

When evaluating the recurrent extension of RCGP it can be seen that, on average,

RCGP outperformed CGP with statistical significance and a close to medium effect size.

Additionally, it can be seen that, on average, RCGPANN outperformed CGPANN with

230

10.6 Results

statistical significance and a large effect size. This indicates than the recurrent extension

is advantageous to both CGP and CGPANN.

Finally, when comparing evolving ANNs to the use of standard GP mathematical

functions, it can be seen that, on average, CGPANN and CGP produced very similar

average results with no statistical significance or meaningful effect size. It can also be seen

that RCGPANN outperforms RCGP with statistical significance and a medium effect size.

This indicates that evolving ANNs does not produce worse results than using standard

GP mathematical functions and can produce superior results.

Table 10.2: Results from applying various forecasting methods to the Laser benchmark.

Method MSE NMSE
Avg Best Avg Best

RWF 0.034227 1.260675
MEAN 0.027151 1.000030

ETS 0.034223 1.260508
ARIMA 0.034148 1.257749

MLP 0.043985 0.035237 1.620058 1.000184
CGP 0.027946 0.027091 1.0292 0.997707

RCGP 0.025823 0.004424 0.95100 0.162913
CGPANN 0.027655 0.02938 1.0185 1.081971

RCGPANN 0.021467 0.016424 0.79058 0.604839

Table 10.3: Statistical significance testing between the stochastic methods applied to the
Laser benchmark.

Comparison U-Test KS-Test Effect Size

MLP - CGP 3.75E-2 3.76E-8 0.66820
MLP - RCGP 5.92E-6 2.97E-9 0.76280

MLP - CGPANN 1.49E-2 7.84E-10 0.68440
MLP - RCGPANN 1.21E-10 7.84E-10 0.87340

CGP - RCGP 3.64E-2 8.90E-3 0.62160
CGPANN - RCGPANN 1.43E-5 1.08E-8 0.75200

CGP - CGPANN 4.04E-1 5.08E-1 0.54860
RCGP - RCGPANN 6.81E-3 4.43E-3 0.65720

231

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

MLP CGP RCGP CGPANN RCGPANN
0

0.02

0.04

0.06

0.08

0.1

M
S

E

Figure 10.2: Spread of the forecasts produced using stochastic methods on the Laser
benchmark.

10.6.2 Mackey-Glass

The results of applying the investigated series forecasting methods to the Mackey-Glass

benchmark are given in Table 10.4. In the case of the stochastic methods, Table 10.5 gives

the statistical analysis and Figure 10.3 gives the box and whisker plots. The forecasts

produced are plotted in Figure 10.6.

The MLP topology which produced the best recursive forecast on the training set had

one hidden layer containing twenty nodes. The ARIMA model produced was ARIMA(3,0,5)

with non-zero mean.

Overall it can be seen in Table 10.4 that RCGPANN produces the best average forecast

compared with all the other methods.

When comparing CGPANN and MLPs as training methods for feed-forward ANNs it

can be seen that on average CGPANN outperformed MLPs but the difference was not

statistically significant and the effect size was very small. This indicates that MLPs and

CGPANN represent similarly suitable training methods for feed-forward ANNs.

When evaluating the recurrent extension of RCGP it can be seen that on average

RCGP outperformed CGP with statistical significance and a nearly medium effect size.

Additionally, on average RCGPANN outperformed CGPANN with statistical significance

and a large effect size. This indicates that the recurrent extension is advantageous to both

CGP and CGPANN.

Finally, when comparing evolving ANNs to the use of standard GP mathematical func-

tions it can be seen that CGPANN and CGP produced very similar average results with no

232

10.6 Results

statistical significance or meaningful effect size. Additionally RCGPANN strongly outper-

formed RCGP on average with statistical significance and a large effect size. This indicates

that evolving ANN can produce better results than standard mathematical functions or

at least does not produce worse results.

Table 10.4: Results from applying various forecasting methods to the Mackey-Glass bench-
mark.

Method MSE NMSE
Avg Best Avg Best

RWF 0.109334 1.624736
MEAN 0.067324 1.000447

ETS 0.357603 5.314079
ARIMA 0.071481 1.062226

MLP 0.075798 0.048297 1.126385 0.717701
CGP 0.069947 0.058746 1.0394 0.872979

RCGP 0.064501 0.025706 0.95850 0.381999
CGPANN 0.065563 0.049188 0.97428 0.730944

RCGPANN 0.047575 0.033219 0.70698 0.49364

Table 10.5: Statistical significance testing between stochastic methods on the Mackey-
Glass benchmark.

Comparison U-Test KS-Test Effect Size

MLP - CGP 2.34E-1 3.63E-6 0.56920
MLP - RCGP 9.42E-1 2.11E-2 0.50440

MLP - CGPANN 7.59E-1 1.78E-4 0.51800
MLP - RCGPANN 1.70E-4 4.23E-4 0.71840

CGP - RCGP 2.29E-2 1.71E-2 0.63220
CGPANN - RCGPANN 5.19E-6 1.02E-5 0.76460

CGP - CGPANN 2.87E-1 6.78E-1 0.56200
RCGP - RCGPANN 8.15E-5 1.78E-4 0.72880

10.6.3 Sunspots

The results of applying the investigated series forecasting methods to the Sunspots bench-

mark are given in Table 10.6. In the case of the stochastic methods, Table 10.7 gives

the statistical analysis and Figure 10.4 gives the box and whisker plots. The forecasts

produced are given in Figure 10.7.

One oddity seen in the results is the extremely poor average forecast achieved using

RCGP. This was due to one of the fifty runs producing multiple large spikes in the middle

of the forecast, resulting in a very large error which strongly influenced the average. If this

one run is removed, the average results in a MSE of 0.026701 and a NMSE of 0.910010;

233

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

MLP CGP RCGP CGPANN RCGPANN
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
S

E

Figure 10.3: Spread of the forecasts produced using stochastic methods on the Mackey
Glass benchmark.

which does outperform CGP. This outlier is also removed from the box-plots in Figure

10.4 in order for the other details to be visible.

The MLP topology which produced the best recursive forecast on the training set

used two hidden layers each containing five nodes. The ARIMA model produced was

ARIMA(5,1,4).

Overall it can be seen in Table 10.6 that the best average result was achieved using

CGPANN and RCGPANN with almost no difference between the two.

When comparing CGPANN and MLPs as training methods for feed-forward ANNs

it can be seen that on average CGPANN strongly outperformed MLPs with statistically

significant and a large effect size. This indicates that CGPANN is much more effective at

training ANN than MLPs.

When evaluating the recurrent extension of RCGP it can be seen that on average

RCGP was strongly outperformed by CGP but with no statistical significance and a very

small effect size. If the one very poor run is removed from the RCGP results, then RCGP

does outperform CGP but still without statistical significance. Additionally, on average

RCGPANN produces very similar results to CGPANN with no statistical significance and

a very small effect size. This indicates that the recurrent extension is not providing an

advantage or disadvantage.

Finally, when comparing evolving ANNs to the use of standard GP mathematical

functions it can be seen that on average CGPANN strongly outperformed CGP with

statistical significance and a high medium effect size. Although RCGPANN did outperform

234

10.6 Results

RCGP (with or without the outlier) there was no statistical significance and a very small

effect size. This indicates that evolving ANNs may be producing better results than

standard mathematical functions, or at least does not produce worse results.

Table 10.6: Results from applying various forecasting methods to the Sunspots benchmark.

Method MSE NMSE
Avg Best Avg Best

RWF 0.176262 6.008159
MEAN 0.034399 1.172533

ETS 0.546006 18.61142
ARIMA 0.034972 1.192063

MLP 0.043773 0.035228 1.492071 1.200790
CGP 0.031940 0.026894 1.0886 0.916592

RCGP 1.20e+30 0.011922 4.10E+31 0.406331
CGPANN 0.024991 0.018114 0.85175 0.61736

RCGPANN 0.024992 0.004925 0.85177 0.167851

Table 10.7: Statistical significance testing between stochastic methods on the Sunspots
benchmark.

Comparison U-Test KS-Test Effect Size

MLP - CGP 6.97E-13 2.13E-14 0.91680
MLP - RCGP 1.09E-11 1.09E-13 0.89440

MLP - CGPANN 6.31E-16 3.28E-18 0.96920
MLP - RCGPANN 8.10E-15 2.07E-17 0.95080

CGP - RCGP 1.31E-1 3.17E-2 0.58780
CGPANN - RCGPANN 8.12E-1 8.41E-1 0.51400

CGP - CGPANN 3.51E-3 4.43E-3 0.66960
RCGP - RCGPANN 6.52E-1 2.41E-1 0.52640

235

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

MLP CGP RCGP CGPANN RCGPANN
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
S

E

Figure 10.4: Spread of the forecasts produced using stochastic methods on the Sunspots
benchmark.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(a) RWF

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(b) MEAN

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(c) ETS

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(d) ARIMA

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(e) MLP

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(f) CGP

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(g) RCGP

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(h) CGPANN

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Observed
Prediction

(i) RCGPANN

Figure 10.5: Laser forecasts produced using the various forecasting methods.

236

10.6 Results

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(a) RWF

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(b) MEAN

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(c) ETS

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(d) ARIMA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(e) MLP

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(f) CGP

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(g) RCGP

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(h) CGPANN

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(i) RCGPANN

Figure 10.6: Mackey Glass forecasts produced using the various forecasting methods.

237

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(a) RWF

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(b) MEAN

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(c) ETS

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(d) ARIMA

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(e) MLP

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(f) CGP

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(g) RCGP

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(h) CGPANN

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Observed
Prediction

(i) RCGPANN

Figure 10.7: Sunspots forecasts produced using the various forecasting methods.

238

10.7 Discussion

10.7 Discussion

As can be seen from the results, in all cases RCGPANN produced the best (or joint

best) average forecasts compared with all the other methods used for comparison. This

demonstrates that RCGPANN is a highly competitive series forecasting technique com-

pared to standard methods. RCGPANN also outperformed all the other methods based

on CGP: CGP, RCGP and CGPANN. This clearly demonstrates the suitability of the

newly proposed RCGPANN method.

When comparing CGPANN with MLPs, CGPANN strongly outperformed MLPs on

two of the three benchmarks and produced a better average forecast on the remaining

benchmark; but without convincing statistical significance. Therefore it was demonstrated

that CGPANN often outperformed MLPs and never produced a worse result. This indi-

cates that CGPANN is a superior training method than MLPs in the domain of recursive

series forecasting.

The results show that the addition of recurrent connections to CGP and CGPANN

offer a significant advantage to series forecasting. On two of the three benchmarks both

RCGP and RCGPANN outperformed CGP and CGPANN respectively with statistical

significance. On the remaining benchmark the results were approximately equal between

CGP and RCGP and between CGPANN and RCGPANN with no statistical significance.

Therefore recurrent connections were often seen to be beneficial to CGP and CGPANN and

never worse. This further demonstrates the suitability of using RCGP to create recurrent

program structures, complementing previous research; Chapter 5.

Here, when applying CGP and its variants to series forecasting, multiple previous

values from the sequence were made available to the evolved programs. These previous

values were determined by the embedding dimension and time delay of the sequence so

as to provide suitable values for making subsequent forecasts. Therefore, it would not

have been surprising if the recurrent extension present in RCGP and RCGPANN failed to

outperform the non-recurrent counterparts; as a form of recurrence has effectively already

been added that has been specifically designed for predicting future values. The fact

that RCGP and RCGPANN were shown to outperform their non-recurrent counterparts

demonstrates that evolution managed to find additional recurrence which improved again

upon the level of recurrence already provided. This also serves to demonstrate the benefit

of the type of recurrence which can be created using RCGPANN, over simply using an

enforced Jordan architecture [150,321]; where the user must effectively choose the level of

239

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

recurrence ahead of training.

The results also demonstrated that the use of neuron transfer functions and connection

weights produce better forecasts on average than the use of standard GP mathematical

functions without connections weights; at least in the case of CGP. On two of the three

benchmarks, CGP produced similar forecasts to CGPANN with no statistical significance

but RCGPANN strongly outperformed RCGP with statistical significance. On the re-

maining benchmark, CGPANN strongly outperformed CGP with statistical significance

but RCGP and RCGPANN produced similar forecasts with no statistical significance.

Therefore the use of neuron transfer functions with connection weights never performed

worse than the use of standard mathematical functions, and often produced superior fore-

casts.

The fact that the use of neuron transfer functions and connection weights produced

superior results, in comparison with using standard mathematical functions, may have

wider implications for GP in general. It could be the case that many GP methods could

be improved by using neuron transfer functions, or the addition of connection weights,

or the use of both connection weights and neuron transfer functions (thus implementing

NE). It is true that both ANNs [48] and GP [315] are (or can be depending on the

function set used) universal approximators. But this does not say anything about how

trainable or evolvable they are. For instance, the addition of connection weights to GP,

previously termed weighted GP [275], may make for a more evolvable fitness landscape.

Future research should investigate the use of weighted connections and neuron transfer

functions, independently and in union, for other GP methods. This may help indicate

whether the power of ANNs is in their transfer functions, connection weights or training

methods. This could even lead to interesting mixtures of GP and ANNs such as back

propagation applied to a weighted form of GP.

A seemingly odd result is how well the MEAN method preformed compared to the

other standard forecasting methods. MEAN was seen to outperform RWF, ETS, ARIMA

and MLPs for all of the benchmarks investigated. However as described in [127] “some

forecasting methods are very simple and surprisingly effective”. Additionally it has previ-

ously been noted in the real-time forecasting M2-competition [187] that ARIMA (referred

to as Box-Jenkins) “proved to be one of the least-accurate methods and its overall median

error was 17% greater than that for a näıvely forecast” [16]. Therefore it can be seen that

it is not uncommon for näıvely methods to perform very well.

240

10.8 Summary

Interestingly, many of the forecasts provided using CGP and it variants either produced

an output very close to MEAN or exhibited behaviours which eventually settled on an

output close to the mean value of the training set. Examples of this can be seen in: Figure

10.5 where CGP is applied to the Laser benchmark, Figure 10.6 where CGP is applied

to the Mackey-Glass benchmark and Figure 10.6 where CGP is applied to the Sunspots

benchmark. As MEAN was shown to produce a reasonable forecast, it may be the case

that this method represents a local optimum in the search space. It could also be an

example of evolutionary methods rediscovering a previously known technique.

Although not explored in this chapter, an additional advantage of using Evolutionary

Algorithm (EA)s for forecasting is the ability to alter the fitness function to favour certain

characteristics. For instance, the forecast horizon can easily be altered. The maximum

error during the forecast could be considered. Frequency information from the training

data could be used to award or penalise frequencies present or not present in the produced

forecasts. The fitness awarded could represent the number of time steps predicted with an

error lower than a given threshold, rather than the error up to a given forecast horizon.

The solutions could be optimised for speed, complexity or size. As the ability to set

custom fitness functions also applies to NE this is another possible benefit of its use in

series forecasting.

Finally, the best result of the stochastic methods often represented a much better

forecast than the average. Note that this is the best result as determined by the training

data; not the testing. This is not surprising as early stopping methods were utilised to

prevent over training. Although the average performance was used here for comparison,

as it represents typical performance of the algorithms, in real applications the best of

many runs would be used. In this case, RCGPANN could be argued to outperform the

standard forecasting methods to an even greater extent than has been presented; although

the comparison would be less rigorous.

10.8 Summary

This Chapter has introduced RCGPANN, a new NE method based on CGPANN which

utilises the recurrent extension of RCGP. The application used here to assess the per-

formance of RCGPANN is series forecasting. The results demonstrate that RCGPANN

produces highly competitive forecasts, outperforming all of the other standard forecasting

methods used for comparison. RCGPANN is therefore shown to be a powerful NE method;

241

Chapter 10: Recurrent CGPANN Applied to Series Forecasting

at least in the domain of series forecasting.

RCGPANN differs from standard CGP in two regards; it allows recurrent connections

and uses neuron transfer function with connections weights. Both of these aspects were

individually investigated, revealing that they both provide significant benefit to standard

CGP; at least in the domain of series forecasting. This demonstrates the importance of

the two presented CGP extensions and helps explain why the RCGPANN approach was

shown here to be so effective. This result may also be significant for other GP methods

which could also benefit from similar extensions.

Finally, it is important to note that RCGPANN is a superset of CGPANN. By setting

the RCGPANN recurrent connection probability to zero it implements standard feed-

forward CGPANN. Additionally, just because RCGPANN is capable of utilising recur-

rent connections does not force evolution to utilise them. For instance, it is possible for

RCGPANN to create purely feed-forward ANNs if there were an evolutionary advantage

in doing so. This, coupled with the advantageous results presented, makes RCGPANN an

important, significant extension to CGPANN.

242

Chapter 11

Conclusions and Further Work

This chapter presents the overall conclusions reached during this thesis in the fields of

Cartesian Genetic Programming (CGP), Cartesian Genetic Programming of Artificial

Neural Networks (CGPANN) and NeuroEvolution (NE) in general. A number of pos-

sible further works are also presented.

11.1 Structure of this Chapter

Section 11.2 provides the overall high-level conclusions which have been reached through-

out the work presented in this thesis. Section 11.3 suggests a number of further investiga-

tions which would complement and extend the presented research. Finally, Section 11.4

gives a collection of final remarks.

11.2 Overall Conclusions

This thesis has reached many significant conclusions in the domains of CGP, CGPANN

and the wider field of NE. These are now summarised.

11.2.1 Recurrent Cartesian Genetic Programming

A new extension to CGP has been developed which allows for the creation of recurrent

program structures; namely Recurrent Cartesian Genetic Programming (RCGP). The

proposed implementation is much simpler than the use of multiple chromosomes to facili-

tate recurrence [294], whilst being much more flexible than simply enforcing a Jordan type

architecture [155]. The presented implementation requires minimal alteration to the un-

243

Chapter 11: Conclusions and Further Work

derlying algorithm and has been demonstrated to be highly effective for tasks intractable

to standard CGP. Additionally, the development of RCGP allows CGP to be applied to

many new domains, such as those which require internal state information to be inferred

and maintained, or those which require memory.

11.2.2 Bloat in Cartesian Genetic Programming

It has been previously demonstrated that CGP does not suffer from program bloat [201].

However, previous work only investigated its presence on Boolean circuit synthesis tasks

and only considered raw program size as a measure of bloat. Work presented in this

thesis complements previous work by extending the investigation to non-Boolean circuit

tasks and by using a measure of bloat which considers program size in relation to fitness.

The work confirms the previously observed result that CGP does not suffer from program

bloat. This strengthens the previous evidence of a significant advantage over CGP over

other Genetic Programming (GP) methods such as tree-based GP.

11.2.3 Genetic Redundancy in Cartesian Genetic Programming

It has previously been reported that CGP greatly benefits from the presence of inac-

tive genes allowing for increased Neutral Genetic Drift (NGD) aiding the escape of local

optima [202, 287, 318, 320]. However, previous research failed to isolate the benefit of ex-

plicitly inactive genes; the type of redundancy more unique to CGP. In work presented in

this thesis, it has been demonstrated that the presence of explicitly inactive genes greatly

aids CGPs evolutionary search and that its benefit is additive to other forms of genetic

redundancy found more commonly in GP methods. It was also demonstrated that the

identification and manipulation of explicitly inactive genes is far simpler and computa-

tionally cheaper than for other types of redundancy. This means that it is now possible

to study and manipulate genetic redundancy in ways that were not previously possible.

This is significant because as tasks become increasingly challenging, their search spaces

becomes harder to navigate. Therefore mechanisms which aid the navigation of search

landscapes become increasingly important as more challenging tasks are approached.

That is to say, the befit of NGD has the potential to scale favourably with application

difficulty. Therefore the ability to easily identify, study and manipulate it behaviour could

facilitate substantial improvements for CGP and other GP methods.

244

11.2 Overall Conclusions

11.2.4 Connection Switch Genes

In the original implementation of CGPANN [154] connection switch genes were added in

order to allow the evolution of variable node arity. However, no empirical results were

presented demonstrating whether their addition provided any benefit to CGPANN. This

thesis has demonstrated that CGPANN is capable of adapting node arity without the

inclusion of connection switch genes; due to multiple connections between pairs of nodes

being equivalent to a single connection. It has been empirically demonstrated that the

inclusion of connection switch genes produces a slightly worse evolutionary search. There

removal also makes the implementation of CGPANN simpler and removes the possibility

of there being no complete path from inputs to outputs.

For these reasons, it is now recommended that CGPANN be implemented without the

use of connection switch genes.

11.2.5 Bloat in Cartesian Genetic Programming of Artificial Neural

Networks

This thesis has also demonstrated that, like CGP, CGPANN does not suffer from program

bloat. Although this is an intuitive result, it is highly significant as if CGPANN had been

shown to suffer from program bloat, it would have represented a major disadvantage. Ad-

ditionally, the issue of bloat in the wider NE literature is largely overlooked. In the little

work which does addresses the issue, it has been shown that NeuroEvolution of Augment-

ing Topologies (NEAT) suffers from program bloat unless careful parameter choices are

made [274]. Additionally, other NE method including GeNeralized Acquisition of Recur-

rent Links (GNARL) and Evolutionary Acquisition of Neural Topologies (EANT), appear

very likely to exhibit program bloat. Therefore, the fact that CGPANN has been shown

not to suffer from program bloat may represent a significant advantage over many other

NE methods. Although more researching concerning bloat and NE is generally needed.

11.2.6 Recurrent Cartesian Genetic Programming of Artificial Neural

Networks

A substantial development made to the CGPANN algorithm is an extension which allows

the evolution of Recurrent Artificial Neural Network (RANN)s. This extension follows the

same principles as for RCGP. The described extension goes beyond previous attempts to

use CGPANN to evolve RANN by simply feeding back a user defined number of outputs

245

Chapter 11: Conclusions and Further Work

to be made available as inputs [155]. Using the newly proposed recurrent extension, it has

been demonstrated that Recurrent Cartesian Genetic Programming of Artificial Neural

Networks (RCGPANN)s outperforms all standard methods used for comparison in the

domain of series forecasting. This indicates that RCGPANN represents an extremely

powerful method for evolving RANNs worthy of further study and analysis.

11.2.7 Genetic Redundancy in Cartesian Genetic Programming of Ar-

tificial Neural Networks

The surprising result was presented that CGPANN, unlike CGP, does not benefit from

explicit genetic redundancy. It was also shown that the benefit of all types of redundancy

were greatly diminished. This is interesting as it appeared likely that NE methods, like

many GP methods, would strongly benefit from the effect of redundancy aiding the escape

of local optima. A possible explanation for this discrepancy has been proposed based on

the influence of connection weights on the navigation of the fitness landscape. These

connection weights may create a search space which is much more easily navigated; thus

diminishing the need of NGD and other types of redundancy aiding the escape of local

optima.

If it is the case that connection weights result in a search which benefits less from

mechanisms which aid the escape from local optima, then it implies that their presence

results in a search less prone to becoming trapped in local optima. Therefore, the inclusion

of connection weights may be providing a more effective evolutionary search. This result

may also be significant to future GP developments, which typically do not use weighted

connections. An alternative view is that currently GP utilises evolutionary operators

which cause large changed to the phenotypes semantics; changing only program structure

or the transfer function of computational nodes. Therefore, it may be beneficial to include

genes, such as connection weights genes, or evolutionary operators which also allow for

smaller semantic changing mutations to be possible.

11.2.8 Topology Adaptation

The ability of many NE methods to adapt both the network topology and connection

weights during evolution has long been considered a significant advantage of NE. These

benefits include: removing the requirement that the user knows a suitable topology in

advance of training, exploiting relationships between connection weights and topology

246

11.2 Overall Conclusions

during the search, and finally, utilising topologies which would be unlikely to be considered

by a human designer.

However, upon inspection of the literature there is surprisingly little empirical evidence

to support these perceived advantages. One of the contributions of this thesis has been a

rigorous empirical investigation demonstrating that the ability for many NE methods to

adapt network topology does indeed represent a significant advantage for NE. Now this

is confirmed, researchers can more confidently cite this ability of NE. Results presented

also demonstrate that topology adaptation may even be more significant to training than

connection weight manipulation. This gives further insight into NE, demonstrating that

it potential lies in its ability to manipulate network topology.

11.2.9 Heterogeneous Artificial Neural Networks

In the NE literature many researchers have called for further investigations into the benefit

of using NE to evolve heterogeneous Artificial Neural Network (ANN)s. However, there

is very little active research in this area. A further contribution of this thesis has been a

rigorous empirical investigation demonstrating that the ability for many NE methods to

create heterogeneous ANNs represents a significant advantage. This can now also be cited

as an advantage of NE methods.

One of the benefits NE has over gradient based method is that it does not require

that the transfer functions used are differentiable. In fact NE is completely agnostic to

the transfer functions used. This means a much wider range of transfer function can be

employed. Interestingly, the earliest used transfer function, the Heaviside step function,

is one such function which cannot be differentiated; or at least into a form which can be

used by gradient descent methods. However, results presented in this thesis demonstrate

that the Heaviside step function is a highly effective transfer function for many tasks;

provided the training method is compatible. Therefore, the fact that NE methods are

not conditional on the transfer functions used represents a significant advantage. This

advantage goes beyond simply being able to use a wider range of transfer functions. For

instance, many NE algorithms could be used to train networks of transfer functions which

model the spiking behaviour of real biological neurons, with little or no change to the

underlying algorithm [65,96,219,222].

247

Chapter 11: Conclusions and Further Work

11.2.10 NeuroEvolution and Connection Weights

A high level view of the thesis indicates that NE may be extremely effective for adapting

network topology but ineffective for adapting connection weights. Evidence of this is

seen in a number of areas. For instance, it was demonstrated that the adaptation of

connection weights is far less significant to CGPANN training than the adaptation of

topology. Although it has been argued that this provides evidence that topology is more

significant to ANN training than connection weights, it may also be the case that NE

is simply not effective at adapting connection weights. If NE were more effective at

adapting topology than connection weight, than this would be an alternative explanation

as to why topology was seen to be more significant than connection weights. Additionally,

it has been discussed that NE is often combined with gradient based methods; where

Evolutionary Algorithm (EA)s are used to adjust topology and back propagation to adjust

the connections weights. For instance, NEAT’s performance was seen to improve when

combined with back prorogation in the domain of classification. Finally, there was a

large discrepancy between CGPANN’s performance when applied to classification and

its performance when applied series forecasting. As the forecasting methods are likely

to greatly benefit from recurrence, in order to maintain internal state information and

to match the frequency of the changing output, it appears likely that topology is highly

significant. However, topology may be less significant in the domain of classification, where

no recurrence is needed or specific topology is needed. Therefore, if NE was highly suited

to topology adaptation, and topology is significant in the domain of series forecasting, it

would explains RCGPANNs strong performance. Additionally, if classification tasks are

more dependent on connection weights, and NE is ineffective at configuring connection

weights, than this would explain the poor CGPANN results seen.

Therefore, although much further work would be needed to confirm this, it appears

that NE may be ineffective at connection weight adjustment. Or rather, its benefit lies

in its ability to adapt topology. Therefore, more research is required into how to best

apply NE to the adjustment of connection weights. Although the combination with back

propagation appears to be the logical choice, this comes with a number of disadvantages.

For instance, if NE and back propagation are combined then it means NE can no longer

be applied to RANNs, or be applied to reinforcement tasks, or use arbitrary transfer

functions. Therefore the simple combination of NE and back propagation may not be

suitable as it removes many of the advantageous properties of NE.

248

11.2 Overall Conclusions

11.2.11 Benchmarking

This thesis has raised a number of concerns surrounding benchmarking in the field of NE

and the wider field of Machine Learning (ML).

In the field of NE there is very little rigorous comparative study of algorithms. This

means it is extremely challenging, if not impossible, to assess which aspects of differing

NE method are advantageous and which are not. For instance, the only widely adopted

benchmarks are the single and double pole balancing. One of which, the single pole variant,

is so trivial and unstandardised that the comparative results are of almost no use. This

leaves one benchmark, double pole balancing, which has been widely used to assess the

relative performance of NE methods. This is clearly insufficient. Additionally, statistical

significance testing is rarely used; only arithmetic means and mediums. Therefore, the

field of NE is in great need of good empirical comparative analysis, and, like GP, “needs

better benchmarks” [197].

The issue of comparing classification methods has also been raised. Currently in the

field of ML, classification methods are compared solely on their testing set performance.

Although testing set performance is an important measure of comparison, as it is rep-

resentative of how methods will be used in real world applications, it fails to assess the

computational cost in reaching a given performance. For instance, if method A achieved

an accuracy of 75.998 percent after training for a few seconds on a personal computer, and

method B achieved an accuracy of 75.999 percent after training for a few days on a cluster

of computers, is it the case that method B is better than method A? Clearly there are

differing measures of “better” and this is not currently considered in most classification

comparisons.

It is also interesting to note that in the field of EAs, the notion of comparing final fitness

given a certain computational budget has long been considered; via the use of evaluations.

The issue comes however in determining a suitable measure of computation expense which

can be applied to arbitrary classification methods. This is an open question, but one which

must be answered if ML methods of differing sub fields can be fairly compared.

Note that this is not implying that CGPANN would have performed more favourably

in the domain of classification if computational expense was also considered, this is un-

known, it is just that there may be important factors involved in comparisons other than

classification accuracy.

249

Chapter 11: Conclusions and Further Work

11.3 Further Work

The work presented in this thesis has created a strong foundation demonstrating and

evaluating the use of CGP as a NE method. It has also investigated many properties

of NE generally. However, due to time constraints, there were a number of research

opportunities which could not be completed. This section describes future work which

would extend and complement the research presented in this thesis.

11.3.1 Controlling Length Bias

As has been discussed, CGP, and by extension CGPANN, exhibits a length bias to net-

works of a certain number of active nodes [82, 84]. With the number of nodes to which

there is a bias being a function of the number of inputs, the number of available nodes,

the arity of each node and the number of outputs.

Previous methods have been proposed to limit the effect of length bias [82,84]. These

methods include reorder which rearranges the nodes in a given chromosomes so as to more

evenly distribute the active nodes whilst preserving semantics. The second method, DAG,

allows nodes to connect to other nodes even if they have a higher index, provided that

when the chromosomes are decoded, the phenotype does not contain cycles. Using such

methods it was shown that CGP more evenly sampled the range of possible solutions when

random chromosomes are created and when mutation operations take place, with DAG

producing the most even distribution (although far from evenly distributed); see Figure

11.1.

As a side note, as RCGP is effectively equivalent to DAG, only without the requirement

that no cycles can be created, it may also more evenly sample the space of possible

solutions than regulator CGP. Although, as described in [82, 84], it is still far from an

even distribution.

However, as has been previously discussed, that fact that CGP contains a length bias is

not necessarily a disadvantage. This is because many task domains favour smaller, rather

than larger, solutions. Additionally, length bias may be the mechanism opposing program

bloat in CGP. Therefore, it is not certain whether the removal of length bias would be

beneficial.

Additionally, the methods provided in [82,84] for preventing length bias did not result

in an even distribution of topologies, as can be seen in Figure 11.1, only a more even

distribution. Therefore, it is not known if removing length bias is beneficial and it is clear

250

11.3 Further Work

Figure 11.1: Depiction of length bias in CGP. Generated by applying CGP to a flat fitness
landscape. Image taken from [82]

that the methods proposed for its removed only lessen and shift the length bias.

However, there may be an alternative method for preventing length bias in CGP.

As previously discussed, the probability of a given node being active is a function of

the number of nodes which can connect to that node. However, determining the exact

probability is complex due to it being possible for nodes to be connected to by two or more

other nodes. This effectively means that in order to calculate the probability of a given

node been active, one must consider all of the possible topologies which can be created.

Which although possible, is highly non-trivial1.

Interestingly however, it would also be possible to determine an approximation of the

probability that a given node is active by generating many random chromosomes; for a

given number of inputs, available nodes, outputs and node arity. Using these approximate

probabilities of each node being active, it would be possible to bias connection gene mu-

tation to connecting to nodes which typically have a low probability of being active. Thus

compensating for the bias of certain nodes being more likely to be active.

If this were shown to remove the length bias three interesting additional steps could

be taken. Firstly, it could be assessed whether the total removal of length bias represents

an advantage. Secondly, the challenging task of discovering equations which model the

probability of each node being active could be embarked upon, knowing that it would be a

beneficial if such a model were found. Thirdly, if it were possible to change the distribution

1The author tried, and failed, to solve the problem in the general case.

251

Chapter 11: Conclusions and Further Work

of active nodes to become flat, then it would also be possible to bias the search to program

lengths of our choosing. For instance, a parameter could be added which controls the point

to which there is a bias. Therefore the bias could be placed towards minimal solution if

this was thought to represent an advantage, or completely removed if an unbiased search

was desired.

Finally, if it were not possible to mathematically model the probability of each node

being active, then the empirical method would still be of benefit. For instance, before

CGP begins an evolutionary search, it could always generate n random chromosomes

to assess probability of each node being active and then use the results to combat the

length bias during the search. Although this would represent a computation overhead, no

fitness evaluations would be required; which is typically the most computational expensive

component of an EA. Additionally, it may be the case that relatively low values of n are

required to approximate the probability of each node being active sufficiently to have a

marked advantage.

11.3.2 Reservoir Computing

A more recent development for RANNs has been the field of Reservoir Computing (RC)

[182]; see Section 2.2.2.2. One of the main challenges in RC is determining a suitable initial

reservoir. As many NE methods adapt the connection weights and topology of RANNs

they represent a good candidate for solving the issue of determining suitable reservoirs.

As a preliminary study, RCGPANN is applied to the optimisation of the reservoir to

be used by RC. RCGPANN is applied to evolving the reservoir by using a genotype with

one output. From this single output, the active nodes in the RCGPANN chromosome are

determined. The single output is then ignored. All of the active nodes, determined by the

now ignored output, are then each connected to the actual output(s) of the RANN. Linear

regression using least squares is then used to determine the connection weight of these new

connections between the active nodes and the outputs(s). This, initially strange, method

of determining which nodes to connect to the outputs is undertaken as it is typical in RC

for each hidden node to contribute to each output. However, in RCGPANN, only one

node contributes to each output. It would also have been possible to connect all of the

available nodes to each output, but this would not have not enabled to the number of

nodes in the reservoir to vary during evolution.

The parameters used by RCGPANN are as follows: 100 nodes, a node arity of 5,

252

11.3 Further Work

0 1000 2000 3000 4000 5000
-1

-0.5

0

0.5

1

Input
Desired Output

(a) Depiction of the benchmark.

0 1000 2000 3000 4000 5000
-1

-0.5

0

0.5

1

Desired Output
Actual Output

(b) Output of resulting RANN.

Figure 11.2: Results from applying RCGPANN to the configuration of the reservoir to be
used by reservoir computing.

a connection weight range of ±10, a mutation rate of 5% and a recurrent connection

probability of 50%. The node function set contained only the logistic sigmoid function.

The standard RC benchmark of transforming a sine wave into a saw tooth was used to

assess if RCGPANN was capable of optimising the reservoir used by RC. A depiction of

this benchmark is given in Figure 11.2. The reservoir was then evolved for 10 generations

using a (1+4)-ES. The fitness awarded to each chromosome was the sum of absolute errors

between the target and generated output waveforms after the output weights had been

determined using least squares. Using this method the target waveform is very closely

matched, see Figure 11.2. Additionally, there was a 44% increase in fitness after only 10

generations (41 evaluations) demonstrating that RCGPANN can clearly improve upon a

random choice of reservoir.

This very preliminary study demonstrates that RCGPANN has the potential to be a

suitable method for optimising reservoirs to be used by RC. Similar to how other NE

methods such as NEAT have also been shown to be useful in the context of determining

good reservoirs [39].

A significant advantage of RC over many other methods is the speed at which the

RANNs are trained. This is because each input in the training set only has to be applied

once. This is then followed by solving a single matrix equation using standard methods.

However, NE is a significantly slower training method for ANNs. Therefore, it could be

argued that the described combination of NE and RC removes one of the advantageous

properties of RC. However, as was shown here, RCGPANN improved the reservoir by 44%

in only 41 evaluations, so the computational overhead may not be that high.

253

Chapter 11: Conclusions and Further Work

A further possible use of NE for RC would be to evolve RANNs which exhibited

desirable reservoir properties; for instance being near the edge of chaos. It may be the

case that evaluating the RANN with regard to a number of metrics may be quicker than

applying all the input data and training the network using RC. This is increasingly likely

to be the case as the number of samples in the training data scales. Although this would

still be a generational approach, and therefore reasonably computationally expensive, it

may serve to decrease the expense of optimising reservoirs using NE.

11.3.3 Spiking Neural Networks

This thesis has focused on the application of EAs to the training of non-spiking ANNs.

However, for many years it has been considered that the computational power of spiking

ANNs could surpass that of non-spiking given suitable training methods [184,290]. Despite

efforts to apply traditional non-spiking training method to the training of spiking ANNs,

such as back propagation [31], the promised ability of spiking ANNs has not yet been

realised.

To date there have been a number of applications of EAs as training methods for

spiking ANNs [65,96,222] including those which make use of the NEAT NE algorithm [219].

However, so far CGPANN has not been applied to the domain of spiking ANN.

The application of CGPANN to spiking ANN could have a number of advantageous

properties. For instance, as for non-spiking ANNs, the topology and connection weights

could both be simultaneously evolved. Additionally, heterogeneous networks of differing

transfer functions could be combined; for instance a mixture of Hodgkin-Huxley [132],

Izhikevich [131] and (leaky) integrate and fire neuron models.

There are also a number of choices which have to be made when applying spiking

ANNs to a given task which are likely to influence the results. Such choices include how

to encode and decode the inputs and outputs of the application into spike trains for the

spiking ANN. Additionally, how often each neuron in the network should be updated i.e.

the δt. When using NE these aspects of the spiking ANNs could also be encoded into the

genotypes. Not only could this help in the application of spiking ANNs, but it could also

give insight into how spiking ANNs should be configured generally.

254

11.3 Further Work

11.3.4 Wider Study of NeuroEvolutionary Methods

This thesis has carried out a substantial evaluation of many benefits of NE including the

ability to adapt program structure, create heterogeneous ANN and the effect of genetic

redundancy. However, much of the work is limited to one or two NE methods; specifically

CGPANN and Conventional NeuroEvolution (CNE).

Therefore, important future work would be to repeat the experiment presented here

using a wider range of NE methods. To further the investigation into the benefits of

evolving topology, a wider range of topology and non-topology evolving methods should

be compared. To investigate further the benefits of creating heterogeneous ANNs, simply

using a larger number of NE would be sufficient. Finally, to investigate further whether

there is a benefit associated with genetic redundancy in NE, a wider range of NE methods

which were identified as containing genetic redundancy, see Table 2.1, should be studied.

The extension of the work presented in this thesis to other NE methods would both

help to confirm the results seen, and identify if they are general to the wider scope of NE

methods.

11.3.5 Hyper-CGPANN

As has been previously discussed, a widely used extension to the NEAT NE method

is Hypercube-based NeuroEvolution of Augmenting Topologies (HyperNEAT) [264]. An

advantageous property of HyperNEAT is that it can encode arbitrary large ANNs using

a fixed sized genome. Additionally, the hyper extension can be a applied to a wide range

of evolutionary methods; including standard tree-based GP [35].

It therefore appears that the same hyper extension would be directly compatible with

CGP, RCGP, CGPANN and RCGPANN. An interesting study would therefore be to

use these four methods to assess whether using neuron transfer functions or standard

GP function produced a better hyper network. Additionally, whether the presence of

recurrence in the program used to produce the final network is of any benefit.

11.3.6 Modular CGPANN

A significant extension developed by James Walker for the CGP algorithm was the ability

to capture and re-use sub modules; Modular Cartesian Genetic Programming (MCGP)

[292]. As has been discussed in Section 4.3.8, it would also be possible to apply this same

255

Chapter 11: Conclusions and Further Work

modular extension to CGPANN in order to evolve ANNs comprised of interconnected,

possibly repeated, sub networks.

This could result in truly modular ANNs of repeating structure throughout the net-

work.

11.3.7 CGPANN and Back Propagation

As is discussed in Chapter 9, CGPANN performed poorly in the domain of classification.

It was also noted that NEAT has also previously been shown to perform poorly in the

domain of classification unless combined with back propagation in order to configure the

connections weights [41]. Additionally, other NE methods, such as Evolutionary Program-

ming Artificial Networks (EPNet), also rely on back propagation during training. It was

also shown in Chapter 6 that NE benefits much more from evolving the topology of ANNs

than evolving the connection weights. These separate insights could indicate that NE may

be an effective method for manipulating ANN topology, but not connection weights.

Therefore, the combination of NE with back propagation appears to be a suitable

method for training ANNs. Exploiting NE’s ability to adapt topology and back propaga-

tions ability to configure connection weights. Future work would therefore be to combine

CGPANN with a form of gradient descent and repeat the experiments presented in Chap-

ter 9. This would identify if the use of gradient descent can be used to improve the

performance of CGPANN for the task domain of classification.

Interestingly, NE may provide a benefit to back propagation other than optimising

topology. As back propagation is a gradient based method, the solutions found are a strong

function of the initial connection weights; the starting position in the search landscape.

Therefore, by utilising NE to optimise both topology and connection weight, followed by

the application of back propagation, it would allow evolution to find suitable topologies

and starting connection weights for back propagation.

However, the application of gradient descent methods is not always suitable for NE.

For instance, a common application of NE is reinforcement learning. Back propagation is

not applicable to such tasks as it is only compatible with supervised learning. Therefore

the use of back propagation with NE restricts the types of tasks to which NE can be

applied; thus removing one of the advantages of NE.

Additionally, in its standard form, back propagation is not compatible with recurrent

ANNs. Again one of the advantages of NE is that it can be used to train RANNs. Therefore

256

11.3 Further Work

the combination with back propagation places further restrictions on NE.

Back propagation also places restriction on the transfer functions which can be used by

the ANNs. As has been shown in this theses, the ability to use arbitrary transfer function

represents a benefit of NE. Again this benefit is removed if NE is combined with back

propagation.

Finally, back propagation and EAs are both iterative stochastic processes which require

the entire learning set to be observed many times during training. This means that back

propagation and EAs are both individually slow algorithms. Therefore, a further disad-

vantage of combining the two approaches is that it would significantly increase the training

time, especially if back propagation were applied to each member of the population, every

generation. A possible solution to this could be to simply apply back propagation once to

the final solutions found using NE; resulting in a possible compromise in computing speed

and benefits of finding the nearest optima to the final solution after running NE.

11.3.8 Neutral Genetic Drift in NeuroEvolution

Despite providing a strong benefit for CGP, Chapter 8 presented the surprising result that

the CGPANN benefits much less from the presence of NGD and redundancy in general.

It was proposed that this discrepancy may be due to the presence of connection weights

and their effect on the evolutionary search. The presence of connection weights allows

mutation to have a much smaller effect on semantics than mutations to topology and

transfer functions. This means that the presence of connection weights allows CGPANN

to conduct local searches much more easily than un-weighted CGP.

It may at first appear counter intuitive that the ability to conduct a local search would

decrease the likelihood of becoming stuck in an area of the search space. However, consider

a truly random evolutionary search; the most global search. After n generations the best

found solution is compared to the x random solutions of this generation. As the current

best solution is the best of n× x random solutions it is more likely to be better than any

of the x random solutions. This trend increased in likelihood as n is increased. Therefore,

despite being a very global search, the random search can very easily become stuck in an

area of the search space. However, if the ability to also conduct a local search around the

current best solution is added, the chances of improving upon the current best solution

increases. Therefore, the presence of connection weights in CGPANN may be increasing

the ability to conduct more local searches. This in term could be decreasing the likelihood

257

Chapter 11: Conclusions and Further Work

that CGPANN becomes trapped in a point in the search space. If CGPANN is less likely

to become trapped in an area of the search space, then it is less likely to require the aid of

NGD to escape. Resulting in NGD providing less of a benefit to the search, as was seen

in the results.

Note the distinction between being suck at a point in the search space and being stuck

in a local optimum. The search can become suck in an area of a search space even if it is

not a local optimum; as was the case in the random search example.

Therefore, future work should investigate if it is the case that CGPANN does not

benefit from NGD due to the ability to conduct a more local search. The remainder of

this section describes such possible future work.

Firstly, connection weights could be added to regular CGP to create a weighted form of

CGP. This weighted CGP would be similar to CGPANN except it would not use neuron

transfer functions or the higher arities associated with ANNs. If it were found that the

benefit of NGD was diminished when weighted CGP was used, than it would demonstrate

that the reduced benefit of NGD seen in CGPANN is due to the presence of connection

weights. However, if it were found that weighted CGP still strongly benefited from NGD,

then it would demonstrate that it is not the influence of the connection weights which

cause CGPANN not to benefit from NGD.

Additionally, if a weighted form of CGP were shown not to benefit from NGD, but

also outperform standard CGP, than this would demonstrate that the benefit seen from

NGD is compensating for poor fitness landscape navigation. However, if a weighted form

of CGP was shown not to benefit from NGD, and standard CGP outperformed weighted

CGP, then it would show that the strong benefit of NGD is not merely compensating for

a weakness in CGP’s search.

Secondly, the same experiments presented investigating NGD in CGPANN could be

repeated without ever mutating connection weight genes. That is to say, the connection

weights would be present, but not mutated; left as random initial values. If it were seen

that CGPANN, without mutating connection weights, still did not benefit from NGD, then

it would demonstrate that the ability to manipulate connection weights was not the cause

of the diminished benefit of NGD for CGPANN. However, if it were seen that CGPANN,

without mutating connection weights, did benefit from NGD, then this would identify that

the connection weights were likely to be the cause of CGPANN not benefiting from NGD.

It was also speculated that the ability to mutate connection weights may be suited

258

11.4 Final Remarks

to a more local search, whereas mutations to topology may be more suited to a global

search. This is because it appears intuitive that alterations to topology would influence

the semantics more than alterations to a connection weight; at least for small alterations

to connection weights. As it is important for a search to be both explorative on a global

scale and exploitive on a local scale, both behaviours are desirable. It has been stated

that CGP may benefit more from NGD because it lacks this local exploitive ability.

Therefore, it may be the case that by using separate mutation rates for topology genes

and connection weight genes, it would be possible to vary the levels of exploration and

exploitation. For instance, increasing the connection weight mutation rate relative to the

topology mutation rate may result in a more local search. However, this behaviour may

be reliant upon the connection weight mutation rate never being too high, otherwise it

would be too random to conduct a local search. Additionally, it may be beneficial for

the connections to be mutated within a given Gaussian distribution of their current value,

again biasing to a more local search.

It may also be the case that the search would greatly benefit from the levels of topology

and connection weight mutation rates varying as the search progresses. For instance, to

initially conduct a more global search which becomes more local as time progresses; similar

to simulated annealing [159]. Alternatively, varying the relative mutation rates of topology

and connection genes based on fitnesses improvements. For instance to conduct a more

global search when trapped in local optima.

11.4 Final Remarks

EAs are famous for being “the second best solver for any problem” [60]. This is due to

their highly general nature. EAs only require that solutions are describable in a form

which can be manipulated, and that each solution can be given a fitness score.

ANNs are an extremely powerful and flexible method for arbitrary data transforma-

tions. The challenge for ANNs is finding effective training methods for different prob-

lem domains. Although there are many highly optimised training methods for applying

feed-forward ANNs to supervised learning tasks, effective training methods for recurrent

topologies and other domains need further research.

In the authors opinion, this is the great benefit of NE. By harnessing the generality of

EAs, NE is an effective training method for configuring recurrent topologies and applying

ANNs to domains other than supervised learning. In fact NE is so general that the same

259

Chapter 11: Conclusions and Further Work

methods can be used to create spiking as well as non-spiking networks with little to no

change to the underlying algorithms. This generality is the power of NE.

However, significantly more research is required for NE, including rigorous empirical

comparisons between methods and rigorous empirical study of their abilities. Without

this it is not known which aspect of which NE methods are beneficial, and which are not.

This thesis has made significant progress into this area, but much more further work is

needed.

Finally, there needs to be a change in the committee’s direction, from mainly appli-

cations driven research to more analysis and comparison of the underlying algorithms.

Although applications are important, and can be used to showcase the ability of NE, it

is difficult to use their results to further the field. Related to this topic is the need for

the committee to adopt better empirical research methodologies, including the use of a

wider range of standardised benchmarks, and rigorous significance testing. Without this

NE many never progress into the wider ML literature.

260

Appendix A

Benchmarks

This appendix describes a number of benchmark problems which are used throughout the

thesis.

A.1 Structure of this Appendix

This appendix separates each domain of benchmark into individual sections. Section A.2

describes reinforcement learning control tasks. Section A.3 describes supervised learning

classification tasks. Section A.4 describes supervised learning Boolean logic circuit syn-

thesis tasks. Section A.5 describes supervised learning symbolic regression tasks. Finally,

Section A.6 describes series forecasting tasks.

A.2 Control

One of the advantages of NeuroEvolution (NE) is that it can be applied to reinforcement

learning type tasks. These are tasks where there is no list of desirable input-output pairs,

only a single figure of merit of the overall performance of a solution.

As standard training methods for Artificial Neural Network (ANN)s, such as back

propagation, cannot be applied to reinforcement learning tasks, only supervised learning,

control benchmarks serve to showcase one of the advantages of NE methods. That is to

say, they can apply ANNs to a whole new domain of tasks.

261

Appendix A: Benchmarks

A.2.1 Pole Balancing

The pole balancing benchmarks have been used for many years in the Artificial Intelligence

(AI) literature and represent a range of difficult multiple-input single-output control tasks.

The task is to balance one or more poles on a moveable cart by applying a horizontal force.

The most widely used pole balancing benchmarks are single pole balancing and dou-

ble pole balancing; Figures A.1 and A.2 respectively. The equations which describe the

dynamics of the pole-cart system are given in Equations A.2.1-A.2.4 with the symbol

definitions and commonly used constants given in Table A.1.1

Figure A.1: Depiction of the single pole balancing benchmark.

Figure A.2: Depiction of the double pole balancing benchmark.

1As an aside, these equations are not particularly accurate at describing the dynamics of the cart-pole
system; due to the friction between the cart and the track being applied as a binary force opposing the
motion of travel, rather than proportionally to the speed of travel. However, as these equations are the
benchmark they must be used as stated. Interestingly, more accurate equations of motion were used during
the early years of the benchmark such as in [13,24], but for some reason later researchers changed them.

262

A.2 Control

ẍ =
F − µcsgn(ẋ) +

∑N
i=1 F̃i

M +
∑N

i=1 m̃i

(A.2.1)

θ̈i = − 3

4li

(
ẍ cos θi + g sin θi +

µpiθ̇i
mili

)
(A.2.2)

F̃i = miliθ̇
2
i sin θi +

3

4
mi cos θi

(
µpiθ̇i
mili

+ g sin θi

)
(A.2.3)

m̃i = mi

(
1− 3

4
cos2 θi

)
(A.2.4)

Table A.1: Pole balancing symbol definitions and commonly used values.

Symbol Description Value

x Cart position [−2.4, 2.4]m
θi ith pole angle [−n, n]deg
F Force applied to cart [−10, 10]N

F̃i Force on cart due to ith pole
li Half-length of ith pole l1 = 0.5m

l2 = 0.05m
M Cart mass 1.0kg
mi Mass of ith pole m1 = 0.1kg

m2 = 0.01kg
µc Friction coefficient between

cart and track
0.0005

µpi Friction coefficient between
ith pole and cart

0.000002

The initial position of the cart is typically in the centre of the track; for both single

and double pole cases. In the single pole case, the initial angle of the pole changes between

implementations; this is bad practice and weakens any comparisons. Common values are

0◦ and 4◦. For the double pole case, the initial position is more standardised with the

longer and shorter poles starting at 1◦ and 0◦ from vertical respectively.

The pole-cart system models are then simulated using Euler integration with a time

step of 0.01sec and the controller outputs are updated every 0.02sec. The simulations are

then run for 100000 time steps. The inputs to the created controller are the position and

velocity of the cart and the angle and angular velocity of the pole(s); making four inputs for

the single pole case and six for the double. These inputs are scaled linearly into the control

systems input range by assuming the following maximum ranges. Single pole: cart position

[−2.4, 2.4]m, cart velocity [−1.5, 1.5]m/s, pole angle [−12, 12]deg and pole angular velocity

[−60, 60]deg/s. Double pole: cart position [−2.4, 2.4]m, cart velocity [−1.5, 1.5]m/s, pole

263

Appendix A: Benchmarks

angles [−36, 36]deg and pole angular velocities [−115, 115]deg/s. Although these values

can change between implementations found in the literature. The output of the controller

is also scaled to the range of the allowed force on the cart. This is typically achieved

using one of two methods. The Bang-Bang control system, sometimes used on the single

pole benchmark, applies a force of −10N or +10N if the controller output is < n or ≥ n

respectively; where n is a threshold value. The continuous control system simply linearly

maps the control systems output range to the required [−10, 10]N range; allowing for a

continuous range of possible applied forces. Additionally the continuous control system

restricts the magnitude of the applied force to always be greater than 1
256 × 10N; thus

increasing the difficulty of the task.

The simulation is terminated if the cart leaves the bounds of the track or the angle

of the pole(s) exceeds the maximum angle from vertical. For the single pole benchmark

the most commonly used angle the pole can deviate from vertical before the experiment

is terminated is 12◦. For the double pole case it is 36◦.

The fitness of each proposed solution is set as the number of time steps the pole(s)

remain within the set range and the cart remains within the track bounds. Some imple-

mentations also penalise rapid swinging [89].

A popular extension to the pole balancing benchmark is the removal of cart and pole(s)

velocity information, making the task non-Markovian [89]. Without the velocity informa-

tion being explicitly available to the controller, it must be estimated internally.

A.2.2 Ball Throwing

The recently presented ball throwing benchmark [164] represents a Multiple-Input Multiple-

Output (MIMO) control task. The task is to design a controller which throws a ball as

far as possible; see Figure A.3.

The dynamics of the arm are described by Equations A.2.6-A.2.9; with the symbol

definitions given in Table A.2. The control system has two inputs, θ, the arm angle

from vertical and ω, the angular velocity of the arm. It has two outputs, T , the applied

torque to the arm and an output which dictates when to release the ball. The inputs

to the controller are linearly scaled from ±π/2 and ±5 rad/s for θ and ω respectively;

the maximum input range of the controller. The maximum range for ω, ±5 rad/s , was

found from simulation; actual maximum value: ±4.4915 rad/s . The first output of the

controller sets the torque applied to the arm and is linearly mapped to [−5, 5]N. The ball

264

A.2 Control

Figure A.3: Depiction of the ball throwing benchmark.

Table A.2: Ball throwing symbol definitions and commonly used constants.

Symbol Description Value

θ The arm angle [−π
2 ,

π
2]rad

ω The arms angular Velocity
c Friction constant 2.5s−1

l Arm length 2m
g Gravity 9.81ms−2

m Ball mass 0.1kg
T Torque applied to arm [−5, 5]Nm

is thrown if the second output exceeds a threshold; for example, zero if the output range

is ±1, or 0.5 if the output range is [0, 1]. The system is initialised with the ball held, the

arm hanging vertically downwards and the angular velocity set to 0 rad/s.

θ̇ = ω (A.2.5)

ω̇ = −c · w +
g · sin(θ)

l
+

T

m · l2
(A.2.6)

ω = 0 if |θ| ≥ π/2 (A.2.7)

θ = π/2 if |θ| ≥ π/2 (A.2.8)

θ = −π/2 if |θ| ≤ −π/2 (A.2.9)

The ball throwing model is simulated using Euler integration with a time step of 0.01s

with the outputs of the controller also updated every 0.01s. When the arm is holding the

ball the dynamics are described using Equations A.2.6 - A.2.9. Additionally if θ exceeds

π/2 or −π/2 it is set as π/2 or −π/2 respectively and ω is set to zero; as is specified in

Equations A.2.7 - A.2.9. When the ball is released it obeys regular Newtonian mechanics,

265

Appendix A: Benchmarks

assuming no air resistance, until the ground is reached. The distance the ball is thrown

is then used to assign a fitness value; see Figure A.3. The maximum possible distance the

ball can be thrown is 10.202m but the task is considered complete when the ball is thrown

9.50m or further.

A.3 Classification

Classification is one of the main applications of ANNs and is typically an instance of

supervised learning.

A.3.1 Breast Cancer

The Breast Cancer dataset was originally constructed at the University of Wisconsin Hos-

pital [189]. Each sample in the dataset described nine values recorded by a surgeon using

fine needle aspiration of a tumour located in the breast of patients. Each sample has at-

tributes describing the levels of: clump thickness, uniformity of cell size, uniformity of cell

shape, marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal

nucleoli and mitoses. Each sample is then classified as describing a benign or malignant

cancer cell. The dataset contains 683 samples (after removing sixteen samples with missing

data) with 65.0% representing benign tumours and 35.0% representing malignant.

The Breast Cancer dataset is available from the UCI repository [215] and is also pro-

vided in the mlbench Package [51] for the R programming language [234]. On the UCI

repository two datasets are listed for the Breast Cancer Wisconsin Data Set. Here the

‘original’ version of the data set is used with samples containing missing data removed.

The ‘diagnostic’ version was not used.

A.3.2 DNA

The DNA dataset was originally donated by G. Towell, M. Noordewier, and J. Shavlik.

The dataset describes primate splice-junction gene sequences and the task is to classify

each sample as containing a boundary between exons, a boundary between introns or

neither. Boundaries between exons are retained after splicing, however the boundary

between introns are not.

The dataset contains 3186 samples (splice junctions) with each sample containing

180 binary attributes (genes) and three classes; whether the sample contains a boundary

266

A.3 Classification

between exons (24.1%), a boundary between introns (24.0%) or neither (51.9%).

The DNA dataset is available from the mlbench Package [51] for the R programming

language [234].

A.3.3 Glass

The Glass dataset was originally created by B. German at the Central Research Establish-

ment, Home Office Forensic Science Service, Reading. The dataset describes the chemical

analysis of seven different types of glass. The motivation was the classification of glass for

criminological investigations.

The Glass dataset contains 214 samples each with 9 attributes and the type of glass

it describes. Each sample describes the following properties of the glass: refractive index,

Sodium level, Magnesium level, Aluminum level, Silicon level, Potassium level, Calcium

level, Barium level and Iron level. There are six classes of glass: building windows float

processed (32.7%), building windows non float processed (35.5%), vehicle windows float

processed (7.9%), containers (6.1%), tableware (4.2%) and headlamps (13.6%).

The Glass dataset is available from the mlbench Package [51] for the R programming

language [234].

A.3.4 Ionosphere

The Ionosphere was originally created by the Space Physics Group, Applied Physics Lab-

oratory, Johns Hopkins University. The dataset describes the high frequency, high power

radar recordings of the ionosphere. The subject of interest was free electrons in the iono-

sphere with each recording specifying whether some type of structure was detected.

The Ionosphere dataset contains 351 samples each with 34 attributes describing the

class and whether or not the sample detected structure in the ionosphere. The dataset

describes 35.9% of samples detecting structure and 64.1% of samples not.

The Ionosphere dataset is available from the UCI repository [215] and is also provided

in the mlbench Package [51] for the R programming language [234].

A.3.5 Iris

The Iris dataset was originally collected by E. Anderson [14] and made available by A.

Fisher [62]. The dataset describes various measurements recorded from a number of iris

species. The task is to classify the species of iris based on the recorded measurements.

267

Appendix A: Benchmarks

The Iris dataset contains 150 samples each describing the sepal length, sepal width,

petal length, petal width and the species to which the iris belongs: setosa (33.3%), versi-

color (33.3%), and virginica (33.3%).

The Iris dataset is available from the UCI repository [215] and is also provided in

the core datasets Package for the R programming language [234]. Although as has been

previously noted in the literature, many version of the Iris dataset exists which has led to

confusion and unfair comparative experiments [28].

A.3.6 Olives

The Olives dataset was originally collected and presented by E. Stefanoudaki [268]. The

dataset describes the percentages of fatty acids found in olives from different regions of

Italy. The task is to classify to which region a given sample belongs.

The Olives dataset contains 572 samples each decried by 8 percentage levels of fatty

acids: palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic and eicosenoic.

Each sample then belongs to one of 9 classes describing from which region of Italy the

olive came: Calabria (9.8%), Coast-Sardinia (5.8%), East-Liguria (8.7%), Inland-Sardinia

(11.4%), North-Apulia (4.4%), Sicily (6.3%), South-Apulia (36.0%), Umbria (8.9%) and

West-Liguria (8.7%).

The Olives dataset is available from the classifly Package [303] for the R programming

language [234].

A.3.7 Segmentation

The Segmentation dataset was originally collected and made available by Andrew Hill

[107]. The dataset describes imaging measurements of cell bodies and the task is to

determine how well the cell body is segmented.

The Segmentation dataset contains 2019 samples each containing 119 imaging measure-

ments and whether the described cell body is poorly segmented (64.4%) or well segmented

(35.6%).

The Segmentation dataset is available from the Caret Package [70] for the R program-

ming language [234].

268

A.3 Classification

A.3.8 PROBEN1 - A Set of Neural Network Benchmark Problems and

Benchmarking Rules

The Proben1 report [229] outlines a number of, mainly real world, classification (discrete)

and approximation (continuous) benchmarks for ANNs. The report also describes best

practices and how to present results. The report contains ten classification benchmarks

(Cancer, Card, Diabetes, Gene, Glass, Heart, Horse, Mushroom, Soy Bean and Thyroid)

and three approximation benchmarks (Building, Flair, Hearta).

Each of the datasets is provided in three permutations so as to allow cross validation.

The three permutations are indexed with a value [1, 2, 3]; for instance Cancer1, Cancer2

and Cancer3. The data sets are also separated into two groups, training and testing. The

ANN is to be trained using the training set and tested on the testing set; the testing set

should never be used during training. The user may also subdivide the training set into

a training set and a validation set. In order to ensure that the same samples are used

for training, validation and testing, three percentages are stated with each classification

task. The first percentage represent the size of the training set, the second the size of the

validation set and the last the testing. The training set then comprised of the first x% of

the dataset, the validation the following y% and the testing the final z%.

It is also recommended that the squared error percentage be used for the fitness func-

tion, Equation A.3.10. Where omin and omax are the minimum and maximum output

values form the ANN, N is the number of outputs from the ANN, P is the number of

training examples, opi are the actual output values from the ANN and tpi are the target

outputs.

E = 100 · omax − omin
N · P

P∑
p=1

N∑
i=1

(opi − tpi)2 (A.3.10)

By defining the datasets, the fitness function, the permutations and the sizes of the

training and testing sets the results of many training algorithms can be fairly compared.

This was the goal of the Proben1 report. Specific data sets used in the proben1 document

can be accessed via the FTP address ftp.ira.uka.dein/pub/neuron/proben1.tar.gz.

269

ftp.ira.uka.de in /pub/neuron/proben1.tar.gz

Appendix A: Benchmarks

A.3.9 The Monks Problems

The Monks Problems [273] are a set of classification benchmarks intended for comparing

learning algorithms. The classification tasks are based on the appearance of robots which

are described by six attributes each with a range of values; see Table A.3. There are three

classification tasks described in [273]:

1. head shape = body shape OR jacket color = red

2. exactly two of the six attributes have their first value

3. (jacket color = green AND holding = sword) OR (jacket color != blue AND body shape

!= octagon)

Where if the condition is met the robot belongs to the given class else it does not. The

classification tasks are called Monks Problem 1, 2 and 3 in the order given above. Problem

1 uses 124 randomly selected robots, from the possible 432, to be used as the training set.

Problem 2 uses 169 randomly selected robots to be used as the training set. Problem 3

uses 122 randomly selected robots to be used as the training set with additional noise

causing 5% to be misclassified.

Table A.3: Monks Problem Robot Appearances.

Description Attributes

head shape round, square, octagon
body shape round, square, octagon
is smiling yes, no
holding sword, balloon, flag
jacket color red, yellow green, blue
has tie yes, no

The implementation commonly used by ANNs is to assign each attribute value its own

input to the network; totalling seventeen inputs. Each of these inputs is set as one if

the particular attributes value is present and as zero otherwise. The ANN then classifies

each sample as belonging to the class if its single output is greater than a threshold. This

threshold is commonly set as 0.5 for transfer functions with outputs in the range [0, 1] and

0 for transfer functions with outputs in the range [−1, 1].

The fitness commonly used is the percentage of misclassified robots; with zero repre-

senting the best solution.

270

A.4 Boolean Circuits

A.3.10 Two Spirals

The two spirals classification benchmark was created in the 1980s and was originally

posted on a connectionist mailing list by Alexis Wieland [38]. The task is considered

highly challenging for ANNs [40].

The benchmark consists of 194 data points describing samples taken from two spirals

in Cartesian space; see Figure A.4. The task is to classify to which spiral each sample

belongs using only the (x, y) Cartesian coordinates. The fitness awarded is the number of

misclassification made; meaning a target fitness of zero.

The ANNs applied to the task comprises of two inputs, for the (x, y) Cartesian coor-

dinates of each sample, and one output. The two inputs are linearly scaled into a [0, 1]

range by assuming the minimum and maximum values are ±6.5 and ±6 for the x and y

axis respectively. When the output value is < 0.5 it is interpreted as one spiral and ≥ 0.5

as the other.

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

Figure A.4: Depiction of the Two Spiral Classification benchmark.

A.4 Boolean Circuits

Boolean circuit synthesis is the task of implementing a given truth table as a digital circuit.

The benchmarks are often coupled with additional constrains such as using only certain

logic gates, using a minimal number of gates or executing in a given time constraint.

Common Boolean benchmarks include n bit even parity, n bit full adder and n bit

multiplier. These tasks all have the property that the difficulty can be scaled by varying

271

Appendix A: Benchmarks

n; where higher n represents a more challenging task. Additionally, the parity tasks

represent tasks with a single output, whereas full adder and multiplier represent MIMO

benchmarks.

The benchmarks can be framed as fitness minimising or fitness maximising tasks de-

pending upon whether the number of incorrect or correct outputs are recorded. In the

maximising case each correct output for each row in the truth table increments the fitness.

Therefore, for a given task the maximum fitness is o2i; where o is the number of outputs

and i is the number of inputs. Therefore if a truth table was described by eight inputs

and four outputs, the maximum fitness would be 4× 28 = 1048.

A.5 Symbolic Regression

Symbolic regression is the task of fitting a symbolic equation to a given set of data points.

These data points may be recordings of a real world event, such as experimental data, or

samples from an already known equation. The task is to minimise an error between the

given points and the values predicted by the symbolic equation at those points. Common

fitness measures used are: the Sum of Absolute Errors (SAE), Mean Absolute Error

(MAE) or the Mean Square Error (MSE). These fitness measures are given respectively

in Equations A.5.11-A.5.13 where; N is the number of samples, ai is the actual value at

point i and pi is the predicted value at point i.

N∑
i=1

|ai − pi| (A.5.11)

1

N

N∑
i=1

|ai − pi| (A.5.12)

1

N

N∑
i=1

(ai − pi)2 (A.5.13)

A number of symbolic regression benchmark tasks are now described.

A.5.1 Nguyen 10

The Nguyen 10 benchmark is a symbolic regression task defined and used in [281]; given in

Equation A.5.14 and plotted in Figure A.5. The task uses 100 random samples taken from

the range x1 in [-1,1] and x2 in [-1,1]. The function set used contains: +,−,×,÷, sin, cos, exp, log.

272

A.5 Symbolic Regression

The fitness function aims to minimise the SAE between the correct value at a given x1

and x2 and the value produced by the symbolic equation.

f(x1, x2) = 2 sin(x1) cos(x2) (A.5.14)

x2
x1

-0.5

-1 -1

-0.5

0

0.5

1

-2

-1

f(
x
1

,x
2

)

0

1

2

0

0.5

1

Figure A.5: Nguyen 10

A.5.2 Pagie

The Pagie benchmark is a challenging [197] symbolic regression task defined and used

in [220]; given in Equation A.5.15 and plotted in Figure A.6. The task uses 676 samples

evenly taken from the range x1 in [-5,5] and x2 in [-5,5]. The function set contains:

+,−,×,÷. The fitness function is defined to be the SAE between the correct value at a

given x1 and x2 and the value produced by the symbolic equation. Thus the objective is

to minimise the fitness (zero being the perfect score).

f(x1, x2) =
1

1 + x−41

+
1

1 + x−42

(A.5.15)

A.5.3 Tower Problem

The Tower Problem [162] is a very challenging real world symbolic regression task; plotted

in Figure A.7. The data was provided by Arthur Kordon and each sample describes 25

measurements comprising of temperatures, flows, and pressures over time in a distillation

273

Appendix A: Benchmarks

0

0.5

f(
x
1

,x
2

)

1

1.5

2

x2

6

4

2

-2

0

-4

-6 -6
-4

-2 x1

0
2

4
6

Figure A.6: Pagie

tower. The task is to create a symbolic equation which models the propylene concentration

in the distillation tower based on these inputs.

The dataset contains 4999 samples (each containing 25 separate measurements and the

propylene concentration) taken 15 minutes apart from within the distillation tower. The

fitness awarded is the SAE of the output after all inputs have been applied. The function

set used contains: +,−,×,÷, sin, cos, exp, log.

0 1000 2000 3000 4000 5000
0

100

200

300

400

500

600

Time

P
ro

py
le

ne
 C

on
ce

nt
ra

tio
n

Figure A.7: Tower Problem

274

A.6 Forecasting

A.6 Forecasting

Forecasting is another common application of ANNs. The task is to predict future values

in a series from a set of previous recording. A common application is the prediction of

stock market values or currency exchange rates.

All of the forecasting benchmarks presented here consist of a training set of 1000 data

points and a testing set of 100 data points. In each case the embedding dimension and time

delay are given; found using the pdc package [34] for the R programming language [234].

A.6.1 Laser

The Laser benchmark is the recording of a “81.5-micron 14NH3 cw (FIR) laser, pumped

optically by the P(13) line of an N2O laser via the vibrational aQ(8,7) NH3 transition”

[121]. The benchmark was used in the Santa Fe Competition [297] and the dataset is

available at [298].

Two versions of the dataset exist, one containing one thousand samples and another

extended version containing ten thousand. The one thousand sample version was used by

the Santa Fe Competition and the extended version is made available for further testing

of methods. Here the first 1000 samples of the extended version are used as a training set

and the following 100 samples are used as the testing set. This series is also normalised

into a [0,1] range using Equation A.6.16 where: xi is the sample to be normalised, x′i is

the normalised sample, X is the entire series and the min and max functions return the

minimum and maximum sample value in the series X respectively. The Laser benchmark

is plotted in Figure A.8.

The embedding dimension and time delay used for the Laser series are D = 4 and

T = 7 respectively.

x′i =
xi −min(X)

max (X)−min(X)
(A.6.16)

A.6.2 Mackey-Glass

The Mackey-Glass equation was originally used to model blood cell regulation [186]. How-

ever, the Mackey-Glass equation has also been used as a forecasting benchmark due to its

interesting chaotic properties. The Mackey-Glass equation is given in Equation A.6.17. By

adjusting the value of the delay parameter τ the equation produces chaotic and non-chaotic

275

Appendix A: Benchmarks

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Time

M
ag

ni
tiu

de

Figure A.8: Laser series forecasting benchmarks.

series; τ > 16.8 produces chaotic behaviour.

dx(t)

dt
=

a · x(t− τ)

1 + xc(t− τ)
− b · x(t) (A.6.17)

Here the Mackey-Glass equation parameters are set as a = 0.2, b = 0.1 and c = 10.

The delay parameter τ is set as 17 and x(t) = 0 when t ≤ 0. A series is produced using

the 4th order Runge-Kutta integration method with a time step of dt = 0.01 seconds.

This series is then sampled once a second to produce the series used as the benchmark.

This series is also normalised using Equation A.6.16. The first 117 seconds (samples) are

removed to avoid the transient response time. Then the following 1100 seconds (samples)

are used for the training and testing sets; plotted in Figure A.9. The first 1000 seconds

are used for training and the following 100 are used for testing.

The embedding dimension and time delay used for the Mackey-Glass series are D = 4

and T = 1 respectively.

A.6.3 Sunspots

Predicting the number of yearly/monthly Sunspots [253] is a commonly used [157], chal-

lenging [4], series prediction benchmark. The data is recorded by the SIDC-team, at the

World Data Center for the Sunspot Index, Royal Observatory of Belgium [253] and is

available from [244]. Here the smoothed number of monthly sunspots is used as the series.

1100 months (samples) of data are taken from November 1834 to June 1926. The first

276

A.6 Forecasting

200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

Time

x(
t)

Figure A.9: Mackey-Glass series forecasting benchmarks.

1000 samples are used for training with the remaining 100 used for testing. The series is

once again normalised using Equation A.6.16. The series is plotted in Figure A.10.

The embedding dimension and time delay used for the smoothed monthly sunspots

series are D = 5 and T = 1 respectively.

1840 1860 1880 1900 1920
0

0.2

0.4

0.6

0.8

1

Year

N
um

 S
un

sp
ot

s

Figure A.10: Sunspot series forecasting benchmarks.

277

Appendix B

Statistical Significance Testing

When comparing stochastic algorithms, it is important to use statistical significance testing

to ensure that any differences are not due to under sampling. This appendix justifies and

discusses the statistical significance testing used throughout the thesis.

B.1 Structure of this Appendix

Section B.2 describes and justifies why statistical significance testing should be used when

comparing stochastic algorithms. Section B.3 examines the distribution of results gen-

erated using an Evolutionary Algorithm (EA) in order to select appropriate statistical

significance testing methods. From this analysis, Section B.4 described the statistical

significance tests used throughout this thesis.

B.2 Background

When comparing the results of stochastic machine learning methods, such as EAs or

Multilayer Perceptrons (MLP)s, it is often insufficient to only compare arithmetic means

or medians. This is because one can never know that the sample of results taken from

repeating an experiment are representative of the results which would be produced if

the experiment were repeated infinite times. That is, one cannot know how accurately

the average of the undertaken experiment represents the true average behaviour of the

algorithm. For this reason the distributions of the experimental results are often used for

comparison. For this statistical significance testing is required.

Statistical significance testing usually operates by giving the probability that the results

279

Appendix B: Statistical Significance Testing

of repeated runs of two experiments could have been taken from the same underlying

distribution i.e. they are not actually different. This is usually used as a null hypothesis,

where the aim is to identify that the results of two experiments could have been taken from

the same distributions. If there is < 5% change that, based on the given data, the results

of experiment A and experiment B could have been taken from the same distribution,

then we can be reasonably confident that they were not. We can therefore reject the null

hypothesis and conclude that results of experiment A and experiment B are statistically

different.

For instance, take an example where Experiment A produces results with an average

greater than Experiment B, but this is not shown to be statistically significant. This means

that we cannot be confident that the average result of Experiment A would be greater

than Experiment B if a larger average were used. However, suppose that Experiment

A produces results with an average greater than Experiment B, and it was shown to be

statistically significant. In this case we can be confident that the result of Experiment A

producing an average greater than Experiment B was not due to under sampling.

There are two main categories of statistical test, those which assume the distribution

of data is normal and those which make no assumption about the distribution; called para-

metric and non-parametric tests respectively. Typically parametric tests are considered

more rigorous and non-parametric tests more general. The next section will assess the

distribution of results produced from multiple EA experiments.

B.3 Distribution of Evolutionary Algorithm Results

This section presents an experiment identifying the distribution of the number of gen-

erations required to solve a given task using an EA. In this work Cartesian Genetic

Programming (CGP) is applied to the task of implementing a full adder circuit using two

input AND, NAND, OR and NOR logic gates. A mutation rate of five percent is used

with fifty nodes. The experiment is repeated one thousand times in order to generate

the histograms shown in Figures B.1. The histogram plots the proportion of runs which

required a given number of generations to find a solution. As the number of generations

required to find a solution is a commonly used metric to compare EAs, this is a suitable

view of the data.

As can be seen in Figure B.1, the data generated from using EAs can clearly be non-

normal in distribution. Therefore non-parametric statistical tests are required for fair

280

B.4 Non-Parametric Statistical Significance Testing

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Generations

P
ro

po
rt

io
n

of
 R

un
s

Figure B.1: Histogram of 1000 runs showing the number of generations required for CGP
to find a solution to the full adder task.

comparisons.

Finally, whether or not the results shown in Figure B.1 are typical for all EAs does

not affect the conclusions reached. The fact that an EA can produce a non-normal spread

of data is all that is needed to justify the use of non-parametric testing. This is because

non-parametric test can be applied to both normal and non-normal distributions, whereas

parametric tests can only be applied to normal distributions.

B.4 Non-Parametric Statistical Significance Testing

Two commonly used non-parametric statistical significance tests for determining if the

difference between two datasets is statically significant are the Mann-Whitney U-test [190]

and the Kolmogorov-Smirnoff test [192].

The Mann-Whitney U-test is used to calculate the probability p that two datasets could

have the same medians based on their distributions. Typically a value of p < 0.05 is used to

reject the null hypothesis that the two data sets are taken from the same distribution, and

therefore conclude, with reasonable confidence, that any difference is statically significant.

The Kolmogorov-Smirnoff operates in a similar way to the Mann-Whitney U-test only it

gives the probability that the two data sets could have had the same distributions; not

medians.

281

Appendix B: Statistical Significance Testing

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

(a) Smaller Effect Size

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

(b) Larger Effect Size

Figure B.2: Depiction of the effect size measure. (a) shows two distribution which would
be awarded a smaller effect size and (b) a larger.

Finally, just because there is a statistical difference between two datasets does not

mean that the difference is meaningful. In fact, a statistical difference can usually be

‘forced’ by using very large sample sizes. This is because there is typically likely to be

a small difference between two algorithms, however in order to detect this, very large

number of runs are required for the comparison. However, in cases where this is necessary,

the difference between the two algorithms is likely so small to be of little interest. This

is why an additional metric termed effect size [285] is often used. The effect size test

produces a value in the range 0.5 ≤ A ≤ 1. Where 0.5 is no effect size, ≥ 0.56 is a small

effect size, ≥ 0.64 is a medium effect size and ≥ 0.71 is a big effect size. A small effect

means that the spread of data is much larger than the difference between the two medians

of the samples; resulting in any improvement not effecting most individual results. A big

effect size means that the difference in medians is proportionally large compared to the

distribution of data; see Figure B.2. A big effect size coupled with statistical significance

gives confidence that two datasets are statistically significantly different in a meaningful

way.

282

Appendix C

Cartesian Genetic Programming

Library

The Cartesian Genetic Programming (CGP) Library is an open source cross platform

CGP implementation developed by the author during the PhD. The code base is hosted

with github [231] at https://github.com/AndrewJamesTurner/CGP-Library and is doc-

umented and distributed at www.cgplibrary.co.uk.

C.1 Structure of this Appendix

Section C.2 provides a discussion of the need for the developed CGP library including a

high level description of the developed library. Section C.3 discusses the overall functional-

ity of the CGP library. Section C.4 discusses a range of visualisation methods provided by

the library for inspecting individual chromosomes. Section C.5 describes how the library

can be used in the application of CGP to the training of Artificial Neural Network (ANN)s.

Section C.6 describes how the library can be used to create recurrent program structures.

Section C.7 gives the licenses under which the CGP library is distributed. Section C.8 gives

a simple example of how to use the CGP library including sample source code. Finally,

Section C.9 gives a closing discussion of the newly released CGP library.

C.2 Background

Despite many advantages of CGP, it has not been adopted to the same extent as standard

tree-based Genetic Programming (GP) [300]. Key necessities for a method or technique

283

https://github.com/AndrewJamesTurner/CGP-Library
www.cgplibrary.co.uk

Appendix C: Cartesian Genetic Programming Library

becoming widely adopted include: benefits over other methods, ease of use and availability.

Although a number of CGP implementations are available via the CartesianGP homepage

[203], these implementations are typically under documented, unfriendly to new users and

adapting them to new situations requires editing and understanding of the entire code

base.

It is therefore apparent that in order for CGP to gain in popularity, the issue of there

being no standard “go-to” implementation must be addressed. For this reason, an open

source cross platform implementation of CGP was developed called CGP library.

The CGP library is intended to be of use in teaching, academic research and real world

applications. What distinguishes this implementation from others is that it defines a well-

documented CGP Application Programming Interface (API); as opposed to a graphical

or command line tool. This API provides functionality for high level applications of CGP,

lower level customisation of the CGP algorithm, embedding CGP in wider systems and

deploying evolved solutions in their intended final application. The library should be

thought of as a set of tools for working with CGP, not as a standalone program in its

own right. An advantage of using a well-defined API is that the user does not need

to understand or edit the underlying implementation in order to use the CGP library.

Additionally, users can benefit from backwards compatible updates to the library. A

further advantage of creating a compiled library is that it can be used natively by C [145]

and C++ [269] programming languages, but also called from other languages such as

Python [283], JAVA [91], Matlab [193] / GNU Octave [56] or R [234] using tools such as

SWIG [26] to create wrappers for the compiled library.

The CGP library can also be compiled for a wide range of operating systems as it

only depends upon standard C libraries. The CGP library also comes with complete

documentation and numerous tutorials intended to ease the learning curve.

C.3 Overall Functionality

The CGP library is intended to be used for teaching, academic research and real world ap-

plications. This very broad scope is achieved by hiding detail from the user unless required,

maintaining a well-documented API and providing extra tools for specific scenarios.

For instance, in the case of teaching, the CGP library can be applied to a given task

with very little “boilerplate” code; see Section C.8. Then, if required, all of the typical

parameters (mutation rate, µ, λ, evolutionary strategy, etc) can be controlled via simple

284

C.3 Overall Functionality

setter functions. Additionally, each evolutionary stage (selection scheme, fitness function

etc) can be inspected and edited in isolation. All of this is achieved through the API,

meaning details can be hidden or exposed as required.

In the case of academic research, the ability to control evolutionary parameters and

implement custom evolutionary stages becomes important. Nearly all of the evolutionary

stages used by the CGP library can be re-defined to custom versions through the API1.

Additional functionality is also provided to conduct multiple runs to assess average be-

haviour. The ability to set random number seeds in order to repeat experiments is also

provided. Additionally, results can be saved to easily parsed comma separated value (.csv)

files for storage and further analysis.

In the case of real world applications, extra functions are provided to save, load and

execute individual chromosomes. This enables found solutions to be stored, distributed

and deployed in their intended application. The ability to remove inactive nodes is also

provided to reduce the size of saved and loaded chromosomes.

In all cases accessibility and ease of use are important. To this end the CGP li-

brary is an open source project available at www.cgplibrary.co.uk with the devel-

opment code hosted with github [231] at https://github.com/AndrewJamesTurner/

CGP-Library. The ease of use comes from providing a simple API, full documentation

and numerous tutorials introducing various aspects of the library with example code.

“Out of the box” the CGP library can be used to create symbolic equations, Boolean

logic circuits and ANNs; Cartesian Genetic Programming of Artificial Neural Networks

(CGPANN). However, the CGP library also allows users to define their own custom node

functions; using the API. Therefore the CGP library can be applied to many additional

domains. By default the CGP library fitness function is configured for supervised learning

tasks, but by implementing custom fitness functions CGP can also be applied to reinforce-

ment learning tasks. The CGP library can also be used to create feed-forward as well as

recurrent solutions; Recurrent Cartesian Genetic Programming (RCGP).

1Currently mutation methods can only be implemented by editing the libraries source, not via an API
function, but future updates will improve this.

285

www.cgplibrary.co.uk
https://github.com/AndrewJamesTurner/CGP-Library
https://github.com/AndrewJamesTurner/CGP-Library

Appendix C: Cartesian Genetic Programming Library

C.4 Visualisation

Visualisation tools are often useful in order to gain an understanding of the solutions

found or attempted during evolution. The CGP library currently provides three methods

for inspecting chromosomes.

The first function, printChromosome, displays chromosomes as text in the terminal

/ command prompt. A typical CGP chromosome displayed using printChromosome is

given in Table C.1. Each input and functioning node is labelled with its index in the

chromosome. There is a textual description of the node e.g. input for input nodes or

the operation for the function nodes. Function node operations are followed by space

separated values describing each node’s inputs. Active nodes are also labelled with an ‘*’.

Finally the last line gives the nodes used as chromosome outputs.

Table C.1: Example CGP chromosome displayed using printChromosome.

(0): input
(1): sin 0 *
(2): mul 0 0
(3): mul 0 1 *
(4): add 1 3 *
(5): div 1 0
(6): div 2 5
(7): sin 1
(8): mul 4 1 *
outputs: 8

The second method for visualising CGP chromosomes makes use of the open source

cross platform Graphviz utility [61]. The CGP library function saveChromosomeDot cre-

ates a Graphviz “.dot” file which can be used by Graphviz to create a image similar to

that in Figure C.1. The chromosomes are displayed with the inputs on the left, outputs

on the right and the position of the internal nodes optimised by Graphviz. Function nodes

are labelled with their functionality and given in bold if active.

The third method for visualising CGP chromosomes makes use of the open

source cross platform LATEX typesetting program [172]. The CGP library function

saveChromosomeLatex creates a LATEX “.tex” file which can be used by LATEX (or

pdfLaTeX) to create an equation similar to that in Equation C.4.1. Equation C.4.1 gives

a mathematical description of the same chromosome given in Table C.1 and Figure C.1.

Where x0 is the single program input and f0(x0) is the mapping between this input and

286

C.5 NeuroEvolution

Input 0

sin

mul

mul

div

add

sin

mul

div

Output 0

Figure C.1: Example CGP chromosome displayed using saveChromosomeDot.

the single chromosome output2. This equation represents the phenotype behaviour of the

chromosomes and so only represents the functionality of the active nodes in the chromo-

some. The previous two methods show the active and inactive nodes.

f0(x0) = ((sin(x0) + (x0 × sin(x0)))× sin(x0)) (C.4.1)

These three very distinct methods for visualising CGP chromosomes should enable

users to gain an understanding of the evolved solutions. Additionally CGP chromosomes

can be saved, using saveChromosome, to an easily parsed “.csv” file. This file can then be

read by other user created tools for more bespoke visualisation.

C.5 NeuroEvolution

CGPANN is a NeuroEvolution (NE) extension of CGP used throughout this thesis. The

CGP library is capable of using CGP to evolve ANNs by simply using suitable node

functions i.e. logistic sigmoid. The necessary connection weights are always present in

the CGP library but ignored unless required by the transfer function. The range of the

connection weights, and other parameters associated with evolving ANNs, can also be set

through the API.

2For simplicity, here a single input single output CGP chromosome has been displayed. However, in
general the CGP library is capable of creating multiple input multiple output programs.

287

Appendix C: Cartesian Genetic Programming Library

C.6 Recurrent Networks

Another development made to CGP during this thesis is RCGP. RCGP allows recur-

rent program structure to be evolved including recurrent equations and Recurrent Arti-

ficial Neural Network (RANN). This functionality of the CGP library is controlled by a

recurrentConnectionProbability parameter which is initially set as zero percent; standard

CGP. The value of the recurrentConnectionProbability can then be set to a non-zero value

using the API to enable the creation of recurrent program structures.

C.7 Licenses

The CGP library is released under the open source GNU lesser general public license

version 3 [81]. The library is released under the lesser general public license so it can

be used in open source, closed source and commercial applications under the conditions

described in the license. The documentation associated with the CGP library is released

under the open source GNU Free Documentation License version 1.3 [80].

C.8 Using the CGP Library

Complete documentation for the CGP library, including installation, tutorials and the API

can be found at www.cgplibrary.co.uk. In this section only a basic use case is described.

The CGP library uses a number of structures to store data associated with the li-

brary; such as the CGP library parameters, training sets and chromosomes. Functions are

provided to initialise and free these structures.

A parameters structure is used to store the general parameters which control the evolu-

tionary strategy used by CGP; for instance it describes the selection scheme and mutation

method to be used. The parameters structures are initialised using initialiseParameters

which takes as arguments the dimensions of the chromosomes to be evolved. Many of the

default values stored in parameters structures, such as the mutation rate, can be altered

but this is not necessary for basic use. Newly initialised parameters structures contain

an empty function set and it is the responsibility of the user to populate this function

set with functions. This is achieved using addNodeFunction which takes as arguments an

initialised parameters structure and a comma separated string of function names. There

are currently 30 possible node functions separated into four types: symbolic functions,

288

www.cgplibrary.co.uk

C.9 Discussion

Boolean logic gates, neuron transfer functions and other3. For inspection of the status of

the parameters structure, printParameters displays the stored parameters in the terminal

/ command prompt.

The dataSet structures store training or testing data which can be used by the fitness

function when assigning a fitnesses to chromosomes. The dataSet structures can be ini-

tialised using initialiseDataSetFromFile which takes as arguments the location of the file

containing the training/testing data; given in a specific format4.

Once a parameters structure (with a populated function set) and a dataSet structure

have been initialised, CGP can be applied to a given task. This can be achieved using

runCGP, which takes as arguments a parameters and dataSet structure as well as the num-

ber of generations allowed before terminating the search. After runCGP has terminated,

it returns an initialised chromosome structure containing the best chromosome (solution)

found. This chromosome structure can be visualised using printChromosome.

As can be seen, very little “boilerplate” code is required to use the CGP library.

Additionally, repeatedly applying CGP to a given task to determine average behaviour

requires only slight modification and the use of repeatCGP instead of runCGP.

Example C code which follows the previous description is given in Listing C.1. As can

be seen very few lines of C are required to apply CGP to a given task.

C.9 Discussion

This Appendix has described a new cross platform open source CGP library intended for

teaching, academic research and real world applications. What distinguishes this CGP

library from previous implementations is that it defines a well-documented API which can

be used to apply CGP to many areas. For instance, it can be used to apply CGP to a given

task, used as the “back-end” to implement other CGP software (such as a CGP command

line tool) or used in real applications to utilise evolved solutions. The CGP library also

includes many helper functions to allow easy application to teaching, academic research

and real applications.

The CGP library also includes full documentation and tutorials. This is included to

ease the learning curve for new users and to introduce more advanced features of the

3Interestingly using a mixture of these three types is also possible.
4The first line contains the number of inputs, outputs and the number of data samples. Subsequent

lines contain the inputs followed by the outputs for each sample. All values are comma separated.

289

Appendix C: Cartesian Genetic Programming Library

library. It is hoped that this new CGP library will encourage others to try CGP as an

alternative to tree-based GP.

Listing C.1: Example use of CGP library.

#include <stdio.h>

#include <cgp.h>

int main(void){

struct parameters *params = NULL;

struct dataSet *trainingData = NULL;

struct chromosome *chromo = NULL;

int numInputs = 1;

int numNodes = 50;

int numOutputs = 1;

int nodeArity = 2;

int numGens = 1000;

params = initialiseParameters(numInputs , numNodes ,

numOutputs , nodeArity);

addNodeFunction(params , "add ,sub ,mul ,div");

printParameters(params);

trainingData = initialiseDataSetFromFile("temp.data");

chromo = runCGP(params , trainingData , numGens);

printChromosome(chromo);

freeDataSet(trainingData);

freeChromosome(chromo);

freeParameters(params);

return 0;

}

290

Abbreviations

ADF Automatically Defined Functions

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

ARIMA Autoregressive Integrated Moving Average

BBO Biogeography-Based Optimisation

BCGP Balanced Cartesian Genetic Programming

CE Cellular Encoding

CGPANN Cartesian Genetic Programming of Artificial Neural Networks

CGP Cartesian Genetic Programming

CGPCN Cartesian Genetic Programming Computational Network

CMA-ES Covariance Matrix Adaptation Evolutionary Strategies

CNE Conventional NeuroEvolution

CoSyNE Cooperative Synapse NeuroEvolution

COVNET Cooperative Co-evolution Model for evolving Artificial Neural Networks

CPPN Compositional Pattern Producing Network

CPU Central Processing Unit

DE Differential Evolution

DirE Directly Encoded NeuroEvolution

DXNN Deus Ex Neural Network

EA Evolutionary Algorithm

EANT Evolutionary Acquisition of Neural Topologies

EANT2 Evolutionary Acquisition of Neural Topologies 2

291

EC Evolutionary Computation

ECGP Embedded Cartesian Genetic Programming

ENGD Explicit Neutral Genetic Drift

EP Evolutionary Programming

EPNet Evolutionary Programming Artificial Networks

ES Evolutionary Strategies

ESN Echo State Networks

ESP Enforced SubPopulation

ETS Exponential Smoothing

EuSANE Eugenic Symbiotic Adaptive NeuroEvolution

FANN Fast Artificial Neural Network Library

GA Genetic Algorithm

GE Grammatical Evolution

GEP Gene Expression Programming

GNARL GeNeralized Acquisition of Recurrent Links

GNN General Neural Networks

GP Genetic Programming

GSGP Geometric Semantic Genetic Programming

HCGA Hierarchical Coevolutionary Genetic Algorithm

HyperNEAT Hypercube-based NeuroEvolution of Augmenting Topologies

INGD Implicit Neutral Genetic Drift

KNN K Nearest Neighbours

LGP Linear Genetic Programming

LSM Liquid State Machines

LUT look-up table

MAE Mean Absolute Error

MA Memetic Algorithms

MCGPANN Modular Cartesian Genetic Programming Artificial Neural Networks

MCGP Modular Cartesian Genetic Programming

MEAN Mean Forecast

292

MIMO Multiple-Input Multiple-Output

ML Machine Learning

MLP Multilayer Perceptrons

MNN Modular Neural Network

MSE Mean Square Error

NEAT NeuroEvolution of Augmenting Topologies

NE NeuroEvolution

NevA NeuroEvolutionary Algorithm

NGD Neutral Genetic Drift

NMSE Normalised Mean Square Error

PDGP Parallel Distributed Genetic Programming

PLS Partial Least Squares

Push-GP Push Genetic Programming

RANN Recurrent Artificial Neural Network

RCGPANN Recurrent Cartesian Genetic Programming of Artificial Neural Networks

RCGP Recurrent Cartesian Genetic Programming

RC Reservoir Computing

RMSE Root Mean Square Error

RPDT Recursive Partitioning Decision Trees

RWF random walk forecasting

SAE Sum of Absolute Errors

SANE Symbiotic Adaptive NeuroEvolution

SI Swarm Intelligence

SMCGP Self Modifying Cartesian Genetic Programming

SNN Spiking Neural Networks

SOM Self Organizing Maps

SRM Spike Response Model

SVM Support Vector Machines

TF Transfer Function

TWEANNs Topology and Weight Evolving Artificial Neural Networks

293

References

[1] L F Abbott. Lapicques introduction of the integrate-and-fire model neuron (1907).
Brain Research Bulletin, 50(5):303–304, 1999.

[2] J. Abonyi and F. Szeifert. Supervised fuzzy clustering for the identification of fuzzy
classifiers. Pattern Recognition Letters, 24(14):2195–2207, 2003.

[3] A. Agapitos and S. M. Lucas. Learning recursive functions with object oriented
genetic programming. In European Conferance on Genetic Prpgramming (EuroGP),
pages 166–177, 2006.

[4] LA Aguirre, C Letellier, and J Maquet. Forecasting the time series of sunspot
numbers. Solar Physics, 249(1):103–120, 2008.

[5] Arbab Masood Ahmad and Gul Muhammad Khan. Bio-signal Processing Using
Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN). In
Frontiers of Information Technology (FIT), 2012 10th International Conference on,
pages 261–268. IEEE, 2012.

[6] Arbab Masood Ahmad, Gul Muhammad Khan, and Sahibzada Ali Mahmud. Clas-
sification of Arrhythmia Types using Cartesian Genetic Programming Evolved Ar-
tificial Neural Networks. In Engineering Applications of Neural Networks, pages
282–291. Springer, 2013.

[7] Arbab Masood Ahmad, Gul Muhammad Khan, and Sahibzada Ali Mahmud. Clas-
sification of Mammograms ising Cartesian Genetic Programming Evolved Artificial
Neural Networks. In Artificial Intelligence Applications and Innovations, pages 203–
213. Springer, 2014.

[8] Arbab Masood Ahmad, Gul Muhammad Khan, Sahibzada Ali Mahmud, and Ju-
lian Francis Miller. Breast cancer detection using Cartesian Genetic Programming
evolved Artificial Neural Networks. In Proceedings of the 14th annual conference on
Genetic and evolutionary computation, pages 1031–1038. ACM, 2012.

[9] Fadzil Ahmad, Nor Ashidi Mat Isa, Zakaria Hussain, and Siti Noraini Sulaiman. A
genetic algorithm-based multi-objective optimization of an artificial neural network
classifier for breast cancer diagnosis. Neural Computing and Applications, pages 1–9,
2012.

[10] A.A. Albrecht, G. Lappas, S.A. Vinterbo, C. Wong, and L. Ohno-Machado. Two
applications of the LSA machine. In Proceedings of the 9th International Conference
on Neural Information Processing, volume 1, pages 184–189. IEEE, 2002.

295

References

[11] Jawad Ali, Gul Muhammad Khan, and Sahibzada Ali Mahmud. Enhancing Growth
Curve Approach Using CGPANN for Predicting the Sustainability of New Food
Products. In Artificial Intelligence Applications and Innovations, pages 286–297.
Springer, 2014.

[12] Jawad Ali, Faheem Zafari, Gul Muhammad Khan, and S Ali Mahmud. Future
Clients’ Requests Estimation for Dynamic Resource Allocation in Cloud Data Cen-
ter Using CGPANN. In Machine Learning and Applications (ICMLA), 2013 12th
International Conference on, volume 2, pages 331–334. IEEE, 2013.

[13] C.W. Anderson. Learning to control an inverted pendulum using neural networks.
Control Systems Magazine, IEEE, 9(3):31–37, 1989.

[14] Edgar Anderson. The irises of the gaspe peninsula. Bulletin of the American Iris
society, 59:2–5, 1935.

[15] P.J. Angeline, G.M. Saunders, and J.B. Pollack. An evolutionary algorithm that
constructs recurrent neural networks. Neural Networks, IEEE Transactions on,
5(1):54–65, 1994.

[16] J Scott Armstrong. Principles of forecasting: A Handbook for Researchers and
Practitioners, chapter Extrapolation for time-series and cross-sectional data, pages
217–243. Springer, 2001.

[17] J Scott Armstrong and Fred Collopy. Error measures for generalizing about forecast-
ing methods: Empirical comparisons. International journal of forecasting, 8(1):69–
80, 1992.

[18] Laurence Ashmore and Julian Francis Miller. Evolutionary art with cartesian genetic
programming. https://sites.google.com/site/julianfrancismiller/publications, 2013.

[19] Amir F Atiya and Alexander G Parlos. New results on recurrent network train-
ing: unifying the algorithms and accelerating convergence. Neural Networks, IEEE
Transactions on, 11(3):697–709, 2000.

[20] Marijke F Augusteijn and Thomas P Harrington. Evolving transfer functions for
artificial neural networks. Neural Computing & Applications, 13(1):38–46, 2004.

[21] J Mark Baldwin. A new factor in evolution (continued). American naturalist, pages
536–553, 1896.

[22] Wolfgang Banzhaf. Genotype-phenotype-mapping and neutral variation-a case study
in genetic programming. In Proceedings of the International Conference on Evolu-
tionary Computation. The Third Conference on Parallel Problem Solving from Na-
ture: Parallel Problem Solving from Nature, pages 322–332. Springer-Verlag, 1994.

[23] Lionel Barnett. Ruggedness and neutrality: The nkp family of fitness landscapes.
In Artificial Life VI: Proceedings of the sixth international conference on Artificial
life, pages 18–27, 1998.

[24] A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE Transactions on systems, man,
and cybernetics, 13(5):834–846, 1983.

296

References

[25] Jonathan Baxter. The evolution of learning algorithms for artificial neural networks.
Complex systems, pages 313–326, 1993.

[26] David M. Beazley. SWIG: An Easy to Use Tool for Integrating Scripting Languages
with C and C++. In Proceedings of the 4th Conference on USENIX Tcl/Tk Work-
shop, 1996 - Volume 4, TCLTK’96, pages 15–15, Berkeley, CA, USA, 1996. USENIX
Association.

[27] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training
of deep networks. Advances in neural information processing systems, 19:153, 2007.

[28] James C Bezdek, James M Keller, Raghu Krishnapuram, Ludmila I Kuncheva, and
Nikhil R Pal. Will the real iris data please stand up? IEEE Transactions on Fuzzy
Systems, 7(3):368–369, 1999.

[29] Tobias Blickle and Lothar Thiele. Genetic programming and redundancy. choice,
1000:2, 1994.

[30] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth.
Occam’s razor. Information processing letters, 24(6):377–380, 1987.

[31] Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in tem-
porally encoded networks of spiking neurons. Neurocomputing, 48(1):17–37, 2002.

[32] George EP Box, Gwilym M Jenkins, and Gregory C Reinsel. Time series analysis:
forecasting and control. John Wiley & Sons, 2013.

[33] M.F. Brameier and W. Banzhaf. Linear Genetic Programming. Springer, 2007.

[34] Andreas M. Brandmaier. pdc: Permutation Distribution Clustering, 2014. R package
version 0.5.

[35] Zdeněk Buk, Jan Koutńık, and Miroslav Šnorek. NEAT in HyperNEAT substituted
with genetic programming. In Adaptive and Natural Computing Algorithms, pages
243–252. Springer, 2009.

[36] Erick Cantú-Paz and Chandrika Kamath. An empirical comparison of combinations
of evolutionary algorithms and neural networks for classification problems. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 35(5):915–927,
2005.

[37] David J Chalmers. The evolution of learning: An experiment in genetic connection-
ism. In Proceedings of the 1990 connectionist models summer school, pages 81–90.
San Mateo, CA, 1990.

[38] Stephan K Chalup and Lukasz Wiklendt. Variations of the two-spiral task. Connec-
tion Science, 19(2):183–199, 2007.

[39] Kyriakos C Chatzidimitriou and Pericles A Mitkas. A neat way for evolving echo
state networks. In ECAI, pages 909–914, 2010.

[40] Abdennasser Chebira and Kourosh Madani. Advances in Soft Computing, volume 19,
chapter A Neural Network Based Approach For Sensors Issued Data Fusion, pages
155–160. Physica-Verlag HD, 2003.

297

References

[41] Lin Chen and Damminda Alahakoon. Neuroevolution of augmenting topologies with
learning for data classification. In Information and Automation, 2006. ICIA 2006.
International Conference on, pages 367–371. IEEE, 2006.

[42] Janet Clegg, James Alfred Walker, and Julian Frances Miller. A new crossover
technique for Cartesian Genetic Programming. In Proceedings of the 9th annual
conference on Genetic and evolutionary computation, pages 1580–1587. ACM, 2007.

[43] Jacob Cohen et al. A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20(1):37–46, 1960.

[44] Mark Collins. Finding needles in haystacks is harder with neutrality. Genetic Pro-
gramming and Evolvable Machines, 7(2):131–144, 2006.

[45] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[46] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search.
In Computers and games, pages 72–83. Springer, 2006.

[47] CrossValidated. How to choose the number of hidden layers and nodes in a feedfor-
ward neural network?, April 2015.

[48] George Cybenko. Approximation by superpositions of a sigmoidal function. Math-
ematics of control, signals and systems, 2(4):303–314, 1989.

[49] Charles Darwin. On the Origin of Species. 1859.

[50] Jan G De Gooijer and Rob J Hyndman. 25 years of time series forecasting. Inter-
national journal of forecasting, 22(3):443–473, 2006.

[51] Friedrich Leisch & Evgenia Dimitriadou. mlbench: Machine Learning Benchmark
Problems. R package version 2.1-1, 2010.

[52] Juan Peralta Donate, German Gutierrez Sanchez, and Araceli Sanchis de Miguel.
Time series forecasting. a comparative study between an evolving artificial neural
networks system and statistical methods. International Journal on Artificial Intel-
ligence Tools, 21(01), 2012.

[53] Keith L. Downing. Adaptive genetic programs via reinforcement learning. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),
pages 19–26. Morgan Kaufmann, 2001.

[54] W lodzis law Duch and Norbert Jankowski. Survey of neural transfer functions. Neural
Computing Surveys, 2(1):163–212, 1999.

[55] Wlodzislaw Duch and Norbert Jankowski. Transfer functions: hidden possibilities
for better neural networks. In ESANN, pages 81–94, 2001.

[56] John W. Eaton, David Bateman, and Soren Hauberg. GNU Octave version 3.0.1
manual: a high-level interactive language for numerical computations. CreateSpace
Independent Publishing Platform, 2009.

[57] Marc Ebner. On the search space of genetic programming and its relation to nature’s
search space. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999
Congress on, volume 2. IEEE, 1999.

298

References

[58] Marc Ebner, Patrick Langguth, Juergen Albert, Mark Shackleton, and Rob Ship-
man. On neutral networks and evolvability. In Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, volume 1, pages 1–8. IEEE, 2001.

[59] Marc Ebner, Mark Shackleton, and Rob Shipman. How neutral networks influence
evolvability. Complexity, 7(2):19–33, 2001.

[60] Agoston E Eiben and Jim Smith. From evolutionary computation to the evolution
of things. Nature, 521(7553):476–482, 2015.

[61] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphviz - open source graph drawing tools. In Graph Drawing, pages
483–484. Springer, 2002.

[62] R. A Fisher. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, 7(2):179–188, 1936.

[63] Evelyn Fix and Joseph L Hodges Jr. Discriminatory analysis-nonparametric dis-
crimination: consistency properties. Technical report, DTIC Document, 1951.

[64] D. Floreano, P. Dürr, and C. Mattiussi. Neuroevolution: from architectures to
learning. Evolutionary Intelligence, 1(1):47–62, 2008.

[65] Dario Floreano and Claudio Mattiussi. Evolution of spiking neural controllers for
autonomous vision-based robots. LNCS, page 3861, 2001.

[66] David B. Fogel. Evolutionary Computation: The Fossil Record. Wiley-IEEE Press,
1st edition, 1998.

[67] LJ Fogel, AJ Owens, and MJ Walsh. Artificial Intelligence through Simulated Evo-
lution. John Wiley, 1966.

[68] Carlos M Fonseca and Marisol B Correia. Developing redundant binary represen-
tations for genetic search. In Evolutionary Computation, 2005. The 2005 IEEE
Congress on, volume 2, pages 1675–1682. IEEE, 2005.

[69] Stephanie Forrest and Melanie Mitchell. Relative building-block fitness and the
building-block hypothesis, 1993.

[70] Max Kuhn. Contributions from Jed Wing, Steve Weston, Andre Williams, Chris
Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the
R Core Team, and Michael Benesty. caret: Classification and Regression Train-
ing, 2014. R package version 6.0-37.

[71] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by
continuous time recurrent neural networks. Neural networks, 6(6):801–806, 1993.

[72] John Galletly. Evolutionary algorithms in theory and practice: Evolution strategies,
evolutionary programming, genetic algorithms. Kybernetes, 27(8):979–980, 1998.

[73] Edgar Galván-López, Stephen Dignum, and Riccardo Poli. The effects of constant
neutrality on performance and problem hardness in GP. In EuroGP 2008, pages
312–324. Springer, 2008.

299

References

[74] Edgar Galván-López, Riccardo Poli, Ahmed Kattan, Michael ONeill, and Anthony
Brabazon. Neutrality in evolutionary algorithms what do we know? Evolving Sys-
tems, 2(3):145–163, 2011.

[75] Nicolás Garćıa-Pedrajas, César Hervás-Mart́ınez, and José Muñoz-Pérez. Covnet:
a cooperative coevolutionary model for evolving artificial neural networks. Neural
Networks, IEEE Transactions on, 14(3):575–596, 2003.

[76] Surabhi Gaur and MC Deo. Real-time wave forecasting using genetic programming.
Ocean Engineering, 35(11):1166–1172, 2008.

[77] Zoubin Ghahramani. Advanced Lectures on Machine Learning, chapter Unsupervised
Learning, pages 72–112. Springer, 2004.

[78] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the International Conference on Artificial Intelli-
gence and Statistics (AISTATS10). Society for Artificial Intelligence and Statistics,
2010.

[79] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In International Conference on Artificial Intelligence and Statistics, pages
315–323, 2011.

[80] GNU. GNU Free Documentation License, April 2014.

[81] GNU. GNU Lesser General Public License, April 2014.

[82] Brian W Goldman and William F Punch. Length bias and search limitations in
Cartesian Genetic Programming. In Proceeding of the fifteenth annual conference on
Genetic and evolutionary computation conference, pages 933–940. ACM, 2013.

[83] Brian W Goldman and William F Punch. Reducing Wasted Evaluations in Cartesian
Genetic Programming. In Proceedings of the 16th European Conference on Genetic
Programming (EuroGP), volume 7831, pages 61–72. Springer Verlag, 2013.

[84] B.W. Goldman and W.F. Punch. Analysis of Cartesian Genetic Programmings
Evolutionary Mechanisms. Evolutionary Computation, IEEE Transactions on,
PP(99):1–1, 2014. In press.

[85] F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior.
Adaptive Behavior, 5(3-4):317–342, 1997.

[86] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Efficient non-linear control through
neuroevolution. Machine Learning: ECML 2006, pages 654–662, 2006.

[87] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution
through cooperatively coevolved synapses. The Journal of Machine Learning Re-
search, 9:937–965, 2008.

[88] Faustino John Gomez and Risto Miikkulainen. Robust non-linear control through
neuroevolution. PhD thesis, The University of Texas at Austin, 2003.

[89] F.J. Gomez and R. Miikkulainen. Solving non-markovian control tasks with neu-
roevolution. In International Joint Conference on Artificial Intelligence, volume 16,
pages 1356–1361, 1999.

300

References

[90] F.J. Gomez and R. Miikkulainen. Robust non-linear control through neuroevolution.
Computer Science Department, University of Texas at Austin, 2003.

[91] James Gosling. The Java language specification. Addison-Wesley Professional, 2000.

[92] F. Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic Algo-
rithm. PhD thesis, LUniversiteClaudeBernard-Lyon I, 1994.

[93] F. Gruau, D. Whitley, and L. Pyeatt. A comparison between cellular encoding and
direct encoding for genetic neural networks. In Proceedings of the First Annual
Conference on Genetic Programming, pages 81–89. MIT Press, 1996.

[94] B. Guijarro-Berdiñas, O. Fontenla-Romero, B. Pérez-Sánchez, and P. Fraguela. A
linear learning method for multilayer perceptrons using least-squares. Intelligent
Data Engineering and Automated Learning, pages 365–374, 2007.

[95] Stefan Haflidason. On the significance of the permutation problem in neuroevolution.
PhD thesis, The University of Manchester, 2010.

[96] Hani Hagras, Anthony Pounds-Cornish, Martin Colley, Victor Callaghan, and Gra-
ham Clarke. Evolving spiking neural network controllers for autonomous robots.
In Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, volume 5, pages 4620–4626. IEEE, 2004.

[97] H.J. Hamilton, N. Shan, and N. Cercone. RIAC: A rule induction algorithm based
on approximate classification. Technical report, University of Regina, 1996.

[98] Peter JB Hancock. Genetic algorithms and permutation problems: A comparison of
recombination operators for neural net structure specification. In Combinations of
Genetic Algorithms and Neural Networks, 1992., COGANN-92. International Work-
shop on, pages 108–122. IEEE, 1992.

[99] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation
in evolution strategies. Evolutionary computation, 9(2):159–195, 2001.

[100] S. Harding, J. F. Miller, and W. Banzhaf. Self Modifying Cartesian Genetic Program-
ming: Fibonacci, Squares, Regression and Summing. In 12th European Conference,
EuroGP, pages 133–144. Springer-Verlang, 2009.

[101] Simon Harding, Jrgen Leitner, and Jrgen Schmidhube. Genetic Programming Theory
and Practice X, chapter Cartesian Genetic Programming for Image Processing, pages
31–44. Springer, 2013.

[102] Simon Harding, Julian F Miller, and Wolfgang Banzhaf. Self modifying Cartesian
Genetic Programming: finding algorithms that calculate pi and e to arbitrary pre-
cision. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation, pages 579–586. ACM, 2010.

[103] Simon Harding, Julian F Miller, and Wolfgang Banzhaf. SMCGP2: self modifying
Cartesian Genetic Programming in two dimensions. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation, pages 1491–1498. ACM, 2011.

[104] Simon L Harding, Julian F Miller, and Wolfgang Banzhaf. Self-modifying Cartesian
Genetic Programming. pages 101–124, 2011.

301

References

[105] Alex Hazell and Stephen L Smith. Towards an objective assessment of alzheimer’s
disease: the application of a novel evolutionary algorithm in the analysis of figure
copying tasks. In Proceedings of the 2008 GECCO conference companion on Genetic
and evolutionary computation, pages 2073–2080. ACM, 2008.

[106] Luis Javier Herrera, Héctor Pomares, Ignacio Rojas, Alberto Guillén, Alberto Prieto,
and Olga Valenzuela. Recursive prediction for long term time series forecasting using
advanced models. Neurocomputing, 70(16):2870–2880, 2007.

[107] Andrew A Hill, Peter LaPan, Yizheng Li, and Steve Haney. Impact of image seg-
mentation on high-content screening data quality for SK-BR-3 cells. BMC bioinfor-
matics, 8(1):340, 2007.

[108] G.E. Hinton, S. Osindero, and Y.W. Teh. A fast learning algorithm for deep belief
nets. Neural computation, 18(7):1527–1554, 2006.

[109] Geoffrey E Hinton and Terrence J Sejnowski. Optimal perceptual inference. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pages 448–453. IEEE Piscataway, NJ, 1983.

[110] Henrique Steinherz Hippert, Carlos Eduardo Pedreira, and Reinaldo Castro Souza.
Neural networks for short-term load forecasting: A review and evaluation. Power
Systems, IEEE Transactions on, 16(1):44–55, 2001.

[111] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. J Physiol, 117(4):500544,
1952.

[112] V. Hoekstra. An overview of neuroevolution techniques. 2011.

[113] John H Holland. Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. U Michigan
Press, 1975.

[114] Charles C Holt. Forecasting seasonals and trends by exponentially weighted moving
averages. International Journal of Forecasting, 20(1):5–10, 2004.

[115] DC Hope, E Munday, and SL Smith. Evolutionary algorithms in the classification of
mammograms. In Computational Intelligence in Image and Signal Processing, 2007.
CIISP 2007. IEEE Symposium on, pages 258–265. IEEE, 2007.

[116] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):2554–
2558, 1982.

[117] Kurt Hornik, Christian Buchta, and Achim Zeileis. Open-source machine learning:
R meets weka. Computational Statistics, 24(2):225–232, 2009.

[118] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[119] Radek Hrbacek and Vaclav Dvorak. Bent Function Synthesis by Means of Cartesian
Genetic Programming. In Parallel Problem Solving from Nature–PPSN XIII, pages
414–423. Springer, 2014.

302

References

[120] M.L. Huang, Y.H. Hung, and W.Y. Chen. Neural network classifier with entropy
based feature selection on breast cancer diagnosis. Journal of medical systems,
34(5):865–873, 2010.

[121] U Huebner, NB Abraham, and CO Weiss. Dimensions and entropies of chaotic
intensity pulsations in a single-mode far-infrared NH 3 laser. Physical Review A,
40(11):6354, 1989.

[122] L. Huelsbergen. Learning recursive sequences via evolution of machine-language
programs. In Proceedings of the Second Annual Conference on Genetic Programming,
page 186194, 1997.

[123] Martijn A Huynen. Exploring phenotype space through neutral evolution. Journal
of molecular evolution, 43(3):165–169, 1996.

[124] Martijn A Huynen, Peter F Stadler, and Walter Fontana. Smoothness within rugged-
ness: the role of neutrality in adaptation. Proceedings of the National Academy of
Sciences, 93(1):397–401, 1996.

[125] R.J. Hyndman and Y. Khandakar. Automatic time series forecasting: The forecast
package for R. Statistical Software, 26(3), 2008.

[126] Rob J Hyndman, Muhammad Akram, and Blyth C Archibald. The admissible pa-
rameter space for exponential smoothing models. Annals of the Institute of Statistical
Mathematics, 60(2):407–426, 2008.

[127] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, 2014.

[128] Rob J Hyndman, George Athanasopoulos, Slava Razbash, Drew Schmidt, Zhenyu
Zhou, Yousaf Khan, Christoph Bergmeir, and Earo Wang. forecast: Forecasting
functions for time series and linear models, 2014. R package version 5.4.

[129] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy.
International journal of forecasting, 22(4):679–688, 2006.

[130] C. Igel. Neuroevolution for reinforcement learning using evolution strategies. In The
Congress on Evolutionary Computation, CEC’03, volume 4, pages 2588–2595. CEC,
2003.

[131] Eugene M Izhikevich. Simple model of spiking neurons. Neural Networks, IEEE
Transactions on, 14(6):1569–1572, 2003.

[132] Eugene M Izhikevich. Which model to use for cortical spiking neurons? Neural
Networks, IEEE Transactions on, 15(5):1063–1070, 2004.

[133] Herbert Jaeger. The echo state approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Center
for Information Technology GMD Technical Report, 148:34, 2001.

[134] David Jefferson, Rob Collins, Claus Cooper, Michael Dyer, Margot Flowers, Richard
Korf, Charles Taylor, and Alan Wang. The genesys system: Evolution as a theme in
artificial life. In Proceedings of Second Conference on Artificial Life. Redwood City,
CA: Addison-Wesley, 1990.

303

References

[135] Yongnan Ji, Jin Hao, Nima Reyhani, and Amaury Lendasse. Direct and recursive
prediction of time series using mutual information selection. In Proceedings of the 8th
international conference on Artificial Neural Networks: computational Intelligence
and Bioinspired Systems, pages 1010–1017. Springer-Verlag, 2005.

[136] Michael I Jordan. Serial order: A parallel distributed processing approach. Technical
report, Institute for Cognitive Science, 1986.

[137] Mark A Kaboudan. Genetic programming prediction of stock prices. Computational
Economics, 16(3):207–236, 2000.

[138] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Artificial Intelligence Research, 4:237–285, 1996.

[139] Tatiana Kalganova and Julian Miller. Evolving more efficient digital circuits by
allowing circuit layout evolution and multi-objective fitness. In Evolvable Hardware,
1999. Proceedings of the First NASA/DoD Workshop on, pages 54–63. IEEE, 1999.

[140] SM Kamruzzaman, A.R. Hasan, A.B. Siddiquee, M. Mazumder, and E. Hoque. Med-
ical diagnosis using neural network. In Proceedings of the International Conference
on Electrical and Computer Engineering (ICECE-2004), pages 537–540, 2004.

[141] M. Karabatak and M.C. Ince. An expert system for detection of breast cancer
based on association rules and neural network. Expert Systems with Applications,
36(2):3465–3469, 2009.

[142] Alexandros Karatzoglou, Alex Smola, Kurt Hornik, and Achim Zeileis. kernlab –
an S4 package for kernel methods in R. Journal of Statistical Software, 11(9):1–20,
2004.

[143] Yohannes Kassahun. Towards a unified approach to learning and adaptation. PhD
thesis, Inst. für Informatik und Praktische Mathematik, 2006.

[144] A. Kattan, R. Abdullah, and R.A. Salam. Harmony search based supervised training
of artificial neural networks. In International Conference on Intelligent Systems,
Modelling and Simulation (ISMS), pages 105–110. IEEE, 2010.

[145] Brian W Kernighan, Dennis M Ritchie, and Per Ejeklint. The C programming
language, volume 2. prentice-Hall Englewood Cliffs, 1988.

[146] G Khan, Rabia Arshad, S Mahmud, and Fahad Ullah. Intelligent bandwidth esti-
mation for variable bit rate traffic. Evolutionary Computation, IEEE Transactions
on, 19(1):151–155, 2015.

[147] G.M. Khan, J.F. Miller, and D.M. Halliday. A developmental model of neural compu-
tation using Cartesian Genetic Programming. In Genetic And Evolutionary Com-
putation Conference: Proceedings of the 2007 GECCO conference companion on
Genetic and evolutionary computation, pages 2535–2542, 2007.

[148] G.M. Khan, J.F. Miller, and D.M. Halliday. Developing neural structure of two
agents that play checkers using Cartesian Genetic Programming. In Proceedings
of the 2008 GECCO conference on Genetic and evolutionary computation, pages
2169–2174. ACM, 2008.

304

References

[149] Gul Muhammad Khan, Shahid Khan, and Fahad Ullah. Short-term daily peak load
forecasting using fast learning neural network. In Intelligent Systems Design and
Applications (ISDA), 2011 11th International Conference on, pages 843–848. IEEE,
2011.

[150] Gul Muhammad Khan, Atif Rashid Khattak, Faheem Zafari, and Sahibzada Ali
Mahmud. Electrical load forecasting using fast learning recurrent neural networks.
In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages
1–6. IEEE, 2013.

[151] Gul Muhammad Khan, Fahad Ullah, and Sahibzada Ali Mahmud. MPEG-4 Internet
Traffic Estimation Using Recurrent CGPANN. In Engineering Applications of Neural
Networks, pages 22–31. Springer, 2013.

[152] Gul Muhammad Khan, Faheem Zafari, and S Ali Mahmud. Very short term foad
forecasting using Cartesian Genetic Programming evolved recurrent neural networks
(CGPRNN). In Machine Learning and Applications (ICMLA), 2013 12th Interna-
tional Conference on, volume 2, pages 152–155. IEEE, 2013.

[153] Maryam Mahsal Khan, Masood Arbab Ahmad, Muhammad Gul Khan, and Ju-
lian F Miller. Fast learning neural networks using Cartesian Genetic Programming.
Neurocomputing, 121:274–289, 2013.

[154] Maryam Mahsal Khan, Gul Muhammad Khan, and Julian F Miller. Evolution of
neural networks using cartesian genetic programming. In Proceedings of IEEE World
Congress on Computational Intelligence CEC 2010, 2010.

[155] M.M. Khan, G.M. Khan, and J.F. Miller. Efficient representation of recurrent neural
networks for markovian/non-markovian non-linear control problems. In Intelligent
Systems Design and Applications (ISDA), 2010 10th International Conference on,
pages 615–620. IEEE, 2010.

[156] M.M. Khan, G.M. Khan, and J.F. Miller. Evolution of optimal ANNs for non-
linear control problems using cartesian genetic programming. In Proceedings of
International Conference on Artificial Intelligence (ICAI 2010), 2010.

[157] Mehdi Khashei and Mehdi Bijari. An artificial neural network (p,d,q) model for
timeseries forecasting. Expert Systems with Applications, 37(1):479–489, 2010.

[158] Motoo Kimura et al. Evolutionary rate at the molecular level. Nature,
217(5129):624–626, 1968.

[159] Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi, et al. Optimization by simulated
annealing. science, 220(4598):671–680, 1983.

[160] Joshua D Knowles and Richard A Watson. On the utility of redundant encodings in
mutation-based evolutionary search. In Parallel Problem Solving from NaturePPSN
VII, pages 88–98. Springer, 2002.

[161] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Ijcai, volume 14, pages 1137–1145, 1995.

[162] Arthur Kordon. Tower problem, 2015.

305

References

[163] SB Kotsiantis. Supervised machine learning: A review of classification techniques.
Informatica, 31:249–268, 2007.

[164] J. Koutńık, F. Gomez, and J. Schmidhuber. Evolving neural networks in compressed
weight space. In Proceedings of the Conference on Genetic and Evolutionary Com-
putation (GECCO-10), pages 619–626, 2010.

[165] John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[166] John R Koza and James P Rice. Genetic programming II: automatic discovery of
reusable programs, volume 40. MIT press Cambridge, 1994.

[167] Max Kuhn, Steve Weston, and Nathan Coulter. C code for C5.0 by R. Quinlan.
C50: C5.0 Decision Trees and Rule-Based Models, 2014. R package version 0.1.0-21.

[168] Tin-Yau Kwok and Dit-Yan Yeung. Constructive feedforward neural networks for
regression problems: A survey. Technical report, Hong Kong: Department of Com-
puter Science, 1995.

[169] Tin-Yau Kwok and Dit-Yan Yeung. Constructive algorithms for structure learning
in feedforward neural networks for regression problems. Neural Networks, IEEE
Transactions on, 8(3):630–645, 1997.

[170] Tin-Yau Kwok and Dit-Yan Yeung. Objective functions for training new hidden
units in constructive neural networks. Neural Networks, IEEE Transactions on,
8(5):1131–1148, 1997.

[171] Jean-Baptiste Lamarck. Philosophie Zoologique. Museum d’Histoire Naturelle, 1809.

[172] Leslie Lamport. LaTeX: User’s Guide & Reference Manual. Addison-Wesley Pub-
lishing Company, Inc., 1986.

[173] V Landassuri-Moreno and John A Bullinaria. Biasing the evolution of modular
neural networks. In Evolutionary Computation (CEC), 2011 IEEE Congress on,
pages 1958–1965. IEEE, 2011.

[174] W. B. Langdon and Riccardo Poli. Foundations of Genetic Programming. Springer-
Verlag, 2002.

[175] W.B. Langdon and R. Poli. Fitness causes bloat. In P.K. Chawdhry, R. Roy, and
R.K. Pant, editors, Soft Computing in Engineering Design and Manufacturing, pages
13–22. Springer London, 1998.

[176] William B Langdon and Wolfgang Banzhaf. Repeated sequences in linear genetic
programming genomes. Complex Systems, 15(4 (c)):285–306, 2005.

[177] William B Langdon and Riccardo Poli. Why ants are hard. Technical report, School
of Computer Science, The University of Birmingham, Birmingham, UK, 1998.

[178] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. Exploring strategies for
training deep neural networks. The Journal of Machine Learning Research, 10:1–40,
2009.

306

References

[179] Yong Liu and Xin Yao. Evolutionary design of artificial neural networks with differ-
ent nodes. In Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on, pages 670–675. IEEE, 1996.

[180] David Lowe and D Broomhead. Multivariable functional interpolation and adaptive
networks. Complex systems, 2:321–355, 1988.

[181] Sean Luke and Liviu Panait. A comparison of bloat control methods for genetic
programming. Evolutionary Computation, 14(3):309–344, 2006.

[182] Mantas LukošEvičIus and Herbert Jaeger. Reservoir computing approaches to re-
current neural network training. Computer Science Review, 3(3):127–149, 2009.

[183] Liying Ma and Khashayar Khorasani. New training strategies for constructive neural
networks with application to regression problems. Neural networks, 17(4):589–609,
2004.

[184] W. Maass. Networks of spiking neurons: the third generation of neural network
models. Neural networks, 10(9):1659–1671, 1997.

[185] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing
without stable states: A new framework for neural computation based on perturba-
tions. Neural computation, 14(11):2531–2560, 2002.

[186] Michael C Mackey and Leon Glass. Oscillation and chaos in physiological control
systems. Science, 197(4300):287–289, 1977.

[187] Spyros Makridakis, Chris Chatfield, Michele Hibon, Michael Lawrence, Terence
Mills, Keith Ord, and LeRoy F Simmons. The M2-competition: A real-time judg-
mentally based forecasting study. International Journal of Forecasting, 9(1):5–22,
1993.

[188] K.P.B.O.L. Mangasarian. Neural network training via linear programming. Advances
in Optimisation and Parallel Computing, pages 56–67, 1992.

[189] OL Mangasarian, R. Setiono, and WH Wolberg. Large-Scale Numerical Optimiza-
tion, chapter Pattern recognition via linear programming: Theory and application
to medical diagnosis, pages 22–31. Philadelphia, PA: SIAM, 1990.

[190] Henry B Mann and Donald R Whitney. On a test of whether one of two random vari-
ables is stochastically larger than the other. The annals of mathematical statistics,
pages 50–60, 1947.

[191] Timmy Manning and Paul Walsh. Improving the performance of CGPANN for
breast cancer diagnosis using crossover and radial basis functions. In Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics, pages 165–176.
Springer, 2013.

[192] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit. Journal of
the American statistical Association, 46(253):68–78, 1951.

[193] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts,
2010.

307

References

[194] Brian W Matthews. Comparison of the predicted and observed secondary structure
of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure,
405(2):442–451, 1975.

[195] August Mayer and Helmut A Mayer. Multi-chromosomal representations in neu-
roevolution. In Computational Intelligence, pages 245–250, 2006.

[196] W.S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of mathematical biology, 5(4):115–133, 1943.

[197] James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli,
Leonardo Vanneschi, Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Ken-
neth De Jong, et al. Genetic programming needs better benchmarks. In Proceedings
of the fourteenth international conference on Genetic and evolutionary computation
conference, pages 791–798. ACM, 2012.

[198] Andreas Meier, Mark Gonter, and Rudolf Kruse. Accelerating convergence in carte-
sian genetic programming by using a new genetic operator. In Proceeding of the
fifteenth annual conference on Genetic and evolutionary computation conference,
pages 981–988. ACM, 2013.

[199] Willem Melssen, Ron Wehrens, and Lutgarde Buydens. Supervised kohonen net-
works for classification problems. Chemometrics and Intelligent Laboratory Systems,
83(2):99–113, 2006.

[200] Bjrn-Helge Mevik, Ron Wehrens, and Kristian Hovde Liland. pls: Partial Least
Squares and Principal Component regression, 2013. R package version 2.4-3.

[201] Julian Francis Miller. What bloat? Cartesian genetic programming on Boolean
problems. In 2001 Genetic and Evolutionary Computation Conference Late Breaking
Papers, pages 295–302, 2001.

[202] Julian Francis Miller, editor. Cartesian Genetic Programming. Springer, 2011.

[203] Julian Francis Miller. http://www.cartesiangp.co.uk/, April 2014.

[204] Julian Francis Miller, Dominic Job, and Vesselin K Vassilev. Principles in the evolu-
tionary design of digital circuitspart i. Genetic programming and evolvable machines,
1(1-2):7–35, 2000.

[205] Julian Francis Miller, Dominic Job, and Vesselin K Vassilev. Principles in the evo-
lutionary design of digital circuitspart ii. Genetic programming and evolvable ma-
chines, 1(3):259–288, 2000.

[206] Julian Francis Miller and Maktuba Mohid. Function optimization using Cartesian
genetic programming. In Proceeding of the fifteenth annual conference companion on
Genetic and evolutionary computation conference companion, pages 147–148. ACM,
2013.

[207] Julian Francis Miller and S.L. Smith. Redundancy and computational efficiency in
Cartesian Genetic Programming. Evolutionary Computation, IEEE Transactions
on, 10(2):167–174, 2006.

[208] Julian Francis Miller and P Thomson. Cartesian genetic programming. In Proceed-
ings of the Third European Conference on Genetic Programming (EuroGP), volume
1820, pages 121–132. Springer-Verlag, 2000.

308

References

[209] David Montana, Eric VanWyk, Marshall Brinn, Joshua Montana, and Stephen Mil-
ligan. Evolution of internal dynamics for neural network nodes. Evolutionary Intel-
ligence, 1(4):233–251, 2009.

[210] David J Montana and Lawrence Davis. Training feedforward neural networks using
genetic algorithms. In IJCAI, volume 89, pages 762–767, 1989.

[211] D.E. Moriarty. Symbiotic evolution of neural networks in sequential decision tasks.
PhD thesis, University of Texas at Austin, 1997.

[212] D.E. Moriarty and R. Mikkulainen. Efficient reinforcement learning through symbi-
otic evolution. Machine learning, 22(1):11–32, 1996.

[213] D. Nauck, R. Kruse, et al. Obtaining interpretable fuzzy classification rules from
medical data. Artificial intelligence in medicine, 16(2):149, 1999.

[214] Durre Nayab, Gul Muhammad Khan, and Sahibzada Ali Mahmud. Prediction of
foreign currency exchange rates using CGPANN. In Engineering Applications of
Neural Networks, pages 91–101. Springer, 2013.

[215] D J Newman, S Hettich, C L Blake, and Merz C J. UCI Repository of machine learn-
ing databases. Technical report, Irvine, CA: University of California, Department
of Information and Computer Science, 1998.

[216] M. Nishiguchi and Y. Fujimoto. Evolution of recursive programs with multi-niche
Genetic Programming (mnGP). In Evolutionary Computation IEEE World Congress
on Computational Intelligence, page 247252, 1998.

[217] Steffen Nissen. Implementation of a fast Artificial Neural Network library (FANN).
Report, Department of Computer Science University of Copenhagen (DIKU), 31,
2003.

[218] Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly defined introns and
destructive crossover in genetic programming. In Peter J. Angeline and Kenneth E.
Kinnear, Jr., editors, Advances in Genetic Programming, pages 111–134. MIT Press,
Cambridge, MA, USA, 1996.

[219] Martin O’Halloran, Seamus Cawley, Brian McGinley, Raquel Cruz Conceicao,
Fearghal Morgan, Edward Jones, and Martin Glavin. Evolving spiking neural
network topologies for breast cancer classification in a dielectrically heterogeneous
breast. Progress In Electromagnetics Research Letters, 25:153–162, 2011.

[220] Ludo Pagie and Paulien Hogeweg. Evolutionary consequences of coevolving targets.
Evolutionary computation, 5(4):401–418, 1997.

[221] Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-
function networks. Neural computation, 3(2):246–257, 1991.

[222] NG Pavlidis, OK Tasoulis, Vassilis P Plagianakos, G Nikiforidis, and MN Vrahatis.
Spiking neural network training using evolutionary algorithms. In Neural Networks,
2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference on, vol-
ume 4, pages 2190–2194. IEEE, 2005.

[223] C.A. Pena-Reyes and M. Sipper. A fuzzy-genetic approach to breast cancer diagnosis.
Artificial intelligence in medicine, 17(2):131–155, 1999.

309

References

[224] N. Pokudom. Determine of appropriate neural networks structure using ant colony
system. In ICCAS-SICE, 2009, pages 4522–4525. IEEE, 2009.

[225] D. Polani and R. Miikkulainen. Fast reinforcement learning through eugenic neuro-
evolution. Technical report, University of Texas at Austin, Austin, TX, 1999.

[226] K. Polat and S. Güneş. Breast cancer diagnosis using least square support vector
machine. Digital Signal Processing, 17(4):694–701, 2007.

[227] Riccardo Poli. Parallel distributed genetic programming. New Ideas in Optimization,
Advanced Topics in Computer Science, pages 403–431, 1999.

[228] Riccardo Poli, W William B Langdon, Nicholas F McPhee, and John R Koza. A field
guide to Genetic Programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008.

[229] L. Prechelt. Proben1: A set of neural network benchmark problems and benchmark-
ing rules. Fakultät für Informatik, Univ. Karlsruhe, Karlsruhe, Germany, Tech. Rep,
21:94, 1994.

[230] Lutz Prechelt. Neural Networks: Tricks of the Trade, chapter Early Stopping - But
When?, pages 53–67. Springer Berlin Heidelberg, 2012.

[231] Tom Preston-Werner, Chris Wanstrath, and P.J. Hyett. github, April 2014.

[232] J. W Prior. Eugenic evolution for combinatorial optimization. Master’s thesis, The
University of Texas at Austin, 1998.

[233] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers,
1993.

[234] R Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2014.

[235] A. Raad, A. Kalakech, and M. Ayache. Breast cancer classification using neural
network approach: MLP and RBF. Networks, 7(8):9, 2012.

[236] Nicholas J Radcliffe. Genetic set recombination and its application to neural network
topology optimisation. Neural Computing & Applications, 1(1):67–90, 1993.

[237] Ingo Rechenberg. Evolutionsstrategien. Springer, 1978.

[238] Russell Reed. Pruning algorithms-a survey. Neural Networks, IEEE Transactions
on, 4(5):740–747, 1993.

[239] Mehreen Rehman, Jawad Ali, Gul Muhammad Khan, and Sahibzada Ali Mahmud.
Extracting trends ensembles in solar irradiance for green energy generation using
neuro-evolution. In Artificial Intelligence Applications and Innovations, pages 456–
465. Springer, 2014.

[240] Belew Richard K, John Mcinerney, and Schraudolph Nico l, N. Evolving networks:
Using the genetic algorithm with connectionist learning. Technical report, Cognitive
Computer Science Research group, Computer Science and Engr. Dept (C-014), Univ.
California at San Diego, 1990.

310

References

[241] Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster back-
propagation learning: The RPROP algorithm. In Neural Networks, 1993., IEEE
International Conference on, pages 586–591. IEEE, 1993.

[242] Joseph A Rothermich and Julian F Miller. Studying the Emergence of Multicel-
lularity with Cartesian Genetic Programming in Artificial Life. In GECCO Late
Breaking Papers, pages 397–403, 2002.

[243] Franz Rothlauf and David E Goldberg. Redundant representations in evolutionary
computation. Evolutionary Computation, 11(4):381–415, 2003.

[244] Royal Observatory of Belgium. World data center for the production, preservation
and dissemination of the international sunspot number, July 2014.

[245] David E Rumelhart, Geoffrey E Hintont, and Ronald J Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[246] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Dou-
glas D Edwards. Artificial intelligence: a modern approach, volume 74. Prentice
hall Englewood Cliffs, 1995.

[247] Massimo Santini, Andrea Tettamanzi, Julian F Miller, Marco Tomassini, Pier Luca
Lanzi, Conor Ryan, Andrea GB Tettamanzi, and William B Langdon. Genetic
programming for financial time series. In Genetic Programming, Proceedings of
EuroGP’2001, volume 2038, pages 361–370. Springer-Verlag, 2001.

[248] Klaus Schliep and Klaus Hechenbichler. kknn: Weighted k-Nearest Neighbors, 2014.
R package version 1.2-5.

[249] AntonMaximilian Schfer and HansGeorg Zimmermann. Recurrent neural networks
are universal approximators. In StefanosD. Kollias, Andreas Stafylopatis, Wodzisaw
Duch, and Erkki Oja, editors, Artificial Neural Networks ICANN 2006, volume 4131
of Lecture Notes in Computer Science, pages 632–640. Springer Berlin Heidelberg,
2006.

[250] Lukáš Sekanina. Image filter design with evolvable hardware. In Applications of
Evolutionary Computing, pages 255–266. Springer, 2002.

[251] MR Senapati, AK Mohanty, S. Dash, and PK Dash. Local linear wavelet neural
network for breast cancer recognition. Neural Computing & Applications, pages 1–7,
2011.

[252] G.I. Sher. Dxnn platform: The shedding of biological inefficiencies. arXiv preprint
arXiv:1011.6022, 2010.

[253] SIDC-team. The International Sunspot Number. Monthly Report on the Interna-
tional Sunspot Number, online catalogue, 1700-1987.

[254] Nils T Siebel, Jonas Botel, and Gerald Sommer. Efficient neural network pruning
during neuro-evolution. In Neural Networks, 2009. IJCNN 2009. International Joint
Conference on, pages 2920–2927. IEEE, 2009.

[255] Nils T Siebel and Gerald Sommer. Evolutionary reinforcement learning of artificial
neural networks. International Journal of Hybrid Intelligent Systems, 4(3):171–183,
2007.

311

References

[256] Sara Silva and Ernesto Costa. Dynamic limits for bloat control in genetic program-
ming and a review of past and current bloat theories. Genetic Programming and
Evolvable Machines, 10(2):141–179, 2009.

[257] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

[258] Dan Simon. Biogeography-based optimization. Evolutionary Computation, IEEE
Transactions on, 12(6):702–713, 2008.

[259] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences, Aug 2014.

[260] P. Smolensky. Parallel distributed processing: explorations in the microstructure
of cognition, chapter Information processing in dynamical systems: foundations of
harmony theory, pages 194–281. MIT Press, 1986.

[261] Terence Soule and Robert B Heckendorn. An analysis of the causes of code growth in
genetic programming. Genetic Programming and Evolvable Machines, 3(3):283–309,
2002.

[262] L Spector and A. Robinson. Genetic Programming and Autoconstructive Evolu-
tion with the Push Programming Language. Genetic Programming and Evolvable
Machines, 3(1):7 – 40, 2002.

[263] Kenneth O Stanley. Exploiting regularity without development. In Proceedings of
the AAAI Fall Symposium on Developmental Systems, page 37. AAAI Press Menlo
Park, CA, 2006.

[264] Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based
encoding for evolving large-scale neural networks. Artificial Life, 15(2):185–212,
2009.

[265] Kenneth Owen Stanley. Efficient evolution of neural networks through complexifica-
tion. PhD thesis, The University of Texas at Austin, 2004.

[266] K.O. Stanley and R. Miikkulainen. Efficient evolution of neural network topologies.
In Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on,
volume 2, pages 1757–1762. IEEE, 2002.

[267] K.O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[268] E Stefanoudaki, F Kotsifaki, and A Koutsaftakis. Classification of virgin olive oils
of the two major cretan cultivars based on their fatty acid composition. Journal of
the American Oil Chemists’ Society, 76(5):623–626, 1999.

[269] Bjarne Stroustrup. The C++ programming language. Pearson Education India,
1986.

[270] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al.
Policy gradient methods for reinforcement learning with function approximation. In
NIPS, volume 99, pages 1057–1063, 1999.

312

References

[271] Terry Therneau, Beth Atkinson, and Brian Ripley. rpart: Recursive Partitioning
and Regression Trees, 2014. R package version 4.1-8.

[272] Terry M Therneau, Elizabeth J Atkinson, et al. An introduction to recursive par-
titioning using the rpart routines. Technical report, Technical Report 61. URL
http://www. mayo. edu/hsr/techrpt/61. pdf, 1997.

[273] S.B. Thrun, J. Bala, E. Bloedorn, I. Bratko, B. Cestnik, J. Cheng, K. De Jong,
S. Dzeroski, S.E. Fahlman, D. Fisher, et al. The monk’s problems a performance
comparison of different learning algorithms. Technical report, Carnegie Mellon Uni-
versity, 1991.

[274] Leonardo Trujillo, Luis Muñoz, Enrique Naredo, and Yuliana Mart́ınez. NEAT,
There’s No Bloat. In Genetic Programming, pages 174–185. Springer, 2014.

[275] Hsing-Chih Tsai. Using weighted genetic programming to program squat wall
strengths and tune associated formulas. Engineering Applications of Artificial In-
telligence, 24(3):526–533, 2011.

[276] YR Tsoy and VG Spitsyn. Using genetic algorithm with adaptive mutation mecha-
nism for neural networks design and training. In Science and Technology. Proceed-
ings. The 9th Russian-Korean International Symposium on, pages 709–714. IEEE,
2005.

[277] Alan Mathison Turing and Darrel Ince. Mechanical intelligence, volume 3. North
Holland, 1992.

[278] Andrew James Turner. Improving crossover techniques in a genetic program. Masters
Dissertation, 2012.

[279] Andrew James Turner and Julian Francis Miller. Cartesian Genetic Programming
encoded Artificial Neural Networks: A Comparison using Three Benchmarks. In
Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO-
13), pages 1005–1012, 2013.

[280] Fahad Ullah, Gul M Khan, and Sahibzada Ali Mahmud. Intelligent bandwidth man-
agement using fast learning neural networks. In High Performance Computing and
Communication & 2012 IEEE 9th International Conference on Embedded Software
and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on, pages
867–872. IEEE, 2012.

[281] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael ONeill, Robert I McKay, and Edgar
Galván-López. Semantically-based crossover in genetic programming: application
to real-valued symbolic regression. Genetic Programming and Evolvable Machines,
12(2):91–119, 2011.

[282] Erik Van Nimwegen, James P Crutchfield, and Martijn Huynen. Neutral evolu-
tion of mutational robustness. Proceedings of the National Academy of Sciences,
96(17):9716–9720, 1999.

[283] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde
en Informatica, 1995.

313

References

[284] Leonardo Vanneschi, Mauro Castelli, and Sara Silva. Measuring bloat, overfitting
and functional complexity in genetic programming. In Proceedings of the 12th annual
conference on Genetic and evolutionary computation, pages 877–884. ACM, 2010.

[285] András Vargha and Harold D Delaney. A critique and improvement of the CL
common language effect size statistics of McGraw and Wong. Journal of Educational
and Behavioral Statistics, 25(2):101–132, 2000.

[286] Zdenek Vasicek. Cartesian gp in optimization of combinational circuits with hun-
dreds of inputs and thousands of gates. In Genetic Programming, pages 139–150.
Springer, 2015.

[287] V. K. Vassilev and J. F. Miller. The Advantages of Landscape Neutrality in Digital
Circuit Evolution. In Proc. International Conference on Evolvable Systems, volume
1801 of LNCS, pages 252–263. Springer Verlag, 2000.

[288] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Springer, New
York, fourth edition, 2002. ISBN 0-387-95457-0.

[289] Katharina Völk, Julian F Miller, and Stephen L Smith. Multiple network CGP
for the classification of mammograms. In Applications of Evolutionary Computing,
pages 405–413. Springer, 2009.

[290] Jilles Vreeken. Spiking neural networks, an introduction. Technical Report UU-CS,
(2003-008):1–5, 2003.

[291] Andreas Wagner. Robustness, evolvability, and neutrality. FEBS letters,
579(8):1772–1778, 2005.

[292] James Alfred Walker and Julian Francis Miller. The automatic acquisition, evolution
and reuse of modules in Cartesian Genetic Programming. Evolutionary Computa-
tion, IEEE Transactions on, 12(4):397–417, 2008.

[293] James Alfred Walker, Julian Francis Miller, and Rachel Cavill. A multi-chromosome
approach to standard and embedded Cartesian Genetic Programming. In Proceedings
of the 8th annual conference on Genetic and evolutionary computation, pages 903–
910. ACM, 2006.

[294] James Alfred Walker, Katharina Völk, Stephen L Smith, and Julian Francis Miller.
Parallel evolution using multi-chromosome Cartesian Genetic Programming. Genetic
Programming and Evolvable Machines, 10(4):417–445, 2009.

[295] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-
4):279–292, 1992.

[296] R. Wehrens and L.M.C. Buydens. Self- and Super-organising Maps in R: the kohonen
package. J. Stat. Softw., 21(5), 2007.

[297] A. S. Weigend and N. A. Gershenfeld. Time Series Prediction: Forecasting the
Future and Understanding the Past. Addison-Wesley, 1994.

[298] Andreas Weigend. Santa fe competition data sets, July 2014.

314

References

[299] Daniel Weingaertner, Victor K Tatai, Ricardo R Gudwin, and Fernando J
Von Zuben. Hierarchical evolution of heterogeneous neural networks. In Evolution-
ary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, volume 2,
pages 1775–1780. IEEE, 2002.

[300] David R White, James McDermott, Mauro Castelli, Luca Manzoni, Brian W Gold-
man, Gabriel Kronberger, Wojciech Jaśkowski, Una-May OReilly, and Sean Luke.
Better GP benchmarks: community survey results and proposals. Genetic Program-
ming and Evolvable Machines, 14(1):3–29, 2013.

[301] Darrell Whitley. Genetic algorithms and neural networks. Genetic algorithms in
engineering and computer science, 3:203–216, 1995.

[302] Darrell Whitley, Keith Mathias, and Patrick Fitzhorn. Delta coding: An iterative
search strategy for genetic algorithms. In ICGA, volume 91, pages 77–84, 1991.

[303] Hadley Wickham. classifly: Explore classification models in high dimensions, 2014.
R package version 0.4.

[304] Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: per-
ceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415–1442,
1990.

[305] A.P. Wieland. Evolving neural network controllers for unstable systems. In Neural
Networks, 1991., IJCNN-91-Seattle International Joint Conference on, volume 2,
pages 667–673. IEEE, 1991.

[306] D. Wilson and D. Kaur. Search, neutral evolution, and mapping in evolutionary
computing: A case study of grammatical evolution. IEEE Transactions on Evolu-
tionary Computation, 13(3):566–590, 2009.

[307] Garnett Wilson and Malcolm Heywood. Learning recursive programs with coop-
erative coevolution of genetic code mapping and genotype. In Proceedings of the
9th annual conference on Genetic and evolutionary computation, pages 1053–1061.
ACM, 2007.

[308] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

[309] Herman Wold et al. Estimation of principal components and related models by
iterative least squares. Multivariate analysis, 1:391–420, 1966.

[310] David H Wolpert and William G Macready. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

[311] Sewall Wright. The Roles of Mutation, Inbreeding, Crossbreeding, and Selection in
Evolution. In Sixth International Congress of Genetics, pages 356–366. Brooklyn
Botanic Garden, 1932.

[312] J.Y. Wu. MIMO CMAC neural network classifier for solving classification problems.
Applied Soft Computing, 11(2):2326–2333, 2011.

[313] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–
1447, 1999.

315

References

[314] X. Yao and Y. Liu. A new evolutionary system for evolving artificial neural networks.
Neural Networks, IEEE Transactions on, 8(3):694–713, 1997.

[315] Xin Yao. Universal approximation by genetic programming. In In Foundations of
Genetic Programming, 1999.

[316] Samaneh Yazdani and Jamshid Shanbehzadeh. Balanced Cartesian Genetic Pro-
gramming via migration and opposition-based learning: application to symbolic
regression. Genetic Programming and Evolvable Machines, 16(2):133–150, 2015.

[317] L. Yingwei, N. Sundararajan, and P. Saratchandran. Performance evaluation of a
sequential minimal radial basis function (RBF) neural network learning algorithm.
Neural Networks, IEEE Transactions on, 9(2):308–318, 1998.

[318] Tina Yu and Julian Miller. Neutrality and the evolvability of Boolean function land-
scape. In Julian Miller, Marco Tomassini, PierLuca Lanzi, Conor Ryan, AndreaG.B.
Tettamanzi, and WilliamB. Langdon, editors, Genetic Programming, volume 2038
of Lecture Notes in Computer Science, pages 204–217. Springer Berlin Heidelberg,
2001.

[319] Tina Yu and Julian Miller. Finding needles in haystacks is not hard with neutrality.
In James A Foster, Evelyne Lutton, Julian Miller, Conor Ryan, and Andrea Tetta-
manzi, editors, Genetic Programming, volume 2278 of Lecture Notes in Computer
Science, pages 13–25. Springer Berlin Heidelberg, 2002.

[320] Tina Yu and Julian Francis Miller. Through the interaction of neutral and adaptive
mutations, evolutionary search finds a way. Artificial Life, 12(4):525–551, 2006.

[321] Faheem Zafari, Gul Muhammad Khan, Mehreen Rehman, and Sahibzada Ali Mah-
mud. Evolving recurrent neural network using cartesian genetic programming to
predict the trend in foreign currency exchange rates. Applied Artificial Intelligence,
28(6):597–628, 2014.

[322] G Peter Zhang, B Eddy Patuwo, and Michael Y Hu. A simulation study of artifi-
cial neural networks for nonlinear time-series forecasting. Computers & Operations
Research, 28(4):381–396, 2001.

[323] Guoqiang Zhang, B Eddy Patuwo, and Michael Y Hu. Forecasting with artificial
neural networks:: The state of the art. International journal of forecasting, 14(1):35–
62, 1998.

[324] Yun Zhang and Mengjie Zhang. A multiple-output program tree structure in ge-
netic programming. In Proceedings of the 7th Asia-Pacific Conference on Complex
Systems, 2004.

316

	Abstract
	Contents
	List of figures
	List of tables
	Acknowledgements
	Declaration
	Introduction
	Structure of this Chapter
	Motivation
	Thesis Aims
	Thesis Contributions
	Thesis Outline

	NeuroEvolution
	Structure of this Chapter
	Basic Principles
	Advantages of NeuroEvolution
	Scope of NeuroEvolution
	NeuroEvolution Encoding and Decoding
	Review of NeuroEvolutionary Methods
	Review of the NeuroEvolutionary Literature
	Discussion

	Cartesian Genetic Programming
	Structure of this Chapter
	Encoding
	Decoding and Executing
	Evolutionary Strategy
	Parameters
	Advantages of Cartesian Genetic Programming
	Applications
	Extensions
	Related Theory
	Summary

	Cartesian Genetic Programming of Artificial Neural Networks
	Structure of this Chapter
	Implementation
	Possible Advantages
	Previous Applications
	Initial Experiments
	Connection Switch Genes
	Program Bloat
	Summary

	Recurrent Cartesian Genetic Programming
	Structure of this Chapter
	Background
	Implementation
	Implications of Recurrent Connections
	Experiments
	Summary

	Topology Evolution
	Structure of this Chapter
	Background
	Is it Beneficial to Evolve Network Topology?
	Relative Importance of Topology Evolution
	Summary

	Evolving Heterogeneous Artificial Neural Networks
	Structure of this Chapter
	Background
	Investigations
	Evolving Homogeneous Networks
	Evolving Heterogeneous Networks
	Evolving Transfer Function Parameters
	Evolving Heterogeneous Networks and Transfer Function Parameters
	Box and Whisker Plots
	Discussion
	Summary

	Neutral Genetic Drift
	Structure of this Chapter
	Background
	Redundancy in CGP
	Investigating Neutral Genetic Drift in CGP
	Investigating Increasing Explicit Genetic Redundancy
	Investigating Neutral Genetic Drift in CGPANN
	Summary

	CGPANN Applied to Classification
	Structure of this Chapter
	Background
	Methodology
	Applying CGPANN to Classification
	Comparative Methods
	Benchmarks
	Results
	Discussion
	Summary

	Recurrent CGPANN Applied to Series Forecasting
	Structure of this Chapter
	Background
	Recurrent CGPANN
	Applying CGP, RCGP, CGPANN and RCGPANN to Series Forecasting
	Comparative Methods
	Results
	Discussion
	Summary

	Conclusions and Further Work
	Structure of this Chapter
	Overall Conclusions
	Further Work
	Final Remarks

	Appendix
	Benchmarks
	Structure of this Appendix
	Control
	Classification
	Boolean Circuits
	Symbolic Regression
	Forecasting

	Statistical Significance Testing
	Structure of this Appendix
	Background
	Distribution of Evolutionary Algorithm Results
	Non-Parametric Statistical Significance Testing

	Cartesian Genetic Programming Library
	Structure of this Appendix
	Background
	Overall Functionality
	Visualisation
	NeuroEvolution
	Recurrent Networks
	Licenses
	Using the CGP Library
	Discussion

	Abbreviations
	References

