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Abstract. Some algorithms of Artificial Immune System, such as negative se-
lection algorithm, can not effectively capture semantic information in some 
complex problem spaces. In fact, many semantics exist in digit antigen space. If 
we can recognize based on the semantics of antigens, the accuracy of anomaly 
detection can be improved. In this paper, by the background of system call 
trails generated by process, we design a systematic framework of artificial im-
munity applied to process anomaly detection. This paper proposes to descript 
antigens and immune detectors with first order logic, and construct a time se-
quence model of immune detector based upon stable model theory in extended 
logic programming（ELP）. At last, we introduce a training strategy of new 
immune detector based on genetic inductive logic programming. 

1   Introduction 

Since Farmer proposed to apply immunization to a computational system at first in 
1988, Artificial Immune Systems (AIS) have been verified effective to real world 
problems. Just as Emma Hart pointed out, application areas of AIS techniques can be 
broadly summarized as Learning, Anomaly Detection and Optimization.[1]  

Many recent approaches of AIS are changed from the research by Stephanie 
Forrest [2]. The main idea of Forrest’s research is negative selection algorithm. This 
algorithm includes three stages. The first stage is to construct normal behavior set 
(self). The next is to produce detector set. The last is to detect abnormal behavior 
(non-self). In Forrest’s algorithm (negative selection algorithm), antigens and detec-
tors are 49-bits binary string, and matching rule is r-contiguous. There are some limi-
tations in these approaches. A main limitation is Scalability. It means that in order to 
insure high detection rate, a large number of detectors must be generated. To some 
extent, the number of detectors could be unmanageable [3]. Just as Balthrop said, the 
real reason is not negative selection algorithm. The basic reason is that the match rule 
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reflects the similarity in the genotype space, not the similarity in the phenotype space 
[4].  

Some approaches, such as a real-valued negative selection algorithm by Fabio 
González [5], have solved these limitations of binary detector to a certain extent. But  
more recently,  the design focus of many AIS has become more engineering oriented, 
with less emphasis placed on trying to understand and extract key biological proper-
ties [6]. 

C.Ko,G. Fink and K. Levitt proposed to detect in privileged process at the first 
time [7]. They found program specification language based on first order predicate to 
descript codes in relation to security. But this method needs researcher read codes of 
the programs to confirm the anticipated behaviors of process. So Ko use Inductive 
Logic Programming (ILP) to generate the descriptions of process’s anticipated behav-
ior [8].  

Genetic Inductive Logic Programming (GILP) is an automatic programming which 
combines the approaches of ILP and genetic algorithm (GA) [9]. 

In this paper, we aim at anomaly detection of LINUX processes. By the back-
ground of system call trails generated by processes, we design a systematic frame-
work based on artificial immunity. In this system, we propose to descript antigens and 
immune detectors with first order logic. Because Extended Logic Programming (ELP) 
can deal directly with incomplete information, we construct a time sequence model of 
immune detector with ELP. We use stable model computing, which is the semantic 
model of ELP (also called answer set), to be the matching rule of new detector and 
antigen. Based on genetic inductive logic programming (GILP), this paper introduces 
an evolutionary algorithm of the new immune detector. 

2 Systemic Framework of Semantic Anomaly Detection 

In this section, we give the systemic framework of semantic anomaly detection 
shown in figure 1. We use this system to detect the privileged process of LINUX. The 
main difference between our system and others is the description language and the 
matching rule of antigens and immune detectors. In order to capture the key semantic 
information of antigens, we adapt the matching rule to compute stable model seman-
tics. Through calculating that the collection of a detector and an antigen has or does 
not have stable model, we may say that the detector matches or does not match with 
the antigen.  

The framework presented by figure 1consists of two parts: training offline and de-
tecting online. Components of this framework are just as following. 

2.1 First order predicate and antigens 

Stephanie Forrest defined short sequence of system calls to be the process behavior. 
But in her approaches, system calls did not include arguments, for example, opened   
files, modified files or not, promoted privileges or not. The intruder can escape the 



detection easily through making changes in the intruding means (such as adding some 
irrelevant system calls in a program in order to improve the matching rate). 

In order to overcome this limitation, we think it is necessary to describe the time 
sequence relation of intrusion behavior. Through tracing the execution of a process, 
we can get a system calls sequence, and the same time we get the important argu-
ments of system calls. For example, the following short sequence of system calls are 
given to define a normal behavior (self): 
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Fig. 1. This shows a figure of the Systemic Framework of Semantic Anomaly Detection 

open(f1,m1),read(fd，buf), mmap(ad1,len1,pro1),mmap(ad2,len2,pro2),⋯ 
We define two groups of first order predicates to present antigens and immune de-
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【definition 1】basic predicates, the first group predicates relation to system calls 
and their arguments.  

For example, predicate open(f,m,d) means that the file f is opened with mode m, 
and it appear the dth position in short sequence of system calls. 

In our system, we do not use all system call of LINUX in order to reduce the com-
plexity. We just use high dangerous system calls (see table 1). The predicates of this 
group are defined as following. 

P(a1,a2,⋯⋯,an,d) 
P is the system call name (see table 1) 
a1,a2,……,an are arguments of system call p. 
d is the position number in short sequence 

Table 1. System calls used in the semantic anomaly detection. These system calls are high 
dangerous to computer security. 

Relation to file system Relation to process Others  
Open chmod fchmod 
chown lchown fchown 
link unlink symlink 
rename creat mknod 
mkdir mount 
pivot 

setuid                     setgid   
setreuid                  setregid
setgroups               setfsuid 
setfsgid                  setresuid
Setresgid               execve 

create-module 
delete-module 

 
【definition 2】expanding predicates, the second group predicates represent the 
time sequence relation of system calls . We define three predicates just as follows. 

AT(SYS1,n)                   
 System call SYS1 is at the nthposition  
BEFORE(SYS1, SYS2)    
System call SYS1 appears in any position in front of system call SYS2 
BEFOREN（SYS1，SYS2，n） 
System call SYS1 appears in the nth position in front of system call SYS2 
 
We use basic predicates to present antigens, and to descript immune detectors with 

basic and expanding predicates. Antigens can be viewed as a set of facts. The exam-
ple provided above can be described with first-order predicate as following. 

open(f1,m1,1),read(fd，uf,2), 
mmap(ad1,len1,pro1,3),mmap(ad2,len2,pro2,4),⋯ 
The code method of antigens is similar to the method of SIA01 (Supervised Induc-

tive Algorithm version 01).  This example can be encoded as the following: 
 

open f1 m1 1 read fd buf 2 
 

mmap ad1 len1 pro1 3 
 

mmap ad2 len2 pro2 4 ⋯ 



2.2 Gene Library 

For reducing the cost of detector generation and improve non-self coverage, we de-
fine a gene library in our system. Gene library contains all the atoms that will possi-
bly appear in the immune detector. When we initialize the detector population, we 
may select atoms from the gene library to generate the detector individuals. It can 
prevent from producing a large amount of individuals with lower fitness value. For 
prevent to select the atoms existing conflicts, gene library consists of several sub gene 
libraries. We can only select an atom from a sub gene library. 

Two training sets, self training set and non-self training set, exist in our system. 
The atoms in gene library come from non-self training set initially. Each atom of each 
individual in non-self training set joins to gene library. 

Through evaluating gradually, gene library will be dynamic. Once a memory detec-
tor identifies self incorrectly, it will be deleted from memory detectors population by 
immune system. Before deleting it, for reserving effective information, its atoms 
either positive literal or negative literal will joins to gene library.  It is benefit for 
generating more effective detector. 

2.3 Time Sequence Model of Immune Detector 

In this section, we define a time sequence model of immune detector with ELP. 
Each detector is a rule described by the predicates defined above. The matching rule 
between detectors and antigens is stable model computing. A new evolutionary algo-
rithm of time sequence model detector will be introduced in section 3. In this section, 
we will introduce the phenotype and genotype of time sequence model detector. 

Phenotype of detector 
The head of rule is defined to be abnormal. The phenotype of the detector is as fol-

lowing: 
abnormal:-p1(x1,y1),p2(x2,y2),⋯,pk(xk,yk),not pk+1(xk+1,yk+1),⋯,not pm(xm,ym) 
m≤K, K is a constant that means the maximum number of atoms in rule body. Be-

cause each predicate argument is slightly different in number, we describe as two 
arguments simply here. The experiment can be done according to the actual number 
of argument.  

Genotype of detector 
The rule above can be encoded, and its genotype can be shown by the following: 

#negative pk+1 xk+1 yk+1⋯pm xm ym p1 x1 y1 p2 x2 y2⋯pk xk yk 

 #negative is the number of negative literals in the rule. 



3   Training Strategy of Time Sequence Model Detector 

Because model of the detector in this paper is different from traditional models, we 
need to design new genetic operators, fitness function and matching rule.  

3.1   Initialization  

The initialization step will consist of the following operations: 
1. Produce a random integer M, 1≤M≤K. M is the number of literals in rule body. 
2. Produce M pieces of random integers as the number of sub gene libraries in 

which we will select atoms. We select an atom randomly from each sub gene li-
brary to be selected. 

3. Construct a rule A with these atoms selected in step 2. 
4. Negative selection. If A can not match any element of self training set, A is 

joined in the detector population. 
5. Repeat step 1 to step 4 until the detector population is full. 

3.2 Genetic Operator  

We define these operators based on techniques developed in the field of ILP for gen-
eralization or specialization of the achieved knowledge. [9] The background knowl-
edge is essential for achieving intelligent behavior. It is knowledge common to sev-
eral examples. 

Selection 

We choice roulette wheel selection in this algorithm. 

Crossover Operator 

We use a restricting one-point crossover which is different from traditional one-
point crossover. The cross point must be front of a predicate. Each offspring after 
restricting one-point crossover must be checked on semantics, and be confirmed to be 
legal. 

Mutation Operators 

We define four generalization mutation operators, and four specialization mutation 
operators. When the fitness value of an individual is lower than a threshold value, the 
application probability of generalization operators is larger than the application prob-
ability of specialization operators. 



Generalization Operators: The four generalization mutation operators are according 
to the principle of climbing generalization to design. 
deleteoperator: delete a literal (positive literal or negative literal) from the right side. 
Literalsubstitutionoperator1: one or several literals selected from the right side are 
replaced by one or several literals selected randomly base on the background knowl-
edge. New literals are more generalized than olds.  
 constanttovariableoperator: a literal is selected from the right side. Then one con-
stant argument of the literal is replaced by a variable. 
negativettopositivoperator: if there are negative literals in the right side ,a negative 
literal is selected . Then it is replaced by its positive literal.  
Specialization Operators 
plusliteraloperator: a new literal selected from gene library joins to the right side of 
the individual. 
Literalsubstitutionoperator2: one or several literals selected from the right side are 
replaced by one or several literals selected randomly base on the background knowl-
edge. New literals are more special than olds.  
variabletoconsatantoperator: a literal with one or several variable arguments is se-
lected from the right side randomly. Then one variable argument of the literal is re-
placed by a constant. 
Positivetonegativeoperator: a positive literal is selected from the right side. Then it is 
replaced by its negative literal. 

3.3 Matching rule 

The matching rule of detector and antigen is to compute the stable model.  
For example, detector x is  

abnormal-:before(open ,read),read(file1,buf1,3), at(write,6)  
 
Antigen y is  
open(file1,mode1,1):- 
read(file1，buf1,2):- 
mmap(ad1,len1,pro1,3):- 
mmap(ad2,len2,pro2):- 
open(file2,mode1,5):- 
read(file2,buf2,6):- 
 
For computing stable model of the collection of detector and antigen, we need to 

define some assistance rules presented the reasoning relation among the predicates. 
Such as, 

beforen(p1,p2,m-n):-at(p1,n),at(p2,m),large(m,n) 
before(p1,p2):-beforen(p1,p2,x) 
at(p,m):-p(a1,a2,⋯an,m),isdefine(p) 
Of course, we need other assistance rules of the closed world assumption to deal 

with negative information. 



If the stable model of the collection of detector x, antigen y and these assistance 
rules includes the element abnormal, we may say that match(x, y) is true, otherwise, 
match(x, y) is false.  

3.4 Fitness Function 

The fitness function of individual detector C is defined as following: 
 

=  α*NC-β*DISC+γ*NLITC+δ*NVARC  
FITNESS(C)                                          

 if  SC<M 
                     

=0                               otherwise 

 

(1) 

NC =the coverage rate of non-self training set covered by C.  
|NONSELF(C)|=the number of non-self training set covered by C. 

∑= |)(|
|)()(|

CNONSELF
ANONSELFCNONSELF

CN I . 
(2) 

A is any individual besides C in the detector population. 
NLITC: the number of literals in C takes the proportion of the total amount of 

predicates 
DISC=total of the distance between C and other individuals in the detector popula-

tion. 
NVARC: the number of variable in C takes the proportion of the total amount of 

arguments in C. 
α, β, γ and δ are tunable. 
SC=the coverage rate of self training set covered by C 
M=the maximum noise that can be tolerated for this algorithm. 

3.5 Training algorithm 

In this section, a training algorithm of time sequence model detector is given. A nega-
tive selected operator is used on each offspring after operating genetic operators in 
this algorithm. The offspring that does not match any element of self training set can 
be added to population P(t+1). 

Evolutonary algorithm of immune detectors.  

lp_rules_evolve() 
{  pos=nonselfset; 
   ruleset= ;φ  
   do{  t=0; 
        initialize detector population P(t); 
        while(not terminate) 



        {  select two individuals ; 
           execute crossover and mutation operators on 
              individuals; 
           execute negative selected operator to 
              offspring; 
           add new offspring to population P(t+1); 
           t=t+1; 
         } 
        ruleset=ruleset U P(t); 
        pos=pos-{pos covered by the rules in P(t)}; 
   }while(|pos|>>|nonselfset|)；         
   ruleset is evolved detector population;  
} 

4   Recognition Process Online 

The recognition process is shown as follows. 
1. Data sensor and transformation. Get short sequences of system calls in a run-

ning process. Then turn the short sequence into the presentation of first order 
logic through a predicate converting system. 

2. Recognition and alarm. If a short sequence matches an element of mature detec-
tors population, an abnormal is found. If the number of abnormal in system call 
sequence of a running process is large than a given threshold value, an intrusion 
is reported. 

When some individuals of mature detectors population can not recognize any ab-
normal within one period, a different mutation that we call expanding mutation will 
be operated on them based on knowledge update of logic programs. Expanding muta-
tion is executed through selecting atoms from self training set or new non-self indi-
viduals that are recognized. 

5   Conclusion 

We design a systemic framework of semantic anomaly detection for LINUX privi-
leged process. Antigens and immune detectors are presented by first order logic. A 
new detector model defined in this paper is named time sequence model. The match-
ing rule between antigens and detectors is stable model computing of ELP. This 
method can reflect the similarity of time sequence semantics. Invalid detector indi-
vidual and gene library can be updated automatic based on knowledge update ability 
of logic programming. 
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