Skip to main content

Towards in Vivo Genetic Programming: Evolving Boolean Networks to Determine Cell States

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10781))

Abstract

Within the genetic programming community, there has been growing interest in the use of computational representations motivated by gene regulatory networks (GRNs). It is thought that these representations capture useful biological properties, such as evolvability and robustness, and thereby support the evolution of complex computational behaviours. However, computational evolution of GRNs also opens up opportunities to go in the opposite direction: designing programs that could one day be implemented in biological cells. In this paper, we explore the ability of evolutionary algorithms to design Boolean networks, abstract models of GRNs suitable for refining into synthetic biology implementations, and show how they can be used to control cell states within a range of executable models of biological systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reil, T.: Dynamics of gene expression in an artificial genome — implications for biological and artificial ontogeny. In: Floreano, D., Nicoud, J.-D., Mondada, F. (eds.) ECAL 1999. LNCS (LNAI), vol. 1674, pp. 457–466. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48304-7_63

    Chapter  Google Scholar 

  2. Banzhaf, W.: Artificial regulatory networks and genetic programming. In: Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice, Genetic Programming Series, vol. 6, pp. 43–61. Springer, Boston (2003). https://doi.org/10.1007/978-1-4419-8983-3_4

    Chapter  Google Scholar 

  3. Lones, M.A.: Computing with artificial gene regulatory networks. In: Iba, H., Noman, N. (eds.) Evolutionary Algorithms in Gene Regulatory Network Research, pp. 398–424. Wiley (2016). https://doi.org/10.1002/9781119079453.ch15

  4. Sanchez, S., Cussat-Blanc, S.: Gene regulated car driving: using a gene regulatory network to drive a virtual car. Genet. Program Evolvable Mach. 15(4), 477–511 (2014). https://doi.org/10.1007/s10710-014-9228-y

    Article  Google Scholar 

  5. Lones, M.A., Turner, A.P., Fuente, L.A., Stepney, S., Caves, L.S.D., Tyrrell, A.M.: Biochemical connectionism. Nat. Comput. 12(4), 453–472 (2013). https://doi.org/10.1007/s11047-013-9400-y

    Article  MathSciNet  Google Scholar 

  6. Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: Evolution and analysis of a robot controller based on a gene regulatory network. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 61–72. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15323-5_6

    Chapter  Google Scholar 

  7. Lienert, F., Lohmueller, J.J., Garg, A., Silver, P.A.: Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat. Rev. Mol. Cell Biol. 15(2), 95–107 (2014)

    Article  Google Scholar 

  8. Singh, V.: Recent advances and opportunities in synthetic logic gates engineering in living cells. Syst. Synth. Biol. 8(4), 271–282 (2014)

    Article  Google Scholar 

  9. Veliz-Cuba, A., Arthur, J., Hochstetler, L., Klomps, V., Korpi, E.: On the relationship of steady states of continuous and discrete models arising from biology. Bull. Math. Biol. 74(12), 2779–2792 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Saadatpour, A., Albert, R.: Boolean modeling of biological regulatory networks: a methodology tutorial. Methods 62(1), 3–12 (2013)

    Article  Google Scholar 

  11. Cury, J.E., Baldissera, F.L.: Systems biology, synthetic biology and control theory: a promising golden braid. Annu. Rev. Control 37(1), 57–67 (2013)

    Article  Google Scholar 

  12. Huang, S., Ernberg, I., Kauffman, S.: Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol. 20, 869–876 (2009). Elsevier

    Article  Google Scholar 

  13. Motter, A.E.: Networkcontrology: Chaos: an Interdisciplinary. J. Nonlinear Sci. 25(9), 097621 (2015)

    MathSciNet  Google Scholar 

  14. Fornasini, E., Valcher, M.E.: Recent developments in Boolean networks control. J. Control Decis. 3(1), 1–18 (2016)

    Article  MathSciNet  Google Scholar 

  15. Akutsu, T., Hayashida, M., Ching, W.K., Ng, M.K.: Control of Boolean networks: hardness results and algorithms for tree structured networks. J. Theoret. Biol. 244(4), 670–679 (2007)

    Article  MathSciNet  Google Scholar 

  16. Taou, N.S., Corne, D.W., Lones, M.A.: Evolving Boolean networks for biological control: state space targeting in scale free Boolean networks. In: 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–6 (2016). https://doi.org/10.1109/CIBCB.2016.7758125

  17. Taou, N.S., Corne, D.W., Lones, M.A.: Towards intelligent biological control: controlling Boolean networks with Boolean networks. In: European Conference on the Applications of Evolutionary Computation, pp. 351–362 (2016). https://doi.org/10.1007/978-3-319-31204-0_23

  18. Kauffman, S.A.: The Origins of Order: Self Organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  19. Drossel, B.: Random Boolean networks. In: Schuster, H.G. (ed.) Reviews of Nonlinear Dynamics and Complexity, pp. 69–110 (2008). https://doi.org/10.1002/9783527626359.ch3

  20. Huang, S., Eichler, G., Bar-Yam, Y., Ingber, D.E.: Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94(12), 128701 (2005)

    Article  Google Scholar 

  21. Mendoza, L., Xenarios, I.: A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor. Biol. Med. Model. 3(1), 13 (2006)

    Article  Google Scholar 

  22. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinf. 7(1), 56 (2006)

    Article  Google Scholar 

  23. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008)

    Article  Google Scholar 

  24. Alvarez-Buylla, E.R., Chaos, Á., Aldana, M., Benítez, M., Cortes-Poza, Y., Espinosa-Soto, C., Hartasánchez, D.A., Lotto, R.B., Malkin, D., Santos, G.J.E., et al.: Floral morphogenesis: stochastic explorations of a gene network epigenetic landscape. PLoS ONE 3(11), e3626 (2008)

    Article  Google Scholar 

  25. Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R.: Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15(7), 593–606 (1999). Oxford, England

    Article  Google Scholar 

  26. Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Nat. Acad. Sci. U.S.A. 101(14), 4781–4786 (2004)

    Article  Google Scholar 

  27. Goudarzi, A., Teuscher, C., Gulbahce, N., Rohlf, T.: Emergent criticality through adaptive information processing in Boolean networks. Phys. Rev. Lett. 108(12), 128702 (2012)

    Article  Google Scholar 

  28. François, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. Proc. Nat. Acad. Sci. U.S.A. 101(2), 580–585 (2004)

    Article  Google Scholar 

  29. Noman, N., Monjo, T., Moscato, P., Iba, H.: Evolving robust gene regulatory networks. PLoS ONE 10(1), e0116258 (2015)

    Article  Google Scholar 

  30. Garcia-Bernardo, J., Eppstein, M.J.: Evolving modular genetic regulatory networks with a recursive, top-down approach. Syst. Synth. Biol. 9(4), 179–189 (2015)

    Article  Google Scholar 

  31. Trefzer, M.A., Kuyucu, T., Miller, J.F., Tyrrell, A.M.: Image compression of natural images using artificial gene regulatory networks. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 595–602. ACM, New York (2010). https://doi.org/10.1145/1830483.1830593

  32. Cussat-Blanc, S., Harrington, K., Pollack, J.: Gene regulatory network evolution through augmenting topologies. IEEE Trans. Evol. Comput. 19(6), 823–837 (2015)

    Article  Google Scholar 

  33. Turner, A.J., Miller, J.F.: Recurrent Cartesian genetic programming of artificial neural networks. Genet. Program Evolvable Mach. 18(2), 185–212 (2017)

    Article  Google Scholar 

  34. Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: On the design of Boolean network robots. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcázar, A.I., Merelo, J.J., Neri, F., Preuss, M., Richter, H., Togelius, J., Yannakakis, G.N. (eds.) EvoApplications 2011. LNCS, vol. 6624, pp. 43–52. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20525-5_5

    Chapter  Google Scholar 

  35. Timmis, J., Alden, K., Andrews, P., Clark, E., Nellis, A., Naylor, B., Coles, M., Kaye, P.: Building confidence in quantitative systems pharmacology models: an engineer’s guide to exploring the rationale in model design and development. CPT Pharmacometrics Syst. Pharmacol. 6(3), 156–167 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Lones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taou, N.S., Lones, M.A. (2018). Towards in Vivo Genetic Programming: Evolving Boolean Networks to Determine Cell States. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2018. Lecture Notes in Computer Science(), vol 10781. Springer, Cham. https://doi.org/10.1007/978-3-319-77553-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77553-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77552-4

  • Online ISBN: 978-3-319-77553-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics