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Abstract: The Emergent Models methodology (EM) is an adaptive computational method for discovering 
models of complex systems in computer simulations (Stolk 2005). EM uses machine learning and 

optimisation algorithms such as genetic programming. Stolk and Hanan (2007) used EM to discover genetic 

regulatory network models of branching in Pisum sativum (pea). Here EM is used to discover models of 

genetic and metabolic networks regulating flowering in pea. These models describe multiple levels and 

components in the whole plant complex system, including genes, intercellular signals, modules and 

phenotype. 

Flowering in pea is determined by genes and mobile signals, mediating environmental influences such as 

photoperiod. Models of biochemical mechanisms explaining flowering time of pea studied here incorporate 

modules such as a circadian clock, signal processors and switching mechanisms. Each module is a 
combination of chemical reactions. Three hierarchical system levels are involved: the top level of the whole 

plant (phenotype); a middle level of modules; a bottom level of chemical reactions. 

It was hypothesised that models describing each level could be automatically discovered by genetic 

programming, given data on the next higher level. Discovered models should predict experimental data on 

gene expression and flowering time of wild type and several mutant pea plants. The purpose of this research 

is a proof of principle of a computational method, so models were kept deliberately as simple as possible and 

no attempt was made to incorporate the latest biological insights. 

In three experiments it was attempted to discover models of a biochemical reactions network leading to a 

circadian clock, i.e. a time evolution with a periodicity of about 24 hours of at least one chemical substance 

in the network. Nodes of possible networks were concentrations of chemical substances. Connections were 

reactions between these substances. Possible reactions included activation, inhibition, synthesis, 

transformation and degradation. It was shown that genetic programming can successfully reverse engineer a 

circadian chemical clock, but that the exact solution found depends on the flexibility allowed by imposed 

constraints. 

In another experiment it was assumed that flowering time of the plant was determined by a network of 

modules. Nodes of possible networks were modules, each consisting of a set of chemical reactions 

performing a well-defined function. Modules were connected by reactions between chemical substances 
representing output and input signals. One module's input could be activated or inhibited by another module's 

output. Possible modules included: a circadian clock; a light sensing module; a long day signal module 

combining the clock and light signals to determine day length; a flowering signal module; a flowering switch 

module determining flowering time. 

Genetic programming, using as inputs possible modules and connecting activation and inhibition functions, 

produced parameters for these functions leading to a model with a good fit to the experimental data on 

flowering time of different pea mutants in different photoperiod conditions. 

In this research it has been shown how genetic programming can be used in a modular system at multiple 

levels. At the lowest level, possible mechanisms of a module can be inferred from the module's function. At a 

higher level, knowledge about the way modules fit together can be obtained from the behaviour of the whole 

system. 
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1. INTRODUCTION 

The Emergent Models methodology (EM) (Stolk 2005) is an adaptive computational method for discovering 
models of complex systems (Bar-Yam 1997; Holland 1998) in computer simulations. EM uses machine 

learning and optimisation algorithms such as genetic programming (Koza 1992; Koza et al. 1999; Luke 

2002). The present research aims to demonstrate application of EM to living organisms and is meant as a 

proof of principle, so models were kept deliberately as simple as possible and no attempt was made to 

incorporate the latest biological insights. 

Living organisms consist of interacting objects such as organs, cells, and genes (Bower and Bolouri 2001; De 

Jong 2002; Ptashne and Gann 2002). Therefore, they can be considered complex systems and we have 

applied a complex systems simulation methodology to a living organism, focussing on the relationship 

between interacting genes, metabolic networks and phenotype. Stolk and Hanan (2007) used EM to discover 

genetic regulatory network models of branching in Pisum sativum (pea), given phenotypic data on mutant 

grafted plants. The plant was regarded as a two level system with the level of the genotype and the level of 

the phenotype.  

Here EM is used to discover models of genetic and metabolic networks regulating flowering in pea. These 

models describe multiple levels and components in the whole plant complex system, including genes, 

intercellular signals, modules and phenotype. The plant is regarded as a three level system, with the level of 

genetic and metabolic reactions, the level of modules of interactions related to specific functions of the 

organism, and the level of the whole plant. At each level models are discovered from assumed known 

behaviour or data at the next higher level. 

2. FLOWERING IN PEA: GENES, MODULES AND PHENOTYPE 

Flowering in pea is determined by genes and mobile signals, mediating the influence of, for example, 

photoperiod (Weller et al. 1997; Beveridge et al. 2003; Bell et al. 2003). Bell et al. (2003) have collected 

experimental data on gene expression and flowering time of wild type and several mutant pea plants. These 

data are reproduced by Stolk (2005, Appendix 2, Table 8). It is assumed there is a linear relationship between 
time and plant growth, expressed as the number of nodes produced. When growth starts, vegetative nodes are 

produced before the first floral node is produced, so flowering time can be estimated by the number of the 

first floral node, or node of floral initiation (NFI). The data reflect gene expression of genes Gigas (GI), 

Sterile Nodes (SN), and Late Flower (LF). Wild type expression level is assigned a value 1 by definition and 

other expression values are relative to the wild type for six mutants. Data were also collected on NFI values 

for each plant, for a photoperiod of 24 and 8 hours respectively. 

In Arabidopsis it has been demonstrated that the 

circadian clock also plays a role in determining 

flowering time (Mouradov et al. 2002). Possible 

molecular mechanisms of circadian clocks have been 

elucidated in Drosophila (Goldbeter 1996) and in 

Arabidopsis (Zeilinger et al. 2006). 

It was hypothesised that a model describing the 

genetic and biochemical mechanisms explaining 

flowering time of pea could incorporate several 

modules, such as a circadian clock, the effect of 

photoperiodism, and a switching mechanism (see 

Figure 1). Each module should function by a 

mechanism of chemical reactions. Thus, three levels 

of reality are involved: the top level of the whole 

plant (phenotype); a middle level of modules; a 

bottom level of chemical reactions. 

It was also hypothesised that, given qualitative 

assumptions about the overall structure of the model, 

details of models describing each level could be 

automatically discovered by genetic programming, 

starting from the next higher level. The discovered 

models should predict the experimental results.  

Figure 1. Modular model of flowering in pea. 

Variables are as in section 3. 

fromClock fromLight 

fromLongDay 

fromFloweringSignal 
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3. COMPUTATIONAL EXPERIMENTS 

In one series of computational experiments, described in section 3.1, it was attempted to discover models of 
biochemical reactions explaining the behaviour of a module, the circadian clock module. In other 

computational experiments, described in section 3.2, it was attempted to discover parameters of module 

interactions, given the behaviour of the whole plant. 

3.1. Circadian Clock 

It was attempted to reconstruct a network of chemical reactions leading to a circadian clock, i.e. a time 

evolution of at least one of the chemical substances in the network with a periodicity of about 24 hours. 

Nodes of possible networks were concentrations of chemical substances, and connections were reactions 

between these substances. Possible reactions included activation, inhibition, synthesis, transformation, and 

degradation. The genetic programming algorithm was given as input variables the concentrations of 

substances involved, as well as the possible reaction functions. Using these inputs, the algorithm was run to 

find a network of chemical reactions producing a time evolution of one of the substances approximating a 

given sine function with a periodicity of 24 hours. 

The circadian clock was assumed to be described by a model similar to the period protein (PER) model for 

Drosophila (Goldbeter 1996), a simple model suitable for the proof of principle that is the aim of the present 

work. The original PER model was first written in a slightly different way to bring out the different kinds of 

chemical reactions, to be used as functions (building blocks) by the genetic programming algorithm. Reaction 

functions were defined as follows (all concentration variables are written in uppercase and all parameters in 

lowercase): 

 

 

 

 

where: 

 and  are concentrations of chemical substances; and  are parameters of the Hill function used for 
inhibition, set to commonly used values of 1 and 4 respectively; all other lowercase symbols are parameters 

to be found. 

 

Using these reaction functions, the PER model can be written as follows (omitting an equation for transport 

of  to the cell nucleus, a process that is assumed given and not modelled here). 

 

 

 

 

where: 

 is the concentration of messenger RNA; ,  and  are concentrations of three proteins;  is time; and 
all other lowercase symbols are parameters of the model. 
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Goldbeter (1996) showed mathematically that, for certain parameter values, this model produces oscillations 

of , ,  and  with a period of about 24 hours. We are showing here that a genetic programming 
algorithm can find models with circadian clock behaviour by searching a space of possible models. 

Inputs of the genetic programming algorithm were the reaction functions , , 

, and , variables , ,  and , and all parameters except , assumed to 
be a constant value of 1. Fitness was defined as the sum of deviations of the target protein concentration from 

a sine function with a period of 24 hours. The space of possible models searched by the genetic programming 

algorithm included not only models with different parameters, but also rearrangements of concentration 

variables and reaction functions. The search space was limited to realistic models by imposing constraints. 

For example, a substance could only exert inhibition or synthesis effects on a different substance, not itself; 

substances could only be transformed into different substances; a substance could only degrade itself; 

unrealistic solutions with negative concentrations were excluded by fitness penalties.  

The following set of equations was obtained in a run of 10 000 individuals during 100 generations (a total of 
1 000 000 individuals were evaluated). 

 

 

 

 

 

Fitness, or the total deviation of modelled  concentration over 300 time steps, was 16.35, with 261 hits 

(modelled results practically equal to the objective function) out of a possible 300. The time evolution of  

produced by these equations was close to the sine objective function, as shown in Figure 2. 

This example demonstrates how a metabolic reaction model can be automatically discovered to produce 

circadian periodic behaviour. Automatic discovery without appropriate constraints easily leads to unrealistic 

 
Figure 2. Circadian clock found by genetic programming. 
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models. In this example, once sufficient constraints were imposed to exclude unrealistic solutions, the 

discovery algorithm found a model rather similar to the original model formulated by Goldbeter (1996). 

Applying an automatic discovery algorithm like the genetic programming algorithm used here makes it 

necessary to formulate explicit constraints on the space of possible models and clarifies which possible 

models, if any, are consistent with the imposed constraints and with available data. 

3.2. Modules 

In this experiment it was assumed that flowering time of the plant was determined by a network of modules, 

schematically shown in Figure 1. The use of these modules was inspired by the literature on determination of 
flowering time in plants, such as Weller et al. (1997), Mouradov (2002), Bernier and Périlleux (2005), and 

Weller (2005; 2007). Nodes of possible networks were modules, each consisting of a set of chemical 

reactions performing a well-defined function. The modules were connected by reactions between chemical 

substances representing output and input signals. One module's input could be activated or inhibited by 

another module's output. Possible modules included: 

 a circadian clock; 

 a light sensing module (in this case there were no explicitly modelled chemical reactions, but just an 

external light input; module output can be assumed to be a concentration of a light sensitive 

substance such as phytochrome); 

 a long day signal module combining the clock and light signals to determine day length; 

 a flowering signal module with flowering promotion and inhibition substances; 

 a flowering switch module determining flowering time. 

It was attempted to derive parameters of the connections between these modules by genetic programming. In 

this example no attempt was made to discover an unknown module network structure. Activation and 

inhibition functions used were defined as follows. 

 

 

 

 

where: 

,  and  are constants;  is the concentration of an activating or inhibiting substance;  is time; the 

functions  and  model a threshold effect of time elapsed on the strength of 

a hypothetical signal for flowering time, disregarding units of physical mechanisms; more elaborate models 
would take into account physical units and relate the flowering signal to concentrations of biochemical 

substances; Hill functions with powers of 4 are used for activation and inhibition threshold effects. 

 

The following expressions for the signals between the different modules were obtained in a run of 100 

individuals during 51 generations (a total of 5 100 individuals were evaluated). 
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where: 

 is the concentration of one of the substances of the chemical clock;  is the concentration of a light-

sensitive substance;  is the concentration of a long days indicating signal;  is the concentration of a 

substance promoting flowering;  is the concentration of a substance inhibiting flowering;  is time. 

 

These signals were used by the modules, in addition to an internally used degradation function defined as:  

 

where: 

 and  are constants;  is the concentration of the degrading substance. 

 

Modules updated concentrations of substances as follows. 

Long Day Signal module: 

 

Flowering Signal module: 

 

Flowering Time module: 

  

where: 

 is the flowering signal determining flowering time. 

 

Flowering time according to genotype and photoperiod predicted by this model was close to the experimental 

data. Fitness, or the total deviation of modelled flowering time from observed data, was 25.82, with 9 hits 

(modelled results practically equal to the objective function) out of a possible 14. 

4. DISCUSSION AND CONCLUSIONS 

In the circadian clock experiments we used a genetic programming algorithm to find a set of reactions that 

could produce a circadian time evolution of chemical substances similar to Goldbeter’s (1996) PER model, 

using combinations of inhibition, transformation, synthesis and degradation to obtain a time evolution of  
with a period of approximately 24 hours and a good fit to the sine target function. 

In one experiment no constraints were imposed on possible concentration values and the genetic 

programming algorithm, oblivious to physical reality, took advantage of this to come up with a solution 

exhibiting physically unrealistic negative concentration values for . Also, transformation functions could 

be used without constraints in this experiment, so, for example,  could be transformed into  without 

decreasing its own concentration, and transformation of  into  increased . Suitable constraints were 
introduced on the use of transformation functions in the equations to avoid such effects and a model with a 

good fit was found. Concentration values were constrained to be positive, and a solution was found with only 

positive values for all substances. The model still allowed some strange phenomena to occur, for example 

transformation of a substance (  in the first equation) into itself, and a substance (  in the third equation) 
decreasing as a result of promoting its own synthesis. 

To obtain more realistic solutions, further constraints were introduced to exclude such phenomena. This 

produced a model similar to the original model formulated by Goldbeter (1996). It is obvious that genetic 

programming can successfully reverse engineer a circadian chemical clock, but that the exact solution found 
depends on the flexibility allowed by imposed constraints. The model studied here has the minimal 

characteristics needed to produce oscillatory behaviour, so it is not surprising that the genetic programming 

algorithm finds a solution similar to the original model. When more complex models are studied, the genetic 
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programming algorithm can produce several structural alternatives producing circadian clock behaviour. For 

example, while Zeilinger et al. (2006) have used evolution strategies to optimise model parameters, our 

approach could be used to explore alternative model formulations as well. 

When the genetic programming algorithm was given as inputs possible modules and their connecting 

activation and inhibition functions, it produced parameters for these functions leading to a model with a good 

fit to the experimental data on flowering time of different pea mutants in different photoperiod conditions. 

In this work we have shown how genetic programming can be used in a modular system at several levels. At 

the lowest level, possible mechanisms of a module can be inferred from the module's function. At a higher 

level, knowledge about the way modules fit together can be obtained from the behaviour of the whole 

system. The present research has established a proof of principle of application of the Emergent Models 

computational methodology to a three level living system using search spaces allowing only very simple 

possible models. In future research the methodology can be applied to more realistic biological systems, 

allowing more complex models in the search space. 
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