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INTRODUCTION

ZnTiCu (zinc-titan) sheets with approximately

0,1% Cu and 0,1% Ti content are very widely used in the

construction industry for roof covering, gutters, drain

pipes, facing linings, connections, window shelves, dec-

orative elements on roofs, art products, etc. Data on the

production technology of zinc-titan alloy sheet and on

its forming properties are very scarce and unreliable.

Therefore they must be checked for each individual

technological step and the conditions under which the

metal sheet is formed. Their forming properties are in-

fluenced by many parameters, e.g. chemical composi-

tion, technological parameters of rolling, etc. Due to

large number of influential parameters the desired me-

chanical properties of the metal sheet (e.g. bending ca-

pability) are difficult to monitor and to keep within ac-

ceptable technological limits. Rolling mills usually col-

lect data on an individual batch (e.g. alloy composition,

conditions in which the sheet metal has been rolled etc.)

but in most cases the general approach assuring achieve-

ment of the desired forming properties based on the in-

fluential parameters of metal sheet production cannot be

traced. Often it is not known which parameters are of

importance. In such cases linear regressions methods are

not efficient since the abundance of input parameters

and their mutual influences make the determination of

an adequately precise model impossible �1�.

In the present work two different approaches based

on experimental data on ZnCuTi alloy composition and

on technological parameters of hot and cold rolling have

been used to predict the metal sheet bending capability.

The first one is the GP which belongs to the class of the

methods of evolutionary computation �2-7�, and the sec-

ond one is the CAE neural network, which has been suc-

cessfully applied for solving many engineering prob-

lems �e.g. 8-16�.

EXPERIMENTAL SET-UP

The process of manufacture of rolled ZnTiCu metal

sheet may be divided into three main steps: (i) casting of

alloy, (ii) hot rolling of metal ingots, (iii) cold rolling

into stripes. In rolling mill the ZnTiCu ingots were first

cast according to the technology of semi-continuous

vertical casting. The content of alloying elements in the

alloy was limited to 0,13±0,02% and 0,10±0,02% for

Cu and Ti, respectively. The permissible impurities

amounted to 0,005%. The capacity of the net frequency

electro-inductive furnace for melting and alloying of

zinc into the final ZnTiCu alloy was 10000kg (4 ingots).

The required inlet temperature was 460 (+5, -0) °C.

The zinc-titan plates were formed from ZnTiCu in-

gots on a Siemag roll stand by with the hot rolling pro-
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cess. Prior to hot rolling the ZnTiCu ingot was heated in

a Junker block furnace to the hot rolling temperature of

305°C±10°C. The micro blowholes and gas bubbles

formed during casting were welded (rolled) during hot

rolling. The recrystallization temperature represents the

limit distinguishing hot rolling from cold rolling. The

re-crystallization temperature for ZnTiCu alloy is ap-

proximately 300°C. For re-crystallization a critical de-

gree of deformation (2-5%) is also necessary. Therefore

the heated titanzinc ingot was rolled from 118 mm thick-

ness by 14 passes through the mill to dimension of

14000 mm length and 1055 mm width (mass approxi-

mately 1800 kg). The process of hot rolling of one ingot

took 10 to 15 minutes. The plate temperature after hot

rolling amounted to 285°C±10°C. Cooling took 40 to

120 minutes.

From the ZnTiCu plate ZnTiCu sheet (strip) of 0,7

mm thickness was formed on a Schmitz rolling machine

by the cold rolling process. Prior to cold rolling the plate

was heated to about 170°C in a Küppersbusch furnace.

Cold rolling took about 40 minutes at a temperature of

140°C to 170°C. Finally the strips were wound into a

coil of about 300m length.

In the present study nine input parameters, denoted

as X1, X2, …, X9, which influences the bending capabil-

ity of rolled zinc-titan metal sheet have been selected.

According to the three main steps of the manufacturing

process they can be described as: (i) alloy casting: the

percentage of Cu (X1), percentage of Ti (X2) , and per-

centage of Fe (X3), (ii) hot rolling: the temperature of

the ingot before rolling (X4), time of rolling (X5), tem-

perature of plate after rolling (X6), time of cooling (X7),

(iii) cold rolling: the temperature of the plate before roll-

ing (X8), temperature of sheet after rolling (X9).

As the aim of this research was to establish the influ-

ence of the technological parameters of metal sheet

manufacture on its bending capability, a bending test

was executed for each coil of zinc-titan sheet in accor-

dance with DIN 1781. In our study standard test pieces

were cut from the middle of each coil. 34 coils were

available and 5 test pieces were cut from each coil. Thus

altogether 170 test pieces were subject to the bending

test. If all 5 test pieces underwent the test without de-

struction (i.e. the test piece did not break), the bending

capability was evaluated as 100%; if one of them broke,

as 80%; if two of them broke, as 60%, etc. If all 5 test

pieces failed the bending test (i.e. all test pieces broke),

the bending capability was evaluated as 0%. Detailed

description about forming the database, which includes

data on input parameters (X1, X2, …, X9) and the coil

bending properties (Y), can be found in �11�

GENETIC PROGRAMMING

GP is probably the most general evolutionary opti-

mization method �2�. The organisms that undergo adap-

tation are in fact more or less complicated computer pro-

grams. The computer programs have different meaning

depending on the type of problem dealt with and can be

mathematical expressions, control strategies, decision

trees, Boolean expressions, etc. In order to solve the

problem adequate genes must be available. First, the

generation of random computer programs (organisms)

is needed from the available genes. Then, evaluation of

the generation follows. Afterwards, genetic operations

(usually reproduction, crossover and mutation) are used

to create descendants of the new generation. The new

generation is evaluated again. Iterations are repeated un-

til the termination condition is fulfilled. The latter can be

the prescribed maximum number of generations or an

adequate quality of the solution.

The organisms in the presented research are basically

mathematical expressions, i.e. models for the determina-

tion of metal sheet bending capability. They consist of

terminal and functional genes. The terminal genes used

were simply the input variables: percentage of Cu (X1),

percentage of Ti (X2), percentage of Fe (X3), ingot tem-

perature before hot rolling (X4), time of hot rolling (X5),

temperature of plate after hot rolling (X6), cooling time

(X7), plate temperature before cold rolling (X8) and tem-

perature of sheet after rolling (X9). The function genes

connect the terminal genes by mathematical expressions.

Arithmetic operations of addition (+), subtraction (-),

multiplication (*), and division (/) taking two arguments

each were used as function genes. The arithmetic opera-

tion of division / is protected against extreme values: thus

the result of division by 0 is equal to 1.

As mentioned above, the organisms have the nature

of mathematical models for prediction of sheet bending

capability. The following agreement was accepted: if

the raw calculated values of the model are smaller than

0, from 0 to 20, from 20 to 40, from 40 to 60, from 60 to

80 and higher than 80, the discrete values 0%, 20%,

40%, 60%, 80%, and 100%, respectively, are taken into

consideration for the values of the model. Therefore,

each model returns a value which falls into one of the six

classes. For example, if the model returns the raw value

of bending capability of 36, a 40% bending capability is

taken.

For the fitness function the average of the sum of the

absolute differences between the discrete experimental

values and the discrete values of bending capability re-

turned by the model is selected. The fitness measure is

defined as follows:

�� �
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1
n

Y Pi i

i

n

, (1)

where n is the number of measurements, i is the mea-

surement index, Yi and Pi are the actual bending capabil-

ity and the predicted bending capability calculated by a

prediction model, respectively. It is assumed in this

study that the problem is solved successfully if the aver-
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age absolute deviation � of the model is lower than 10%

(i.e., lower than 0,5 of a class). This means that an aver-

age absolute deviation of one half of a class is allowed.

In the study the following evolutionary parameters

were used: population size 1000, maximum number of

generations to be run 1000, probability of reproduction

0,1, probability of crossover 0,9, maximal depth of or-

ganisms after crossover 15, and tournament selection

with a group size of 7. More detailed description of the

procedure may be found in �5, 11�.

CAE NEURAL NETWORK

CAE neural network was first presented by Grabec

and Sachse �12�. According to the theory, the bending

capability of metal sheet can be characterized by a sam-

ple of experiments on N = Nt/5 test metal sheet speci-

mens (Nt =170, N = 34 test specimens). The problem

now is how bending capability can be estimated from

known input parameters and available data in the data

base. By using the conditional probability function the

optimal estimator for the given problem can be ex-

pressed as i.e. �10, 12, 13-16�:
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�Y is the estimation of the bending capability, Yn is the

same output variable corresponding to the n-th model

vector in the data base, N is the number of model vectors

in the data base, bnl is the l-th input parameter of the n-th

model vector in the data base (e.g. bn1, bn2, bn3, ..., bnL), bl

is the l-th input parameter corresponding to the model

vector under consideration, and D is the number of input

parameters. The “smoothing” parameter w is the width

of the Gaussian function. However, in some applica-

tions, a non-constant value of w yields more reasonable

results than a constant value. When using non-constant

w values (regarding input parameters and/or position of

model vectors in the sample space), Eq. (2) can still be

used, but proper, locally estimated values of w should be

taken into account. The formula for an (see Eq. (3)) can

be rewritten as
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where different values of wl correspond to different in-

put variables (index l).

In determining an appropriate value of the smooth-

ing parameter w, a measure to calculate the average er-

ror in the bending capability predictions is defined as:
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where Yn and �Yn are measured and predicted bending

capability of the n-th metal sheet specimen from the da-

tabase, respectively. Y is the mean value of the bending

capability of the metal sheet specimens from the data-

base, and N is the number of metal sheet specimens in

the database.

RESULTS AND DISCUSSION

Analysis of the influence
of individual parameters by GP

One hundred independent runs of the GP system

were performed. Among these runs the criterion of suc-

cess (i.e. an average absolute deviation lower than 10%)

was reached 21 times.

Since the models developed by simulated evolution

are based on probability, there is no guarantee that the

models will contain all independent available variables

(i.e. terminal and function genes). During previous stud-

ies it was established experimentally that for building

GP, models usually uses only ingredients leading to suc-

cessful solutions, whereas ingredients having the nature

of disturbances or not having decisive influence on the

description of the system are on the average more fre-

quently eliminated by evolution �7�. Thus in our case, by

analyzing the ingredients present (i.e. remaining) in the

final models, the influence of the individual ingredient

(parameter) on the sheet bending capability can be indi-

rectly estimated. Of course, among other factors the pre-

cision of execution of the measurements can influence

the presence of ingredients in the final model. Thus the

greater the number of runs where individual parameter

is not present in the final modes, the more probable is it

that such parameter does not decisively influence the

sheet bending capability. Figure 1.a shows the number

of runs (out of 100) in which it happened that an individ-

ual input parameter was not present in the final model.

It can be seen that evolution most frequently elimi-

nated the input parameter of percentage Ti (X2 is not

present in 53 final models out of 100), the input parameter

of percentage Fe (X3 is not present in 52 final models out

of 100), and the coil temperature during cold rolling (X9

is not present in 45 final models out of 100). The time of

hot rolling X5 and the cooling time X7 are least fre-

quently omitted, since evolution did not incorporate them

into the final model only 22 times and 25 times, respec-

tively. A similar trend appears in the 21 successful runs

(Figure 1.b). Also in this case evolution least frequently

eliminated the two input parameters rolling time in hot

rolling X5 and cooling time in hot rolling X7 - they were

not present in the final model only once and twice, re-
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spectively. These results indicate that these two parame-

ters decisively influence the sheet bending capability.

The model obtained by GP

The best mathematical model for prediction of the

bending capability is shown in Figure 2. Note that, when

evaluating the model it must be strictly taken into con-

sideration that the result of division by 0 is 1 as this is the

protection against non-defined values. The average ab-

solute deviation of prediction of the model from the ac-

tual experimental values is 2,35% (i.e., 0,12 of the

class). In practice that means that in the case of 10 mea-

surements (each of them made with 5 test pieces) the

model would give only one incorrect prediction of the

bending test. It would either incorrectly predict destruc-

tion the test piece or it would incorrectly predict that the

test piece would survive.

The comparison of the prediction of the best GP

model and the experimental (“learning”) data is shown

in Figure 3.a.

It can be seen that small deviations appears (only

about one class – 20%). In order to verify the prediction

capability of the genetically developed model, ten addi-

tional measurements were carried out, where each mea-

surement was performed with 5 test pieces. Then the

prediction capability of the best model was tested with

the values of the input parameters of the test data.

The results are indicated in Figure 3.b. Again, it can

be seen small deviations of about one class in some

cases. The average absolute deviation of the test data

(4�20%/10) = 8% (i.e., 0.4 of a class). Although the de-

viation is greater that in the case of the data used for the

development of the model, the prediction capability is

nevertheless very good.

The CAE neural network model

For the application of the CAE method the same

“training” database of 34 metal sheet specimens with the

same nine input parameters as in case of GP was used.

By trial and error procedure the “best” constant value of

smoothing parameter was determined as w = 0,25. Fig-
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Figure 1. Number of runs in which it happened that an in-
dividual input parameter was not present in the
final model: (a) out of 100 runs, and (b) out of
21 runs.

Figure 2. The best GP mathematical model for prediction of the bending capability.



ure 4 indicates that the results predicted by CAE neural

network model are worse than that predicted by the

“best” GP model. Even if weights are added to input pa-

rameters according to Figure 1, prediction was not im-

proved. It seems that problem is highly non-linear and

CAE neural network is not capable to model it. The

problem lies also in the size of the database. Figure 4.a

shows typical averaging effect which indicates (too)

small database. However, past results proved that by in-

creasing the size of the database the CAE neural net-

work model performance increases as well.

Prediction capability of the CAE model was tested

on the same test data as the “best” GP model. The results

are shown in Figure 4.b. It can be seen that the average

absolute deviation of the test data that amounts to 18% is

better than that of the training data. Again, as expected

according to the results from Figure 4.a, the “best” GP

model gives better results than CAE NN model.

CONCLUSIONS

In this paper the bending capability of rolled ZnCuTi

metal sheet was studied by GP and CAE NN ap-

proaches. Prediction models were developed on the ba-

sis of experimental data on the chemical composition of

the ZnCuTi alloy and the technological parameters of

hot and cold rolling.

Thirty four measurements were performed for estab-

lishing the database for the prediction model. A large

number of successful prediction models differing in pre-

diction accuracy and complexity were developed by GP.

One model was developed also by CAE NN, using the

same data. The best GP model gives the most precise pre-

diction of the bending capability of titanzinc metal sheet

and the CAE NN model were additionally verified on the

basis of a test data set obtained by 10 measurements.

The main findings of the presented research can be

summarized as follows: (i) on the average, the evolu-

tionary process more often eliminates those ingredients

(input parameters) having a smaller influence on the

bending capability, (ii) for the existing experimental

data and working conditions it was proved that two tech-

nological parameters have the highest influence on the

bending capability of the metal sheet: the rolling time of

hot rolling X5 and the cooling time of hot rolling X7,

(iii) the influence of the plate temperature after hot roll-

ing X6 and the coil temperature in the case of cold roll-

ing X9 is relatively small. The influence of Cu, Ti, and

Fe content on the bending capability was not decisive;

(iv) compared to the CAE NN model, GP model gives

better predictions. By increasing the database, better

predictions could be obtained also by CAE NN.
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Figure 4. Comparison of the predicted and experimental
data a) The histogram chart for the CAE model
for the experimental (“training”) database
(n=34), and (b) The histogram chart for the CAE
model for the test database (n=10).

Figure 3. Comparison of the predicted and experimental
data (a) The histogram chart for the best GP mo-
del for the experimental (“training”) database
(n=34), and (b) The histogram chart for the best
GP model for the test database (n=10).


