
Queue-based Genetic Programming
Elko Tchernev

CSEE Dept., University of Maryland Baltimore County
(UMBC)

1000 Hilltop Circle
Baltimore, MD 21250, USA

+1 410 455 3762

etcher1@umbc.edu

Dhananjay S. Phatak
CSEE Dept., University of Maryland Baltimore County

(UMBC)
1000 Hilltop Circle

Baltimore, MD 21250, USA
+1 410 455 3624

phatak@umbc.edu
ABSTRACT
In this paper, we describe the use of a queue instead of a stack or
a parse tree for the internal representation and genetic operations
of a Genetic Programming system. Specifically, implementation
issues and application areas are discussed.

Categories and Subject Descriptors
E.1 [Data]: Data Structures – graphs and networks, lists, stacks
and queues, trees. F.1.1 [Theory of Computation]: Models of
Computation – push-down automata, self-modifying machines,
probabilistic computation. I.2.6 [Artificial Intelligence]: Learn-
ing – connectionism and neural nets.

General Terms
Algorithms, Experimentation, Theory.

Keywords
Genetic Programming, Tree, Stack, Queue.

1. STACK-BASED GENETIC
PROGRAMMING
Genetic Programming, or GP, has traditionally used tree-based
techniques for representation and reproduction. The most widely
used crossover method is subtree crossover, and the majority of
the alternatives in published literature are variants thereof. How-
ever, if the trees are manipulated in their prefix or postfix form,
other approaches exist that preserve the syntactic integrity of the
participating parent trees. Stack based Genetic programming,
introduced by Perkis in [3], represents programs as lists of nodes
of functions or terminals that consume their inputs from a stack
and place their outputs on a stack. These implementations, in-
cluding the early work of Bruce, Stoffel and Spector, [1], [5] and
later [4], do not try to preserve the stack correctness of the indi-
viduals in the population, but rather rely on the evaluation frame-
work to identify any stack underflow or overflow. In contrast, in
GP with stack-correct (Forth) crossover, introduced by Tchernev
in [6] and [7], the crossover operators manipulate the post order
representation of the program tree. Because the crossover points
are chosen to have compatible stack depths, no malformation is

possible. If the initial population is stack-correct (no individuals
have underflow, and the final stack depth equals the desired num-
ber of outputs), it is guaranteed that all individuals produced by
using stack-correct crossover will be stack-correct.

2. QUEUE-BASED GENETIC
PROGRAMMING
A stack is a LIFO structure – the last item placed into it (on top) is
the first to be removed by subsequent operations. On the other
hand, the queue, a FIFO structure, has almost the same properties.
Like the stack, it can accept any number of items (up to its maxi-
mum capacity, of course), and they remain ordered the way they
were received. The only difference is that the extraction order is
reversed – the first item placed into the queue, is the first to be
removed. Therefore, replacing the stack of a stack-based GP
system with a queue requires very little change in order to pro-
duce a queue-based system. The functions and terminals of the
system need to be modified such that values are read from the
queue, where they were popped from the stack before, and results
are written into the queue, where they were pushed on the stack
before. Analogous to stack-correctness in stack-based GP, we can
define queue-correctness for queue-based GP. An evolved indi-
vidual is queue-correct, if at no point in it is there queue under-
flow (reading an empty queue), and at the end the queue contains
the exact number of output values that the problem specifies
(there are no extra values produced).

3. PROPERTIES OF QUEUE-BASED GP
3.1 Parse tree equivalence
As shown in [6] and [7], in stack-based GP, the individuals with
their corresponding stack-based execution sequences, represent
postorder traversals of parse trees, and the stack depth diagrams
preserve the topology of these trees. Because of the stack ma-
chine's locality of scope, subtrees in stack-based representations
are contained contiguously in the node list; subtree crossover can
be performed by simple two-point cuts, provided the points are
identified. This is not the case in queue-based GP: except when
trivially only one subtree exists, the locations of the subtree nodes
in the node list are not contiguous. In general, it is not possible to
perform a two-point crossover operation whose effect is to swap
subtrees in the corresponding infix expressions. As can be seen
on Figure 1, the semantic composition of a queue-based expres-
sion is highly context-dependent and non-local. The operands to
any function have been placed into the queue by a function or
terminal at a distant location in the node list, and the result from
the function's evaluation will be used by another function again
further down the list. The distance between nodes acting on re-

lated data, is, of course, the queue length; only after all earlier
items are acted on, can a particular data item be modified.

3.2 Crossover possibilities
Since the queue, from a black-box perspective is equivalent to a
stack (ignoring the order of items for a moment), it is possible to
perform the same crossover operations as in stack-based GP, and
obtain queue-correct individuals. Using queue length instead of
stack depth for crossover point choice, all the stack-correct cross-
over methods from [7] can be applied. (They are One-Point,
Two-Point, Subtree and Delta). Their effects on the participating
individuals' parse trees, however, are very different from the ef-
fects in Stack-based GP.

Figure 1. A sequence of nodes, their corresponding queue
picture and parse tree

The rule for subtree crossover in stack-based GP can be mechani-
cally applied in queue-based GP, and will produce queue-correct
individuals. The effect on the parse-tree equivalents will defi-
nitely be different from exchanging subtrees. Similarly, the ef-
fects of the other crossovers will be different from their effects in
stack-based GP, as can be seen in Figure 2, Figure 3 and Figure 4.

4. APPLICATION DOMAINS
Crossover in queue-based GP is particularly disruptive. In tradi-
tional tree- or stack-based GP, a sequence of nodes taken from

one individual and placed into another, preserves its data cohesion
to some extent. Its function nodes can operate on data from leaf
nodes that are contained in the same node sequence. In queue-
based GP, the likelihood of this happening is much lower.

Figure 2. Crossover point selection and result using the "sub-
tree" rule

Guest functions operate on items in the queue that were most
likely placed there by nodes in the host individual, and guest leaf
nodes produce data to be used away from them, most likely by
host functions. In order to maintain some sort of data cohesion,

parse tree

 n
 / \
 z a
 d c d c

queue length

 0 1 2 3 4 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /X /9
 o-g/ 9
 og

linear representation with queue
length at each node

 0 1 2 3 4 3 2 1

 0-0-0-0-0-0-0-

Parent one:

 0 1 2 3 4 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /X /9
 o-g/ 9
 og
Parent two:

 0 1 2 3 2 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /9 /9
 o-g og
Offspring one:

 0 1 2 3 4 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /X /9
 o-g/ 9
 og
Offspring two:

 0 1 2 3 2 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /9 /9
 o-g og

the crossover segment needs to be sufficiently long, and to be
placed in a context with the same overall queue length. There-
fore, the application of queue-based GP to evolve highly modular
programs with short useful building blocks, for example any of
the Parity problems, is not recommended.

Figure 3. Crossover point selection and result using the "two-
point" rule

A more suitable domain would be evolving complex functions
with no repeated internal structure, or situations where the entire
contents of the queue must be processed in some manner that is
not local. The second case is particularly matched to the structure

of layered feed-forward neural networks. If the items in the
queue are activations from a previous layer, and a sequence of
functions represents neural network nodes, then the processed
results go to the other end of the queue, out of the way of the
results from the previous layer that are still being processed.

Figure 4. Crossover point selection and result using the
"delta" rule

This is much better than in stack-based GP for evolving neural
networks, where the results from a node go to the top of the stack

Parent one:

 0 1 2 3 4 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /X /9
 o-g/ 9
 og
Parent two:

 0 1 2 3 2 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /9 /9
 o-g og
Offspring one:

 0 1 2 3 2 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /9 /9
 o-g og
Offspring two:

 0 1 2 3 4 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /X /9
 o-g/ 9
 og

Parent one:

 0 1 2 3 4 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /X /9
 o-g/ 9
 og
Parent two:

 0 1 2 3 2 3 2 1

 rs rs
 o---HlkHlkt-
 o-g /9 /9
 o-g og
Offspring one:

 0 1 2 1 2 1

 rs
 o--Hq-t-
 og og
Offspring two:

0 1 2 3 4 5 4 3 2 1

 rs rs rs
o----HlkHlkHlkt-
 o--g /XkgX /9
 o--g//ig 9
 o-g/
 og

and prevent easy access to older results. A sample neural network
realized with the queue paradigm can be seen in Figure 5.

Figure 5. Feedforward Neural Network implemented using a
queue

5. CONCLUSION AND FUTURE WORK
At the time of writing, trying to evolve small, structured and easy
problems (the two boxes problem from [2]) with conservative
population sizes were not successful, as expected. Experiments
are underway in applying queue-based GP to evolve layered neu-

ral networks; the outcome will show what crossover methods and
settings (if any) produce results with specific desired properties.

6. ACKNOWLEDGMENTS
This work was supported in part by NSF grants ECS-9875705 and
ECS-0196362.

7. REFERENCES

1. Wilker Shane Bruce. "The Lawnmower Problem Revisited:
Stack-Based Genetic Programming and Automatically De-
fined Functions", In Genetic Programming 1997: Proceedings
of the Second Annual Conference, Stanford University, CA,
USA, San Francisco, CA, USA, pp. 52-57, 1997.

2. John R. Koza. "Genetic Programming: On the Programming of
Computers by Means of Natural Selection", Cambridge, MA,
USA, MIT Press, 1992.

3. Tim Perkis. "Stack-Based Genetic Programming", In Proceed-
ings of the 1994 IEEE World Congress on Computational In-
telligence, Orlando, Florida, USA, IEEE Press, pp. 148-153,
1994.

4. Lee Spector and Alan Robinson. "Genetic Programming and
Autoconstructive Evolution with the Push Programming Lan-
guage", In Genetic Programming and Evolvable Machines,
pp. 7-40, 2002.

5. Kilian Stoffel and Lee Spector. "High-Performance, Parallel,
Stack-Based Genetic Programming", In Genetic Programming
1996: Proceedings of the First Annual Conference, Stanford
University, CA, USA, MIT Press, pp. 224-229, 1996.

6. Elko Tchernev. "Forth Crossover Is Not a Macromutation?", In
Genetic Programming 1998: Proceedings of the Third Annual
Conference, University of Wisconsin, Madison, Wisconsin,
USA, San Francisco, CA, USA, pp. 381-386, 1998.

7. Elko Tchernev. "Stack-Correct Crossover Methods in Genetic
Programming", In Late Breaking Papers at the Genetic and
Evolutionary Computation Conference (GECCO-2002), New
York, NY, AAAI, pp. 443-449, 2002.

Four inputs

e
|e
||e
|||e
$+++-s
|$++-+s
||$+-++s
|||$-+++s
R>>?]||||
 l jjjj
 X///
 //X/
 ////\
 ffff h
 R>>?] |
 R==?]
 |
One hidden layer of two nodes

One output

