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Researchers in the field of biocomputing have, for many years
successfully used the natural world as inspiration for tgve

ing systems that are robust, adaptable and capable of giegera
novel and even “creative” solutions to human-defined proisle
However, in this position paper we argue that the time has now
come for a reassessment of how we exploit biology to generate
new computational systems. Previous solutions (the “fiest-g
eration” of biocomputing techniques), whilst reasonalffee

tive, are crude analogues of actual biological systems. &/e b
lieve that a new, inherently inter-disciplinary approashéeded

for the development of the emerging “second generationi@f b
inspired methods. This nemodus operandill require much
closer interaction between the engineering and life seigoom-
munities, as well as a bidirectional flow of concepts, applic
tions and expertise. We support our argument by examining, i

*email:j ti mm s@s. yor k. ac. uk
T email: M R Amos @xet er . ac. uk
* email: banzhaf @s. nun. ca

9 email: ant @hm york. ac. uk



this new light, three existing areas of biocomputing (genab-
gramming, artificial immune systems and evolvable hardjyare
as well as an emerging area (natural genetic engineerinighwh
may provide useful pointers as to the way forward.

Key words:bio-inspired computing, genetic programming, artificrati
mune systems, evolvable hardware, natural genetic engigeiolog-
ical plausibility

1 INTRODUCTION

Natural organisms are, as a rule, much more complicated and
subtle, and therefore much less well understood in detsl t
are artificial automata. Nevertheless, some regularit@shwwe
observe in the organisation of the former may be quite ictitrel

in our thinking and planning of the latter — John von Neumann,
1948 [124].

Even just after the 2nd world war, scientists were alreadykthg about
the conceptual cross-over between natural and artificgtegys. Von Neu-
mann and Turing were but two of the pioneers who contributettié emer-
gence obio-computing- the extraction of computational principles or meth-
ods from natural, biological systems.

Biologically-inspired computational methods such adiaidl neural net-
works and genetic algorithms have been successfully usedive a wide
range of problems in the engineering domain. We can thinkioi snethods
as comprising the “first generation” of biocomputing tecjugs, in that they
rely on (often very) crude approximations of the fundamiemtaerlying bi-
ological principles (for example, the basic crossover af@rused in genetic
algorithms).

Such crude models have, up until now, been accepted for alesea-
sons: the first is that they have produced solutions that@rsidered “good
enough” in terms of their fithess for purpose. The secondore&sborne
out of necessity, in that a sufficiently-detailed descoptor understanding
of the underlying biological system has, so far, eluded usthBeasons for
acceptance of thetatus quoare now, we believe, beginning to be eroded,
both by a growing unease at the limitations of current natuspired mod-
els, and by the speed at which our understanding of biologigasing. We
believe that the time is right for the development of a “setgeneration”



of bio-computational methods that draw much more closelyhengrowing
understanding of their biological inspiration.

One possible explanation for the lack of recent progresaiuare-inspired
computing may be that the respective disciplines partecbemmyfar too pre-
maturely, As the report of a 2001 EPSRC workshop minuted e"@hthe
major challenges facing collaborative work in biologigatspired comput-
ing systems is the temptation to diverge far too early. This lireen the case
to some extent in genetic algorithms where this method haswowed for-
ward as hoped because of premature divergence of the corgjaurtil biology
communities”[1].

If the second generation of biocomputing is to emerge, iteihaps the
case that a new convergence of disciplines is required;ignite the initial
spark of interest that passed between them. Developmesistams (and
nowsynthetig biology are driving advances in biology, engineering amhe
puter science — crucially, these breakthroughs are no tangdirectional, in
that expertise and concepts flow in a one-way stream from mogdne to
another. The newystems-levgihilosophy that is beginning to dominate 21st
Century science dictates that artificial boundaries betwilsciplines must
be transcended or even demolished. A first step in this psooéght be to re-
visit our perspective on nature-inspired computing, antiggs even reinvent
it from the bottom-up.

The UK research community has proposed a number of Grande@igak
for Computer Science research and ambitious plans for thelaament of
a variety of research areas. Grand Challenge 7 (GC-7) [1@dfesses the
area of Non-Classical Computation, which encompassediiithgically in-
spired paradigms and the it direct exploitation of the redtworld for com-
putation (for example, DNA, cellular and quantum computinBart of its
ambition is to — once again — bring together disciplines tiaae prematurely
drifted apart. It has become clear that not all bio-inspapgroaches are the
same, each having their own contribution to make to the sircommunity.

In this position paper we highlight two main themes, the fakstvhich
being the importance dhe precise nature of the particular biological sys-
tem that we are trying exploit different systems contain different mecha-
nisms and functionalities that give rise to different pntigs. The second
— and main — argument in this position paper is thigh level abstractions
of underlying biology are no longer sufficiemind that aleeperevel of un-
derstanding is required. It will become necessary to finsterstandand then
exploitthe full underlying richness of biological systems, thrbag interdis-
ciplinary approach that combines biology with computato engineering



in asynergistiananner.

In order to expand on these themes, this paper will first distwo exem-
plar bio-inspired systems (section 2); specifically Genetogramming (GP)
—section 2.1 — and Artificial Immune Systems (AlS) — sectich BVe reflect
on each of these themes by describing how they have evolvedraputa-
tional paradigms over the years, and how they have addr¢esdailed to
address) the main arguments given above. We also emphasisegortance
of considering thedeploymenof artificial systems; for example, software
and hardware systems have very different practical impteaten consider-
ations and constraints. We discuss these particular i$sisestion 3 — once
again reflecting on the arguments outlined above, but timis th the context
of evolvable hardware (EHW). Finally, in order to provide @rer-arching
perspective, we examine the area of Natural Genetic Engimeésection 4
and 5), a biologically inspired approach to studying depeient and evo-
lution that isfundamentallyrooted in biology, and which offers feedback of
real benefit to both computer scientiatsdbiologists, as opposed to the often
one-way flow of information and insight “absorbed” by préiotiers working
on the other methods under discussion.

2 CAPTURING EVOLUTION AND IMMUNITY

2.1 Genetic Programming
Genetic Programming is a technique for “breeding” comppitegrams, loosely
based on Darwin’s theory of natural selection [68]. Morecigely, it is an al-
gorithmic approach based on a new synthesis of evolutioithwhcludes the
transferral of genetic traits from one generation to andlgavay of molecu-
lar mechanisms based on DNA (tgenotypgand its subsequent transforma-
tion into phenotypefd]. This approach naturally follows other successful ap-
plications of the evolutionary paradigm to the solution pfimization prob-
lems; namely Genetic Algorithms [53], Evolutionary Pragraing [32] and
Evolutionary Strategies [96]. These earlier applicatiohthe same funda-
mental idea differ from GP in two important ways; (1) the loagdtimisation
goal (primarily, the discovery of a single, unchanging optm, as opposed
to a potential “moving target”), and (2) the nature of the entying computa-
tional substrate (fixed-length, fixed-representation datectures, as opposed
to a rather more dynamic GP structure).

GP is therefore different to previous methods in that the mlexity of
both thetask(be it optimising the behaviour of a robot or an algorithmjlan
that of thedata structure(a metric perhaps expressed in terms of the length



of code) arevariable over the course of the evolutionary algorithm. Both
complexity considerations are tightly coupled: if the cdexgy of a task
changes over time (or, indeed, is unknown or unknowabley thmust be
possible to accordingly modify the complexity of tbelution representatian

We first consider the issue of solutiogpresentation Initial applications
of GP typically employed the so-callgrhrse-treerepresentation, one of the
clearest (and most basic) examples of an evolvable datetsteu Later, a
number of other data structures were proposed, these beitgps even
more amenable to artificial evolution. Prominent amongehgas a linear
sequence of instructions from an imperative programminguage [10, 87],
and a generic graph structure (a special case of which be@ngdrse-tree)
[114]. After an initial flurry of publications on methods, rilug which dif-
ferent operators and selection methods were examined itiadtb simply
the data structure, the field of GP has “settled down” andm®céurned to
application and exploitation of the basic method. Some @sgive early ap-
plications paved the way for future inquiries [43, 103, 44@] @nd recently
the field has matured to such a degree that applicationéimyand even su-
perceding the performance of human designers are routifeghonstrated.
For example, the prominent researcher John Koza has agplipdtent pro-
tection of a particular design generated by his highly parabmputational
approach toward circuit design. Others have succeededsigrdeg anten-
nae for use in space missions that out-perform human-getidtasigns [77].
The GECCO conference [2] now features an annual competdicated to
human-competitive or human-exceeding applications of @Padher evolu-
tionary methods.

Although the field of GP is now well-established, its matyid still open
to question. Since GP is an abstraction of a “snapshot” dbgig it follows
that the field should continue to develop in the light of newvdifigs in the
domain of the life sciences. As such, the field of GP has notrgathed
a steady state, but should be continually driven by furtheggess in our
understanding of biology. We now consider in more detail hbis might
occur.

2.2 Reflections on Genetic Programming

Implications of Exploiting Evolution

One of the main strengths of GP lies in tdaptabilityof the “genetic” repre-
sentation of solutions. However, such flexibility is lindtenainly to changes
in the sizeof a proposed solution in terms of the number of “elementgtus
(e.g., nodes in a graph or tree, lines of code in a linear sgmtation). This



facility gives rise to a phenomenon whereby the averagetieafevolved
programs (i.e. solutions) tends to continually grow overetiunless artifi-
cially restricted [6], and that the resulting code does heags manifest itself
in additional algorithmic complexity. This growth of eveld data structures
used to represent algorithmic solutions is attributed toatedneutral code
(referred to asntrons after non-coding DNA found in real gene sequences)
[4,72].

Subsequent investigations established that eniergenfproperty of GP
(9]

was ubiquitous, being found in multiple GP implementations

had both positive and negative effects on algorithm belmavio

was implicated in inefficient use of computer resources, (p@cessor
time, memory, disc space)

needed an explanation based on the particular GP method used

A consensus is beginning to emerge as to the reasons for theyente
in GP of the intron phenomenon — that extra code helps to girimteividuals
against potentially harmful crossovers or mutations, uoing the prob-
ability of a crucial component being disrupted by one of ¢heperations.
Remedies have been proposed to prevent its negative eféegts homolo-
gous crossover [47]), and other methods have been usedibedetly in-
duce the effect (e.g., explicitly defined introns [88]) imer to further study
its implications. Following the tradition of other evolatiary computation
approaches, the basic question of “building blocks” andt tr@wth dynam-
ics has been examined in the context of GP. In order for sualysis to be
successful, the question of how length-varying evolutigradgorithms work
needs to be addressed at a fundamental level, and signiéindrgubstantial
steps towards this have already been made [90, 91]

Code-growth (often referred to as “bloat”) is not thely emergent phe-
nomenon observed in GP, but it is perhaps the most obviouwse€Inspec-
tion of solutions bred by GP approaches has found that edtalede shows
internal patterning reminiscent of the repetitive struetof natural genomes.
Observed first in linear sequences of code [73], this sp@atas structure
formation has been now confirmed in other representatidns [8

In recent years, exciting new developments have been expbytvirtue of
merging approaches from GP with those from the ArtificiaeLédbmmunity
[106]. The application sphere of GP (and other evolutioraryroaches) is



expanding every year, and the amount of work published iwigigin turn.
Yet there is also an “underground” stream of work that is ndilighed or
patented, and is instead held as protected trade secrégsshddy of research
generally refers to applications in the financial sectoresgha slight “edge”
over the competiton (e.g., in terms of evolved predictordtie stock market)
may yield a significant financial return. The number of solid &plications
now stands in the hundreds, ranging from elementary paipicysics [75] to
bankruptcy prediction [79]. However, there still exist amwher of domains
in which further progress will be needed before GP can makigrafisant
impact. First and foremost, present GP techniques do nt sedl. Useful
applications are currently restricted to short programa obmplexity com-
parable to 50 to 250 “standard” lines of code. If GP methodstathave a
long-term future, then future work must focus on scalapifitorder for them
to move into new domains of applicability. We consider hovs tinight be
achieved in the next section.

Levels of Abstraction Employed - Getting Back to the Biology

In most competitive programs that have been evolved to datae sort of
structuring of the evolutionary process has turned out todmessary. It can
been argued that, without explicit inclusion of a developtakprocess that
might faciliate the emergence of genomic structuring ard‘tipscaling” of
solutions through growth, GP will continue to suffer frone tlwin problems
of scalability and the lack of potential for modularity ofdm[12, 15, 55].
The inclusion of such a process, however, does not comeder 8uch major
changes to (and potential improvement of) the basic GP rdetlibnecessi-
tate a significant complication of the genotype-to-phepetyapping process
— of which current practitioners are understandably warg B&lieve, how-
ever, that without consideration of fundamental developialeprocesses in
evolution [11], further progress in GP will become stalled.

As advances in molecular biology have made clear, the ges@fear-
ious organisms contain multiple levels of complexity. Altigh only 1-3%
of the human genome isanslatedinto protein and thus “codes” for some-
thing, more than 50% of the genome is at least transcribed (read”, in
preparation for conversion into a protein) [62]. This camfirthe suspicion
that we as scientists have barely started to understandtmafion of pheno-
types from genetic information [129]. One fundamental goeghat might
be asked is this: Is transcription a more important steperfdbmation of the
phenotype than translation into proteins? In addition npitgpic differences



can be present in multiple individuals with identical genatakeups [133].
This points to the possible additional consideratiorpijeneticas being of
primary importance if we want to understand evolution [130}d thus incor-
porate this extra power into GP. Evolution, however, is hetanly adaptive
mechanism available to us for study, abstraction and agijpic. The neural
system, the endocrine system and the immune system areoaftsoaf many
systems deserving of attention. In the next section, we aurrattention to
the last of these.

2.3 Artificial Immune Systems

The immune system is a complex mechanism that undertakedtizuaeof
tasks, and its abilities have inspired computer scientisbaiild artificial sys-
tems that mimic its properties [26]. This field of research rifisial Im-
mune Systems — has seen the application of immune-insggedtams to
problems as diverse as as robotic control [71], networkugitm detection
[33, 65], fault tolerance [22, 7], bioinformatics [85] andaohine learning
[67,128]. From a computational point of view, the immunetsgshas many
desirable abilities that could usefully be endowed on aidifisystems. These
properties include: robustness, adaptability, diversitalability, and multi-
ple interactions on a variety of timescales. We now condtikse properties
in more detail, and see how they might be usefully utilised.

A Brief History of Artificial Immune Systems
The origins of AIS has its roots in the early theoretical wofkarmer, Perel-
son and Varela [30, 89, 123], in which a number of network noeere
proposed to describe the maintenance of immune memory ialtbence of
antigens. These models, whilst controversial from an imohagical per-
spective, attracted much interest from the computer seieammunity. Two
early contributors to the fusion of immunology and compgtivere Hugues
Bersini and Stephanie Forrest. Some of the early work byiBiefi5, 17]
is very well-rooted in immunology, and this is also true oé hitial contri-
butions of Forrest [34, 50]. All of this work formed an exegit foundation
for future work in the area of AlS. Bersini, concentrated mmiune network
theory, examining how the immune system maintained its nmgraod how
one might build models and algorithms mimicking that prapefForrest’s
work focussed mainly on computer security (in particulamek intrusion
detection) [33, 52], and formed the basis for a large bodyb$equent work.
In the mid-1990s, researchers in the UK began to investihataature of
learningin the immune system, and how this might be used to createineach



learning algorithms [24]. Initial results were very encaging, and this suc-
cess was further developed by the application of immunesy#&ieas to the
classification of DNA sequences [56] and the detection oépigally fraud-

ulent mortgage applications [57]. Immune network-basedhime learning

gathered further momentum, notably in [117, 121] where thatknd Cook
system just mentioned was totally rewritten, simplified apglied to unsu-
pervised learning (in a manner very similar to cluster asia)y This thread of
work on machine learning generated more work in the unsigeEsthdomain,
but this time focussing mainly on dynamic clustering [133]. 8At the same
time, other immune-inspired work [49] used associative mgntecniques
to track “moving targets” in databases. In the supervisadnieg domain,
very little happened until Watkins [125] developed an immirased classi-
fier known as AIRS. This important system (later augmentefd 28]) has

evolved into a parallel and distributed learning systen6[12nd is one of
the real “success stories” of immune inspired learning §01,127].

For a full review of AIS and its applications in the past fiveayg the
reader is directed to various reviews in the literature |29, 26, 37, 48]. The
International Conference on Artificial Immune Systems (RI8) conference
series began in 2002, and is now well-established [118, 8&260]. This
series is probably the best source of reference materiggrins of both the
variety of AIS applications and theoretical developmentihe field.

2.4 Reflections on Artificial Imnmune Systems
Implications of Exploiting Immunology
The work of Forrest et al. [35] led to a great deal of reseantt immune-
inspiredanomaly detectiosystems for the purposes of detecting computer
viruses[33]. These results hinted at the possibility thatimmune approach
would indeed be beneficial, as they showed that both knowmawell virus
intrusions could be detected. However, given the typigaigsentation used
(binary), and that the-contiguous bitamatching rule was typically used to
compare contiguous regions binary strings, there arosessef computa-
tional efficiency. The subsequanthunkrule allowed efficient generation of
a set of detectors for the non-self space (in Hamming shagee$pand more
efficient methods were also developedeal-valued shape space [39]
Unlike in GP (section 2.2), where code bloat was a problenthéncase
of this particular application of AlS, the main problem beeathat of gen-
erating enough detectors to effectively covering the sespace; In essence,
there arose an exponential relationship between the siteesklf data and
the number of detectors that could be generated. Work in fil11T] presented



an in-depth theoretical analysis of thegative selectioalgorithm over real
and Hamming shape spaces. The authors suggest that, ovdatheing
shape-space, the approach is not well suited for real-veordanaly detection
problems. Problems seem to arise when the generated detetiimder-fits
the training data exponentially for small valuesrofwherer is the size of
the chunk). It has been suggested that, in order avoid thisriitting behav-
ior, the matching threshold valuemust lie neat (the length of the string).
However, the consequence of this is that the detector géme@ocess once
again becomes practically infeasible, since all proposgdator generating
algorithms have a runtime complexity which is exponential.i In addition
to these theoretical arguments, simple experimental casgres have been
made between the various negative selection approachesareltclass sup-
port vector machine (SVM). When assessing the work of [38] (eal-valued
negative selection algorithm with variable-sized detex)toexperiments re-
vealed not only that the classification performance of théhoe crucially
depended on the size of the variable region, but that thectass-SVM pro-
videsas good if not better results. As argued in [48], it is not clear that
the application of AIS to network security has, so far, yéldny significant
breakthroughs.

Another example application of AIS is drawn from the work afmmis
et al. [120]. In [120], an immune network inspired algorithm wasposed
that was capable of performing unsupervised learning.ialmiésults were
very encouraging, but further investigations in [66] highted a number of
problems, and identified a behavioral pattern differenht bbserved in the
original work. Subsequent investigations discoveredttiaalgorithm would
naturally discover the strongest pattern within the agpiin data set, and
that the network would eventually converge to a single eluéin undesir-
able property). Pressure within the network was too gredtfeaker” cells
to survive, which arose because of a naive implementatioretfork inter-
actions, where stimulation and suppression occurring &etveells was not
effectively balanced. As highlighted in [38], a too simpitisapproach had
been taken to the representation of data vectors, and, ficyar, to the def-
inition of their interactions.

Levels of Abstraction Employed - Getting Back to the Biology

The original AlS were developed with an interdisciplinalsrg, taking care
to generate algorithms that were "“faithful” to their imnulogical roots. For
example, Bersini [16, 17, 18] pays clear attention to thesttggment of im-

10



mune network models, and then applies these models to aot@naiblem
characterised by a discrete state vector in a state spaagsinBeproposal
relaxes the conventional control strategies, which attemgrive the process
under control to a specifimoneof the state space; instead, he argues that the
metadynamics of the immune network is akin to a meta-comthalse aim is

to keep the concentration of the antibodies within a certaige of viability,

S0 as to continuously preserve tldentity of the system.

There exist many other examples of similar interdiscipinaork, such
as the development of immune gene libraries and a subseljoeatmarrow
algorithm employed in AIS [50], the development of the nagedelection al-
gorithm and its first application to computer security [33pwever, in more
recent years, work on AIS has slowly drifted away from momdsically-
appealing models and attention to biological detail, whth focus shifting to
a more engineering-oriented approach. This has led toragstieat are ex-
amples of “reasoning by metaphor” [108]. These include #nmpodels of
clonal selection, immune networks and negative seleclgarighms, as out-
lined above. For example, the clonal selection algorithinGRALG) [23],
whilst intuitively appealing, lacks any notion of interat of B-cells with
T-cells, MHC or cytokines. In addition, the large number afgmeters as-
sociated with the algorithm, whilst well understood, make algorithm less
appealing from a computational perspective. aiNET, agalvilst somewhat
affective, does not employ immune network theory to any tggggent. Only
suppression between B-cells is employed, whereas in immatveork the-
ory, there exists suppression and stimulation betwees.c®llith regard to
negative selection, the simple random search strategyosmg- combined
with a simple binary representation — makes the algorithoosaputationally
expensive that it is almost unusable in a “real world” set{ihl2].

However, recent work by the Danger Team [3] has started toeadahis
imbalance between theory and biological reality. For exam@2] reports
initial explorations into the use afendritic cells (a type of cell found in the
innate immune system) as a mechanism for identifying dangsior anoma-
lous) event in a data stream. While this research is stillimpneary, and
currently works only on static data, it offers a great deahpise, and may go
some way towards offering the possibility of real breaktigias in the intru-
sion detection subfield of AIS research. In related work,tBgth4] proposes
anatrtificial tissue a form of representation of the data space that can evolve
and adapt over time. Again, this is very preliminary workt, tould provide a
useful “bridge” between data and the immune algorithmfitdeladdition to
this, work in [109] proposes a "conceptual framework” fag tlevelopment of
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AIS (although it could be generalised to any bioinspiredrapph). This pro-
poses greater interaction between computer scientisggnesrs, biologists
and mathematicians, in order to gain better insights inth bee workings of
the immune system, and the applicability (or otherwisehefAlS paradigm.
These interactions should be rooted in a sound methodotoggdier to fully

exploit the synergy.

Whilst the immune system is clearly an interesting systerniestigate,
if viewed in isolation many key emergent properties arigiogn interactions
with other systems will be missed. Such systems do not operate indepen-
dently in biology; consideration should therefore be gitethe interactions
of the immune, neural and endocrine systems, and how — tegetthey fa-
cilitate emergent properties [104, 20, 102]. Immune, nleama endocrine
cells express receptors for each other, and this allowsaictien and com-
munication between cells and molecules in “partner” systertt appears
that products from the immune and neural systems can exigtriphoid,
endocrine and neural tissa the same time This indicates that there is
a bi-directional link between the nervous system and immsystem, and,
therefore, it would seem that both endocrine and neuraésysican affect
the immune system. There is evidence to suggest that, bulstiimg areas
of the brain, it is possible to affect certain immune resgsnsnd also that
stress (which is regulated by the endocrine system) carrasppnmune re-
sponses: this is also reciprocal, in that immune cells ciatiaéndocrine and
neural systems. The action of various endocrine producte®neural sys-
tem is accepted to be an important stimulus of a wide variehebaviours.
These range from behaviours such as flight and sexual gctigisleeping
and eating [84].

From a computational perspective, then, how may these firidform the
AIS community? It should be possible to explore the role ¢ériaction be-
tween the three systems just mentioned — one potentiallyesting avenue
would be to design an AIS to help select the types of companehich will
be most useful wheaddedto a control system at any moment (“differentia-
tion”) and toremovecomponents when they are proving harmful to the con-
trol system (“apoptosis”, or cell death). Thalogicalimmune system cells
select the particular action to perform by detecting propsof the cells and
chemical environment, through molecular interactions atmrane recep-
tors. In anartificial system, similar properties could be detected by looking
at activation states of artificial neurons and endocrinks cas well as global
state information such as current consumption and batsssld. Thus, the
artificial immune system components could have the abititpnke similar

12



decisions to those of the real biological system.

3 WHAT ABOUT THE MEDIUM?

We have now reviewed two bioinspired paradigms, one wedlidished (GP

- section 2.1) and one relative newcomer, AIS - section 233).far, there
has been no consideration of thieysicalnature of the system on which these
models are developed. In this section, we address this ligwang the area
of Evolvable Hardware, observe how evolution may be usedainiare-
based systems, and describe the specific considerationsirgeced when
developing such systems.

EHW is a method for electronic circuit design that uses irsjmn from
biology toevolverather than design hardware. At first sight this would there-
fore seem very appealing. As we have already seen, natstaisyg tend to
be robust, adaptable, complex and reliable. Human desigasanly to beat
natural systems in terms of their optimality. Evolvabledveare is a new
field that brings together reconfigurable hardware, ardifficitelligence, fault
tolerance and autonomous systems. It refers to hardwareahahange its
architecture and behaviour dynamically and autonomotumstyuigh interac-
tion with its environment. Ideally, this process of intdfans and changes
should be continuous and open-ended. Hardware is therafesited through
an evolutionary process of continual refinement, which ¢elgninates when
a sufficiently “good” individual has been found.

Both evolvable anévolvechardware make use of evolutionary techniques
in order to produce a system that performs to some specificétiere, we
mainly consider the latter); both are, to some extent, artwus, and both
may have properties that endow the final system witiited fault toler-
ance. The major (but not the only) difference between thei$wiatevolved
systems do not change after a “good” individual has beendpand are
therefore rather static in terms of their design (as are mostan designs).
Evolvablesystems possess the capability to change throughout ifiediimie.
Hence, as the system itself changes (e.g., componentsiadl} the environ-
ment changes (e.g., the temperature changes), an evosyaitéen is able to
adapt to these changes and continue to operate effectively.

3.1 A Brief History of Evolutionary Hardware Systems

It may argued that artificially intelligent system desigrogld address fea-
tures such as autonomy, adaptability, robustness, antitédetance. Au-
tonomous robot navigation in dynamic environments reprssa very chal-
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lenging task, and needs to take into account such factoravedtional ap-
proaches based aiff-linelearned control policies do not generally work ap-
propriately when implemented in real time environmentst &@mple, the
actual hardware system implementing the evolved behaviay well not
accurately match the simulation environment used duriogéion. The sen-
sors and actuators used in the real system may have diffelaracteristics
to those used in the simulation (e.g., infra-red sensordigt environment
would operate differently to those in a dark or changingtlighvironment).
The development of EHW — the application of evolutionaraiidnms [31] to
automatic design and or reconfiguration of electronicsudis§134], presents
a promising approach to the problem of adaptation in unkrokanging en-
vironments.

Two methodologies have been established for the design &§:HEktrin-
sicandintrinsic [116, 81, 74, 46, 54]. In the former case, both the evolution-
ary process as well as the fitness evaluation of each indiVigle circuit)
is simulated insoftware The entire design is undertaken off-line, and once
the evolutionary process has completed, the “best” memiabedinal pop-
ulation is downloaded onto the hardware. In the latter ctiseevolution-
ary process maybe executed in software, but each individ@adecuted and
evaluated irhardware[46, 54]. Developments in electronic devices such as
the Field Programmable Gate Array (FPGA) — reconfigurablécds with
no pre-determined function [101] — have enabled theoratieas of intrin-
sic evolution to become a reality in the last few years. Eadhividual is
represented as a bit string (genotype) that is downloadé#tetohip as con-
figuration data. This data includes a definition of each £@lihctionality as
well as the topology of the system.

Higuchi’s group in Japan have taken a different approachH@/ERather
than use extrinsic evolution, or intrinsic evolution on Guercial, Off-The-
Shelf (COTS) chips, they have developed a single LargeeScaégrated
(LSI) chip that is specifically designed to support evoligh{59]. They
have developed a gate-level chip that consists of genefarithm hardware,
reconfigurable hardware logic and the control logic requirghis chip, and
variants of it, have been applied to a number of applicatiorduding and
artificial hand controller, autonomous robotics, data caragion of image
data, analogue chip design for cellular phones, opticaésysdjustment and
adjustment of clock timings [51, 63, 76]. What these ressiitsw is an in-
creased cycle time in the evolutionary process, due to teeiaised optimi-
sation that has taken place in the hardware.

Evolutionary computation — using a binary representatiappears to be
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convenient when applied to EHW, since it's substrate péyfenatches the
nature of the configuration bits used in FPGAs. There areeliew huge
problems associated with the evolution of large circuitsvibat today are
probably consideredmall circuit designs) due to problems s€aling That
is, with direct genotype-phenotype mappings such as thesehe circuit
complexity increases so does the size of the genotype ansizbeof the
search space (as we have already seen). A number of paperbdawv pub-
lished to evolve on-line FPGA-based robot controllers gghese methods
[115, 64, 45, 113] using COTS. One of the main problems of\érglon
a FPGA is the genotype-phenotype mapping. Effective mettiodsolve
this problem using intrinsic EHW have been proposed. Inrisic EHW,
the fitness is evaluated on target hardware. Therefore gesain environ-
ment are reflecte@dmmediatelyin the fitness evaluation. For example, the
problem of adaptation of autonomous robot navigation imgiveg environ-
ments consists of finding a suitable function F (the corgrpiivhich maps
the inputs from sensors to the outputs (control signal tartbeors). Another
evolutionary approach to EHW is to use GP — techniques su€aassian
Genetic Programming (CGP) [80] and Enzyme Genetic Progiam(EGP)
[78] have been applied extensively to EHW. A recent develemimand an
attempt to move back to biology is considered in [21].

One criticism of CGP (and GP in general) is that the locatibgenes
within the chromosome has a direct or indirect influence endsulting phe-
notype. In other words, the order in which specific informatregarding
the definition of the GP is stored has a direct or indirectatfte the opera-
tion, performance and characteristics of the resultinggram. Such effects
are considered undesirable, as they may mask or modify taefohe spe-
cific genes in the generation of the phenotype (or resulthogfam). Con-
sequently, GPs are often referred to as possessing a diriectiect context
representation

An alternative representation for GP, in which genes do rptess po-
sitional dependence, has been proposed by Lones and T8¢!l Termed
implicit context representatigithe order in which genes are used to describe
the phenotype (or resulting program) is determinéidr their self-organised
binding, based on their own characteristics and not thedci§ip location
within the genotype — a much more biologically-realisticamanism. The
result is an implicit context representation version oflitianal parse-tree
based GP, termdanzyme Genetic Programminghe authors have since im-
plemented an implicit context representation of CGP, terimwlicit Context
Representation Cartesian Genetic Programming (IRCGEgjfegally for the
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evolution of image processing filters [21].

In many evolutionary algorithms, whether intrinsic or éxsic, once the
final criteria have been met (the required fitness level omhAgimum num-
ber of generations) the evolutionary process stops, anidebieof population
is used in the implementation. An alternative approach @llmv continu-
ous evolution throughout the lifetime of a system. Once a berhas been
chosen for implementation, the evolutionary process deéstop. Such a
continuous process allows a system to be more responsivevimemental
changes. For example, evolution can cope with erdaring runtime The
system fitness might temporarily drop at the instant therésr@ctivated,
but the evolutionary process autonomously deals with tiap ¢h fitness and
recovers back to an acceptable level (and thus an accepgablef function-
ality) over a number of generations.

3.2 Reflections on EHW
Implications of Exploiting Evolution
Original design of digital circuitry is an area in which thel® community
has experienced limited success. To fully appreciate whyg,important to
understand how industry performs digital design. The ohetming major-
ity of digital design today is carried out using electron&siyn automation
(EDA) tools. Complicated designs are usually implementean FPGA, or
in an application specific integrated circuit, where theicedensity permits
high-speeds in small packages. The complexity of thesgagsnakes hand
design methods impossible. EDA tools automate the desigregs, thereby
reducing design time, improving yields, and reducing noargng costs.
EHW practitioners need to understand that the FPGA desigwnifidn
place and widely used throughout the integrated circuitigtiy today. In
essence, this means the EHW community needs to demonaitztastial
and significant advantages over an established methoddretking any real
inroads, and this necessity presents the main challengeyt&ldW method
for circuit synthesis. An additional — but fundamental -uissll EHW users
have to face iscalability. A typical “big” EHW system might be a few 100
transistors (1970’s technology for the microprocessormames). Current
chip designs contain on the order of 100,000,000 transistor

Levels of Abstraction Employed - Getting Back to the Biology

The area of adaptive system design and control is where EHWads have
the greatest potential for digital, analog and mixed sigyatems. Circuitry
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can be adapted, i.e., reconfigured, to take on new rolesy dadt recovery.
Consequently, the focus should be agaptationfor fault recovery opera-
tions.

Circuits are adapteth-situ. What makes this environment particularly
problematic is the fact that the user almost never has camgleowledge
about why the original circuitry failed. Obviously, faukksn degrade a cir-
cuit's performance, but so can any change in the operatiematonment.
Regardless of the cause of a fault, reconfiguration dorgitu is especially
challenging for two reasons: (1) faults can be hard to detedtisolate, and
(2) the reconfiguration function may itself be compromisgthe fault. How-
ever biological systems seem to operate, for the majoritheif time, con-
tinually faced by all of these issues (and more besides).

At the present time, a significant portion of EHW-based faatiovery
investigations rely on simulations and usually fairly slisiic models of bio-
logical evolution. As with many evolutionary-type systemenotype to phe-
notype mappings tend to be rather simplified, usually orer®. As men-
tioned previously, developmental processes are seldosidemed (although,
as we have already pointed out, this can lead to its own issie®stigations
are needed to develop intrinsic evolutionary methods ftormamous systems
with limited resources. This should also include recovechhiques. Like bi-
ological systems, these evolutionary methods should nptwhen one good
solution is found. We need to consider how we can incorpdratiogical
open-endee@volution into our systems.

More work needs to be done on developing EAs that can intatigi
evolve circuit configurations wittmpreciselydefined performance objectives
(imprecise in the sense that one does not know in advancelexshof per-
formance can be achieved). Evolving benign configuratiatere further
damage is contained and controlled, is also of interestilAgaore accurate
models of the equivalent biological processes need to bsidered for the
eventual benefit of our hardware systems.

Studies are needed to determine how effective EHW-basedeecmeth-
ods are when the computing resources they run on are degogdawiron-
mental conditions. Can we somehow use homeostasis-typs idenake our
systems adapt intelligently — to ensure critical functians kept operational
— at the expense of other, less critical, functions - for gxamhe immune-
endocrine-neural system (section 2.4)? Many fault regosegnarios involve
injecting arbitrary faults into an operating circuit, e.g., a randomly chosen
switch in a circuit is forced open. It is not clear if such alfasi likely to
occur in isolation or whether it results from some othertfalihis ambiguity
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leads to the development of recovery methods that may hawted useful-
ness. A major issue with all fault-tolerant systems is ed®tection. This
is mostly ignored in EHW systems. Atrtificial Immune Systerhswdd have
a role to play here and more should be made of the combinatiorutiple
bio-inspired ideas, as we have already discussed in sezdon

4 AT THE INTERFACE OF BIOLOGY AND COMPUTING

Biological systems such as individual cells are capablesofgpming amaz-
ingly intricate and sophisticated information procesdemgks, including pat-
tern recognition and distributed memory storage (pre\jodascribed in the
context of the immune system), pattéonmation[19], distributed communi-
cation [13] and adaptive control [105].

As we have already seen, descriptions of cellular systenydxmasefully
abstracted and applied to the solution of human-defined atatipnal prob-
lems. In particular, studies of bacterial attraction andzement have been
successfully applied to (among other problems) the trgioinartificial neu-
ral networks [27] and the design of aircraft aerofoils [82]addition, actual
living cells have also been directgngineeredo perform simple computa-
tional tasks. In 1999, Weisst al [131] described a technigue for mapping
digital logic circuits onto genetic regulatory networkgBuhat the resulting
chemical activity within the cell corresponded to the comagions specified
by the desired digital circuit. There was a burst of actiwity2000, when
two papers appeared in the same issuNature both being seminal contri-
butions to the field. In [29], Elowitz and Leibler describdw tconstruction
of an oscillator network that caused a cultureEotoli to periodically glow
by expressing a fluorescent protein. Crucially, the peribdsaillation was
slower than the cell division cycle, indicating that thetstaf the oscillator
was transmitted from generation to generation. In [36],dBaret al. im-
plemented a genetic toggle switch Encoli, the switch being flipped from
one stable state to another by either chemical or heat ifmucthese “sin-
gle cell” experiments demonstrated the feasibility of ienpenting artificial
logical operations using genetic modification. In [97], &g®au addresses
the issue of finding general design principles among mialagnetic cir-
cuits, citing several examples. Several more examplesaziessful work on
cellular computing may be found in [5].

It is clear, therefore, that working at the interface of ekt biology and
engineering/computer science can generate tangible teimetierms of “real
world” applications. However, these applications do natdpus any closer to
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a real break-through in terms of a completely novel comjutat paradigm.
Moreover, with very few exceptions, it is rarely the case sueh studies add
anything to our overall understanding of the underlyingidgical system.
Here, we argue that the development of novel biological ritlgms should
be, at least in part, motivated by a desire for longer-tesigints, and not just
short-term applications. Given the work presented so faettions 2.1 and
2.3, there seems to be clear evidence that no matter how lagpegeating
applications can be, there are some inherent difficultieglopting biologi-
cally inspired approaches, and it may be possible to try &cdmvent some
of these, through a more rigorous and in-depth investigatio

In the following section, we further strengthen the mainralleargument
of this article — that simple abstractions, whilst usefug Bmited, and that
one needs to consider in detail the underlying biology itswork is to have
long-term general significance. We support our argumengliewing re-
cent work onnatural genetic engineeringThis relatively novel — and still
controversial — view of evolution, proposed mainly by Jimafino, centres
on the ability of individual cells to restructure their owargomic information
in response to reproductive pressures. A deeper undenstaafithe fun-
damental underlying processes will benefit not only bidtgattempting to
gain new insights into evolution, but computer scientistd angineers seek-
ing to use nature as the inspiration for robust and adaptsdnig/software
systems. Crucially, though, this investigation poses ttiallenges to both
biologists and computer scientists, and neither communillysucceed in
isolation. However, the anticipated benefits are wide-iramgnd profound.
As Shapiro himself argues: “These challenges should bedrighe research
agenda for the 21 Century. It is likely that meeting them will lead us to new
computing paradigms of great creative power, like evotutiself” [100].

5 NATURAL GENETIC ENGINEERING

Only relatively recently has the view of the genome changethfthat of a
collection of relatively independent genetic units, tottbha system made

up of an organised collection of interacting and interdejeert modules [99].
The coding regions of genes provide the templates for prstevhich are
generated when the genedgpressedand these proteins can themselves af-
fect the expression of other genes [61]. Shapiro argueshbaienome has a
precise architecture encoded by the distribution of varioan-coding repet-
itive DNA sequences (often erroneously referred to as “jDNA"). As this
system-level architecture governs the “day to day” funtig of the cell, it
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follows that alterations to this structure may well be mudresignificant in
terms of evolution than modifications to individual prot[89]. By “cutting
and splicing” their own DNA, organisms may therefore remiga both their
repetitive and their coding sequences to generate newifumatgenomic sys-
tems. Natural genetic engineerinNGE) [98, 100] is the term given to this
ability or capacity of organisms to modify or reorganiseitizevn genome
in response to certain pressures. As we have seen in Seclipth2 shuf-
fling of interdependent program modules is a very effectiomputational
strategy when combined with some sort of selection pres3dinis reorgani-
sation may occur at different time-scales, and for a mulétaf reasons. For
example, itis clear that NGE occurs, at an intermediate-8oede, in the im-
mune system [100]. Here, NGE progresses over the course ltitetiular
development, with cellular differentiation providing thestem “clock”. The
notion of timescales, and the variety of them in the immurstesy, would
seem to have been missed by the vast majority of AlS to date.

The problem of encoding aextremelylarge array of response molecules
given a finite coding sequence region appears to have beetddnf immune
system lymphocytes utilising NGE. Here, sequences of oflatt DNA re-
arrangements generate novel protein-coding regions thatsed to generate
new antigen-binding molecules. Moreover, a “real time”ipies feedback
loop amplifies the cells that have succeeded in generatirigaules with a
sufficient “fit” to the antigen, and then these cells underdorther process
of DNA “tweaking” to further increase specificity. This gvdymphocytes
an extraordinary degree of responsiveness; they haveesvththemselves
evolve rapid and specific adaptations [99, 100].

Itis clear that NGE also occurs at a much more rapid timeedbaln that of
lymphocyte differentiation. Many organisms are capablexifemely rapid
genomic rearrangement, perhaps the most striking exanepig that of the
ciliates

5.1 NGE n ciliates

Ciliate is a term applied to any member of a group of around 10,000 dif-
ferent types of single-celled organism that are charaxtdrby two features:
the possession of hair-likelia for movement, and the presence of two kinds
of nucleiinstead of the usual one. One nucleus (thieronucleu¥is used

for sexual exchange of DNA, and the other (thacronucleukis responsi-
ble for cell growth and proliferation. Crucially, the DNA the micronucleus
contains an “encoded” description of the DNA in the workingaronucleus,
which is decoded during development. This encoding “sctagifragments
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of the functional genes in the macronucleus by both the ptation (and pos-
sible inversion) of partiatodingsequences and the inclusionsafn-coding
sequences.

It is the macronucleus (that is, the “housekeeping” nuglénet provides
the RNA “blueprints” for the production of proteins. The mgaucleus, on
the other hand, is a dormant nucleus which is activated amiynd sexual re-
production, when at some point a micronucleus is convertedd macronu-
cleus in a process known gene assemblypuring this process the micronu-
clear genome is converted into the macronuclear genomes cimversion
reorganizes the genetic material in the micronucleus bywémg noncoding
sequences and placing coding sequences in their correet. ofichis “un-
scrambling” may be interpreted as a computational process.

The exact mechanism by which genes are unscrambled is ndtiljet
understood. We first describe experimental observatioaisithve at least
suggested possible mechanisms. We then describe a coropatanodel of
the process. We conclude this Section with a discussioreodeimputational
and biological implications of this work.

5.2 Biological background

The macronucleus consists of millions of short DNA molesutleat result
from the conversion of the micronuclear DNA molecules. V@t excep-
tions, each macronuclear molecule corresponds to an thdivgene, varying

in size between 400 b.pbése pairyand 15,000 b.p. (the average size is 2000
b.p.). The fragments of macronuclear DNA form a very smatiportion of
the micronucleus, as up to %8of micronuclear DNA is noncoding, including
intergenic “spacers” (that is, onty 2% of the micronucleus is coding DNA),
and all noncoding DNA is excised during gene assembly.

IESs and MDSs

The process of decodirigdividual gene structures is therefore what inter-
ests us here. In the simplest case, micronuclear versionsaofonuclear
genes contain many short, noncoding sequences dallethal eliminated
sequence®r IESs. These are short sequences which, as their namesisgg
are removed from genes and destroyed during gene assenhigly.s€parate
the micronuclear version of a gene inttacronuclear destined sequences
or MDSs (Fig. 1a). When IESs are removed, the MDSs making ugna g
are “glued” together to form the functional macronucleajusnce. In the
simplest case, IESs are bordered on either side by pairsofitdl repeat
sequences (pointers) in the ends of the adjacent MDSs (Bjg. 1
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(a) Schematic representation of interruption of MDSs bysdH$) Repeat sequences
in MDSs flanking an IES (the outgoing repeat sequence of MB®tjual to the
incoming repeat sequence of MDS2)

Scrambled Genes

In some organisms, the gene assembly problem is complibgitiat “scram-
bling” of MDSs within a particular gene. In this situatiohgtcorrect arrange-
ment of MDSs in a macronuclear gene is present in a permutedifothe
micronuclear DNA. For example, the actin | gen&drytricha novas made
up of 9 MDSs and 8 IESs, the MDSs being present in the micreusdn
the order 3—4-6-5—7-9-2—1-8, with MDS2 being inverted.[®8]ring the
development of the macronucleus, the MDSs making up thie gea rear-
ranged into the correct order at tkametime as IES excision. Scrambling
is oftenfurther complicated by the fact that some MDSs mayiieerted(a
180 point rotation).

5.3 Fundamental Questions

Ciliates are remarkably successful organisms. The randaN# manipu-
lation and reorganization operations they perform haglgideen acquired
during billions of years of evolution. However, some fundantal questions
remain: what are the underlying molecular mechanisms oé geoconstruc-
tion and how did they evolve, and how do ciliates “know” whedguences
to remove and which to keep?

Concerning the first question, Prescott proposes [92] tiattompres-
sion” of a working nucleus from a larger predecessor is pbat strategy to
produce a “streamlined” nucleus in which “every sequenemtsy (i.e., use-
less DNA is not present). This efficiency may be further eclednby the
dispersal of genes into individual molecules, rather thavirig them being
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joined into chromosomes. However, so far we still know védtielabout the
details and evolutionary origins of this intricate undertymolecular “ma-
chinery.”

We may, perhaps, have more success in attempting to anseveetiond
question: how are genes successfully reassembled fromcaxled version?
In the rest of this section we address this question from gpctational per-
spective, and describe a computational model of the regeraant process.

The model proposed by Prescott, Ehrenfeucht and Rozerdesgfor ex-
ample, [94]), is based on three intramolecular operatitimet (s, a single
molecule folds on itself and swaps part of its sequence tiraacombina-
tion). The actual mechanics of cutting and splicing the DN4ences are
still not understood, but ciliates clearly contain the ematics tools (e.g.,
nucleases, ligases, etc.) needed to perform these tasks.

The first operation is the simplest, and is referred ttoap, direct-repeat
excision This operation deals with the situation depicted in FigvRere two
MDSs (r andz) in the correct (i.e., unscrambled) order are separatecby a
IES,y.

The operation proceeds as follows. The strand is foldedaritmp with
the two identical pointers aligned (Fig. 2a), and then stagd cuts are made
(Fig. 2b). The pointers connecting the MDSs then join thegetber, while
the IES self-anneals to yield a circular molecule (Fig. 2c).

The second operation is known hairpin, inverted repeat excisiomnd
is used in the situation where a pointer has two occurremeesof which is
inverted. The molecule folds into a hairpin structure (Big) with the pointer
and its inversion aligned, cuts are made (Fig. 3b) and theried sequence is
reinserted (Fig. 3c), yielding a single molecule.

The third and final operation idouble-loop, alternating direct repeat exci-
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sion/reinsertion This operation is applicable in situations where two répea
of two pointers have interleaving occurrences on the saraadt The double
loop folding is made such that the two pairs of identical p@iroccurrences
are aligned (Fig. 4a), cuts are made (Fig. 4b) and the reautibn takes
place, yielding the molecule from Fig. 4c.

The model has been successfully applied to all known expriah data
on the assembly of real genes, including the actin | gendrastyla grandis
and Engelmanniella mobilisthe gene encoding telomere binding protein
in several stichotrich species, and assembly of the gersderg DNA poly-
merasey in Sterkiella novaDescriptions of these applications are presented
in [93]. From the perspective of the current article, the kepect of this
work is that the problem first originated in the study of a b@tal system.
By expressing the operation of NGE in ciliates in terms of hbateact (but
biologically plausible) topological operations, mathéicians were able to
produce a computational model of the process that appeascmunt for
every decrypted ciliate gene that has been observed to date feedback
cycle is then complete when this abstract model is studieal msvel com-
putational paradignn its own right[28]. Biology and computer science are
therefore inextricably tied together, as neither the camnal model nor
the descriptions it offers would be possible without tigiteraction between
the two disciplines.

6 CONCLUSIONS

The overriding message of this paper is that we feel thatitiéispired com-
puting in general, has reached an impasse. Through exglwmparadigms
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(Genetic Programming and Atrtificial Immune Systems), weehsaen that,
whilst some significant inroads have been made in the denedapof sys-
tems that in some way, mimic their natural counterpart gtstitl remains a
wide gulf between that the artificial systems can do, conpaiieh the nat-
ural systems. In both cases, we explored the limitationsaohe@pproach (a
common theme being one of scaling), and concluded that it Ineageces-
sary, maybe essential, for each of those paradigms to trévési biological
roots, and take a look from whence they came. We then corsidbe ar-
eas of evolvable and evolved hardware systems. These ssteake use
of techniques such as GP and AIS to evolve designs and coatfiigiois that
can be placed into hardware systems, thus bringing beneditsas speed up
and so on. We can conclude from this discussion that whitaaly seem ap-
pealing to place solutions into hardware (and in some casgsssary), again
we meet the same problem as before, that of scale. Finallyjewewed the
area of Natural Genetic Engineering. Here, we showed hosedltteraction
between biologists and computer scientists has generaiedfal model of
natural genetic engineering. This incredibly powerfuhfiework for genomic
rearrangementis one possible explanation of how organisigist “confront
the issue of encoding infinity” [58]. We would say that theeathreas of bio-
inspired computing may take a lesson from the natural gemetjineering
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community, and allow us to move forward to create $keond generatioof
biocomputing systems.
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