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Abstract

We consider the dynamics of variable-length Genetic
Algorithms (GAs) with strings of length N � Nm
using a recently developed exact, coarse-grained for-
mulation where the relevant coarse-grained degrees of
freedom are “building block” schemata. We derive an
exact formal solution of the equations showing how
a hierarchical structure in time and degree of coarse-
graining emerges, the effect of recombination being
to successively form more fine-grained objects from
their more coarse-grained building blocks, where in
this case the building blocks can come from strings of
different lengths. We examine the limit distributions
of the dynamics in the case of a flat fitness landscape,
one-point homologous crossover and no mutation. By
taking advantage of the existence of a set of conserved
quantities in the dynamics we provide exact solutions
for the cases Nm = 2; 3 and use these to investigate
the phenomenon of inter-length-class allele diffusion.
We also study the general case showing what exact re-
sults may be easily derived using our particular coarse-
grained formulation.

1 Introduction

The dynamics engendered by a “canonical” GA and, in-
deed, genetic dynamics in general, is exceedingly com-
plicated. This is true even in the case of what one might
think of as “toy” fitness landscapes such as counting ones
or needle-in-a-haystack. In fact, up until quite recently [1],
to our knowledge, no solutions have been found for the dy-
namics in the presence of recombination for arbitrary string
lengths even in the case of a flat fitness landscape, though
there has been recent noteworthy progress in the special
case of “genepool” recombination [2, 3], where for a given
recombination event allele mixing is over the entire popu-
lation not just between two parents. For binary strings of
fixed length, N , the probability distribution that describes
the dynamics is obtained by solving 2N coupled, non-linear
difference equations. Important results have been derived
about this system of equations by viewing them as a dy-
namical system [4]. However, these coupled equations, in

terms of the underlying string variables, are far removed
from traditional elements of GA theory such as the Schema
theorem and Building Block Hypothesis (BBH) [5, 6].

The underlying microscopic equations, however, can be
rewritten naturally in a basis other than the string basis
[7, 8, 9] yielding evolution equations that offer the benefit
of a very intuitive interpretation, that illuminate the content
of the Schema theorem and the BBH, that naturally coarse
grain from string equations to schema equations, that yield
an interpolation between the microscopic and the macro-
scopic and that offer new exact results or simpler proofs of
known results. These equations lead to many insights into
the dynamics of GAs offering an exact Schema theorem
that naturally incorporates a form of the BBH, although it
is important to emphasize here that the “building blocks”
that naturally emerge in this formulation are dynamic and
not necessarily short or even fit! However, creation events
due to recombination can be precisely understood in terms
of these BBs. Originally applied to a canonical GA (pro-
portional selection, 1-point crossover and mutation) the ba-
sic elements have been extended to GAs with arbitrary se-
lection schemes and any homologous crossover [1] and,
importantly, have been extended to Genetic Programming
(GP) by Poli and coworkers [10, 11].

There has been increasing interest in variable-length repre-
sentations from different points of view [12, 13, 14] . In
this paper we will use a coarse-grained BB formulation to
investigate the dynamics of variable length GAs up to a
maximum size Nm. We present formal solutions for an
homologous crossover operator and arbitrary fitness land-
scape and mutation showing how the solution naturally ad-
mits an interpretation in terms of a hierarchy of BBs. We
then consider the asymptotic behaviour of the dynamics for
a flat fitness landscape, both at the formal level, discussing
generalizations of Geiringer’s theorem, and at the explicit
level, deriving exact solutions for Nm = 2 and 3 and vari-
ous exact results for arbitrary Nm.

This work is, of course, susceptible to the standard criti-
cisms - what is the relevance of considering a small num-
ber of loci and flat fitness landscapes? There are several



ways of rebutting such criticism. Firstly, simple models
can lead to intuitive insights that would be less transparent
in a more complex model. An important example of that is
the minimal two-bit deceptive problem [15]. Another ex-
ample, is the work of Spears [16] where limit distributions
for recombination and mutation for fixed length GAs in a
flat fitness landscape were investigated in simple two and
three-bit problems. Interestingly, even in this case he had to
resort to numerical rather than analytical calculations. Ad-
ditionally, understanding the structure of the dynamics in
simple problems can lead to insight about how to construct
results or proofs in more general problems and potentially
lead to insights which may be of benefit for practitioners.

2 Coarse-Grained Evolution Equations

In this section we introduce the notion of coarse-grained
evolution equations in a BB basis, discussing their inter-
pretation and advantages at a formal level. We will not
derive the coarse-grained exact evolution equations here
but refer the reader to the original literature [7, 9, 10, 11].
Our interest here is variable-length GAs with homologous
crossover. As homologous crossover operators conserve
length classes [18] we will consider the corresponding
evolution equation for strings or schemata within a given
length class N , composed of strings of a fixed length, and
consider arbitrary string length N � Nm, where Nm 2

[1;1]. In this case, if one considers the evolution of length
N strings then one of the parents in the crossover operation
must be a length N string as well while the other parent
may be of arbitrary size. The action of the homologous
crossover we will use can be simply understood by align-
ing the two parents at the first loci then implementing a
mask defined on the common region of the two strings. For
example, with 1111 and 000000 the common region is as-
sociated with the first four loci. A one-point crossover be-
tween the second and third loci would yield 110000 and
0011 while a crossover between the fifth and sixth loci (of
the second string) is not allowed. Hence, the total number
of possible masks on the common region is 24.

Our primary object of interest will be the proportion of
strings of a given type, CN

i , P (CNi ; t), or of a given schema,
�N , P (�N ; t) =

P
CN
i
2�N P (CNi ; t), within a length class

N . Thus, we define a schema relative to a given length
class. However, it is important to note that all proportions
will be relative to the total population size summed over all
length classes. In the infinite population limit, which we
will generally assume throughout, P (CN

i ; t) is simply the
probability for finding the string C

N
i . For a string C

N
i we

have

P (CNi ; t+ 1) = P(CN
i
)Pc(C

N
i ; t) +X

Ci 6=Cj

P(CN
j
!CN

i
)Pc(C

N
j ; t) (1)

where the sum is over all length-class N strings that differ

by at least one bit from C
N
i . P(CN

i
) = (1 � pm)

N is the
probability that CNi remains unmutated and P(CN

j
!CN

i
) =

p
dH(i;j)
m (1� pm)

N�dH(i;j) is the probability that the string
C
N
j mutate to the string C

N
i , dH(i; j) being the Hamming

distance between the strings C
N
i and C

N
j . Note that mu-

tation preserves the length class of a string or schema.
Pc(C

N
i ; t) is the probability of finding a string C

N
i after

selection and crossover and is given by

Pc(C
N
i ; t) = (1� pc)P

0(CNi ; t) (2)

+

NmX
j=1

2min(j;N)
�1X

m=0;even

(pc(m) + pc( �m))P 0(C
j
i (m); t)P 0(CNi ( �m); t)

where P 0(CNi ; t) is the probability for selecting the string
C
N
i . pc(m) is the probability of implementing the mask m

on the common region between the two strings and we sum
over only even masks as this ensures that the tail comes
from the second parent which, without loss of generality
we assume to be of length N , and therefore that length is
preserved. �m is the mask conjugate to m. The total num-
ber of possible masks on the common region is 2min(j;N).
C
j
i (m) for a given mask m represents the part of the string

C
N
i inherited from the first parent, which we assume to be

of length j, and C
N
i ( �m) is that part inherited from the sec-

ond. Both C
j
i (m) and C

N
i ( �m) are schemata. (2) has a form

similar to that for the fixed length case and can be inter-
preted similarly, i.e. strings are created by BBs, the differ-
ence in this case being that one of the BBs can come from
a parent of other than length N . Once again we emphasize
that these BBs are dynamical not static schema averages
and are neither necessarily small or even fit!

The microscopic equation (1) can be coarse-grained to an
arbitrary schema of order N2 � N and defining length (l�
1) contained within strings of size N to find

P (�N ; t+ 1) = P(�N)Pc(�
N ; t)

+
X
�=Ni

P(�=Ni !�N)Pc(�=
N
i ; t) (3)

where the sum is over all schemata, �=Ni , that differ by at
least one bit from �N in one of the N2 defining bits of �N .
In other words any schema competing with �N and belong-
ing to the same partition. P(�N) = (1 � pm)N2 is the
probability that �N remains unmutated and P(�=Ni !�N) =

p
dH(�N ;�=Ni )
m (1 � pm)N2�dH(�N ;�=Ni ) is the probability that

the schema �=Ni mutate to the schema �N with dH(�N ; �=Ni )
being the Hamming distance between the schemata �N and
�=Ni . Pc(�N ; t) =

P
CN
i
2�N Pc(C

N
i ; t) is the probability of

finding a schema �N of length class N after selection and
crossover and is given by

Pc(�
N ; t) = (1� pcA(�; t))P

0(�N ; t) (4)

+

NmX
j=1

X
m2Mr(�

N )

(pc(m) + pc( �m))P 0(�j(m); t)P 0(�N ( �m); t)



where P 0(�N ; t) is the probability for selecting a schema
�N from strings of length class N . �N (m) for a given mask
m represents the part of the schema �N inherited from the
first parent and �N ( �m) is that part inherited from the sec-
ond. Now, �N (m) and �N ( �m) are the BBs for the schema
�N . Thus, we see that BBs at one level are composed of
more primitive (lower order) BBs which in their turn are
composed of lower order blocks etc. thus leading to a hi-
erarchical structure. Mr is the set of crossover masks that
end in a 0 that affect �N , i.e. the number of “allele mixing”
masks, NMr(�) is their number. A(�N ; t) determines the
survival probability of the schema and depends on the prop-
erties of the particular schema, such as order and defining
length, and, importantly, also depends on the length distri-
bution of the strings and their corresponding fitnesses [18].

As with all coarse grained evolution equations the interpre-
tation of (1) and (2) is very intuitive: (2) tells us how a
particular string is selected and survives crossover, or alter-
natively how it is built up from its BBs. The novel element
here compared to standard GAs is that the BBs come from
strings of potentially different sizes. (1) then tells us how
the string is preserved by mutation or formed by mutation
from some other string of the same partition.

We can put the basic equation (1) into a yet more ele-
gant form, the corresponding equation for schemata fol-
lows trivially, by introducing a 2N -dimensional population
vector for each length class, PN (t), whose elements are
P (CNi ; t), i = 1; :::; 2N . Equation (1) takes the form

P
N (t+ 1) =W

N
P
N
c (t) (5)

where theN�N -dimensional mutation matrixW
N

is real,
symmetric and time independent and has elementsW

N

ij =

p
dH(i;j)
m (1�pm)

N�dH(i;j). For selection schemes linear in
P (CNi ; t), P

N
c (t) can be written as

P
N
c (t) = F

N
(t)PN (t) (6)

+

NmX
j=1

2min(j;N)
�1X

m=0;even

(pc(m) + pc( �m))Jj(m; t)

where the “cloning” matrix, F
N
(t), is diagonal

and describes both selection and survival under
crossover. Explicitly, for proportional selection

F
N
ii(t) = (f(Ci)= �f(t))(1 � pc). Finally, the

components of the “source” vector are given by
J
j

CN
i

(m; t) = P 0(C
j
i (m); t)P 0(CNi ( �m); t) which cor-

responds to the BB sources, from strings of length j
and N respectively, for the string C

N
i . Defining the

cloning-mutation matrixW
N

s (t) =W
N
F
N
(t) we have

P
N (t+ 1) =W

N

s (t)PN (t)

+

NmX
j=1

2min(j;N)
�1X

m=0;even

(pc(m) + pc( �m))W
N
J
j(m; t) (7)

The interpretation of this equation is that J j

CN
i

(m; t) is a

source which creates strings C
N
i by bringing BBs from

strings of length j and N together. The first term on the
right hand side tells us how the strings themselves are prop-
agated, or survive, into the next generation, the destructive
effect of crossover renormalizing the fitness of the strings.
Note that the equation is linear but for the presence of string
creation. It is this division into a linear term and a source
that allows for a natural formal solution which leads to fur-
ther insight into the nature of GA dynamics while at the
same time offering the possibility of exact, analytic calcu-
lations in certain circumstances.

Needless to say solutions of these dynamical equations
are hard to come by. They represent, for binary alleles,
2(2Nm � 1) coupled non-linear difference equations, or in
the continuous time limit - differential equations. Here, we
consider the formal solution for the case of homologous
crossover and mutation and for any selection scheme lin-
ear in P (CNi ; t). The equation (7) is always of the same
form, i.e. a first order, linear, inhomogeneous difference
(differential) equation. Its iterated solution is

P
N (t) = D(t; 0)PN (0) + (8)

NmX
j=1

2min(j;N)�1X
m=0;even

(pc(m) + pc( �m))

t�1X
n=0

D(t; n)W
N
J
j(m;n)

whereD(t; 0) =
Qt�1

n=0W
N

s (n). The interpretation of (8)
follows naturally from that of (7). Considering first the
case without mutation, the first term on the right hand side
gives us the probability that a string survives from t = 0
to t without being destroyed by crossover. In other words
D(t; 0) is the Greens function or propagator for PN [1].
In the case of a flat fitness landscape without mutation for
instance Dij(t; 0) = (1 � pc)

tÆij . In the second term,
each element, Jj(m;n), is associated with the creation of a
string C

N
i at time n via the juxtaposition of two BBs from

strings of length j and N respectively and associated with
a mask m. The component corresponding to C

N
i of the

matrix D(t; n) =
Qt�1

i=nWs(i) is the probability that the
resultant string survives from its creation at time n to t. The
sum over masks, string lengths, j, and n is simply the sum
over all possible creation events in the dynamics. In a more
explicit notation we will denote the propagator for a string
h1 � � �hN by Dh1���hN (t; t

0).

This formal solution above has a very natural diagramatic
interpretation both at the level of fixed length strings which
can be extended to the present case.

3 Geiringer’s Theorem

For any dynamical system fixed points and their stabil-
ity are of particular interest. Hence, in this section we
will discuss the fixed point distributions for fixed and



variable-length GAs. For a fixed-length GA evolving on
a flat landscape in the absence of mutation the fixed point
P �(h1:::hN ) of the dynamics for a string Ci = h1:::hN is

P �(h1:::hN ) = lim
t!1

P (Ci; t) =

NY
i=1

P (�i�1hi�
N�i; 0) (9)

where �i as a string argument means the symbol � repeated
i times. This result is the well known Geiringer’s theorem
[17] for a general crossover operator. Any population that
factorizes in this manner is said to be in linkage equilbrium
and the resulting allele frequencies are known as Robbins
proportions. This result emerges naturally from equation
(8), specialized to the case of a single length class, N ,
which yields for a flat landscape in the absence of muta-
tion

P
N (t) = (1� pc)

t
P(0) +

2N�1X
m=0;even

(pc(m) + pc( �m))

t�1X
n=0

(1� pc)
t�n�1

J
N (m;n) (10)

As limt!1(1 � pc)
t = 0, hence PN (t) ! 0 as t ! 1

unless the summation over time leads to a cancellation
of this damping factor. Given that the BB constituents
of JN (m;n) are associated with damping factors (1 �

pc
NMr (C

j

i
(m))

NM
)t and (1� pc

NMr (C
N
i ( �m))

NM
)t, where NM is

the total number of non-zero crossover masks, this can only
occur if there is no damping of the consituent BBs and this
only happens if they are 1-schemata as then NMr

= 0.
Thus, the only term that survives in the hierarchical solu-
tion of (8) is the product of 1-schemata [9].

The type of recombination employed controls how fast the
transient corrections to the limit distribution die out. The
damping is controlled by NMr

(�), hence the bigger it is
the faster the corresponding transient dies out [1]).

The general approach to equilibrium is characterized by
the exponential decay of linkage disequilibrium functions
�h1���hN = h(h1 � hh1i) � � � (hN � hhN i)i where hOi
denotes the population average of O. Thus, hh ii =
P (�i�1hi�

N�i). These linkage disequilbrium functions
will be seen to be natural variables in which to understand
the dynamics and approach to equilbrium. In GAs a set of
variables that have also been viewed as natural for consid-
ering the dynamics are “building blocks”.

The generalization of Geiringer’s theorem to the variable
length case has recently been derived [18]

P �(h1 � � �hN ) = P (�N)

NY
i=1

P (�i�1hi#; 0)

P (�i#; 0)
; (11)

where

P (�i�1hi#; 0) =
X
N�0

P (�i�1hi�
N ; 0)

and
P (�i#; 0) =

X
N�0

P (�i+N ; 0):

Here, we see a generalization of the concept of Robbins
proportions, the corresponding proportions in the variable

length case being P (�i�1hi#;0)

P (�i#;0)
. We will see in the next

section that there are natural analogs of the linkage dise-
quilibrium functions as well.

4 Explicit Solutions - Nm = 2; 3

In [1] it was shown for fixed length strings in the contin-
uous time limit how an exact explicit solution correspond-
ing to (8) could be found for a flat fitness landscape. Even
in this case however, the result is highly non-trivial due to
the complicated combinatorics of the various BB creation
events. In the case of variable length strings one would ex-
pect the combinatorics to be even more complicated. Be-
fore considering the general case we will therefore look at
some relatively simple cases for Nm = 2; 3 with no mu-
tation and using one-point crossover where we also include
crossover before the first bit and immediately after the last
bit of the shortest parent. For Nm = 2 we must solve:

P (h1h2; t+ 1) = (1� pc)P (h1h2; t) +

2X
j=1

pc
min(2;j)+1

min(2;j)X
i=0

P (h1:::hi�
j�i; t)P (�ihi+1:::h2; t) (12)

for strings of length two and

P (h1; t+ 1) = (1� pc)P (h1; t) +

pc

2

2X
j=1

1X
i=0

P (h1:::hi�
j�i; t)P (�ihi+1:::h1; t) (13)

for strings of length one. The corresponding “source” terms
are respectively

J
j
h1h2

(i; t) = P (h1:::hi�
j�i; t)P (�ihi+1:::h2; t) (14)

Jjh1(i; t) = P (h1:::hi�
j�i; t)P (�ihi+1:::h1; t): (15)

The explicit forms of the equations of motion are

P (h1h2; t+ 1) = (1� pcA(h1h2))P (h1h2; t) +
pc

2
P (h1; t)P (�h2; t) +

pc

3
P (h1�; t)P (�h2; t) (16)

where A(h1h2) =
�
1
2
P (�1) + 1

3
P (�2)

�
and

P (h1; t+ 1) = (1� pcA(h1))P (h1; t) +
pc

2
P (�1)P (h1�; t) (17)

where A(h1) = P (�2)=2. P (�1) and P (�2) are the prob-
abilities to get any string of length one and length two re-
spectively. Note that homologous crossover preserves the
length distribution [18].



With this simple Nm = 2 problem equations (16) and
(17) have an intuitive interpretation that allows us imme-
diately to investigate the phenomenon of allele diffusion
between different length classes that is an important char-
acteristic of variable-length genetic dynamics. The factor
Ps(h1 � � �hN) = (1 � pcA(h1 � � �hN )) describes the sur-
vival probability per generation of a particular length-N
string. For length-one stringsPs(h1) = (1�pcP (�2)=2) so
it is only in the presence of length-two strings that that there
is a non-zero decay probability. This probability grows as
a function of P (�2) due to the fact that there are more de-
cay channels open to the string. For length-one strings the
only creation source is via the 2-schema h1� which im-
plies a diffusion of alleles of type h1 from length-two to
length-one strings. For length-two strings the two corre-
sponding creation terms are associated with getting the first
bit of the string from a parent of length one and the second
bit from a 1-schema associated with strings of length two
and the first and second bits from 1-schemata associated
with strings of length two. This second term is exactly the
same as would be found in a fixed-length GA. The novel
element is to be able to construct the desired length-two
string by interaction between a 1-schema associated with
length-two strings and a length-one string. Thus, in order
to solve for the dynamics for length-two strings one must
first solve for the dynamics of the size one strings. As from
(17) one can see that their dynamics depends on the dynam-
ics of the 1-schemata it would seem that the dynamics of
the length-one and two strings are inextricably interwined
and must be solved for simultaneously. However, this is
not so. The reason why not is that there exist constants
of the motion that can be exploited. To see this consider
P (h1#; t) = P (h1; t) + P (h1�; t). The 1-schema proba-
bility P (h1�; t) may be determined from (16)

P (h1�; t+ 1) = (1� pcA(h1h2))P (h1�; t) +
pc

2
P (h1; t)P (�2) +

pc

3
P (h1�; t)P (�2; t) (18)

thus adding this to (17) one finds

P (h1#; t+ 1) = P (h1#; t) (19)

and hence P (h1#) is an invariant of the motion. It
basically expresses the conservation of the allele h1 as-
sociated with the first bit position and in this sense is
analogous to the conservation law P (�k�1hk�

N�k; t) =
P (�k�1hk�

N�k; 0) for any k associated with fixed length
GAs. In the variable-length case however there is no con-
servation of alleles within a given length class due to the
phenomenon of inter-length-class allele diffusion. With
this conservation law in hand the equations (17) and (16)
can be decoupled. We write (17) as

P (h1; t+ 1) = Dh1P (h1; t) +
pc

2
P (�1)P (h1#; t) (20)

where we now revert to the propagator notation used in sec-
tion 2, Dh1 = (1�pc=2) being the survival probability per

generation. This equation can be simply solved using equa-
tion (8) to yield

P (h1; t) = Dt
h1
P (h1; 0) + (1� (1�Dt

h1
))P �(h1) (21)

where P �(h1) = P (�1)P (h1#)=P (�#) is the fixed point
of the dynamics in agreement with the general fixed point
of (11). We may expand P (h1#) = P (h1; 0) + P (h1�; 0)
to find

P (h1; t) =�
(1�

pc

2
)t + (1� (1�

pc

2
)t)P (�1)

�
P (h1; 0)

+(1� (1�
pc

2
)t)P (�1)P (h1�; 0) (22)

Note that even if P (h1; t) = 0 inter-length-class allele dif-
fusion will generate alleles h1 in length-one strings at some
later time. Thus, unlike the fixed length case a particular
allele in a given length class may be regenerated without
the intervention of mutation. Note that at the fixed point
the contributions to h1 are determined solely by the t = 0
proportions of this allele from all possible length classes.
Hence, recombination in the variable length case maxi-
mally mixes the alleles among all available length classes.

Having found the exact solution for strings of length one we
may proceed to strings of length two. As can be seen from
equation (16) we need to solve first for the dynamics of the
two 1-schemata h1� and �h2. From (16), one notices that
there are no source terms for �h2 from length-one strings.
Hence, one finds that

P (�h2; t+ 1) = P (�h2; t) (23)

and notes that the allele h2 is conserved in agreement with
(11). The 1-schema P (h1�; t) = P (h1#) � P (h1; t) can
be simply solved for to yield

P (h1�; t) = Dt
h1�

P (h1�; 0) + (1�Dt
h1�

)P �(h1�) (24)

where the survival probability per generation for h 1� is
Dh1� = (1 � pc

2
) and the fixed point P �(h1�) is given by

P �(h1�) = P (�2)P (h1#)=P (�#) once again in agree-
ment with equation (11). Note that the exponential ap-
proach to this fixed point is the same as for P (h1; t).

Finally, using the explicit solutions (21), (23) and (24) we
may deduce the solution of (16). P (h1�; t) and P (h1; t)
are a time-dependent source of strings P (h1h2; t). Substi-
tuting in (16) the solutions (21), (23) and (24) one finds

P (h1h2; t) =

Dt
h1h2

(P (h1h2; 0)� P (h1#)P (�h2; 0)) +

P (�h2; 0)

P (�2)
(P (h1; 0)� P (�1)P (h1#))(Dt

h1h2
�Dt

h1
)

+P (h1#)P (�h2; 0) (25)



In the limit t ! 1 DCN
i
! 0; thus, we see the fixed

point P �(h1h2) = P (h1#)P (�h2; 0) emerging in agree-
ment with equation (11).

The solutions can be put into a more elegant and trans-
parent form by introducing the notion of generalized
linkage disequilibrium functions. We define �h1(t) =
(P (h1; t)�P (�1)P (h1#)) and �h1h2

(t) = (P (h1h2; t)�
P (h1#)P (�h2)). Thus, both these functions characterize
deviations from the corresponding fixed points. Immedi-
ately we see an important distinction from the fixed length
case where a single bit cannot have BBs and linkage occurs
between different bits. Here the “building blocks” of h1

are any length-one string and any string of any length that
contains h1. Due to the phenomenon of inter-length-class
allele diffusion there is a concept of linkage disequilibrium
for a single bit. This is due to the fact that linkage dise-
quilibrium can be generalized to take into account correla-
tion between corresponding bits in different length classes.
Similarly, for h1h2 the BBs are the length class two schema
�h2 and any string of any length that contains h1. In both
cases we see that one of the BBs is associated with a coarse
graining over all possible length classes and hence is not a
schema associated with a fixed length class. Explicitly,

P (h1; t) = Dt
h1
�h1

+ P �(h1) (26)

and

P (h1h2; t) = Dt
h1h2

(�h1h2
+

P (�h2)

P (�2)
�h1)

�Dt
h1

P (�h2)

P (�2)
�h1 + P �(h1h2) (27)

We now consider the solution for strings of length N � 3.
For Nm = 3 we have

P (h1h2h3; t+ 1) = (1� pcA(h1h2h3))P (h1h2h3; t) +
pc

2
P (h1; t)P (�h2h3; t) +

pc

3
(P (h1�; t)P (�h2h3; t) +

P (h1h2; t)P (� � h3; t)) +
pc

4
(P (h1 � �; t)P (�h2h3; t))

+P (h1h2�; t)P (� � h3; t) (28)

where A(h1h2h3) = (P (�1)=2 + 2P (�2)=3 + P (�3)=2).
Once again this is a linear equation in P (h1h2h3; t) but
with sources for which we have to solve equations for
length one and two strings and 1-schemata from two strings
and 1- and 2-schemata from length-three strings. Analo-
gously to the case Nm = 2 length-one strings satisfy an
equation that is coupled to 1-schemata of different length,
in this case P (h1�; t) and P (h1 � �; t). However, as in the
length-two case using the conservation law P (h1#; t) =
P (h1; t) + P (h1�; t) + P (h1h2�; t) = P (h1#; 0) allows
us to write the equation as

P (h1; t+ 1) = Dh1P (h1; t) +
pc

2
P (�1)P (h1#; t) (29)

The solution and associated fixed point are given by (26) as
in the case Nm = 2 above. Length-two strings satisfy

P (h1h2; t+ 1) = (1� pcA(h1h2))P (h1h2; t) +
pc

2
P (h1; t)P (�h2; t) +

pc

3
P (h1�; t)P (�h2; t) +

pc

3
P (h1 � �; t)P (�h2; t) +

pc

3
P (h1h2�; t)P (�2) (30)

Thus we see a coupling to length-one and length-three
sources. The 1-schemata equations for P (h1�; t) and
P (�h2; t) however can be solved by eliminating length-
three sources using the conservation law P (�h2#; t) =
P (�h2; t) + P (�h2�; t) = P (�h2#; 0). One obtains

P (h1�; t) = Dt
h1�

(�h1� +
P (�2)

P (�#)
�h1)

�
P (�2)

P (�#)
�h1 + P �h1� (31)

where �h1�, �h1 and P �h1� are as above in the Nm = 2
case. To solve (28) we still require P (h1��; t), P (�h2�; t),
P (� � h3; t), P (�h2h3; t) and P (h1h2�; t). P (� � h3; t)
is conserved as the final bit of the longest string cannot
mix with anything else and therefore is unaffected by inter-
length-class allele diffusion. P (�h2�; t) can be solved for
in terms of the solution of P (�h2; t). P (h1 � �; t) obeys

P (h1 � �; t+ 1) =

(1�
pc

2
P (�1)�

2pc

3
P (�2))P (h1 � �; t)

+
pc

2
P (�3)P (h1; t) +

2pc

3
P (�3)P (h1�; t) (32)

As we already have the solution for P (h1�; t) and P (h1; t)
this can simply be solved for. P (�h2h3; t) satisfies

P (�h2h3; t+ 1) =

(1�
pc

3
P (�2)�

pc

4
P (�3))P (�h2h3; t)

+
pc

3
P (� � h3)P (�h2; t) +

pc

4
P (� � h3)P (�h2�; t) (33)

Once again, given that we have the solutions for P (�h2; t)
and P (�h2�; t) this can be simply solved. Finally,
P (h1h2�; t) satisifes

P (h1h2�; t+ 1) =

(1�
pc

2
P (�1)�

2pc

3
P (�2)�

pc

4
P (�3))P (h1h2�; t)

+
pc

3
P (�3)P (h1h2; t) +

pc

2
P (�h2�; t)(P (h1; t) +

2

3
P (h1�; t) +

1

2
P (h1 � �; t)) (34)

This is the only non-trivial equation left to solve as it is
coupled to P (h1h2; t). Both equations are first order linear
inhomogeneous difference equations and can be decoupled



by going to a second order linear inhomogeneous differ-
ence equation which can be readily solved. Due to length
constraints we will present the results elsewhere. With
these solutions in hand P (h1h2h3; t) may readily be solved
for.

It is worth taking stock of what we have done here. In the
case Nm = 2, in terms of the underlying string variables,
there are six coupled equations to be solved. By going to a
coarse-grained schema, or BB basis, one is able to imple-
ment the conservation laws most naturally, thereby decou-
pling the equations and finding an exact, explicit solution.
For Nm = 3 there are fourteen coupled equations. The
only extra complication relative to the Nm = 2 case how-
ever was the fact that after implementing the conservation
laws two equations remained non-trivially coupled and had
to be decoupled by going to a higher order difference equa-
tion.

5 Explicit Solutions - Nm arbitrary

In this section we wish to make some observations about
the general case - Nm arbitrary. An important element,
seen in the last section, is the existence of conservation
laws which may be used to facilitate the solution of the
dynamics. Generally, the conserved quantities are

P (�i�1hi#; t) = P (�i�1hi#; 0) (35)

of which there are Nm. Hence, from the dynamical equa-
tions one may eliminate Nm variables. As in the above
cases of Nm = 2; 3 one may use this fact to obtain the ex-
act dynamics of certain schemata. These conservation laws
are more naturally expressed in terms of schemata rather
than strings. For instance, the conservation lawP (1#; t) =
constant in terms of string variables is P (1; t)+P (11; t)+
P (10; t)+P (100; t)+P (101; t)+P (110; t)+P (111; t) =
constant. This is a difficult constraint to implement at the
level of the string equations themselves.

As we have emphasized, with the coarse-grained BB ap-
proach advocated here dynamical solutions are built up hi-
erarchically beginning with low order BBs and proceeding
to higher ones. As the lowest order ones are 1-schemata
it is of interest to investigate the general equation for a 1-
schema from length class N . One finds that

P (�i�1hi�
N�i; t+ 1) = A1P (�i�1hi�

N�i; t) +

A2

X
j�i;j 6=N

A3(j)P (�i�1hi�
j�i; t) (36)

where

A1 = i

0
@X
j>N

P (�j)

N + 1
+

NX
j=i

P (�j)

j + 1

1
A+

i�1X
j=1

P (�j)

+P (�N)

�
N � i+ 1

N + 1

�

A2 = P (�N )

A3 =

�
1� Æ(j > N)

i

N + 1
� Æ(k � j � N)

i

j + 1

�

Note that 1-schemata from other than length-class N
strings act as sources for hi, however, there are no more
“primitive”, i.e. lower order, sources. Hence, in the sense
of section 2 this equation is really homogeneous with no
BB sources and hence can be written as

P(t+ 1) = AP(t) (37)

where the elements of the matrix A can be read off from
(36) and the values of the coefficients A1, A2 and A3. The
diagonalization of this matrix yields the decay rates of the
various 1-schemata. With the 1-schemata solution in hand
we may start to reconstruct the 2-schemata respecting the
hierarchical structure outlined in section 2. We will not
pursue this further in this paper restricting attention to some
more specific results.

From (35) one immediately sees that the quantity
P (�Nm�1hNm

; t) is conserved. Additionally, for the
length-one strings all “sources” P (h1�

j�1) for P (h1; t)
appear with the same coefficient, pc=2. Hence, P (h1; t)
satisfies (26) the only difference now being that P (h1#) =PNm

j=2 P (h1�
j�1; t).

Using the conservation of the last bit of the longest string
one may also determine the evolution of the last bit of
the next longest string and the last bit of the string of
length N = Nm � 1 by using the conservation law
P (�Nm�2hNm�1#) = constant. For the next to last bit
of the longest string the solution is

P (�Nm�2hNm�1�; t) =

Dt
�Nm�2hNm�1�

�
�
Nm�2hNm�1

�
+ P �

�
Nm�2hNm�1

�
(38)

where D
�
Nm�2hNm�1

�
= (1 � (1=Nm)(P (�Nm�1) +

P (�Nm))) and P �
�
Nm�2hNm�1

�
=

P (�Nm)P (�Nm�2hNm�1#)=P (�Nm�1#) which is the
expected fixed point from (11).

6 Conclusions

We have investigated the dynamics of variable-length GAs
using a coarse-grained BB representation of the dynami-
cal equations. We showed that the formal solution of the
equations could be interpreted in an analogous manner to
that of the fixed length case, i.e. the hierarchical construc-
tion of more fine-grained schemata from their more coarse-
grained BBs. The novel element here is that these BBs
could come from strings of different lengths. We discussed
briefly the fixed point distribution of the equations for a flat
fitness landscape using a one-point homologous crossover
operator and no mutation showing how a generalization of



Robbins proportions emerged that involved a generalized
notion of a BB. We then turned to a more explicit construc-
tion of the entire dynamics and quantified the approach to
the fixed point. For Nm = 2; 3 we were able to find ex-
plicit solutions utilizing the existence of conservation laws
for certain quantities. This in itself shows the utility of the
coarse grained BB representation, the Nm = 3 problem at
the string level corresponding to 14 simultaneous first order
difference equations which need to be solved.

From the resultant solutions we were able to investigate the
phenomenon of inter-length-class allele diffusion. We saw
that the diffusion rates, or mixing times, for different al-
leles or combination of alleles depended strongly on the
length distribution of strings, which in the case of a flat fit-
ness landscape is time independent. For instance, the dif-
fusion rate for the allele h1 in length-class-three strings is
slower than that of the same allele in length-class-two or
one strings if P (�1) + (4=3)P (�2) > 1 which is the case
if the proportion of length-three strings is small. We also
can see that the closer the string bit to the beginning of
the string then typically the faster it mixes, simply because
there are more things with which it can mix. In this sense in
the variable length case the degree of exploration versus ex-
politation carried out by recombination is inhomogeneous
depending on the bit’s position in the string and the distri-
bution of lengths, diversity being encouraged more at the
beginning of strings than at the end. Another interesting
aspect of inter-length-class allele diffusion is the fact that
for a given length class a lost allele from a particular bit
position can be recovered if the allele exists in the corre-
sponding bit of another length class string.
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