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Abstract

Cooperative teams can be used to improve

the performance of standard genetic pro-

gramming. However, designing appropriate

team member choice and cooperation mech-

anisms for producing successful teams is an

important and sometimes di�cult task. This

task is complicated by the type of programs

being generated. For example, programs pro-

ducing boolean valued outputs can use simple

voting as a cooperation mechanism whereas

programs with real valued outputs cannot.

This research examines several team choice

and cooperation mechanisms for linear re-

gression problem.

The results suggests that cooperation pro-

duces the most improvement when the mech-

anisms favors specialization. The best re-

sults are achieved when each team member

can focus on a relatively small portion of the

problem domain and when the member's in-


uence outside of that domain is relatively

small. Specialization is found to be a func-

tion of both the team choice and cooperation

mechanism.

1 Introduction

Recently there has been growing interest in using ge-

netic programming (GP) to evolve cooperative behav-

ior between programs [HSSW95, LS96, HS97, Sou99].

Most of the research in evolving teams has focused

on problems requiring team solutions, particularly

predator-prey pursuit problems and simpli�ed versions

of team sports. This research was fairly successful at

producing teams that could cooperate to solve prob-

lems a single individual could not solve.

The success of cooperative, team approaches can be

expanded to problems that do not inherently require a

team to solve. Recent results have shown that cooper-

ating teams can produce improved performance on the

even-parity problem, a problem which does not require

a team solution [Sou99]. In those experiments coop-

eration was achieved through voting. It was clearly

demonstrated that the team members were cooper-

ating. The teams' performance greatly exceeded the

performance of either individual team members or in-

dividuals evolved outside of a team. The teams had

the additional, unexpected bene�t of producing more

compact code. A team consisting of �ve voting mem-

bers produced better solutions with smaller total code

than did evolved individuals. Thus, there appears to

be a clear bene�t to using teams even on problems that

don't inherently require a team solution.

In this paper we examine two fundamental team pa-

rameters: the member choice mechanism and the co-

operation mechanism for the linear regression prob-

lem. The linear regression problem is particularly in-

teresting because it requires a novel approach to co-

operation. Simple majority voting is not possible with

real valued solutions. We are interested in determin-

ing which mechanisms favor heterogeneous teams and

specialized team members and which of these features

produces the best results.

2 Cooperating Teams

The idea behind cooperating teams is that the e�ort

of several individuals (the team members) can be com-

bined to produce better results than would be achieved

with a single individual. Several factors may produce

improved results. Team members may specialize so

that each member has a simpler subproblem to solve.

Teams may also evolve more e�ectively because chang-

ing a single member of a team is less likely to destroy

the team's performance than changing an individual.



There are three primary issues in using teams. How

will the teams be chosen, what cooperation mechanism

will they use and how will credit be assigned among

the team members?

2.1 Choosing Teams

In general teams can be homogeneous, identical team

members, or heterogeneous, di�erent team members.

Homogeneous teams are generally easier to implement.

Typically, evolution is applied normally. When an in-

dividual is chosen for evaluation N copies of the indi-

vidual are made (where N is the team size) and the N

copies are evaluated as a team.

Homogeneous teams limit the possible cooperation

mechanisms. For example, cooperation through voting

is clearly not possible with homogeneous teams. Het-

erogeneous teams are somewhat more di�cult to im-

plement. However, most researchers have found that

heterogeneous teams produce better results.

Several implementations of heterogeneous teams have

been used. One approach is to evolve individuals nor-

mally, then, during evaluation, N individuals are cho-

sen from the population to form the team. Thus, every

team is di�erent and each individual will be a member

of many di�erent teams over the course of a evolution-

ary run.

This approach is actually expected to produce fairly

homogeneous teams for two reasons. First, after many

generations the population has started to converge.

Thus, a team is likely to consist of N versions of the

same individual. Furthermore, evolution should fa-

vor individuals that cooperate well with themselves

increasing the pressure to evolve homogeneous teams.

Second, during each evaluation the programs will be

teamed with di�erent members. Thus, they cannot

`expect' any particular behavior from the other team

members. This environment should favor generalists,

programs that can cooperate well with any other pro-

gram.

To reduce the amount of homogeneity N separate pop-

ulations can be used. During evaluation one individ-

ual is chosen from each population. This is more likely

to produce heterogeneous teams because it avoids the

�rst problem described above. However, the second

problem still applies. So, a certain amount of homo-

geneity is expected.

In addition, this approach seems likely to favor rapid

convergence within the N populations, although each

population may converge to a di�erent solution. An

individual can not have any \expectations" of how its

team mates will perform because they are draw ran-

domly from the other populations. Thus, it may be

di�cult for individuals to evolve cooperative behaviors

until the populations begin to converge making expec-

tations possible. This will produce increased pressure

for rapid convergence.

A third approach is to have each individual consist of N

separate programs that act as single team. This allows

heterogeneous teams without the additional conver-

gence pressure to produce members with \expected"

behaviors.

The drawback with this approach is that it requires

a modi�cation of the crossover operator. Standard

crossover can not be used when each individual con-

sists of several seperate programs.

Haynes and Sen have studied several of the possible

crossovers [HS97]. They tested crossing a single ran-

domly chosen member from one team with a single

randomly chosen member of another team, crossing all

members of one team with the corresponding members

of another team, and using a crossover \mask" to de-

termine the crossover members. Preliminary results

suggest that crossovers between corresponding team

members (i.e. member 1 of one team only crosses

with member 1 of other teams) produces the best re-

sults, possibly because it favors specialization among

the team members.

The number of members per team (the team size) is

also a consideration. Very little work has been done

relating team size to performance as most researchers

have used problems with �xed team sizes, e.g. evolving

a vollyball team (6 members) [RD94].

2.2 Cooperation Methods

To date almost all research involving teams has used an

implicit cooperation mechanism. The most common

approach has all team members acting in a common

environment, cooperation occurs (or does not occur)

by default. (This is sometimes referred to as evolving

coordination rather than cooperation, but the princi-

ple of autonomous team members working towards a

common goal is the same.) Examples of this approach

include predator-prey problems with multiple preda-

tors [HSSW95] and evolving a vollyball team [RD94].

An alternative approach is to use an explicit coop-

eration mechanism. Each team member generates a

solution, or portion thereof, and an explicit mecha-

nism is used to combine the member's solutions. Iba

used a variation of this approach. The individuals were

evolved normally, as individuals, not team members.

After the �nal generation the best individuals were



Table 1: Summary of the linear regression problem.

Objective Find a curve �tting

function (sin).

Terminal set Input value X and

random constants

Function set +, -, *,

and / (protected division)

Fitness Square root of the

sum of the squares of

the error at 40 test points

Population size 1000

Crossover probability 80 percent

Mutation probability 5 percent

Selection stochastic remainder

Termination criteria 100 generations

Maximum size of trees none

Initial population grow, no size limits

Number of trials �fty

combined into a single team that voted on the solu-

tion [Iba97].

In earlier research used an explicit voting mechanism

to evolve teams to to solve the even-parity prob-

lem [Sou99]. Teams consisted of �ve individuals that

were evolved as a unit. The results clearly showed

that cooperative behaviors evolved and improved the

overall results.

2.3 Credit Assignment

The �nal task in evolving teams is assigning credit

to the individual team members. The most common

approach is to have all team members receive equal

credit. This is in keeping with evolutionary computa-

tion's generally minimalistic approach to credit assign-

ment and is used here. (Most evolutionary approaches

give a single reward to the entire individual without

attempting to proportionally reward more signi�cant

subprograms. Similarly, with teams the entire team is

rewarded without attempting to proportionally reward

more signi�cant team members.)

3 Experimental Method

3.1 The Test Problem

The linear regression problem is used as a test problem

for these experiments. The goal of the linear regres-

sion problem is to evolve a function to �t a set of data

points. For these experiments the data points were

generated by a sin function. The sin function was cho-

sen because there is no perfect solution with the given

operators. Thus, the GP can continously attempt to

re�ne its solution and the results are not in
uenced by

a population �nding a perfect solution before the �nal

generation.

The �tness is the square root of the sum the squares of

the errors on 40 test points between �2PI and 2PI.

The goal is to minimize this value.

For the linear regression problem the operators are ad-

dition, subtraction, multiplication and protected divi-

sion. The terminals are real constants and the input

variable. The constants are real numbers initially gen-

erated in the range -10.0 to 10.0. The mutation oper-

ator changes the constants by a real value in the range

-0.5 to 0.5.

For elitism �fty copies of the best individual are made

in each generation. However, these copies are allowed

to undergo crossover with the normal 0.8 probability.

During selection if two individuals have the same size

the smaller is chosen. This introduces a limited form

of growth control.

In the intial population programs are allowed to grow

randomly without size or depth limits. This produces

a fairly wide distribution of program sizes. Selection is

rank based. Each individual is assigned a value equal

to (population size-(rank-1))*2/population size (giv-

ing a value between 2 and 2/population size). The

whole number portion of this value is the number of

copies made, the decimal portion is the probability of

an additional copy. Other details of the problem are

shown in Table 1.

3.2 Team Choice

Twomechanisms for team choice were tested. The �rst

mechanism randomly chooses N-1 individuals from a

single population to act as the team members for the

individual being evaluated. (As noted previously this

approach is expected to produce fairly homogeneous

teams and these trials are labeled homogeneous teams

in the remainder of the paper. The cooperation mech-

anism used was median voting, described below.) The

second mechanism evolved teams as individuals. Each

individual in the population consisted of N distinct

programs that form a team. This approach is expected

to favor heterogeneous teams.

3.3 Cooperation Mechanisms

Three cooperation mechanisms were tested. The �rst

mechanism averaged the output of the team members
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Figure 1: Performance of the GP with di�erent cooperation mechanisms.

for each input value (averaging). The second method

took the median member's output for each input value

(median voting). For example, if at the �rst test point

(x = -6.28) three team members produced outputs of:

-0.8, 0.02, 121.4 the value used for calculating the error

would be 0.02, the median value.

In the third method the input range is divided into N

subranges and each teammember is assigned a distinct

subrange (preset ranges). Thus, with a �ve member

team and 40 test points each member actually only

has to �t 8 test points.

As with the team choice mechanism, each of the coop-

eration mechanism should favor either homogeneous or

heterogeneous teams. It is hypothesized that averag-

ing will favor homogeneous teams, as presumably each

member must be reasonably close to the test function.

The other two methods are expected to favor hetero-

geneous teams. Each member can specialize on a dif-

ferent range of the test function and outside of those

ranges the functions are relatively free to vary. Thus,

there does not seem to be any pressure to produce

homogeneous teams.

4 Results

Figure 1 shows the error of the evolved functions over

100 generations for �ve test cases (the team size used

for these trials is 5): heterogeneous teams with median

voting, heterogeneous teams with preset ranges, het-

erogeneous teams with averaging, homogeneous teams

(with median voting), and a normalGP trial (i.e. team

size of 1). Each set of results is the average of �fty tri-

als.

Figure 1 shows that median voting and preset ranges

produce the best results. Averaging is roughly equiv-

alent to simply evolving individuals, and the homoge-

neous teams perform worse than evolved individuals.

Thus, it is clear that simply using teams is not a guar-

antee of improved results. The mechanisms for chosing

the team and for cooperation are fundamental.

Table 2 summarizes the errors in the �nal generation

for di�erent team sizes. These data emphasize sev-

eral facts. It is clear that median voting and preset

ranges are bene�cial and that for these cooperation

mechanisms larger teams further improve the results,

although the advantage levels o� fairly rapidly. In con-

trast averaging the team results is actually harmful

and increasing the team size degrades performance.

These results seem to support the hypothesis that

cooperation mechanisms favoring heterogeneous and

more specialized members (in this case median voting

and preset ranges) produce better results. However, it

is worth examining the actual solutions being created

by the GP. The following �gures show the best team

after 100 generations taken from the �ftieth trial. It is

entirely possibly that trial �fty produced a relatively



Table 2: Summary of team results. These are the errors for the best programs in the �nal generation, averaged

across 50 trials. The last row shows the results evolving individuals, so the team size does not apply.

Team Type 3 Member Team Std. Dev. 5 Member Team Std. Dev.

Median voting 1:53 0.28 1:22 0.23

Preset ranges 1:49 0.25

Averaging 2:62 0.41 2:79 0.49

Homogeneous 3:17 0.68 3:20 0.77

Individual 2.77 0.55
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Figure 2: Solution generated when evolving individuals. Note that the evolved function corresponds reasonably

well with the target function.

poor best individual. Thus, these �gures are only con-

sidered for the general form of the solution, not its

absolute �tness. For the team trials, the results are

for teams with �ve members.

Figure 2 shows the best solution generated by a single

individual. The generated function corresponds rel-

atively closely to the test function, although this is

clearly not a great solution.

Figure 3 shows the best solution generated by a team

when each member assigned a preset range. The com-

bined function is shown along with the function pro-

duced by 3 of the 5 team members. Within their as-

signed ranges each of the members generated a func-

tion that corresponds relatively closely to the test func-

tion. For example, member 3 is fairly accurate in its

range (roughly -1.3 to 1.3). However, outside their

range each members' function is very di�erent from the

test function. This is clearly cooperation, the members

only perform well as a team. It is also clearly special-

ization, each member has evolved to be correct only

within its own narrow range of specialization.

Figure 4 shows the best solution generated by a team

using median voting. Again the combined function is

shown along with the functions produced by 3 of the 5

team members. As in the previous case the combined

function is relatively close to the test function, but the

individual member functions are not. Here the team

members have evolved regions of specialization within

which their performance is good.

In this case several members have multiple, disjoint

ranges of specialization. For example, member 1 �ts

the test function from -3.5 to -2.5 and again from 2.5

to 3.5. This requires a higher level of cooperation than

seen in the previous example. Here the members must
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Figure 3: Solution generated by the team when using preset ranges of specialization. The individual member

solutions are shown along with the combined result.

not only be correct within their ranges of specializa-

tion, they must also assure that the median vote ap-

plies to the correct other member of the team. Thus,

it is clear that both specialization and cooperation are

evolving.

The primary di�erence between these two examples is

that with preset ranges each function is forced to �t a

predetermined range whereas with median voting the

ranges of specialization can evolve. For this problem

allowing the ranges of specialization to evolve is some-

what advantageous. Presumably, because it allows the

test function to be subdivided into fairly \natural"

ranges. It seems likely that a conscious attempt by

the programmer to choose preset regions would im-

prove the results. However, for many problems this

will not be possible. This is particularly true of prob-

lems were the ranges cannot be so clearly graphed. For

example, it is not obvious where the \natural" ranges

of specialization are in a data mining problem.

Figure 5 shows the results for teams using averaging

as the cooperation mechanism. Here the results dif-

fer considerably from what was expected. We had ex-

pected averaging to result in fairly homogeneous teams

in which each member was fairly close to the test func-

tion. Clearly this is not the result. The members are

extremely diverse and do not even remotely resemble

the test function. Despite this the average of the func-

tions is relatively close to the test function. (Overall

averaging produced solutions as good as produced by

individuals.) Thus, the averaging cooperation mecha-

nism clearly produces cooperation (as do the other two

mechanisms), but does not lead to the homogeneous

teams that were expected.

In addition, averaging does not produce the special-

ization that was seen with median voting and preset

ranges. For any given range of the test function none

of the members would do well by itself. This is in

marked contrast to the previous team cases.

The results for homogeneous teams were closer to what

was expected. In some cases the population converged

entirely. Thus, median voting (or any other coopera-

tion mechanism) had no real e�ect because the mem-

bers were identical. In other cases the population did

not converge, but the process of appling median voting

to �ve individuals randomly draw from the population

worked very poorly.

4.1 Generalizing Ability of the Solutions

How well the solutions generalize outside of the train-

ing data is another important consideration with ma-

chine learning techniques. With the linear regression

problem generalization is further subdivided into two

distinct cases: generalizing within the training range

(�2PI to 2PI in this case) and generalizing outside

the training range ( < �2PI and > 2PI in this case).
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Figure 4: Solution generated by the team using median voting. The individual member solutions are shown along

with the combined result. Although the team members are only accurate within narrow ranges of specialization,

the overall result is fairly accurate.

The results are fairly clear from looking at Figures 2

through 5. Generalization within the training range

is fairly good for all cases. The teams with more spe-

cialization give better results simply because they pro-

duced the more accurate functions.

In contrast, outside the training range the specializing

teams will perform very poorly. This should not be

surprising. With specialization each member's ability

is limited to its range. Outside of the training range

none of the members can be expected to do well. Thus,

a major drawback of the teams with specializing mem-

bers is that they will generalize poorly outside of the

training range.

5 Conclusions

In these experiments team performance was dependent

on two factors, team heterogeneity and specialization.

These are clearly related. If a team consists of homo-

geneous members specialization is not possible. How-

ever, even when the team members are heterogeneous

specialization is not guaranteed to occur. This was

shown in the trials using averaging. Figure 5 clearly

shows heterogeneous team members, but there does

not appear to be any specialization among those mem-

bers. In contrast Figures 3 and 4 show clear special-

ization, each member is accurate only for a subset of

the training data.

Finally we saw that of these two factors (amount

of heterogeneity and amount of specialization) the

amount of specialization is key to improving perfor-

mance. Heterogeneity is a necessary, but not su�cient,

condition for specialization to occur. The team choice

mechanism is important in producing heterogeneous

teams. However, these experiments suggest that it is

the cooperation mechanism that most favors special-

ization. Thus, developing an appropriate cooperation

mechanism will be critical in applying teams to other

problems. These experiments suggest that the mech-

anism should favor the evolution of independent areas

of specialization.

There is a drawback to specialization in these exper-

iments. When each of the team members specializes

on a limited region of the training data the ability to

generalize outside of the training range is degraded,

although performance within the training range im-

proves.

Finally, it is worth noting again that cooperation

did evolve whenever heterogeneous teams were used.

Thus, it seems reasonable to claim that cooperation

is a fairly easy trait to evolve. This is a very signi�-

cant result. It suggests that a team approach can be

successfully applied to most problems.
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