

MACHINE SCIENCE:

AUTOMATED MODELING OF DETERMINISTIC AND STOCHASTIC

DYNAMICAL SYSTEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Michael Douglas Schmidt

January 2011

© 2011 Michael Douglas Schmidt

MACHINE SCIENCE:

AUTOMATED MODELING OF DETERMINISTIC AND STOCHASTIC

DYNAMICAL SYSTEMS

Michael Douglas Schmidt, Ph. D.

Cornell University 2011

The work presented here advances the technology to analyze experimental data and

automatically hypothesize about explanatory models and physical laws that help

explain observations. Automated Modeling, sometimes referred to as Symbolic

Regression or System Identification, is the process of searching a possibly infinite

space of mathematical expressions in order to optimize various objectives – for

example, identifying the simplest possible nonlinear equation that captures the

observed dynamics of a system.

Traditionally, the task of formulating analytical models and theory has remained

entirely within the purview of human expertise, and also human limitation. However,

the development of Evolutionary Algorithms, and more recently Genetic

Programming, has made searching for analytical models automatically a possibility.

The work presented here focuses on advancing the algorithms and techniques for

Automated Modeling to shrink this “reality gap,” and applies these advances to

various real and experimental systems for the first time.

The specific contributions of this work fall into four categories: search methods and

algorithms, model representations and the types of systems that can be analyzed,

techniques for interpreting solutions and results, and applications in science and

engineering fields.

The most important contribution in the search methods is the Fitness and Rank

Prediction algorithm, which enables utilizing exceedingly large data sets with low

computational effort. This algorithm is based on the idea that, at any given time, only

a small number of carefully selected data points are necessary to discriminate among

candidate models, allowing large reductions in computational effort. In model

representations, the most important contribution is the principle for identifying

meaningful invariant quantities amongst the infinite number of trivial invariant

expressions. This principle enables searching for physical laws and conservations

directly from experimental measurements. In the interpretation of results, the most

important contribution is Parameter Mapping technique, which relates an

automatically inferred model to a previous model through repeated regressions.

Finally, the most important contribution in applications is the analysis of yeast

Glycolytic oscillations, which demonstrates and compares several techniques in order

to identify a complete nonlinear ordinary differential equation model directly from

data.

iii

BIOGRAPHICAL SKETCH

Michael Schmidt was born in La Crosse, Wisconsin on December 6, 1981 to Mary and

Douglas Schmidt. His mother was a school teacher who later started a direct mailing

business. His father was a mechanical engineer who later started a software company.

Michael‟s mother introduced him to art and music at an early age and encouraged

many creative pursuits throughout his childhood – particularly painting and playing

piano. Michael‟s father first introduced him to engineering and mathematics – for

example, teaching him to estimate the distance a model rocket would drift when lost to

the wind. Michael went to public school as a child. In secondary school, he tutored

math and physics students, and represented the school in a few academic competitions.

He also played baseball and hockey, but his primary interest eventually turned to

computers. Programming became Michael‟s creative outlet as the internet burgeoned

in the 1990s. He taught himself to program with his best friend by working on several

nefarious projects – especially, writing tools to exploit flaws in early operating

systems and crash other users. After being banned by various service providers in the

late 90s, he shifted interests abruptly to more affable projects, such as games and

graphics which he continued through high school.

At Cornell University, Michael‟s undergraduate experience was haphazard. He was

bored in early Computer Science courses and eventually opted for Electrical and

Computer Engineering. His junior year, he accepted a nine month engineering co-op

position with General Electric where he worked on data servers and software, and also

coached little league baseball. In his senior year, he gave Computer Science another

try, taking elective courses in machine learning and artificial intelligence. In

particular, a course on evolutionary computation (using simulated evolution to explore

open-ended intractable problems) triggered a lasting curiosity. His instructor,

iv

Professor David Delchamps, later introduced Michael to Professor Hod Lipson.

Shortly after, Michael graduated with a Bachelor of Engineering degree in Electrical

and Computer Engineering in 2005, followed by a Master of Engineering degree in

Computer Science in 2006. That same year, Michael was accepted into the Ph.D.

program and commenced the work presented here.

v

For Mary Westlund

vi

ACKNOWLEDGEMENTS

I‟d like to thank my advisor Hod Lipson for giving me direction and the capability to

explore many fruitful and challenging topics. I‟d also like to thank my research group,

the Cornell Computational Synthesis Lab, for creative discussions on projects, and my

committee advisors Professor Steven Strogatz and Professor Stephen Ellner for their

valuable academic and professional discussions and advice.

I was fortunate to be supported by two graduate fellowships during my Ph.D.: the

Integrative Graduate Education and Research Traineeship in 2007, and the National

Science Foundation Graduate Research Fellowship in 2008.

More personally, I‟d like to thank several people who helped me tremendously during

my Ph.D. Thanks to Leticia Rojas for her unwavering moral support and inspiration to

enjoy life. Thanks to Evan Malone for his help and support on everything from

discussing physics to building custom server racks. Thanks to Michael Tolley,

Jonathan Hiller, and Daniel Cohen for their friendship and support inside and outside

of the lab. Thanks to Jonas Neubert, John Amend, Robert MacCurdy, and Jeffrey

Lipton for many needed distractions and discussions. Thanks to Stephane Constantin,

Nicolas Lassabe, and Simon Fivat for their friendship and help building dozens of

servers. Thanks to Brian Herold for moral support and first introducing me to

programming. Thanks to Aaron Lenfesty and Daniel Ly for their technical advice and

coding discussions. And finally, thanks to my parents, Mary Westlund and Douglas

Schmidt, for their love and support, and providing me freedom to pursue many

opportunities throughout life.

vii

TABLE OF CONTENTS

BIOGRAPHICAL SKETCH ... iii

DEDICATION ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ... viii

LIST OF TABLES .. xxiv

PREFACE .. xxvi

SECTION I – INTRODUCTION ... 1

CHAPTER 1. GOALS ... 1

CHAPTER 2. MOTIVATION ... 1

CHAPTER 3. BACKGROUND .. 3

SECTION II – SEARCH METHODS ... 7

CHAPTER 4. FITNESS PREDICTION .. 7

CHAPTER 5. RANK PREDICTION .. 48

CHAPTER 6. META-OBJECTIVES IN EVOLUTIONARY SEARCH 63

CHAPTER 7. PRIOR MODELS AND SEEDING ... 79

CHAPTER 8. IDENTIFYING A DOMAIN ALPHABET 98

SECTION II – MODEL REPRESENTATIONS ... 117

CHAPTER 9. DYNAMICAL SYSTEMS ... 117

CHAPTER 10. IMPLICIT EQUATIONS ... 126

CHAPTER 11. NATURAL LAWS ... 142

CHAPTER 12. SYMBOLIC NOISE SOURCE MODELS 173

CHAPTER 13. STOCHASTIC REACTION MODELS 188

CHAPTER 14. TREE AND GRAPH ENCODINGS .. 204

SECTION III – INTERPRETING RESULTS ... 218

CHAPTER 15. PARAMETER MAPPING ... 218

CHAPTER 16. PARAMETER MODELS .. 248

SECTION IV – APPLICATIONS .. 251

CHAPTER 17. METABOLIC NETWORKS .. 251

CHAPTER 18. INSECT WING BUILDING BLOCK ANALYSIS 294

CHAPTER 19. USER PREFERENCE MODELING.. 308

CHAPTER 20. PUBLIC GOODS GAMES .. 332

CHAPTER 21. OPTICAL FILTERS .. 345

CONTRIBUTIONS .. 360

REFERENCES ... 366

viii

LIST OF FIGURES

Figure 4.1. High-level overview of the coevolution of solutions and fitness predictors

algorithm. .. 17

Figure 4.2. Pseudocode for the two threads in the algorithm that coevolve solutions

and predictors. Trainers are chosen periodically in the predictor thread. 20

Figure 4.3. Pseudocode for pruning inactive expressions in randomly generated test

problems to improve the complexity estimate for problem difficulty. 22

Figure 4.4. The expected point evaluations before convergence versus the number of

samples in the fitness predictor. Error bars show the standard deviation. 26

Figure 4.5. Histogram of training samples selected by the best fitness predictor during

evolution to convergence of f(x)=e
|x|

sin(x). Some samples are selected significantly

more often than others. ... 27

Figure 4.6. The expected number of point evaluations before convergence versus the

effort (percent of point evaluations) while training the fitness predictors averaged over

50 trials. Error bars show the standard error. ... 29

Figure 4.7. The training data of the three target functions experimented on. The

horizontal axis shows the input values x. The vertical axis shows the output training

value f(x). .. 31

Figure 4.8. The test set fitness during evolution for target functions f1(x), f2(x), and

f3(x) respectively. Results are averaged over 50 trials. Error bars show the standard

error. ... 32

Figure 4.9. Test set fitness versus evaluations averaged over 100 test runs for f2(x).

Error bars show standard error. .. 36

Figure 4.10. The Chi-square p-values for significance of convergence versus

complexity between the coevolution algorithm and each compared algorithm. 39

Figure 4.11. The percent of successful convergence after 10 million point evaluations

versus the target function complexity (the number of nodes in the binary expression

tree). .. 40

Figure 4.12. Improvement factor in convergence of coevolution over the other

algorithms verses complexity for random target functions. ... 42

Figure 4.13. Fitness and percent of runs converged versus generations throughout

evolution on the function f2(x). Error bars show the standard error. Note that exact

evaluations are performing significantly more computational effort per generation. .. 42

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028650
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028650
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028651
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028651
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028652
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028652
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028653
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028653
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028654
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028654
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028654
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028655
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028655
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028655
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028656
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028656
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028656
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028657
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028657
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028657
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028658
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028658
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028659
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028659
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028660
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028660
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028660
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028661
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028661
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028662
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028662
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028662

ix

Figure 4.14. The size of the best solution during evolution of f2(x) averaged over 100

test runs. Error bars show the standard error. .. 44

Figure 4.15. The bloat of final converged solutions averaged over 500 randomly

generated target functions. Error bars show the standard error. 45

Figure 5.1. The generation of random test problems for symbolic regression. We start

by picking a random number of inputs, between one and ten. We then generate a

random equation using these inputs and simplify the equation before measuring its

complexity (the number of nodes in the binary tree). We then generate a random

training data set by sampling the input variables around the origin and evaluating the

target equation on these data points. We then generate a validation data set in a similar

fashion, but with a wider range around the origin to test if the solutions extrapolate to

the exact solution. ... 55

Figure 5.2. The fitness and convergence rate to the exact solution of each algorithm

versus the total computational effort of each trial. The fitness (left) is the normalized

mean absolute error on the validation data set. Convergence to the exact solution

(right) represents the percent of the trials that identify solutions that have less than

epsilon error on the validation data set. Error bars indicate the standard error. The

performance of the algorithm without using prediction at all is several order of

magnitude higher in computational effort and is not shown. 58

Figure 5.3. The computational effort required when the exact solution was found

versus the target equation complexity (left) and the number of variables in the dataset

(right). Each algorithm found the exact solution with different frequencies; these plots

show the computation effort for when the algorithms did find the exact solution. The

error bars indicate the standard error. ... 59

Figure 5.4. The mean solution bloat of the best solution versus the computational

effort. Solution bloat is defined as the binary tree size of the best individual in the

population minus the size of the target solution. Error bars indicate the standard error.

 .. 60

Figure 6.1. The novelty objective of a solution. Here, the novelty of equation #4 is

equal to the maximum correlation of its residual errors with its two nearest neighbors

in terms of fitness. .. 67

Figure 6.2. The Age-Fitness Pareto Population algorithm (A) considers a single

population of individuals moving in a two-dimensional Age-Fitness Pareto space.

Individuals are selected for if they simultaneous have higher fitness values and lower

age than other individuals. Ages increase every generation, or are inherited during

crossover, and new random individuals are added with zero age. In the Age-Layered

Population Structure (ALPS) algorithm, there are several layers of populations for

each age group. New individuals are injected to the youngest population, and

individuals migrate to older populations as their age increases. 69

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028663
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028663
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028664
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028664
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028665
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028666
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028667
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028668
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028668
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028668
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028668
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028669
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028669
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028669
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028670

x

Figure 6.3. The fitness and convergence rate to the exact solution of the compared

algorithms versus the total computational effort of the evolutionary search. The fitness

is plotted (left) is the normalized mean absolute error on the validation data set.

Fitness is normalized by the standard deviation of the output values. Convergence to

the exact solution (right) is percent of the trials which reach epsilon error on the

validation data set. The error bars indicate the standard error...................................... 72

Figure 6.4. Solution bloat over the course of the evolutionary search. Solution bloat is

defined as the binary tree size of the best individual in the population minus the binary

tree size of the target solution. The error bars indicate the standard error. 73

Figure 6.5. The performance of each combination of the multiple secondary objectives

on random symbolic regression problems. Pane (A) shows the mean absolute error on

the test data set of the best solution found by each algorithm. Pane (B) shows the

convergence rate, the percent of times each algorithm identified the exact solution.

Pane (C) shows the percentage of the Pareto space, defined by solution error and

solution complexity (the two metrics of interest in the Symbolic Regression), that each

algorithm explored. ... 75

Figure 6.6. The convergence (percent of problems where each method identified the

exact solution) versus the problem complexity. These results are split into three panes

to make the differences more easily identifiable. Pane (A) shows the results for

combinations of two objectives plus the single error objective. Pane (B) shows the

results for three objectives plus the best 2 objective method and error objective. Pane

(C) shows the best of the previous panes with the 4 objective method. 77

Figure 7.1. Example seed equations for each method (left) and an example randomly

generated target equation plotted next to the automatically generated approximate

equation (right). .. 82

Figure 7.2. The expected time for the evolutionary search to converge to the exact

target equation for each seeding method measured in function evaluations (runs that

did not converge omitted). Error bars show the standard error. 89

Figure 7.3. The mean fitness (top) and convergence rate (bottom) for each method

measured over each evolutionary trial. Error bars show the standard error. 90

Figure 7.4. The logistic trends of each seeding method in convergence rate versus

target equation complexity (top), and linear trends in convergence versus the error of

the approximate seed equation from the target equation (bottom). Error bars show the

range based on the standard errors of the trend fit parameters. 92

Figure 7.5. The solution bloat of the top ranked solution over the evolutionary runs.

Bloat is measured as the top ranked equation‟s complexity minus the target equation

complexity. Error bars show the standard error. .. 95

Figure 8.1. We distill the common mathematical language needed to describe a group

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028671
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028672
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028672
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028672
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028673
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028674
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028675
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028675
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028675
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028676
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028676
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028676
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028677
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028677
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028678
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028678
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028678
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028678
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028679
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028679
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028679
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028680

xi

of systems using symbolic regression and analysis of their model accuracy/complexity

Pareto fronts. We generate experimental data from several related systems such as

spring and mass mechanical systems (left). We then use symbolic regression to find

several accurate models at varying complexity of equations (middle). Finally, we

discompose models on these fronts to individual terms and building blocks. The most

frequently used terms and building blocks form an emergent alphabet for describing

models of this group of systems (right). ... 99

Figure 8.2. Example equation (a), its binary parse tree (b), and all possible building

blocks of the equation (c). Building blocks are common sub-expressions or internal

components of a system that simplify building a full mathematical model. 102

Figure 8.3. Summary of the mechanical systems, the collected data of their dynamics,

and the resulting models found using symbolic regression on the equation accuracy

and complexity Pareto front. Each system was simulated numerically. The symbolic

regression algorithm generates a small set of equations for each system. This set is a

Pareto front, showing the most accurate equation found for different sizes

(complexities) of equations. These equations are used to distill a common

mathematical alphabet of building blocks for modeling mass, spring, and pendulum

mechanical devices. .. 109

Figure 8.4. The building blocks found for the domain alphabet based on the harmonic

oscillator, simple pendulum, and 2D spring pendulum Pareto front models. The most

frequent and complex building blocks correspond to the kinetic energy terms for

moving masses and potential energy terms for springs and pendula. Building blocks

with zero frequency on the Pareto fronts of other systems are omitting and not

included in the alphabet. ... 111

Figure 8.5. The impact of using a domain alphabet obtained from simple systems, the

harmonic oscillator and simple pendulum, to find the model of a more complex

system, the 2D spring pendulum. The alphabet in (top) shows the common building

blocks found from the Pareto analysis of only the harmonic oscillator and simple

pendulum systems. Allowing symbolic regression to use these terms substantially

accelerates the modeling of the more complex 2D spring pendulum system (bottom).

Error bars show the first standard error about the mean over ten independent trials. 114

Figure 10.1. Many datasets exist that do not have explicit dependent variables, such as

an elliptic curve shown here. Instead, this type of data must be modeled with an

implicit equation. We explore using symbolic regression to infer these types of

models. .. 128

Figure 10.2. Implicit derivatives can be estimated from unordered, or shuffled data,

non-parametrically by fitting a hyperplane or higher-order surface to neighboring

points. After fitting the neighboring points, simply take any of the implicit derivatives

of the locally fit surface. ... 134

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028681
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028681
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028681
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028682
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028683
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028684
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028685
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028685
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028685
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028685
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028686
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028686
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028686
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028686

xii

Figure 10.3. Data sampled from six target implicit equation systems. Data is collected

uniformly for the geometric systems. In the dynamical systems, the data is a single

simulated trajectory from a random initial condition. .. 136

Figure 10.4. Fitness of the symbolic regression algorithm using the implicit

derivatives fitness for each of the six systems. Results are the top ranked solution

versus time, averaged over 20 independent trials. Error bars indicate the first standard

error. ... 138

Figure 10.5. The fitness and equation complexity Pareto fronts found for each of the

six systems. The exact solutions are the simplest equations to reach near perfect

fitness. More complex solutions show elaborations on the exact solution, improving

fitness only marginally. .. 140

Figure 11.1. Mining physical systems: We captured the angles and angular velocities

of a chaotic double-pendulum (A) over time, using motion tracking (B), then

automatically searched for equations that describe a single natural law relating these

variables. Without any prior knowledge about physics or geometry, the algorithm

found the conservation law (C), which turns out to be the double-pendulum‟s

Hamiltonian. Actual pendulum, data and result shown. ... 143

Figure 11.2. The computational approach for detecting conservation laws from

experimentally collected data. (A) First, calculate partial derivatives between variables

from the data, then search for equations that may describe a physical invariance. To

measure how well an equation describes an invariance, derive the same partial

derivatives symbolically to compare with the data. Finally, return the most

parsimonious equations for the hypothesized physical laws. (B) The representation of

a symbolic equation in computer memory is a list of successive mathematical

operations. (C) This list representation corresponds to a graph, where nodes represent

mathematical building blocks and leaves represent parameters and system variables.

Both (B) and (C) correspond to the equation f(θ,ω)=17.719–4.771ω
2
+4.714cos(θ)–

ω
2
cos(θ). To search for conservation equations, the algorithm mutates and recombines

these structures to search the space of equations. ... 146

Figure 11.3. Summary of laws inferred from experimental data collected from physical

systems. Depending on the types of variables provided to the algorithm, it detects

different types of laws. Given solely position information, the algorithm detects

position manifolds; given velocities the algorithm detects energy laws; given

accelerations, it detects equations of motion and sum of forces laws. These laws

contain bulk parameters. ... 149

Figure 11.4. Parsimony vs. accuracy, and performance. (A) The Pareto front (solid

black curve) for physical laws of the double-pendulum and the frequency of sampling

during the invariant equation search (grayscale). The Pareto front shows the trade-off

between equation complexity (or parsimony) and ability to model a predictive

invariance. At a critical complexity of ~32, there is a strong point of inflection. The

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028687
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028687
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028687
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028688
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028688
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028688
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028688
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028689
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028689
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028689
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028689
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028690
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028691
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028692
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028693

xiii

equation at the inflection corresponds to the exact energy conservation law of the

double-pendulum, highlighted. A second momentum conservation law encountered is

also highlighted. (B) The computation time required to detect different physical laws

for several systems. The computation time increases with the dimensionality, equation

complexity, and noise. A notable exception is the bootstrapped double pendulum,

where reuse of terms from simpler systems helped reduce computational cost by

almost an order of magnitude, suggesting a mechanism for scaling higher

complexities. ... 152

Figure 11.5. Ancestor trajectories in equation space while searching for the equation

of an ellipse. Dots indicate crossover and mutation events while lines represent

parameter tuning over time. (A) Several initially random equations with varying

predictive ability evolve independently before coalescing toward the exact solution

over the running time of the algorithm. (B) The ancestors also vary in equation

complexity – measured as the number of nodes in their expression trees. Initial

equations tend to have higher complexity, but simplify over time toward the exact

solution. (C) The same trajectories plotted over predictive ability and complexity

shows the ancestor trajectories converge toward a simple and high predictive ability

neighborhood before finding the correct equation structure whose parameters can be

tuned to the exact solution. ... 160

Figure 11.6. Sequence of solutions as they evolve to model the equation of an ellipse.

This sequence represents a single trajectory in Figure 11.5. Small mutations and

crossover events during the evolutionary search slowly converge this sequence onto

the exact equation. .. 161

Figure 11.7. Two equivalent representations of an example equation f(θ,ω) = 17.719 –

4.771∙ω2 + 4.714∙cos θ – ω2∙cosθ. (A) The algorithm stores and evolves equations

represented by a list of floating point operators over a system‟s variables. Each

operation can load a variable, load a parameter, or perform an mathematical operation

on any previous operation. Unused lines have been omitted for clarity. (B) The raw list

can be interpreted more intuitively by an acyclic graph where several sub-trees are

reused by multiple terms. Both (A) and (B) represent the same equation. 163

Figure 11.8. The accuracy/complexity Pareto front of the double pendulum. The

Pareto front shows the tradeoff between equation complexity and its ability to derive

accurate partial derivative. At some minimum complexity (32 nodes), predictive

accuracy jumps rapidly. Equations almost twice as complex improve the accuracy

only marginally. These high complexity equations tend to contain the simpler exact

equation, but add many smaller terms to compensate noise. The parsimonious and

accurate equation at the inflection is the Hamiltonian and Lagrangian of the double

pendulum. ... 168

Figure 11.9. The mean predictive ability on a withheld test set of the best equations

detected versus the amount of normally distributed noise in the data set for the

simulated double linear oscillator. Error bars show the standard error. The percent

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028694
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028695
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028695
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028695
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028695
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028696
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028697
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028698
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028698
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028698

xiv

noise is the ratio of the standard deviation of the noise and the standard deviation of

the original signal. .. 169

Figure 12.1. Three basic examples where a stochastic element hides or distorts

analytical features of the system to different extents. Blue dots show the observed

system output, the red line shows the expectation of the output, and the green line

show the target analytical model with stochastic elements removed. 177

Figure 12.2. Pseudocode for evaluating a model with stochastic noise sources to

estimate the noise envelope or distribution (top), and pseudocode for calculating the

resulting fitness metric for the candidate model (bottom). ... 179

Figure 12.3. An example binary expression tree (a) for the function f(x) = e
x
sin(x), and

a similar tree modeling a stochastic element (b) for the function f(x) = e
x
sin(x + R()).

 .. 180

Figure 12.4. The fitness objective for explaining training data with a with model that

has stochastic elements and output distribution. If a training point falls inside the

model distribution, the objective is to minimize the height of the distribution. If the

point falls outside, the objective is to minimize the distance of the point to the

distribution. ... 182

Figure 12.5. The best model found at three points during regression of f(x) = 10 sin(x

+ R). The green points show the training data, the grey area shows the model‟s

distribution, and the blue line shows the analytical model with stochastic elements

removed. ... 185

Figure 12.6. The best model found at three points during regression of f(x) = x
2

sin(x +

R). The green points indicate the training data, the grey area indicates the model‟s

distribution, and the blue line indicates the analytical model with stochastic elements

removed. ... 185

Figure 12.7. The best model found at three points during regression of f(x) = (x + R) -

1.5 x
3
. The green points are the training data, the grey area is the model‟s distribution,

and the blue line is the analytical model with stochastic elements removed. 185

Figure 13.1. Overview of the modeling problem. A stochastic system evolves an exact

behavior over time shown in blue. Periodically, the state of system can be measured

(shown in red dots), a sample of the exact time evolution of the system. The task is to

infer a maximum likelihood stochastic model (right) for this system from these

periodic measurements. Actual data and solution shown. .. 189

Figure 13.2. The encoding of a solution representing a stochastic model of discrete

reactions. A series of chemical reactions (top) are represented by corresponding

integer coefficients and real valued rate constants for each reaction (bottom). 193

Figure 13.3. Comparing a candidate model with the experimental data. The left pane

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028699
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028699
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028699
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028699
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028700
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028700
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028700
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028701
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028701
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028701
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028702
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028703
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028703
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028703
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028703
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028704
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028704
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028704
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028704
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028705
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028705
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028705
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028706
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028707
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028707
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028707
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028708

xv

shows the hypothetical exact behavior of a system in blue, and two known

measurements of the system at red dots. The candidate model is simulated multiple

times, starting from the first measurement for t seconds, in order to estimate a

probability distribution of the model (right). The state of the second measurement is

then compared with this distribution to evaluate the quality of the model to reproduce

the measurement. .. 196

Figure 13.4. The search performance of the three compared fitness metrics. The top

panes show performance when data points appear in rapid succession with short gaps

in time. The bottom panes show performance when there are long gaps of time

between data points. The left panes show the likelihood score of the best model during

the search. The right panes show the percent of runs that identified the exact solution

for the amount of computational effort. Error bars indicate the standard error. 198

Figure 13.5. The relationships between the distance metric of a model and its

corresponding likelihood given the experimental data. Each point in the plot is a

random candidate model during the likelihood search. .. 200

Figure 13.6. Traits of the best model over time during the evolutionary search. The top

left plot shows the genotypic age of the best solution (the number of generations any

part of the solution existed in the population). The top right shows the novelty of the

best solution (how different it is from the rest of the population). The bottom pane

shows the bloat of the best solution (ratio its complexity with the target solution

complexity). Error bars indicate the standard error. ... 201

Figure 14.1. Example expressions of f(x) = (x + 1)
4
 in the tree encoding (a) and graph

encoding (b). The graph encoding reuses redundant sub-expressions but is more

susceptible to deleterious variation. ... 207

Figure 14.2. Bloat of converged solutions for 1-variable functions (a), and 8-variable

functions (b). Each point is averaged over 50 randomly generated target functions.

Error bars show the standard error. .. 212

Figure 14.3. Test set convergence versus target function complexity for 1-variable

functions (a), and 8-variable functions (b). Each point is corresponds to 50 randomly

generated target functions. .. 213

Figure 14.4. The number of point evaluations before convergence on the training set

versus the target function complexity for 1-variable functions (a), and 8-variable

functions (b). Points are averaged over 50 randomly generated target functions. Error

bars show the standard error. .. 214

Figure 14.5. The rate of beneficial crossovers versus target function complexity for 1-

variable functions (a), and 8-variable functions (b). Results are averaged over 50

random test problems. Error bars show the standard error. .. 215

Figure 14.6. The point evaluations per second versus the function complexity. 216

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028709
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028710
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028710
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028710
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028711
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028712
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028712
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028712
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028713
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028713
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028713
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028714
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028714
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028714
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028715
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028715
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028715
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028715
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028716
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028716
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028716
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028717

xvi

Figure 15.1. Manually-derived versus automatically-generated biological models and

the mapping challenge. Most biological models are derived by hand using expert

knowledge of the system, related systems, and qualitative understandings of the

underlying biology (left). When large amounts of experimental data are available,

empirical models can be inferred automatically by a computational search for the most

parsimonious model that accurately predicts the dynamics (right). The automatically-

generated model potentially provides new insight into the system but does not have

any accompanying explanation. Our solution to this problem is to additionally learn a

mapping from the known biological model to the automatically-generated model,

identifying which understood parameters collapse to simpler explanations in the

automatically-generated solution. Actual models and data shown. K and S represent

the protein concentration levels of ComK and ComS, respectively. α, and β terms

correspond to the basal and maximum rates of protein expression, respectively. λ

denotes the linear and δ the enzymatic degradation rates of ComK and ComS. The

meanings of the parameters on the right are unknown. .. 221

Figure 15.2. Transient and oscillatory dynamics of competence events in single B.

subtilis cells. Filmstrips in panels A and B show overlays of phase contrast and two-

color fluorescence images. Blue and orange colors depict the reporter for competence

PcomG and negative feedback loop component PcomS, respectively. Panel A shows a

single wild type cell that differentiates into the competence state and then exits

(indicated in blue). Panel B, shows cells containing a modified competence circuit

(for details see text and SOM) that give rise to oscillations in competence where cells

undergo consecutive events. Panels C and D depict time traces of promoter activity

obtained from quantitative image analysis of fluorescent reporters during the

competence events shown in panels A and B respectively. Blue and orange colors

utilized in the graphics are consistent with the colors depicted in the filmstrips and

time traces, where blue indicates competence and orange the activity of the negative

feedback loop necessary for exit from competence. .. 224

Figure 15.3. The automated modeling method attempts to model multiple cells with a

single equation, and then identify a nonlinear mapping to a previous understood

model. These equations contain symbolic parameters which vary for each cell, rather

than constant coefficients. The algorithm searches for the most parsimonious equation

which accurately predicts the dynamics observed in the experimental data using an

evolutionary search. We then attempt to identify a mapping of this model to the

currently understood system model by varying parameters of the manually-derived

model, simulating it numerically to generate new data, and then fitting the

automatically-generated model to the generated data. We then search for a nonlinear

relationship between the parameters of the two models. .. 226

Figure 15.4. The automatically-generated conserved quantity (A) maps onto a small

set of parameters in the manually-derived model (B) which correspond to the

degradation of ComK and production of ComS (C). When evaluating the conserved

quantity on data collected from two different types of B. subtilis strains (D), a sort

duration strain (black) and a longer duration strain (red), the magnitude of the

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028718
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028719
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028720
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028721

xvii

conserved value separates into two different groups (E), suggesting the conserved

quantity is tied to the duration of competence events. ... 229

Figure 15.5. The mapping between the manually-derived model and the automatically-

generated dynamical model connects the simpler data-driven model with the current

biological understanding. The bipartite graph (B) shows the linear correlation

strengths between model parameters – automatically-generated model parameters are

on the left side, manually-derived model parameters are on the right side. The

nonlinear mapping (C) shows that multiple parameters of the manually-derived model

collapse to those in the simpler automatically-generated model. The parameter plots

(A) show that the mapping is in strong agreement with the automatically-generated

model over a wide range of parameter values. ... 232

Figure 15.6. Collected data and the fit of the automatically-generated dynamical

model. ComK florescence (AFU) is shown in blue dots, ComS florescence (AFU) is

shown in red dots, and the automatically-generated model is shown in black for each.

The automatically-generated model was found using data from the top four rows. The

bottom row shows that the model generalized to other behaviors such as oscillating

competence events. ... 238

Figure 15.7. The parameter mapping relating the parameters of the expert biological

model and the automatically identified dynamical model. The left plots show the

predicted parameter value in the automatically-generated model based on the

parameters of the expert model versus the actual best fit parameter of the

automatically-generated model. The parameter equations found are shown to the right.

The percent shown for each term indicates the percent of the variance explained by

each term. ... 240

Figure 15.8. The parameter mapping relating the parameters of the expert biological

model to the automatically-inferred conserved quantity. The left plots show the

predicted parameter value in the conserved quantity of the mapping versus the actual

best fit parameter of the conserved value. The parameter equations found are shown to

the right. .. 242

Figure 15.9. The clusters of coefficient values of the unknown conserved quantity

equation colored by the B. subtilis strain. Each plot shows a projection onto a different

pair of coefficients. ... 244

Figure 15.10. Verifying the perturbations of the models with the physical changes in

the wild (black) and mutated (red) strains. Pertubing only the parameters that

correspond to production of ComS in the simulated model produces similar changes to

those seen in experiment. ... 246

Figure 17.1 Automated analytical modeling: Noisy time series data reflecting

anaerobic metabolism concentrations over time are automatically translated into a set

of coupled analytical differential equations without prior knowledge of the system

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028722
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028723
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028724
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028725
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028726
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028726
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028726
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028727
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028727
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028727
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028727
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028728
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028728
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028728

xviii

(actual data and equations). .. 252

Figure 17.2. Analytical model representations for NADH in the cell glycolysis model -

a tree encoding (left pane) and a graph encoding (right pane). Both panes encode the

same equation, but while the tree encoding is simpler to manipulate algorithmically

(e.g., alter subexpressions), it requires redundant subtrees and is prone to produce

large equations that may not accurately represent the biological system. The graph

encoding couples subtrees, thereby biasing equations to preserve simpler shared

expressions. .. 258

Figure 17.3. The pareto front of model accuracy versus its simplicity. There is an

inherent trade-off between complexity and accuracy to the training data. Many

complex functions have very high accuracy, however the exact solution lies at the

sharp inflection near 28 nodes, balancing high accuracy and simplicity. 262

Figure 17.4 The coevolution of models through symbolic regression and fitness

prediction, and experiments by the estimation-exploration algorithm. Candidate

solutions compete to explain current experimental data, and experimental initial

conditions compete to maximize disagreement in the predictions of the various

solutions. This process of synthesizing coherent models and controversial experiments

continues until a single dominant solution emerges. .. 264

Figure 17.5. The residual squared-error after Loess smoothing versus the magnitude of

the noise and the density of features relative to the noise frequency (sample rate) for a

sine-wave signal and its numerical derivative. The signal error is most sensitive to the

noise magnitude but more robust to the number of features. In contrast, the error on

the numerical derivative has much higher sensitivity to the number of features. The

state of the art of what the symbolic regression algorithm can handle with Loess

smoothing is roughly the medium-blue to dark-blue regions. 266

Figure 17.6. Reaction networks for anaerobic metabolism in a yeast cell. Left: The

exact model includes membrane transport of glucose and pyruvate/acetaldehyde.

Reactions in red involve ATP production/usage, and reactions in blue involve redox

species production/usage. Middle: The impaired model does not produce either

glycerol or ethanol. Right: The overspecified model has an additional sink for

pyruvate/acetaldehyde (S4). .. 275

Figure 17.7. The fit to the data of the highest ranked solution during regression for

each glycolysis variable. The blue series show the correlation coefficient to the

training data, and the red to the test data. The training data contain 10% noise while

the test data have none. The test data contain a larger range of allowed state variables

(i.e., sampled with weaker constraints) to measure whether the model can extrapolate

and predict new behavior. ... 278

Figure 17.8. The exact black box model and inferred model integrated over time. The

inferred model shown in Table 17.5 differs from the exact model by a slight mass

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028729
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028730
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028730
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028730
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028730
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028731
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028732
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028733
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028734
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028735
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028735

xix

imbalance. Integrated over 10 minutes, the inferred model captures the same behavior.

While small differences in derivative values tend to accumulate during integration, the

inferred model captures the integrated behavior remarkably well. The inferred model

predicts early behavior accurately and exhibits the same qualitative dynamics later in

time, differing only slightly in the phase. ... 280

Figure 17.9 The glycolysis system near the stable limit cycle in the course of a single

experiment, with colors representing frequency with which the fitness predictor

examines each point within a single time-series. ... 281

Figure 17.10. The initial condition experiments (red) chosen by the algorithm to

differentiate solutions in comparison to a random distribution of initial conditions

(blue). The algorithm tends to focus on nonlinear states away from the limit cycle

(dashed black line) within the experimental constraints imposed upon the estimation-

exploration algorithm. .. 282

Figure 17.11. (A) The rate of successful inference of the exact differential equation for

each state-variable versus the observation noise in the system after one hour of

regression. The convergence rate is calculated from ten independent trials on each

equation at each noise level. (B) The rate of successful inference of the exact

differential equation for all variables versus the total amount of data given to the

system. The error bars indicate the standard deviation in convergence among the seven

variables. ... 284

Figure 17.12. Performance comparison between symbolic regression, nonlinear

regression, and neural network regression. Results are averaged over 100 trials – error

bars represent the standard error. Training data performance (top pane) shows that all

algorithms accurately explain the training data. The negative slope of the correlations

when the results from the training regression are applied to the test data indicates

varying degrees of overfitting. Note that symbolic regression uses more point

evaluations in the same amount of running time because it is a parallel search, whereas

nonlinear regression and neural network back-propagation use serial updates.......... 287

Figure 17.13. Correlations of the various regressions averaged over 100 trials on

equation S4 – error bars represent the standard error. (A) The correlations between the

training data and each initial model before the model is regressed to the training data

by the corresponding algorithm. Symbolic regression and neural network regression

must model the system from scratch and initially have zero correlation. The impaired

and overspecified models are close approximations to the exact model and therefore

have positive correlations. (B) The mean correlation of the best solution from ten runs

of each algorithm to the training data. The training data contain 10% random noise,

which results in slight variances – most notably in the neural networks. The best

solution from each algorithm correlates well to the training data with low standard

error. (C) The mean correlation of each method to the test data. The assumed

structures of the impaired and overspecified models limit their ability to model a wider

phase domain. The neural network appears limited by noise in the system, but does

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028736
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028736
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028736
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028737
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028738
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028739
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028740

xx

achieve a higher correlation on average with the test set than do the impaired and

overspecified models. ... 290

Figure 17.14. Performance comparison of symbolic regression when correcting a

hypothesized model. Results are averaged over 100 trials – error bars represent the

standard error. The blue curves represent the performance of the algorithm to the S4

equation without any prior model. For the other two pairs of curves, the symbolic

regression algorithm was seeded with an incorrect hypothesized model (black =

impaired, red = overspecified) and the algorithm had to modify the seeded model to fit

the original training data. The graph shows the performance for both the training data

used for the regression (top pane), and the test data (bottom pane) used to evaluate the

training regression. ... 291

Figure 18.1. The tracked position of the fly (top pane) and the correpsonding angles of

the right wing (bottom pane). This data was recorded over approximately 34 flapping

periods during 140 milliseconds of flight. .. 296

Figure 18.2. The three dimensional plot (left pane) of the right wing angles (θ1, θ2, and

θ3). There is slight variation among the periods but overall they line up neatly. After

chopping up the periods, there is covariance between different peaks of each angle

(right pane). .. 297

Figure 18.3. Phase plots of the three angles of the right wing (dθi/dt vs. θi), in order

(θ1, θ2, and θ3). The first angle appears to be a simple harmonic oscillator, whereas the

other two angles show more complex sub-cycles, likely containing higher order

building blocks in their physical model. ... 298

Figure 18.4. Functional linear models based on the period number explains much of

the variation between periods. The linear coefficients (left), the fit and description of

the drift (middle), and R
2
 scores (right). ... 299

Figure 18.5. The registration method slices the data into each periods, scaling length

of each slice to have the same period (left pane). The method optimizes the positions

of the slices in order to maximize the correlation among all the periods (right pane).

 .. 300

Figure 18.6. The registered data (left pane) and the shifts in periods after optimizing

the slice positions (right pane). The periods over time drift slowly, correlating with the

slight drift in the position of the fly in Figure 18.1. ... 301

Figure 18.7. An equation modeling D
2
θ2(t) and its individual building blocks. This

equation was generated by an algorithm, so we are interested in testing whether its

building blocks also show to be useful individually using the function linear model

procedure. ... 303

Figure 18.8. The cross-validation error of the functional linear model using various

building blocks for D
2
θ2(t), (red lines) shown in Fig. 8 and the null functional linear

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028741
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028742
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028742
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028742
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028743
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028743
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028743
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028743
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028744
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028744
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028744
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028744
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028745
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028745
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028745
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028746
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028746
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028746
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028746
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028747
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028747
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028747
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028748
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028748
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028748
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028748
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028749
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028749

xxi

model (dashed black lines) versus the smoothing penalty λ. In each case the null model

is dominated by the building block model for all coefficient smoothing penalties. ... 304

Figure 18.9. Cross-validation error of several poor building blocks (solid red) and the

null model (dashed black). The poor building blocks fail to either achieve lower

minimum error or tolerate higher smoothing penalties. The poor building blocks, other

than t, were also building blocks generated by the modeling algorithm. 305

Figure 19.1. Example comparision between two pen drawings. 312

Figure 19.2. The user interface presented to the user. .. 313

Figure 19.3. Example comparison relational graph of six individuals. 314

Figure 19.4. Example Pareto front plot of eight potential comparison pairs. 315

Figure 19.5. The basic structure of an individual comparator user model. 316

Figure 19.6. The structure of a neural network user model. 317

Figure 19.7. The comparator model based interactive evolution algorithm basic

outline. .. 319

Figure 19.8. The prompts given to the user and the resulting top three guesses over six

iterations. .. 324

Figure 19.9. The number of user prompts expected between the compared algorithms

to find a square shape. .. 325

Figure 19.10. The prompts given to the user and the resulting top three guesses over

seven iterations. .. 327

Figure 19.11. The number of user prompts expected between the compared algorithms

to find the target star shape. .. 328

Figure 19.12. The clock time fitness landscapes calculated over six user prompts. .. 331

Figure 20.1. The Logistic Function squashes all inputs to the range from zero to one.

This function is used in the model structures because we are modeling a fraction value

(e.g. the fraction of money invested in the public good). The input to the logistic

function then has an interpretation of a strength toward zero (large negative values) or

one (large positive values). ... 335

Figure 20.2. The model obtained for an individual‟s contribution to the public good (x)

in the normal Public Goods Game. The left pane shows the correlation of the model

predictions with the data. The right pane shows the predictions of the model (the 3D

surface) next to the experimental data (the blue dots). The model suggests that a player

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028750
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028750
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028750
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028750
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028751
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028752
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028753
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028754
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028755
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028756
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028757
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028757
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028758
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028758
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028759
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028759
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028760
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028760
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028761
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028761
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028762
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028763
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028764
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028764
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028764
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028764

xxii

is less likely to contribute if they have high cumulative earnings relative to the group,

however they are more likely to contribute if others in the group contribute. The fitted

parameters are α = 3.51853, β = 6.21075, γ = 5.08922. ... 336

Figure 20.3. The fitness landscape for an individual against the field assuming that the

group behaves according to the model. The individual‟s fitness improves for

increasing group contribution (group(x)) and decreasing individual contribution (x).

Thus, the model predicts that players will contribute less and less, tending toward zero

contribution. .. 338

Figure 20.4. The model obtained for an individual‟s contribution to the public good (x)

in the tug-of-war version of the game. The left pane shows the correlation of the

model predictions with the data. The right plane shows the predictions of the model

(the 3D surface), next to the experimental data (the blue dots). This model suggests if

the player is doing well in cumulative earnings and kept and/or competed an amount

previously, she/he is less likely to contribute. The fitted parameters shown are α =

1.62552, β = 4.61882, γ = 1.37634. .. 339

Figure 20.5. The model obtained for an individual‟s fraction kept (y) in the tug-of-war

version of the game. The right pane shows the correlation of the model with the data.

The model predictions (the 3D surface) is plotted next to the experimental data points

(blue dots). The model suggests that if the group is contributing, the player is less

likely to keep. However, if the player has been successful in total earnings and kept in

the previous round, she/he is more likely to continue keeping. The fitted model

parameters shown are α = 0.0319059, β = 4.52439, γ = 1.90551 340

Figure 20.6. The model obtained for an individual‟s fraction invested in competition

(z) in the tug-of-war version of the game. The left pane shows the linear correlation of

the model predictions with the data. The right pane shows the model predictions (the

3D surface) next to the experimental data. The model suggests that if the group is

keeping and the player kept on the previous round, she/he is less likely to compete.

Secondly, if the group is contributing and the player competed in the previous round,

she/he is more likely to compete again. The fitted model parameters shown are α =

0.81949, β = 1.44882, γ = 4.38114. .. 342

Figure 20.7. The effective fitness landscape for an individual playing against the field,

assuming the group plays according to the xn+1 and yn+1 models, and in the previous

round the group played 50% in contribution (xn) and 50% in competition (zn). The

optimal behavior for the individual in this circumstance is to play similarly: investing

at least 50% in competition and the rest in contribution. The fitness surface predicted

by the model looks similar for other group conditions, most with optima at zn = 100%.

 .. 343

Figure 21.1. Ring-resonator device structure. Each component contributes to the final

transmission. ... 346

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028765
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028766
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028767
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028768
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028769
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028770
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028770

xxiii

Figure 21.2.. Example filter encoding with a maximum of three devices. Each device

consists of seven independent parameters and a flag to include or omit the device from

the final series. In this figure, device #2 is flagged as omitted. 351

Figure 21.3. Evolved low-pass filter. The target transmission is shown as a dotted line

and the best evolved solution is shown in solid. This solution used three devices in its

encoding, shown in the right pane. ... 352

Figure 21.4. Evolved box filter. The target is shown as a dotted line, the best evolved

solution is shown in solid. This solution used five devices in its encoding, shown in

the right pane. ... 353

Figure 21.5. Evolved band-pass filter. The target transmission is shown as a dotted

line, the best solution is shown in solid. This solution used four devices in its

encoding, shown in the right pane. ... 353

Figure 21.6. Evolved ramp filter. The target transmission is shown as a dotted line, the

best evolved solution is shown in solid. This solution used two devices in its encoding,

shown in the right pane. .. 353

Figure 21.7. A damaged five-device filter. The κ, α, Φ0, R, and G parameters are offset

by 10% random manufacturing error. The qualitative box-filter transmission function

has been restored however some precision is still lost. .. 354

Figure 21.8. Recovering a damaged device – box, LPF, and ramp filters. The left pane

shows the error of the best filter being evolved before fabrication. 10% random error is

then added to all fixed parameters on all devices. The right plane shows the best filter

being evolved to recover from manufactured errors. Errorbars show the standard error.

 .. 356

Figure 21.9. Inferring the physical parameters of a 2-device filter. The inferred model

matches the hidden system to within very low error. Note that the order of devices and

the gain levels of each individual device cannot be determined due to algebraic

properties of multiplying the transmission of each device. The total gain is inferred

correctly however (1.312*0.784 = 1.002*1.026 = 1.0028). 357

Figure 21.10. Reverse-engineering random 4-device filters give precise transmission

measurements (blue) and noisy transmission measurements (green). Error bars show

the standard error. ... 358

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028771
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028771
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028771
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028772
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028772
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028772
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028773
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028773
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028773
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028774
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028774
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028774
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028775
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028775
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028775
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028776
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028776
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028776
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028777
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028778
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028779
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028779
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028779

xxiv

LIST OF TABLES

Table 4.1. Summary of the Compared Algorithms .. 30

Table 4.2. Performance comparison to published methods .. 35

Table 4.3. Example functions and complexities ... 37

Table 4.4. Chi-Square Significance of Convergence Rates Compared to the

Coevolution Algorithm ... 38

Table 9.1. Fitness prediction algorithm parameters ... 119

Table 9.2. Inferring various physical and biological dynamical models 123

Table 10.1. A summary of direct methods and their difficulties 132

Table 11.1. The predictive ability and Pareto fronts of several synthetic manifolds and

simulated dynamical systems. Error bars denote the standard error of predictive ability

 .. 165

Table 11.2. Summary of Detected Approximations with Missing Building Blocks .. 171

Table 12.1. Summary of Experiment Setup ... 183

Table 14.1. Summary of Experiment Setup ... 209

Table 17.1. Raw encodings of glycolysis differential equations found. 260

Table 17.2. The chemical species in the model (NM, IM, and OS are the normal,

impaired, and overspecified models, respectively). ... 268

Table 17.3. Description of the reaction fluxes and their kinetic coefficients 269

Table 17.4. Model variables, the allowed range of initial states for the training data set,

and the standard deviation of the limit cycle used to compute the amount of added

noise. ... 271

Table 17.5. The differential equations describing glycolytic oscillation of the

generating model (left pane) and the inferred model from the training data, which had

10% noise (right pane). ... 277

Table 17.6. Seven snapshots of the best solution during regression of S1. The solution

is plotted in red and the systems limit cycle is shown in blue. 285

Table 17.7. The equations for S4 (pyruvate and acetaldehyde pool) for the exact,

impaired, and overspecified models shown in Figure 17.6. The exact values for the

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028780
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028781
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028782
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028783
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028783
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028784
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028785
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028786
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028787
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028787
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028787
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028788
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028789
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028790
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028791
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028792
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028792
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028793
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028794
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028794
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028794
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028795
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028795
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028795
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028796
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028796
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028797
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028797

xxv

parameters are k3 = 16, k4 = 100, and AsP/V = 13. ... 288

Table 19.1. Neural Network Training Parameters. ... 320

Table 19.2. Evolution Parameters. ... 321

Table 20.1. Model symbol definitions. ... 333

Table 20.2. Model symbols for group averages. .. 334

Table 21.1. Range of parameters describing each doubled ring resonator. The

parameters controlled externally by all-optical effects are 1 and 2. 347

Table 21.2. The parameters for the ring device with transmission function shown in

Figure 2 as the dotted line. We simulate manufacturing errors on this device by adding

10% random errors to all parameters. The damaged transmission function is shown in

Figure 2 as a dashed line. ... 348

file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028798
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028799
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028800
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028801
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028802
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028802
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028803
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028803
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028803
file:///G:/misc/dissertation/dissertation_5.docx%23_Toc280028803

xxvi

PREFACE

The area of automated modeling contains many unexplored directions, and I had to

work on a breadth of topics as they came up over the course of my Ph.D. While

compiling this text, I had some initial concern that the length was too long. I thought

carefully about excluding large portions. However, I decided to keep the text complete

so that it could serve as a comprehensive record of my work. The final dissertation

comprises all of my research related to automated modeling during my Ph.D. It

includes both topics that I have published on and also smaller unpublished results. The

chapters span a breadth of topics and several explore significant depth into various

problems. Still, there are many remaining questions to be answered in this growing

field. I hope this text may inspire others in future directions.

1

SECTION I – INTRODUCTION

CHAPTER 1. GOALS

The central goal of this work is to advance new technology to accelerate scientific

discovery. In particular, this work focuses on Automated Modeling and Artificial

Intelligence for analyzing experimental data observed in a physical system in order to

hypothesize about its analytical rules and intrinsic relationships; ultimately helping to

transform data into scientific knowledge.

Scientific discovery often progresses in stages, from making observations and

performing experiments (data), to modeling and predicting the outcome of

experiments (predictions), to identifying the symmetries and rules of the phenomenon

(laws), and finally to developing theories and understanding (meaning). The work

presented here explores computational methods to move from data to laws, leaving

humans to take the last step.

This work addresses the task in four core areas: improving search methods and

algorithm performance, improving model representations and expanding the types of

solutions that can be modeled, interpreting results and connecting to them previous

knowledge, and finally proving these techniques to realistic systems.

CHAPTER 2. MOTIVATION

In 2006, Josh Bongard, Viktor Zykov, and Hod Lipson developed a continuous self-

modeling robot (Bongard, Zykov et al. 2006) – a robot that could, using only raw data

from its internal sensors, deduce its own configuration. For example, the robot could

determine that it had four legs of specific lengths and orientations. Even after a leg of

2

the robot was broken off, the robot would refine its model and design a new gait to

continue its locomotion.

This work begged the question: could a similar robot also model external

phenomenon? This concept led Bongard and Lipson to pioneer new research in

automated modeling of dynamical systems (Bongard and Lipson 2007), and formed a

basis for future work in automated modeling of dynamical systems, including the work

presented here.

Automated methods for generating, collecting and storing data from experiments have

become increasingly precise and efficient over the past decade (Clery and Voss 2005;

Szalay and Gray 2006). But the technology to make hypotheses or convert data into

meaningful analytical relations hasn't kept pace. As a result, there is increasing interest

in new forms of automated analysis, and automating tasks which traditionally required

human labor and expertise.

Many methods already exist for modeling scientific data: from fixed-form parametric

models derived from expert knowledge to statistical models aimed exclusively at

prediction. However, there exist very few methods for creating human-understandable

models of nonlinear systems from experimental data.

Recently, the ongoing research to address this problem has accumulated several

different names, from “Machine Science” (Evans and Rzhetsky) or “Automation of

Science” (Waltz and Buchanan 2009) to “The Robot Scientist” (King, Whelan et al.

2004). The actual machines comprising these systems remain less glamorous than

their names imply (e.g. a rack of servers in a data center). But, there is increasing

debate (Gianfelici 2010; Haufe, Elliott et al. 2010; Leonelli 2010) that our concept of

science, and what it means to do science, may be changing (Mitchell 2009).

3

Of course not everyone agrees – Philip Anderson and Elihu Abrahams have claimed

that there is “no mechanism by which [machines] could create a Kuhnian revolution

and thereby establish new physical law” (Anderson and Abrahams 2009).

Regardless of the various predictions on the future, this is a critical question that must

be answered. And, it is the motivating factor for the work presented here.

CHAPTER 3. BACKGROUND

This section briefly describes essential information describing background concepts

and previous research that are referenced in several chapters of the text. It covers

evolutionary computation and symbolic regression. Individual chapters also contain

their own specific background topics; the following topics are common to almost all

chapters.

Evolutionary Computation

An evolutionary algorithm is an optimization algorithm originally inspired by

biological evolution and Darwinian selection. A typical algorithm maintains a

population of individuals (candidate solutions to a problem) that compete to survive in

a simulated evolution. Solutions in the population are initially random and typically

survive by maximizing some heuristic (Fogel, Owens et al. 1966). The algorithm

utilizes stochastic operations inspired by biological evolution – such as mutation,

recombination, and selection – to vary the population, recombine new individuals, and

reward optimal solutions.

In a typical algorithm, each iteration (or generation) of the algorithm generates a

successive population by selecting, crossing, and mutating individuals from the

previous population. The selection process then picks individuals which perform the

4

best to be crossed and recombined with other individuals to create offspring for the

next generation. Additionally, offspring undergo mutation which adds variation and

diversity to the population. Mutation and crossover occur with some predefined

probability. This allows some individuals to produce identical copies, mutated copies,

crossed children, or crossed and mutated children.

Often, the best candidate solution in the population is tracked over each generation to

measure progress. After the best solution has reached some desired level of

performance, the solution is said to be converged, and the solution is returned.

Symbolic Regression

Symbolic regression is the problem of identifying the analytical mathematical

description of a hidden system from experimental data (Augusto and Barbosa 2000;

Duffy and Engle-Warnick 2002). Unlike polynomial regression or related machine

learning methods that also fit data, symbolic regression is a system identification

method, which attempts to reconstruct the representative structure of a system.

Symbolic regression is closely related to general machine learning problems however,

it remains an open-ended and discrete problem that cannot be solved directly.

Symbolic regression is an NP-hard problem, however, we can use an Evolutionary

Algorithm to find solutions (Koza 1992; Schmidt and Lipson 2008; Schmidt and

Lipson 2009). More specifically, the standard algorithm used in symbolic regression is

genetic programming (Koza 1992), an evolutionary algorithm specialized for evolving

computer programs and tree structures – for example, searching a space of

mathematical expressions computationally and minimizing various error metrics. Both

the parameters and the form of the equation are subject to search. In symbolic

regression, many initially random symbolic equations compete to model experimental

5

data in the most parsimonious way. It forms new equations by recombining previous

equations and probabilistically varying their sub-expressions. The algorithm retains

equations that model the experimental data well while abandoning unpromising

solutions. After an equation reaches a desired level of accuracy, the algorithm

terminates, returning the most parsimonious equations that may correspond to the

intrinsic mechanisms of the observed system.

In symbolic regression, the genotype or encoding represents symbolic expressions in

computer memory. Often, the genotype is a binary tree of algebraic operations with

numerical constants and symbolic variables at its leaves (McKay, Willis et al. 1995;

Edwin and Jordan 2003). Other encodings include acyclic graphs (Schmidt and Lipson

2007) and tree-adjunct grammars (Nguyen, McKay et al. 2001). The fitness of a

particular genotype (a candidate equation) is a numerical measure of how well it

agrees with the data, such as the equation‟s correlation or squared-error with respect to

the experimental data.

The operations can be unary operations such as abs, exp, and log, or binary operations

such as add, sub, multiply, and divide. If some prior knowledge of the problem is

known, the types of operations available can be chosen ahead of time (Augusto and

Barbosa 2000; Soule and Heckendorn 2001; Duffy and Engle-Warnick 2002). The

terminal values available consist of the function's input variables and the function's

evolved constant values (Ferreira 2002).

Mutation in a symbolic expression can change an operator in the binary tree (e.g.

change add to sub), change the arguments of an operation (e.g. change x+c to x+x),

delete an operation (e.g. change x+x to x), or add an operation (e.g. change x+x to

x+(x*x)). If the operator is changed from a binary operation to a unary operation, for

6

example, one of the two child branches (chosen randomly) is discarded.

Crossover of a symbolic expression exchanges sub-trees in the binary trees of two

parent expressions. For example, crossing f1(x) = x
2

+ c and f2(x) = x
4
 + sin(x) + x

could produce a child f3(x) = x
2
 + sin(x). In this example, the leaf node c was

exchanged with the sin(x) term.

7

SECTION II – SEARCH METHODS

CHAPTER 4. FITNESS PREDICTION

Summary

We present an algorithm that coevolves fitness predictors, optimized for the solution

population, which reduce fitness evaluation cost and frequency while maintaining

evolutionary progress. Fitness predictors differ from fitness models in that they may or

may not represent the objective fitness, opening opportunities to adapt selection

pressures and diversify solutions. The use of coevolution addresses three fundamental

challenges faced in past fitness approximation research: (1) the model learning

investment, (2) the level of approximation of the model, and (3) the loss of accuracy.

We discuss applications of this approach and demonstrate its impact on the symbolic

regression problem. We show that coevolved predictors scale favorably with problem

complexity on a series of randomly generated test problems. Finally, we present

additional empirical results that demonstrate that fitness prediction can also reduce

solution bloat and find solutions more reliably.

Introduction

The chapter proposed the concept of fitness prediction – a technique to replace fitness

evaluations in evolutionary algorithms with an exceedingly coarse approximation that

adapts with the solution population. A closely related concept to fitness prediction is

fitness modeling, where a predefined model or simulation is used to approximate

fitness in cases where the exact fitness requires an expensive calculation or physical

experiment (Jin, Olhofer et al. 2001; Ong, Nair et al. 2003). Fitness predictors

however, cannot approximate the entire fitness landscape, but instead shift their focus

throughout evolution.

8

Fitness approximations have been used in other situations as well, such as smoothing

rugged fitness landscapes, mapping discrete fitness values to continuous values, and

diversifying populations through ambiguity (Jin 2005). In this chapter we show that

coevolving fitness predictors may also offer further benefits by destabilizing local

optima and by resisting bloated solutions.

Recent research in fitness modeling and prediction has focused on approximation

methods and strategies for use of approximated fitness values (Jin 2005). We review

significant advances and challenges found in recent work and motivate a

coevolutionary approach. We suggest that coevolution can resolve three fundamental

difficulties faced in many fitness approximation applications:

1. Model training effort: Often significant computational effort is required to

train the desired fitness model.

2. Level of approximation: It is often unclear what level of approximation is

accurate enough to achieve desired results. High-quality approximations

provide greater accuracy, but require more computation. Low-quality

approximations are less accurate, but require less computation.

3. Loss of accuracy: Similarly, even high-quality approximations are bound to

have some loss of accuracy due to either the model structure itself or the data

available to tune it. In the worst case, this effect can hide or even change the

global optimum – in which case, exact fitness calculations are still needed to

find the optimal solution.

The goal of this chapter is to address these issues through coevolution. In the general

framework, there are three populations: (1) solutions to the original problem,

evaluated using only fitness predictors, (2) fitness predictors of the problem, and (3)

fitness trainers, whose exact fitness is used to train predictors. Solutions are evolved to

9

maximize their predicted fitness using a predictor from the predictor population.

Fitness predictors are evolved to maximize prediction accuracy using trainers selected

from the solution population. Trainers are evolved or selected to create discrepancies

between predictors in order to address their weaknesses. Solution and predictor

populations start with random solutions and random fitness predictors, respectively.

The trainer population is initialized with random solutions and their exact fitness

values.

In the following sections, we first review preliminary topics and current research in

coevolution and fitness approximation. We then propose a coevolutionary algorithm

based on a general framework and discuss its application in example domains. This

algorithm is then adapted to the symbolic regression benchmark problem in genetic

programming to measure its impact.

The experimental part of this chapter is structured as follows. First, we compare

performance using three other fitness approximation methods to test what role

coevolution plays in performance. We then duplicate experiments in recent symbolic

regression literature and compare their results. We then test predictor performance as

function of complexity on randomly generated target functions, in order to measure

how the fitness prediction algorithms scale with respect to increasingly difficult

problems. Finally, we discuss empirical trends demonstrating how coevolving fitness

predictors can improve reliability and the quality of final solutions, even when the

advantages of computational cost reduction are ignored.

Related Work

Coevolution

In a coevolutionary algorithm, the fitness metric for one individual becomes a function

10

of other individuals, possibly including itself. More precisely, one individual can

affect the relative fitness ranking between two other individuals in the same or a

separate population (Hillis 1992). As a result, the fitness pressures and incentives

imposed on the solutions may change throughout evolution.

Coevolution is often applied to problems in which no explicit fitness objective is

known in advance, or where the objective is abstract. For example, one may wish to

find a solution that competes well against other solutions. In this example, competition

between individuals imposed by coevolution can continuously expose weak

individuals and refine successful individuals, until a dominant solution emerges

perhaps.

Several studies have been devoted to the application of coevolution to enhance

problem solving (Rosin 1997; Rosin and Belew 1997; Potter and De Jong 2000; Ficici

and Pollack 2001; De Jong and Pollack 2004; Ficici 2004; Stanley and Miikkulainen

2004; Zykov, Bongard et al. 2005; Schmidt and Lipson 2006), with the main goal of

controlling coevolutionary dynamics that often result in a lack of progress or progress

in unanticipated directions (Cliff and Miller 1995; Pagie and Hogeweg 1997; Watson

and Pollack 2001; Luke and Wiegand 2002; Bucci and Pollack 2005). Here we use a

specific form of coevolution (Bongard and Lipson 2005; Bongard and Lipson 2005)

which addresses many of these challenges.

The aim of coevolving fitness predictors is to allow both solutions and fitness

predictors to enhance each other automatically until an optimal problem solution is

found. The solution population benefits from the fitness predictor population through

reduction in computational cost (and other benefits such as reduced bloat discussed

later). The fitness predictor population benefits from the solution population by

11

refining its approximation in the most useful areas of the fitness domain.

Fitness Modeling

Fitness modeling has become an active area in evolutionary computation with many

varying approaches and results (Jin 2005). Here we discuss the motivations, methods,

and challenges of fitness modeling.

Motivation

There are several reasons for utilizing fitness approximation through modeling. The

first, and most common, is to reduce the computational complexity of expensive

fitness evaluations. However, approximation can be used advantageously in other

problems as well. Fitness models have been applied to handle noisy fitness functions,

smooth multi-modal landscapes, and define a continuous fitness in domains that lack

an explicit fitness (e.g. evolving art and music) (Jin 2005). Here we discuss

motivations for fitness modeling and example applications.

1. Reducing complexity: Many applications of evolutionary algorithms are in

high-complexity or intractable domains where the fitness calculation can be

prohibitively time consuming. For example, fitness modeling has been applied

to structural design optimization (Jin, Olhofer et al. 2001; Jin, Olhofer et al.

2002; Mutoh, Nakamura et al. 2003; Ong, Nair et al. 2003; Jin and Sendhoff

2004; Regis and Shoemaker 2004; Regis and Shoemaker 2005) that often

requires time-consuming finite element calculations. Often the resolution

provided by the exact fitness objective is unnecessary for evolutionary

progress.

2. No explicit fitness: Many domains do not have a computable fitness. For

example, in human interactive evolution (Takagi 2001) (e.g. evolution of art

12

and music), a human user must select favorable individuals. Fitness models

have been applied in these domains to reduce user fatigue and define a

computable fitness landscape that can be searched while waiting for the user to

give more feedback (Poli and Cagnoni 1997; Johanson and Poli 1998; Schmidt

and Lipson 2006).

3. Noisy fitness: Some fitness functions are very noisy. To produce stable fitness

rankings, algorithms typically average many evaluations, but this can greatly

increase the computational cost (Arnold 2001). An alternative approach may

be to develop a statistical model (Sano and Kita 2000).

4. Smoothing landscapes: Almost all evolutionary domains suffer from multi-

modal landscapes that are often dense with local optima. Fitness approximation

can greatly reduce the frequency and severity of local optima. Landscape

smoothing has been observed with interpolation, kernels, and fitness clustering

(Yang and Flockton 1995; Audet, Dennis et al. 2000; Regis and Shoemaker

2004; Regis and Shoemaker 2005).

5. Promoting diversity: When models smooth fitness landscapes, they often

flatten local optima or produce different regions with similar fitness. While this

is undesirable when using a single model throughout evolution, it can be

advantageous for producing diversity as long as the fitness model continuously

adapts, as is proposed in this chapter.

Despite their benefits, the use of fitness models can create new problems. Currently, it

is not always clear when the benefits of fitness modeling outweigh the costs. In the

following sections we overview basic fitness modeling approaches and their tradeoffs.

We then discuss our approach to resolving these tradeoffs through coevolution.

13

Methods

The technique of fitness modeling falls naturally in the field of machine learning.

Depending on the structure of solution encodings, many different machine learning

approaches such as neural nets, support vector machines, decision trees, Bayesian

networks, k-nearest-neighbor, and polynomial regression can be trained to map

individuals in order to approximate fitness values efficiently (Jin and Sendhoff 2004;

Schmidt and Lipson 2006). Modern approaches utilize boosting, bagging, and

ensemble learning to produce accurate models. A major drawback of these approaches

is that it is often unclear which approach will work best for a given problem (Jin

2005).

Sub-sampling of training data is also a common way to reduce the cost of fitness

evaluation (Pagie and Hogeweg 1997; Albert and Goldberg 2002). In many problems,

fitness is calculated by evaluating individuals on training cases and combining the

total error. With a sub-sample, only a fraction of the training data is evaluated.

Evolutionary-specific fitness modeling methods include fitness inheritance, fitness

imitation, and partial evaluation. In fitness inheritance (Smith, Dike et al. 1995; Sastry,

Goldberg et al. 2001; Chen, Goldberg et al. 2002), fitness values are transferred from

parents to children during crossover (similar to parent passing on a legacy or

education). A form of fitness inheritance for estimation of distribution algorithms

(Larrañaga and Lozano 2002) (EDAs) builds a model of the fitness function based on

the structure of the probabilistic model used in the algorithm (Pelikan and Sastry

2004). In fitness imitation (Jin and Sendhoff 2004), individuals are clustered into

groups based on a distance metric. The fitness of the central individual of each cluster

is then evaluated in full and assigned to all individuals in that cluster. In partial

evaluation (Ochoa and Soto Ortiz 1997), the fitness of some individuals are calculated

14

exactly, while others are modeled or inherited.

Once a fitness model has been chosen, there are many ways to incorporate it into the

evolutionary process. It can be used simply to initialize the population, guide

crossover and mutation, or replace (some) fitness evaluations (Jin 2005). For example,

a fitness predictor such as a neural network is used to select offspring from all

potential crossovers of two parents (Mutoh, Nakamura et al. 2003). In this chapter

however, we focus only on replacing actual fitness evaluations with the fitness

predictor.

Challenges

The use of an approximate fitness model comes at a cost and with potentially

unacceptable consequences.

1. Training the model: Fitness models like neural nets, SVMs, and Gaussian

processes require significant overhead to train. When advanced methods like

bagging, boosting, and ensemble methods are used, this investment becomes

significantly larger. In addition, a significant amount of exact fitness values

must be calculated for training and validation data to effectively learn any type

of model ahead of time.

By using coevolution, we can train these models in parallel with the problems‟

solutions. As shown in (Yang and Flockton 1995), early stages of evolution

only require coarse fitness models. As the solution population progresses, so

do the fitness models. In this fashion, coevolution retains an automatic

„coarseness adjustment‟ without the need to train several different

approximations in advance.

2. Level of approximation: How powerful must the fitness model be to facilitate

15

progress throughout evolution? If a single fitness model is used, it may need to

be quite complex in order to model all possible solutions in the fitness

landscape.

When fitness models are coevolved, the models can be optimized for only the

individuals in the current population. The models do not need to encapsulate

the entire landscape, but only a subset, so the chosen method can be

significantly less complex.

3. Loss of accuracy: In most applications, the computational advantage of using

a fitness approximation comes at a cost in fitness accuracy. In the worst case,

the global optima may be removed entirely from the fitness landscape.

Similar to adapting the level of approximation, the optimization of the models to the

current population can keep the subjective fitness of current candidate solutions

pointed toward the global optima in an active learning fashion (Bongard and Lipson

2005). Solutions will evolve to exploit their fitness model. In coevolution, the fitness

model can adapt through the selection of trainers to redirect solutions so that they are

consistent with the true optima.

Fitness Prediction Algorithm

General Framework

In this section we present a simple framework before describing our implementation.

A conventional evolutionary algorithm can be viewed as an optimization to find the

most fit solution. In this sense, the optimal solution, s*, is defined as:

)(maxarg* sfitnesss
Ss



where S is the set of all possible candidate solutions to the problem and fitness(s) is the

16

exact computed fitness of solution s.

In the coevolutionary algorithm, we replace all fitness evaluations with a fitness

predictor, p. In this instance, the solution objective is a function of the predictor

instead of the exact fitness:

)(maxarg* sps
Ss



where p is the fitness predictor used.

We coevolve the fitness predictors in a second population to make p as accurate as

possible for the current solution population. A third population of fitness trainers is

used to evaluate how closely fitness predictors are approximating the exact fitness.

Fitness trainers are chosen from the solution population periodically that have the

highest prediction variance (e.g. lowest confidence).

The objectives for each population are summarized below, where asterisks specify an

optimal result that is being searched for in each population.

)(maxarg* sps best
Ss


 (Solutions)

 
21

* arg max () ()




 
c

cur

s S
p P

t p s p s
N

 (Trainers)

1
* arg min () ()

cur

p P
t T

p fitness t p t
N



  (Predictors)

where S is the set of all problem solutions, Sc is the current solution population, P is

the set of all possible fitness predictors, Pcur is the current predictor population, Tcur is

the current trainers population, pbest is the highest ranked predictor in Pcur and)(sp is

17

the average predicted fitness of solution s among the current predictors. It is important

to note that all three populations are evolved in parallel and their objectives will be

dynamic and changing over each generation.

To summarize the framework, the solution population evolves to maximize the fitness

of the current best fitness predictor. Trainers are solutions chosen from the solution

population that produce the most variance in predictions among the predictor

population. The fitness predictor population evolves to minimize the difference

between exact and predicted fitness values of the current population.

Algorithm

Summary

The algorithm presented in this chapter has three populations: Problem solutions,

fitness predictors, and fitness trainers. This section outlines the basics needed to

implement this coevolutionary approach based on this general framework. A high-

Select New Trainer

Evolve Solutions Evolve Predictors

Check

Convergence

Finished

yes

Start

no

Figure 4.1. High-level overview of the coevolution of solutions and fitness

predictors algorithm.

18

level algorithm overview is given in Figure 4.1.

At the start, solutions, fitness predictors, and trainers are randomly initialized. The

algorithm then chooses an individual from the solution population to measure its exact

fitness for use in training the fitness predictors (elaborated upon in next section). The

algorithm then evolves the solution population using the highest ranked fitness

predictor, and evolves the predictors using the fitness trainers. Finally, the highest-

ranked individual is tested for convergence (described below), and the algorithm

completes if successful. Pseudocode for evolving each population is provided in

Figure 4.2.

Evaluating Exact Fitness Values

The objective of this step is to select an individual from the solution population that

will help the fitness predictors optimize to the current solutions. Therefore, we want to

choose an individual whose fitness can be predicted with the least confidence. To do

this efficiently, we select the individual that has the highest variance in predicted

fitness among predictors in the predictor population. Variance has a strong correlation

with reducing uncertainty (Jin and Branke 2005) and with improving evolved

individuals (Bongard and Lipson 2005).

In many model types, it is often beneficial to “forget” past solution fitness information

in order to allow simple predictor encodings to specialize in only the current and other

recently observed solutions. In our implementation, we store only the most recent

trainers, discarding the oldest as new trainers are evaluated.

Removal of old trainers can also speed up predictor evaluation, but could lead to

cycling. For example, removing a trainer may remove pressure to explain an important

part of the fitness domain. In which case, solutions and predictors that modeled this

19

region well could drift away temporarily while learning other regions. To prevent this

effect, we could opt to keep all trainers for an additional computational cost – but we

did not find cycling to be prohibitive in our experiments.

Evolving the Populations

Candidate solutions and fitness predictors are coevolved in parallel using two threads.

Pseudocode is shown in Figure 4.2. Fitness trainers are selected periodically in the

predictor thread.

The solution thread begins by randomizing the population of candidate problem

solutions. The main loop then evolves the solution population. Variation is introduced

using single point crossover with probability pc and mutation with probability pm. The

highest ranked fitness predictor is then used to estimate the fitness of each child and

selected to form the next generation. Finally, the top ranked solution is tested for

convergence (described in the next section) and exits.

The predictor thread begins by randomizing the fitness predictor and fitness trainer

populations. The main loop then evolves the predictors and periodically adds new

trainers to the trainer population. Variation is introduced using single point crossover

with probability pc and mutation with probability pm. The fitness of each predictor is

calculated by the mean absolute error between the fitness prediction and the exact

fitness for each fitness trainer.

20

Lightweight fitness predictors tend to evolve much faster than the solutions and

therefore do not require as much computational effort. To reduce computational effort,

Solutions Thread:

 Randomize solution population

 Repeat

 Cross solutions with probability pc

 Mutate solutions with probability pm

 Let pred = the top ranked fitness predictor

 Predict fitness values for solutions using pred

 Perform selection

 Sort population

 If top-ranked solution error < epsilon

 Return solution and Exit

 End if

 End repeat

Predictor Thread:

 Randomize predictor population

 Randomize trainer population

 Repeat forever

 If computational effort > 5% of total

 Wait

 End if

 Cross predictors with probability pc

 Mutate predictors with probability pm

 Evaluate fitness values of predictors

 Perform selection

 If time to add new fitness trainer

 Let vi = the variance in fitness

 predictions of all predictors for

 solution i

 Add solution i with the highest vi to

 the trainer population

 Calculate the exact fitness of the new trainer

 End if

 End repeat

Figure 4.2. Pseudocode for the two threads in the algorithm that coevolve

solutions and predictors. Trainers are chosen periodically in the predictor

thread.

21

we artificially slow evolution of the predictor population by introducing a delay. If the

computational effort (measured in point evaluations1) used to evolve the predictors

exceeds some percentage of the total effort of all populations (5% in our experiments),

the predictor thread is delayed. The specific choice of effort allocation is likely

problem-dependent; however, we have observed that the 5% ratio performs well over

a relatively wide range of values (as shown in the results section below).

New fitness trainers are chosen from the solution population periodically. Fitness

trainers are solutions that the fitness predictors optimize to predict. In our

implementation, we choose a new trainer to add to the trainer population every 100

fitness predictor population generations. This augmentation of the trainer population

provides time for the fitness predictors to adjust their approximation and is related to

the speed at which predictors converge. Alternatively, new trainers could be selected

continuously, or whenever the progress of the predictor population slows.

Convergence Test

The convergence test determines when the algorithm should terminate by testing the

solution in the current population that has the highest predicted fitness. For symbolic

regression, we define convergence as having near zero (<ε) error on all training data

examples. If the best solution has not converged at this step, a new trainer is added

(Figure 4.1) and evolution continues; otherwise, the best solution is returned and the

program terminates. As in any machine learning algorithm, the final solution

performance must be cross-validated against an unseen test set.

1 Here and elsewhere in this chapter, we measure performance as function of number of point

evaluations, instead of number of generations or number of fitness evaluations. We use this metric in

order to perform fair comparisons between methods that use different computational efforts per

evaluation.

22

Experiments in Symbolic Regression

We evaluated our proposed approach using symbolic regression as an example

application of fitness predictor coevolution. Symbolic regression serves as a good

benchmark since it is a well-studied domain with diverse applications.

We first experiment on simple functions, then duplicate experiments from recently

published research, and finally experiment on thousands of randomly generated

symbolic target functions of increasing complexity.

We generated random target functions by building a random tree of operations. The

Initialize:

 Func = binary tree of random depth [1,12]

 Func.Randomize_Operators()

 Runc.Remove_Random_Child_on_Unary_Operators()

Branch Prune:

 Test = Func

 For each Node1, Node2:

 Test.Remove(Node1, Node2)

 If Max_Output_Difference(Func, Test) < EPSILON:

 Func = Test

 Else:

 Test = Func

 End for

Node Prune:

 Test1 = Test3 = Test3 = Test4 = Func

 For each Node1, Node2:

 For each Child1 in Node1 and Child2 in Node2:

 Test1.Node1 = Node1.Child1

 Test1.Node2 = Node2.Child2

 If Max_Output_Difference(Func, Test1) < EPSILON:

 Func = Test1

 End for

 End for

Figure 4.3. Pseudocode for pruning inactive expressions in randomly

generated test problems to improve the complexity estimate for problem

difficulty.

23

tree is binary, with the exception of unary operators which only have a single child.

We then prune combinations of nodes in the function's tree that result in less than ε =

1% change in function output across a target range (between -2 and 2 inclusive for our

experiments), using the code below. We define the complexity of the resulting

function as the number of nodes in the pruned tree. Example randomly generated

functions and their respective complexities are shown in Table 4.3.

Symbolic Regression Overview

Symbolic Regression Encoding

For experiments in this chapter, we represent functional expressions as a binary tree of

primitive operations (Koza 1992; Augusto and Barbosa 2000; Eggermont and Hemert

2000). See the description in the section “Symbolic Regression” on page 4 for more

detail.

The fitness objective of a symbolic regression solution is to minimize error on the

training set (Eggermont and Hemert 2000; Dolin, III et al. 2002; Hoai, McKay et al.

2002; Keijzer 2003). There are many ways to measure the error such as squared error,

absolute error, etc. For experiments in this chapter, we use the mean absolute error for

fitness measurement:





N

i

ii yxs
N

sfitness
1

)(
1

)(

where s(xi) is output of a candidate solution s evaluated on input xi, the value yi is the

corresponding output, and N is the number of training examples in training data set.

Coevolution in Symbolic Regression

Coevolving training examples is a well-studied approach in symbolic regression

24

(Pagie and Hogeweg 1997; Dolin, III et al. 2002). Past research has competitively

coevolved training examples to exploit errors, an approach similar to boosting

methods in machine learning. Coevolving examples to diversify solutions and

moderate purely competitive pressures have also been studied.

Very little work, however, has been done in fitness prediction or modeling in symbolic

regression. In our experimentation, we coevolve a subset of the total training data

examples that approximates fitness measurement over the complete training data. The

set‟s objective is to guide evolution as closely as possible to using the entire training

set, but at a reduced computational cost.

Sub-sample Fitness Predictors

Fitness Predictor Encoding

Training data in symbolic regression typically consists of hundreds to thousands of

data points (e.g. experimental measurements) providing output values for a sample of

inputs. In our symbolic regression experiments, the fitness predictor is a small subset

of these points. Instead of measuring the exact objective fitness of candidate solutions,

a subjective fitness is obtained by measuring the error on the select handful of data

points of a given fitness predictor.

The fitness predictor is encoded as a small array of indexes to the full training data set

(size discussed in the next section). Each index in the predictor‟s array is free to

reference any points in the training data examples and can repeatedly sample point if it

likes (thus over emphasizing an area). The predicted fitness is calculated as:

predicted_fitness(s) = 



n

i

ii yxs
n 1

)(
1

25

Here, n is the number of samples in the predictor, and symbols s, xi, and yi are the

same as above.

Mutation in the fitness predictor can randomize an index in its array to index a

different training point. An example point mutation would be (1, 41, 53, 92) changing

to (1, 78, 53, 92), where the sample 41 switched to 78.

Crossover exchanges the samples of two parent fitness predictors. For our purpose, we

use a single point crossover. A random crossover point c is chosen, the first c indexes

are copied from the first parent and the remaining indexes are set from the second

parent.

Size and Complexity of the Fitness Predictor

There is an inherent tradeoff between predictor size (subset size) and overall

performance. Using a small number of samples in the fitness predictor allows for more

generations while maintaining the same computational effort, at the cost of less

accurate prediction. We empirically examined the sensitivity of the number of samples

in the training subset fitness predictor using an arbitrary function f=e
|x|

sin(x). This

function is a simple non-linear function that has two local minima approximations that

make finding the exact solution difficult. In following sections we also use this

function as a benchmark for some empirical experimentation because, although it

evolves rapidly, it is clearly non-trivial.

26

When the fitness predictor only has two samples, fitness evaluations are extremely

light-weight but the evolutionary process requires many more generations, as evident

in Figure 4.4. The larger subsets are sufficiently large for accurate modeling but do not

greatly reduce the number of generations needed. Figure 4.4 also suggests that there is

some minimum number of samples needed for a given target function or the available

training data. We hypothesize that the optimal number of samples is higher for

complex functions with more detailed features, but we have yet to see this number

increase dramatically even with high complexity functions (over 30 nodes in the

expression tree) as tested later in this chapter.

In our symbolic regression experiments, we use an 8-sample subset for all

experiments. Although it may not be the optimal choice for all target functions, these

results suggest that it will not have a dramatic impact on final performance. Varying

the number of samples from eight did not appear to have a strong impact on the

performance on several other target functions tested, even in the cases of high

complexity multi-variable functions involved in on-going research.

Figure 4.4. The expected point evaluations before convergence versus the number

of samples in the fitness predictor. Error bars show the standard deviation.

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

2 4 8 16 32 64

T
o

ta
l
E

ff
o
rt

 t
o
 C

o
n
v
e
rg

e
n
c
e

(p
o
in

t
e
v
a
lu

a
ti
o

n
s
)

Fitness predictor size
(# of samples)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 4 8 16 32 64

G
e
n
e
ra

ti
o
n
s
 t
o
 c

o
n
v
e
rg

e
n
c
e

Fitness predictor size
(# of samples)

27

Fitness Predictor Behavior

Here we preview how fitness predictors may behave in symbolic regression. The

fitness predictors used here are small subsets of the training set and are optimized by

trainers chosen from the solution population. Thus, the types of subsets evolved are

determined by how the solutions evolve and are likely to vary over different problems

and even different runs. However, a few empirical trends can be seen in this type of

fitness predictor.

Figure 4.5 shows a histogram of the training points used by the best fitness predictor

up to convergence on the function f=e
|x|

sin(x). For this run, there are seven highly used

training points which are used in 20% to 40% of generations up to convergence.

Notice that the most used points tend to lie to the sides of local minima and maxima in

Figure 4.5. Histogram of training samples selected by the best fitness predictor

during evolution to convergence of f(x)=e
|x|

sin(x). Some samples are selected

significantly more often than others.

-15

-10

-5

0

5

10

15

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

-3 -2 -1 0 1 2

P
o
in

t
U

s
a
g
e
 i
n

 P
re

d
ic

to
r

Usage

f(x)

28

the training data. This may indicate an effective way to capture features of the dataset

without overestimating the averaged error. In particular to this function, these points

may be necessary to fine-tune candidate solutions to match the function‟s periodic

structure.

Experimental Settings

For each independent run, all symbolic regression parameters were held constant, and

only the type of predictor was varied. We used a solution population size of 128, a

fitness predictor population size of 8, and a trainer population size of 10. For evolution

we use deterministic crowding selection (Mahfoud 1995), 0.1 mutation probability,

and 0.5 crossover probability.

The operator set was (add, subtract, multiply, divide, exponent, logarithm, sine,

cosine) and the terminal set consists of the input variable and one evolved constant. In

practice, a priori knowledge could be applied to choose a more useful operator and

terminal sets. For example, the experimenter may not be interested in expressions that

use many evolved constants, or solutions that involve trigonometric functions.

However, in our experiments, we use the same parameters throughout testing and the

terminal and operator sets are over-representative for all targets (e.g. more operators

are available than needed to regress the function).

Computational Effort Distribution Among Populations

For experimental purposes, we control how much effort is spent training the fitness

predictors in relation to the solutions so that we can compare algorithms based on their

total overall computational effort. Note that in practice, the ratio is not vital to the

algorithm‟s performance since each population can be evolved in parallel.

Figure 4.6 shows the impact that the effort ratio has on convergence time with the test

29

function f=e
|x|

sin(x). Ratios in the range 5% to 30% of effort spent training the fitness

predictor population all yield approximately optimal convergence time. If fitness

predictors are given extremely low computational effort, overall performance suffers

greatly since the fitness approximation never adapts.

Spending excessive effort training fitness predictors tends to add no extra benefit. The

computational effort increases, but solution generations remain approximately the

same.

In summary, the fitness predictors need some minimal amount of effort so that they

are able to adapt with the solutions. Thus, the relative rates of evolution need be

considered before choosing a minimal effort ratio so that they have similar time-

scales. Since fitness predictors are expected to be simple and light-weight, they should

require only a fraction of the effort that the solutions require.

Experimental Results

Examining Behavior on Test Problems

Here we compare four fitness algorithms in symbolic regression listed in Table 4.1.

Figure 4.6. The expected number of point evaluations before convergence versus

the effort (percent of point evaluations) while training the fitness predictors

averaged over 50 trials. Error bars show the standard error.

0.E+00

2.E+07

4.E+07

6.E+07

8.E+07

1.E+08

1.E+08

0.01% 15% 30% 45% 60% 75%

T
o

ta
l
E

ff
o
rt

 t
o
 C

o
n
v
e
rg

e
n
c
e

(p
o
in

t
e
v
a
lu

a
ti
o

n
s
)

Effort training predictors (%)

0

10000

20000

30000

40000

50000

60000

0.01% 15% 30% 45% 60% 75%

G
e
n
e
ra

ti
o

n
s
 t
o
 C

o
n
v
e
rg

e
n
c
e

Effort training predictors (%)

30

These algorithms are used as null hypotheses to elicit the effect of coevolution.

The Static Random Sample algorithm uses a single fitness approximation throughout

evolution. Eight random samples are chosen from the training data at run time, and

solutions are evolved using only this sample. This algorithm tests the hypothesis that

the performance improvement is made simply from reducing point evaluations.

The Dynamic Random Sample algorithm is similar to the Static algorithm, but now

the sample is re-randomized at every generation of the solutions. This algorithm tests

the hypothesis that performance improves not only because of reducing point

evaluations but also because of allowing the sample to change.

The Exact Fitness Algorithm is given for the purpose of baseline comparison. The

solutions are evolved using the exact objective fitness, as is usually practiced in

symbolic regression research (Eggermont and Hemert 2000; Dolin, III et al. 2002;

Hoai, McKay et al. 2002; Keijzer 2003).

Table 4.1. Summary of the Compared Algorithms

Fitness Calculation Sample Size Sample Selection

Coevolved Predictor Sample 8 Evolved subset

Static Random Sample 8 Random subset chosen at runtime

Dynamic Random Sample 8 Changing random subset

Exact Fitness 200 Use all training data

31

In this section, we test on three different target functions that elicit different behaviors

from the four algorithms. The training data, shown in Figure 4.7, are 200 evenly

spaced samples of the target function. The test set contains 200 additional random

samples. Each experiment is repeated 50 times independently, and the fitness for each

run is recorded over evolutionary time.

The performances on these three functions for each algorithm are shown versus the

number of point evaluations in Figure 4.8.

The polynomial function f1(x) is very simple and coevolution, static random, and exact

fitness all rapidly converge. The coevolution and static random methods make similar

improvements over exact fitness, suggesting that the improvement is chiefly due to the

reduction in function evaluations.

Behavior on f2(x) is different however. The static and dynamic random sample

algorithms perform very poorly on average, and the exact fitness algorithm

outperforms them. However, coevolution still makes a substantial improvement over

exact fitness.

f1=1.5x
2
-x

3

f2=e
|x|

sin(x)

f3= x
2
e

sin(x)
+x+sin(/4-x

3
)

Figure 4.7. The training data of the three target functions experimented on. The

horizontal axis shows the input values x. The vertical axis shows the output

training value f(x).

-100

-50

0

50

100

150

200

-5 0 5
x

-20

-15

-10

-5

0

5

10

15

20

-3 -1 1 3
x

-20

30

80

130

180

-10 0 10
x

32

Figure 4.8. The test set fitness during evolution for target functions f1(x), f2(x),

and f3(x) respectively. Results are averaged over 50 trials. Error bars show the

standard error.

-300

-250

-200

-150

-100

-50

0

1.31E+05 5.24E+05 2.10E+06 8.39E+06 3.36E+07

F
it
n
e
s
s
 (

-e
rr

o
r)

Total Effort (point evaluations)

Coevolution

Static

Dynamic

Exact

-120

-100

-80

-60

-40

-20

0

1.31E+05 5.24E+05 2.10E+06 8.39E+06 3.36E+07

F
it
n
e
s
s
 (

-e
rr

o
r)

Total Effort (point evaluations)

Coevolution

Static

Dynamic

Full

-120

-100

-80

-60

-40

-20

0

1.31E+05 5.24E+05 2.10E+06 8.39E+06 3.36E+07 1.34E+08

F
it
n
e
s
s
 (

-e
rr

o
r)

Total Effort (point evaluations)

Coevolution

Static

Dynamic

Exact

33

In contrast, function f3(x) gives an example in which the dynamic random sample

performs very well. It is able to find the large features of the function as quickly as

coevolution; however, it fails on the final sine feature.

We can make several conclusions from these results. First, the static random sample

shows performance can be improved on a simple function like f1(x) simply by using a

small subset for fitness calculation. On more complicated functions however, a small

constant subset alone cannot adequately represent features of more complicated

functions like f2(x) or f3(x).

Conversely, the dynamic random sample algorithm can greatly improve performance

on some more complicated functions such as f3(x). Using a sample that changes

randomly can accelerate finding large features of the data but may fail on simple

features as in f1(x), f2(x), or the sine term in f3(x).

For these basic test cases, coevolution performs the best in each case. We can reject

the hypotheses that the performance improvement is due only to using a sub-sample or

a randomly changing sub-sample. Thus, the effect of coevolution must play an

important role. Later in this chapter we compare the convergence rates of these

algorithms over randomly generated functions to observe more general trends.

Comparison to Previously Published Methods

In this section, we compare the coevolution algorithm with four recently published

symbolic regression techniques: Stepwise Adaptive Weights (SAW) (Eggermont and

Hemert 2000), Grammar Guided Genetic Programming (GGGP) (Hoai, McKay et al.

2002), Tree-Adjunct Grammar Guided Genetic Programming (TAG3P) (Hoai, McKay

et al. 2002), Coevolution with Tractable Shared Fitness (Dolin, III et al. 2002),

Distinction Fitness (Dolin, III et al. 2002), and random sampling (Dolin, III et al.

34

2002). We did not re-implement these algorithms. Instead, we ran our algorithm on the

same test problems reported in the original papers, using the same convergence criteria

used in the original paper.

We compare computational performance based on point evaluations, defined by the

total number of times the output of any symbolic expression is evaluated. The

coevolution algorithm is stopped based on the number of point evaluations that the

compared algorithm made during each experiment. In the compared algorithms, we

assume that each individual's fitness is measured every generation. Likewise, we force

the coevolution algorithm to calculate fitness for every generation, even though

different selection algorithms do not require it.

Many of these experiments are on simple functions but are stopped at a very low

number of point evaluations. Thus, finding the target function quickly is the highest

priority. The cosine identity and the Gaussian function experiments are noticeably

more challenging to regress based on parameters specific to these experiments.

Qualitative improvements in Table 4.2 are shown in bold text. The coevolution

algorithm has slightly higher convergence than the PSAW and GGGP algorithms on

polynomial problems. The TAG3P algorithm performs the best on simple

polynomials; however, there is a qualitative difference when applied to a harder

problem: regressing the double angle cosine identity. Coevolution makes a 40%

improvement in convergence for the trigonometric identity experiment. The

comparison with coevolved tractable, shared, and random sampling algorithms show

coevolution can make substantial improvements in regressing a Gaussian function,

traditionally a very challenging problem for symbolic regression in which over 90% of

the data points lie on the tail (Dolin, III et al. 2002).

35

Next, we make an empirical comparison with fitness inheritance (Smith, Dike et al.

1995; Sastry, Goldberg et al. 2001; Chen, Goldberg et al. 2002). As mentioned in

above, fitness inheritance is a fitness modeling approach that evaluates exact fitness

values for a fraction of the population and allows the inheritance of fitness values

during crossover for remaining individuals. We implemented fitness inheritance in

symbolic regression by tagging 10%, 25%, and 50% of individuals each generation to

Table 4.2. Performance comparison to published methods

Algorithm Target Function
§
 Metric

§

Published

Results

Coevolved

Predictors

PSAW f(x) = x
5
 – 2x

3
 + x Convergence

†
 85.9% 93.9%

 f(x) = x
6
 – 2x

4
 + x

2
 Convergence

†
 81.8% 86.9%

GGGP P2, P3, P4, P5* Convergence
††

92%, 64%,

48%, 28%

100%, 86%,

62%, 52%

 f(x) = cos(2x)** Convergence
††

 20% 76%

TAG3P P2, P3, P4, P5* Convergence
††

100%, 100%,

96%, 84%

100%, 86%,

62%, 52%

 f(x) = cos(2x)** Convergence
††

 36% 76%

Coevolved

Tractable
Gaussian Evaluations

†††
 3.384e7 2.107e7

Coevolved

Distinction
Gaussian Evaluations

†††
 5.070e7 2.107e7

Random

Sampling
Gaussian Evaluations

†††
 6.006e8 2.107e7

* P3, P4, P5 etc. refer to polynomials (x
3
+x

2
+x, x

4
+x

3
+x

2
+x, x

5
+x

4
+x

3
+x

2
+x, …)

** The operator set does not include the cos() function, a trigonometric identity must

be found
†
 The percent of successful convergences from 100 test runs

††
 The percent of successful convergences from 50 test runs

§ This target function and metric was used in the original paper
†††

 The maximum number of evaluations before convergence for 100 test runs

36

use exact fitness calculations and the rest to use their inherited fitness (or last exact

fitness).

Figure 4.9 compares performance by the computational effort. In this experiment, runs

were stopped after 20,000 generations. Exact fitness and fitness inheritance use more

point evaluations and therefore show more data points on the plot.

Fitness inheritance appears to behave very similarly to the exact fitness algorithm in

symbolic regression. Using 50% exact evaluations in fitness inheritance does

accelerate over exact fitness on several runs; however, further attempts to reduce

evaluations worsen the average performance.

This result is consistent with other work involving fitness inheritance. In related work

(Jin, Olhofer et al. 2002), the authors conclude that 50% of fitness evaluations need to

be based on exact fitness to ensure reliable convergence. In contrast, fitness prediction

distributes a small fraction of point evaluations to estimate the fitness of all individuals

Figure 4.9. Test set fitness versus evaluations averaged over 100 test runs for

f2(x). Error bars show standard error.

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1.31E+05 5.24E+05 2.10E+06 8.39E+06 3.36E+07 1.34E+08 5.37E+08

F
it
n
e
s
s
 (
-e

rr
o
r)

Effort (point evaluations)

Coevolution

Exact

FI 50%

FI 25%

FI 10%

37

in every generation, the equivalent of roughly 5% full evaluations per generation in

this experiment. This demonstrates that a compromise between exact fitness

evaluations and approximated fitness values can yield performance increases with

similar convergence rates.

Testing Scalability on Randomly Generated Test Problems

The experiment presented in this section explores the behavior of the coevolution

algorithm when solving for randomly generated functions of varying complexity.

We generate random target functions by building a random binary tree of operations.

We then perform a rough simplification by systematically pruning combinations of

nodes in the function's binary tree and then testing for a significant change in the

functions‟ outputs (see Appendix A). Next, the function is evenly sampled 100 times

over the range [-2, 2] to generate the training data and then randomly sampled to

produce the test set.

Table 4.3. Example functions and complexities

Random Function Complexity

f(x) = x 1

f(x) = x
2
 – x 5

f(x) = sin(cos(x))(exp(x) - cos(x)) 11

f(x) = exp((|x| + exp(x)))/((exp(x) + sin(x)) - |(x/x)|) 23

f(x) = log(cos(x + (exp(sin(x)|x|) (sin(xlog(x)) + exp(cos(x)))))) 37

38

We define the “complexity” in this experiment to be the number of nodes in the

generating target function. Examples of randomly generated functions and their

respective complexities are shown in Table 4.3.

We generate 5000 random target functions for this experiment in order to produce

training and test datasets of various complexities. Functions are uniformly spaced on

odd-numbered complexities from 1-40.

Table 4.4. Chi-Square Significance of Convergence Rates Compared to the

Coevolution Algorithm

 Chi-Square p-value

Complexity Static Dynamic Exact

1 1 1 1

3 1 1 1

5 1 1 1

7 0.315692 0.315692 0.080181

9 0.095581 0.052926 1.54E-05

11 1.08E-05 0.000536 1.96E-10

13 9.56E-06 0.002441 7.75E-17

15 4.1E-07 0.000281 9.57E-18

17 3.92E-05 0.001073 5.17E-20

19 0.000431 0.001726 4.75E-32

21 0.007439 0.040599 2.57E-34

23 0.000303 0.000303 4.84E-25

25 0.001503 0.004607 4.32E-16

27 0.002755 0.044423 1.91E-13

29 0.049535 0.049535 1.19E-09

31 0.003649 0.0161 2.14E-23

33 1.71E-19 0.002359 1.71E-19

35 1.23E-08 0.022948 1.23E-08

37 0.172386 0.172386 1.94E-05

39

The four fitness algorithms described in the first experiment were tested on the

randomly generated target symbolic functions. For each run, all algorithms were

initialized with the same initial populations and control parameters. We used the same

experimental setup and controls as in the previous experiments.

Each run is stopped after 10 million function evaluations. Then the best individual is

tested for a perfect fit to the test data, and a tally of the successful convergences is

recorded for each complexity. The percent of successful convergences versus

complexity for each alternative algorithm is plotted in Figure 4.11.

We have performed a Chi-Square statistical test between coevolution and each

algorithm. The difference in convergence is found to be statistically significant (p <

0.05) for all complexities between 9 and 37. More samples at higher complexities are

needed to conclude the significance at 37.

A Chi-Square p-value < 0.05 is shown to indicate statistical significance. At low

complexities, all algorithms have 100% convergence and have no statistical

difference. The p-values for higher complexities show that coevolution has

statistically significant higher convergence than the other three algorithms compared.

More samples are needed to show significance at complexities 37 and higher.

Figure 4.10. The Chi-square p-values for significance of convergence versus

complexity between the coevolution algorithm and each compared algorithm.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40

C
h
i-
S

q
u
a
re

 p

Complexity (# of nodes)

Coev-Static

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40

C
h
i-
S

q
u
a
re

 p

Complexity (# of nodes)

Coev-Dynamic

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40

C
h
i-

S
q
u
a
re

 p

Complexity (# of nodes)

Coev-Exact

40

We see that all algorithms have a very high probability of success for simple

functions. Furthermore, all algorithms experience a drop in success with an increase in

the complexity of the function, but at different rates.

The coevolution algorithm has the highest success rate in general. It maintains a 5-

10% higher convergence rate over the other fitness algorithms involving the 11 to 27

complexity functions. Most notably, coevolution maintains a 1-4% advantage over the

29 to 37 complexities where the other algorithms have 0-3% successful convergence

overall.

The static and dynamic fitness approximation algorithms perform significantly better

in comparison to the exact fitness algorithm with the 9 to 37 complexity functions. In

Figure 4.11. The percent of successful convergence after 10 million point

evaluations versus the target function complexity (the number of nodes in the

binary expression tree).

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37

S
u
c
c
e
s
s
 R

a
te

 (
%

)

Target Complexity (# of nodes)

Coevolution

Static

Dynamic

Exact

41

the previous experiment, we saw that the exact fitness algorithm achieves higher

fitness values, but here we are only measuring convergence, and the fitness prediction

algorithms converge significantly more on average over random functions. The exact

fitness algorithm achieves many fewer generations for the same number of point

evaluations and may simply be lacking some amount of exploration from crossovers

and mutations to converge on the final solution.

Next we look at the improvement factor in order to compare coevolution pair-wise

with the other three approaches. The improvement factor is the ratio of convergence of

coevolution to the compared algorithm, over complexity:

Improvement Factor =
algorithm compared of econvergenc %

ncoevolutio of econvergenc %

An improvement factor of one indicates the two algorithms have the same

performance. A factor of less than one indicates that coevolution performed worse.

Greater than one indicates coevolution performed better. For example, a factor of two

indicates coevolution had twice the convergence at a given complexity.

Though all algorithms decrease in convergence with increasing complexity functions

(Figure 4.11), the improvement factor for coevolution tends to increase (Figure 4.12).

Statistical testing (Figure 4.10 and Table 4.4) demonstrates this growth as significant

for complexities 11 and higher. Based on this observation we conclude that

coevolution may offer greater tolerance to growing complexity.

42

Improving Solution Reliability

One important effect of fitness prediction is the adaptation of fitness pressures, which

causes the evolutionary focus to change throughout evolution. In this section, we

examine how this effect impacts the solutions found by comparing performance by

generation, rather than computational effort. We also examine the difference in

solution bloat when using coevolved fitness predictors.

Comparing Performance by Generation

We measure the fitness and convergence of 100 runs versus the number of generations

(not point evaluations as before). Note that in our previous experiments, coevolution

achieves many more generations with the same number of point evaluations

(computational effort) by utilizing the fitness predictor.

The experiment is identical to the previous experiments; however, we run the exact-

fitness algorithm out to billions of point evaluations so that we can compare

performance based on the number of generations rather than the amount of

Figure 4.12. Improvement factor in convergence of coevolution over the other

algorithms verses complexity for random target functions.

1

2

3

0 10 20 30 40
Complexity

Improvement over Static

1

2

3

0 10 20 30 40
Complexity

Improvement over Dynamic

1

3

5

7

0 10 20 30 40
Complexity

Improvement over Exact

Figure 4.13. Fitness and percent of runs converged versus generations

throughout evolution on the function f2(x). Error bars show the standard error.

Note that exact evaluations are performing significantly more computational

effort per generation.

-3

-2.5

-2

-1.5

-1

-0.5

0

0 5000 10000 15000

F
it
n
e
s
s
 (

-e
rr

o
r)

Generations

Coevolution

Exact

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5000 10000 15000

C
o
n
v
e
rg

e
n
c
e
 (

%
)

Generations

Coevolution

Exact

43

computational effort.

Figure 4.13 shows the performance of each algorithm over 20,000 generations while

regressing f2(x). This is sufficiently long enough for both algorithms to achieve 90%

convergence or higher.

The exact fitness algorithm starts with a clear lead over coevolution in both fitness and

convergence in early generations. However, at approximately 4000 generations

coevolution begins to dominate the exact fitness algorithm over the averaged 100 test

runs.

This empirical result on f2(x) suggests that coevolution outperforms the use of exact

fitness measurements even when ignoring the high cost of exact fitness values. There

are several possible explanations for this. Fitness approximation can drive solutions to

unexplored areas of the domain (Booker, Dennis et al. 1999; Regis and Shoemaker

2005), perhaps increasing convergence. Additionally, adapting the fitness

approximation can destabilize local optima solutions, as also noted by (Pagie and

Hogeweg 1997; Jin 2005). When individuals converge to local optima in the fitness

predictor, predictors react to approximate the region more accurately. The better the

local optima solutions are, the more stable they will be during the predictor transition.

Since the predictions shift data point emphasis, the improvement may also be related

techniques such as boosting or adaptive weighting. Although this behavior may be an

important advantage of coevolved predictors, understanding it is beyond the scope of

this chapter.

Reducing Bloat

A challenging problem in many genetic programming domains is dealing with bloat.

Bloated solutions are those that are excessively complicated. In relation to machine

44

learning, bloat can be thought of as “overfitting”, in which solutions evolve complex

structures that do not exist in the real system.

Bloat can also be problematic in symbolic regression. Figure 4.14 shows the size of

the best solution during evolution on f2(x) averaged over 100 test runs. Function f2(x)

is a very simple nonlinear target function that has two difficult local optima. This is a

good first example because the local optima may be cause for extra bloat during

evolution. Later we compare bloat on randomly generated functions.

In this instance, size, defined as the number of nodes on the binary tree, is

synonymous with the complexity metric used earlier.

On average, coevolution maintains significantly less complex solutions during

evolution than the algorithm using exact fitness calculations. The exact fitness

solutions balloon near 5000 generations while coevolution experiences solution sizes

Figure 4.14. The size of the best solution during evolution of f2(x) averaged over

100 test runs. Error bars show the standard error.

15

17

19

21

23

25

27

29

31

33

35

0 5000 10000 15000

S
o
lu

ti
o
n
 S

iz
e
 (

#
 o

f
n
o
d
e
s
)

Generations

Coevolution

Exact

45

that are both lower and more consistent.

This preliminary result from f2(x) suggest fitness prediction is less susceptible to bloat.

To get an idea if this could be a general trend, we compared solution sizes of both

algorithms on randomly generated target functions where both algorithms are allowed

to fully converge.

Figure 4.15 shows the bloat of final solutions of both algorithms on 500 randomly

generated target functions. Coevolution yields less bloated solutions on average for

randomly generated functions as well. Here we define bloat as the solution size minus

the target function size. Each algorithm is tested on the same target functions and only

target functions in which both algorithms converged are considered. Note that bloat

reduction can also improve computational performance per point evaluation, since

smaller expressions can be evaluated faster.

Coevolutionary bloat reduction is an important observation for this chapter, but deeper

Figure 4.15. The bloat of final converged solutions averaged over 500 randomly

generated target functions. Error bars show the standard error.

0

5

10

15

20

Coevolution Exact

B
lo

a
t

(S
o
ln

 S
iz

e
 -

T
a
rg

e
t
S

iz
e
)

46

analysis is beyond the current scope. One hypothesis is that the fitness landscape

imposed by fitness prediction is simpler and therefore inherently biased towards

simpler solutions. In the case of a subset predictor as used here, the sample is less

likely to encompass fine detail in training data features, thereby reducing pressure to

explain detail or noise features until the solutions have converged on the larger trends

first. However, we leave deeper analysis to future work.

Conclusions

This chapter proposed a coevolution algorithm to address three fundamental

challenges faced when using fitness modeling in evolutionary algorithms: (1) the

model training investment, (2) choosing a level of approximation, and (3) loss of

accuracy. The coevolutionary framework uses three populations: Problem solutions,

fitness predictors, and fitness trainers. Solutions evolve to maximize their predicted

fitness, fitness trainers are selected to cause the most inconsistencies between fitness

predictors, and finally fitness predictors evolve to minimize error in predicting the

fitness trainers.

For the problem of symbolic regression, we have shown the following advantages:

4. Computational performance improvement: Coevolution provides

substantial performance improvement over exact fitness, random sample, and

dynamic sample fitness algorithms. On simple manually designed test

problems, coevolution achieves higher average fitness values and more reliable

convergence with significantly less computational effort in each case.

Coevolution also performs competitively with other recently published

symbolic regression methods. In these experiments, coevolution achieves

significantly higher convergence on challenging experiments such as

47

trigonometric derivations and has a similar performance on simple experiments

such as polynomial targets.

5. Scaling: In experimentation on randomly generated benchmarks, coevolution

shows higher performance over all solution complexities tested. The factor of

improvement increases as complexity rises.

6. Performance by generation: Empirical results show that coevolving fitness

predictors can yield higher fitness solutions compared to the exact fitness

algorithm even when disregarding savings in computational effort. This

suggests that the transformation of the fitness landscape is in itself beneficial.

7. Bloat reduction: Empirical results suggest that, on average, coevolution yields

less bloated solutions for randomly generated target functions.

Finally, fitness prediction is a technique that can be applied in many domains and

general problems. Certain problems that have traditionally been poorly suited for

fitness approximation (e.g. symbolic regression) or coevolution could benefit from this

coevolutionary approach – such as increasing computational performance, scaling to

higher complexity problems, improving convergence, and reducing bloat.

48

CHAPTER 5. RANK PREDICTION

Summary

Many applications of evolutionary algorithms utilize fitness approximations, for

example coarse-grained simulations in lieu of computationally intensive simulations.

Here, we propose that it is better to learn approximations that accurately predict the

ranks of individuals rather than explicitly estimating their real-valued fitness values.

We present an algorithm that coevolves a rank-predictor which optimizes to

accurately rank the evolving solution population. We compare this method with a

similar algorithm that uses fitness-predictors to approximate real-valued fitness

values. We benchmark the two approaches using thousands of randomly-generated test

problems in Symbolic Regression with varying difficulties. The rank prediction

method showed a 5-fold reduction in computational effort for similar convergence

rates. Rank prediction also produced less bloated solutions than fitness prediction.

Introduction

In practice, many applications of evolutionary computation involve expensive fitness

calculations (Jin, Olhofer et al. 2001; Ong, Nair et al. 2003). For example, some

problems involve simulating the performance of evolved robotics or structures. Others

commonly involve evaluating a solution over a large dataset.

One method to address the computational difficulty of fitness calculation is fitness

modeling and approximation (Jin 2005). Fitness models are often coarse

approximations of the full fitness calculation – for example, a coarse simulation, or

subset of the dataset – chosen ahead of time to replace the full fitness function.

One general method to improve performance using fitness approximations in arbitrary

applications is the Coevolution of Fitness Predictors algorithm (Schmidt and Lipson

49

2006; Schmidt and Lipson 2006; Schmidt and Lipson 2008). Here, the concept of a

fitness predictor is to estimate the exact fitness value of an individual with an

extremely coarse and light-weight approximation. Instead of specifying the

approximation ahead of time, fitness predictors are coevolved, optimizing their ability

to estimate the exact fitness values of the current solution population.

A surprising result from this method is that it can improve performance even with

extremely coarse fitness approximations. For example, in the symbolic regression

(Koza 1992) problem, the fitness predictors can maintain an objective fitness gradient

by evaluating solutions on as few as four data points in a data set of thousands of

points and tens of variables (Schmidt and Lipson 2007). In such extreme cases, the

fitness approximations are almost certainly inaccurate, but still allow evolutionary

progress on the objective fitness.

In this chapter, we propose that the primary mechanism by which fitness

approximations improve performance is by providing accurate rankings of individuals,

rather that accurate fitness values as originally intended. Furthermore, we suggest that

performance can be improved even further by selecting approximations that are

optimized to rank solutions, rather than model their fitness directly.

To test this idea, we use two implementations of the Coevolution of Fitness Predictors

algorithm for symbolic regression (Schmidt and Lipson 2008). The first is the standard

fitness predictor algorithm which coevolves a small subset of the total training data to

measure error. The second is identical, however fitness predictors are replaced with

rank predictors, which are optimized to rank solutions, rather than model their fitness

values. We then test the performance of these two algorithms on thousands of

generated test problems and observe their differences over varying problem

50

difficulties.

In the remaining sections, we describe related work in fitness approximation and

introduce the basic algorithm for coevolving fitness or rank predictors. We then detail

our experiments and test problems on the symbolic regression problem and present

results. Finally, we conclude with discussion and final remarks.

Background

Mentioned above, fitness modeling is the technique of using a predefined model or

coarse simulation to approximate the fitness calculation in evolutionary algorithms;

especially in cases where the exact fitness requires an expensive simulation or

physical experiment. In contrast, fitness predictors are a type of fitness model that is

so coarse that they cannot approximate the entire fitness landscape. Instead fitness

predictors must be adapted throughout evolution.

In this chapter, we use a sub-sampling of training data for the predictor structure. For

the fitness predictor, the sub-sample is optimized to match the fitness of the entire data

set, while the rank predictor simply picks points that accurately rank the solutions. In

both cases, the sample is optimized in a second coevolving population (Schmidt and

Lipson 2008).

Algorithm

Fitness and Rank Predictors

The objective of a fitness predictor is to approximate the expensive, exact fitness

calculation of an evolving problem solution. The objective of a rank predictor however

is to provide a ranking of solutions that corresponds to their ranking based on their

exact fitness values.

51

These two types can be very similar in implementation. A fitness predictor does in fact

produce a ranking of solutions – a ranking based on the predicted fitness values.

In fact, in our implementation, we represent rank and fitness predictors identically.

The primary difference is the objective they are optimized for: producing an accurate

ranking or a representative fitness value.

Both rank and fitness predictors produce a numeric value. For the fitness predictor,

this value is optimized to match the exact fitness value of the solutions in the current

population. The numeric value produced by the rank predictors has no discernable

scale or magnitude; it is simply a value that is likely correlated with the exact fitness.

Furthermore, the rank predictors are optimized such that if this value is used to rank

the solution population, it produces a similar ranking to that based on the exact fitness

values.

In our experiments, we compare the two methods on the symbolic regression problem

where fitness is measured by error on a dataset. Here the fitness and rank predictors

are encoded as a small subset of the total training data. The subset indicates to

evaluate the solutions and measure error only on these data points. We used a fixed

subset size of 16, where the total training data set size is 500.

Fitness and Rank Trainers

Because fitness and rank predictors are very coarse approximations, they need to be

optimized to approximate for the current solution population. Therefore, we need to

calculate the exact fitness (error on all data points) of some solutions from the current

generation in order to train the predictors. These example solutions are known as

fitness trainers.

52

Fitness trainers are selected in order to help predictors optimize to the current

solutions. To do this, the algorithm chooses a solution whose predicted rank or fitness

has the least confidence. For example, we select the solution with the highest variance

(Bongard and Lipson 2005; Jin and Branke 2005) in predicted fitness, or highest

variance in predicted rank, among the current rank or fitness predictors.

Additionally, old trainers are discarded to keep the predictors optimizing to only

recent solutions. If the population diverges away from older solutions, we don‟t want

to optimize the predictors on those solutions any longer. In our experiments, we

discard trainers older than 1000 generations.

The population of trainers allows us to define a fitness, or optimization criterion, for

the predictors. In the case of fitness predictors, where i spans the set of trainers, this

metric is:

 
i

ipredictionifitness
N

)()(
1

Very simply, this rewards the fitness predictors to accurately reproduce the exact

fitness value.

In the case of the rank predictor, where i and j span the set of pairs of trainers, the

metric is:







pairsii

ji

N ,
2 otherwise1

correctly ordered and01

This rewards rank predictors for correctly ordering pairs of solutions – or equivalently,

correctly ranking all trainers.

53

Coevolution Algorithm

The coevolution algorithm (Schmidt and Lipson 2008) that we modify in this chapter

has three populations: Problem solutions, fitness predictors, and fitness trainers. As

described earlier, fitness trainers are a set of solutions chosen to train the fitness and

rank predictors on.

The algorithm chooses individuals from the solution population to calculate exact

fitness values in order to train the fitness or rank predictors. The algorithm then

evolves the solution population using the highest ranked fitness or rank predictor, and

evolves the predictors using the fitness trainers.

Experimental Setup

In this section we detail our experimental methods to test the impact of using rank

predictions rather than fitness approximations. We perform identical experiments on

two algorithms: (1) the coevolved rank predictor algorithm, and (2) the coevolved

fitness predictor algorithm (Schmidt and Lipson 2008).

We experiment on the Symbolic Regression problem because it is a ubiquitous and

important problem in genetic programming (Koza 1992). Additionally, we can easily

vary the problem complexity and the problem dimensionality.

Symbolic regression (Koza 1992) is the problem of identifying the simplest equation

(Grünwald 2000) that most accurately fits a given set of data. Symbolic regression has

a wide range of applications, such as prediction, classification, modeling, and system

identification.

Recently, symbolic regression has been used to detect conserved quantities data

representing physical laws of nature (Schmidt and Lipson 2009), infer the differential

54

equations in dynamical systems (Bongard and Lipson 2007).

Symbolic Regression

See the description in the section "Symbolic Regression," on page 4.

Test Problems

We measured performance of each algorithm on randomly generated test problems. To

generate a random problem in symbolic regression, we simply need a random target

equation to find and a set of data corresponding to that equation for the fitness error

metric.

We experiment varying two characteristics of the random symbolic regression

problems: (1) the dimensionality of the data (i.e. the number of variables in the data

set), and (2) the complexity of the target function (i.e. the size of the equation‟s binary

parse tree). Both of these characteristics factor into the problem‟s difficulty. Increasing

dimensionality increases the base set of possible variables for the equation may use,

while increasing complexity increases the chances of couples nonlinear features.

The first step in our random test problem generation is to randomly sample the

dimensionality of the problem. We pick a random number of variables between one

and ten.

Next, we generate a random equation which can use any of these variables. We

generate a random equation in the same fashion that we generate random individuals

in the evolutionary algorithm.

Many randomly generated equations may have compressible terms. For example, f(x)

= 4.211 + 0.93 x
2
 + 1.23 is equivalent to f(x) = 0.93 x

2
 + 5.441. Therefore, we perform

a symbolic simplification on the randomly generated equation in order to get an

55

accurate measure of the target equations complexity. We measure complexity of the

problem as the total nodes in the binary tree representation of the equation. For

example, the complexity of the equation just above is 5.

We repeat this step as necessary in order to get a uniform distribution of problem

complexities. We continue generating and simplifying equations in order to uniformly

sweep the problem complexities between 1 and 32.

Next, we randomly sample the input values of the equation 500 times to create a

dataset. These variables are sampled from a normal distribution around the origin,

with standard deviation of two. The equation is then evaluated on these variables in

order to get the target output value. Several examples of training data are shown in

Figure 5.1.

Finally, we also generate a separate validation data set of 500 points. The validation

data set is created in the same fashion as the training data set, however the input

Figure 5.1. The generation of random test problems for symbolic regression. We

start by picking a random number of inputs, between one and ten. We then

generate a random equation using these inputs and simplify the equation before

measuring its complexity (the number of nodes in the binary tree). We then

generate a random training data set by sampling the input variables around the

origin and evaluating the target equation on these data points. We then generate

a validation data set in a similar fashion, but with a wider range around the

origin to test if the solutions extrapolate to the exact solution.

-3 -2 -1 0 1
-1

-0.5

0

0.5

1

-2 -1 0 1 2
-1

-0.5

0

0.5

1
-2 -1 0 1 2 3

-3

-2

-1

0

1

Simplify Expression

-4 -3 -2 -1 0
-1

-0.5

0

0.5

1

*

sin +

x1 c x2

+

* *

x1 c

x2

cos x3 +

*x1

c x3

0 1 2 3 4
2.1

2.2

2.3

2.4

2.5

2.6

-2 -1 0 1 2 3
-1

-0.5

0

0.5

1

Generate Training Data

56

variables are sampled with a standard deviation of three. By using a broader input

sampling, we can use the validation dataset to test whether solutions extrapolate in

their predictions to unseen data.

We also use this to measure the percent of times the algorithms find the exact solution

– if the algorithm achieves near zero error on the extrapolated validation dataset. Since

we are not adding any noise to the dataset, we expect the algorithms to reach zero

error on the generated data, if the exact solution is in fact found.

Measuring Performance

We tested each algorithm on 1000 randomly generated symbolic regression problems.

Each evolutionary search was performed on a single quad core computer.

Evolution was stopped if the algorithm identified a zero error solution on the

validation data set (i.e. less than 10
-3

 normalized mean absolute error), or when the

algorithm reached one million generations.

Throughout each search, we log the best equation, its fitness (i.e. normalized mean

absolute error) on the training and validation sets, its complexity, and the total

computational effort. We measure computational effort as the total equation

evaluations performed in fitness calculations.

The fitness of the normalized mean absolute error is normalized using the standard

deviation of the target output values. The normalized fitness allows comparing fitness

values between evolution runs and detecting convergence to the exact target solution

more easily. In all figures, we show the fitness on the validation data set (i.e. the

normalized mean absolute error on the validation data).

57

Algorithm Settings

We use the symbolic regression algorithm described in (Schmidt and Lipson 2008) as

the basis for our implementation. We simply swap out the fitness criterion for the

fitness predictor for the rank predictor criterion, described earlier.

We use deterministic crowding selection (Mahfoud 1995), with 1% mutation

probability and 75% crossover probability. The encoding is an acyclic graph of 64

operations/nodes (Schmidt and Lipson 2007). The operation set allowed addition,

subtraction, multiply, divide, sine, and cosine operations.

Experimental Results

This section summarizes the experimental results comparing the two algorithms: (1)

the standard fitness prediction algorithm, and (2) the rank predictor algorithm.

Fitness and Convergence

We first observe the fitness of each algorithm over the course of the evolutionary

search, with the time measured in computational effort – the total point evaluations of

all equations in fitness calculations, predictions, or rank predictions.

The fitness values plotted in Figure 5.2 show both algorithms have similar trends on

the randomly generated test problems, suggesting that the algorithms experience

similar optima during their searches. Despite this, we see a clear difference in the

fitness performance over time, with rank predictors achieving lower error.

This may also reflect the difference in convergences to the exact problem solution,

also plotted in Figure 5.2. Here we notice that the fitness predictor algorithm begins

finding exact solutions slightly sooner than the rank predictor algorithm. However, it

is quickly overcome by the rank predictor algorithm.

58

Later in the evolutionary searches, the rank predictor algorithm shows a clear trend of

finding the exact problem solution more often – reaching 55% average convergence

rate in less than 1/5 the time than that of the fitness predictor method.

Computational Effort

We also compared the total computational effort each algorithm required to find the

exact problem solution – in cases where the algorithm did indeed find the exact

solution. Here, we looked at the computational effort versus the complexity of the

target solution and the dimensionality of the datasets for each evolutionary search.

In response to increasing target solution complexity, shown in Figure 5.3, both

algorithms show very similar trends. We do see a small difference, where the fitness

predictor algorithm tended to find the exact solution slightly faster for the simplest

problems. At higher complexities, the difference is less noticeable, however rank

Figure 5.2. The fitness and convergence rate to the exact solution of each

algorithm versus the total computational effort of each trial. The fitness (left) is

the normalized mean absolute error on the validation data set. Convergence to

the exact solution (right) represents the percent of the trials that identify

solutions that have less than epsilon error on the validation data set. Error bars

indicate the standard error. The performance of the algorithm without using

prediction at all is several order of magnitude higher in computational effort and

is not shown.

10
8

10
10

10
-2

10
0

10
2

10
4

Computational Effort [evaluations]

F
it
n

e
s
s
 [
m

e
a

n
 a

b
s
o

lu
te

 e
rr

o
r]

Rank Predictors

Fitness Predictors

10
8

10
10

0

10

20

30

40

50

60

Computational Effort [evaluations]

E
x
a

c
t
S

o
lu

ti
o

n
 F

o
u

n
d

 [
%

]

Rank Predictors

Fitness Predictors

5x the
computational

effort

59

predictors tended to require slightly less effort at most higher complexities than the

fitness predictors.

There is a similar trend found in the computational effort to find the exact solution

versus the number of variables in the problem datasets (Figure 5.3). Computational

effort tended to increase with dimensionality for both algorithms. Again, fitness

predictors tended to require slightly less effort on average for the lower dimensions.

Solution Bloat

Finally, we looked at the solution bloat that both algorithms experienced over the

course of the evolutionary searches.

We define bloat as the difference between the binary tree size of the best solution in

the population and the target solution. Therefore, the bloated solutions have positive

bloat values, and underfit solutions have negative bloat values.

The bloat results (Figure 5.4) show that both algorithms begin with highly bloated

Figure 5.3. The computational effort required when the exact solution was found

versus the target equation complexity (left) and the number of variables in the

dataset (right). Each algorithm found the exact solution with different

frequencies; these plots show the computation effort for when the algorithms did

find the exact solution. The error bars indicate the standard error.

0 10 20 30 40

10
8

10
9

10
10

Solution Complexity [tree size]

C
o

m
p

u
ta

ti
o

n
a

l
E

ff
o

rt
 [
e

v
a

lu
a

ti
o

n
s
]

Rank Predictors

Fitness Predictors

0 2 4 6 8 10 12
1

2

3

4

5

6

7

8

9
x 10

9

Number of Variables

C
o

m
p

u
ta

ti
o

n
a

l
E

ff
o

rt
 [
e

v
a

lu
a

ti
o

n
s
]

Rank Predictors

Fitness Predictors

60

solutions, which decrease over the search toward the target solution on average.

Interestingly, fitness predictors are slightly more bloated on average than the rank

predictors. This is only true however later during the evolutionary searches. However,

it‟s unclear if this is due to the lesser convergence of the fitness predictors.

Discussion

The results in the previous sections show several interesting trends which highlight the

difference between the two algorithms.

Most significantly, we found that the rank predictor algorithm found the exact solution

more often on the hardest problems which took the most computational effort to solve.

The rank predictor algorithm also found solutions with higher objective fitness on

average, despite only being evolved to only improve the solutions‟ ranks.

Overall, results in computational effort, for both the test problem complexity and the

Figure 5.4. The mean solution bloat of the best solution versus the computational

effort. Solution bloat is defined as the binary tree size of the best individual in the

population minus the size of the target solution. Error bars indicate the standard

error.

10
8

10
10

0

2

4

6

8

10

12

Computational Effort [evaluations]

S
o

lu
ti
o

n
 B

lo
a

t
[t
re

e
 s

iz
e

]

Rank Predictors

Fitness Predictors

61

number of variables in the dataset, were similar. This suggests that there was not great

difference in speed to find the exact solution between the two algorithms – when it is

indeed found. Instead, the benefit must be arising from finding the exact problem

solution more often.

Interestingly, the fitness predictor algorithm achieved slightly higher performance than

the rank predictors early in the evolutionary searches, and for the simpler test

problems. Additionally, the fitness predictor algorithm experienced more bloat on

average than the rank predictor algorithm. This suggests that fitness predictors may be

placing stronger pressure to fit detailed features in the data set. In simple test

problems, this may boost convergence to the exact solution. In more difficult problems

however, it could result in excessive bloat.

This may be the primary reason rank predictors outperformed the fitness predictors.

By optimizing solution ranking, rather than explicit fitness values, they may not need

to emphasize large errors or detailed features to create accurate fitness values. They

only need to emphasize the points of disagreement between solutions in order to find

an effective ranking.

Conclusion

In summary, many applications in evolutionary computation rely on fitness

approximation and modeling. Instead of using fitness models which approximate the

absolute fitness value, we proposed optimizing rank predictors – approximations

which can accurately rank solutions in correspondence with the absolute fitness.

We compared the difference between optimizing modeled fitness values and

optimizing solution rankings using a coevolutionary algorithm which optimizes either

fitness predictors or rank predictors with the evolving problem solutions. We tested

62

both methods on the symbolic regression problem using thousands of test problems,

varying in problem complexity and number of variables.

Our results found rank predictors strongly outperform fitness predictors, achieving

higher fitness on average and identifying the exact problem solution more often.

Interestingly, when solutions are found by both algorithms, both algorithms used

similar amounts of computational effort to find solutions, suggesting the primary

benefit from rank prediction comes from identifying the exact solution more often (i.e.

more reliably).

63

CHAPTER 6. META-OBJECTIVES IN EVOLUTIONARY SEARCH

Summary

In this chapter, we explore the impact of meta-objectives – optimizing secondary

objectives – in an evolutionary search. Ordinarily, evolutionary algorithms attempt to

optimize a primary objective, such as minimizing error. Here, we consider three other

secondary objectives: genotypic age, genotypic novelty, and solution complexity.

Recent research has shown each of these traits to be important in evolutionary search

individually. Here, we examine the impact of optimizing all combinations of these

objectives simultaneously, to improve the original primary objective, in an explicit

multi-objective search. We first compare an explicit multi-objective algorithm that

optimizes error and age objectives with the existing single-objective age algorithm on

the Symbolic Regression problem. Results show that the multi-objective approach

identifies the exact target solution more often than the age-layered population and

standard population methods. The multi-objective method also performs better on

higher complexity problems and higher dimensional datasets – finding global optima

with less computational effort. Next, we repeated this experiment for each

combination of the four objectives. Results show that age yields the greatest

improvement in performance for a single extra objective. Performance improves even

more when additionally optimizing for age and novelty. Optimizing for complexity

tended to only improve the Error-Complexity Pareto volume performance.

Introduction

A common problem in many applications of evolutionary algorithms is when the

progress of the algorithm stagnates and solutions stop improving. Expending

additional computational effort in the evolution often fails to make any substantial

progress. This problem is known as premature convergence (Kenneth Alan De 1975;

64

Louis and Rawlins 1992; Conor 1996).

A common method for dealing with premature convergence is to perform many

evolutionary searches, randomizing and restarting the search multiple times (Jansen

2002; Auger and Hansen 2005). This approach can be wasteful however, as the entire

population is repeatedly thrown out. There is also the difficulty of deciding when to

restart, and the possibility that the converged population could continue improving

with additional diversity.

One of the best performing methods in the genetic programming literature for

addressing premature convergence is the Age-Layered Population Structure (ALPS)

method (Hornby 2006; Hornby 2009). ALPS uses a special notion of age – how long

genotypic material has existed in the population – in order to partition the evolving

population into age layers (see Figure 6.2). The algorithm adds new random

individuals into the youngest population layer throughout the search, and layers evolve

independently of others. As a result, the youngest layers, do not immediately compete

with the oldest and most fit solutions. Implementation of the ALPS algorithm,

however, requires new parameters, such as how to pick age layer cutoffs and how

many solutions to keep in each layer, etc.

The concept of age in the ALPS algorithm is an example of a secondary objective. The

ALPS algorithm uses this objective to partition the population to significantly improve

search performance (Hornby 2006; Hornby 2009).

In this chapter, we first consider using the ALPS concept of age as a fundamental

property in the evolutionary optimization. Rather than using age to partition the

population into layers, we use age as an independent dimension in a multi-objective

Pareto front optimization. In this context, a solution is selected for if it has both higher

65

fitness and lower genotypic age than other solutions.

A completely multi-objective approach allows us to consider adding other secondary

objectives. Our hypothesis is that, based on the impact of age, other seemingly

unrelated objects may further improve performance.

We consider explicitly optimizing two other objectives in addition to age: solution

complexity and genotypic novelty. We test the impact that optimizing all possible

combinations of these objectives has on the overall performance on the primary

objective.

Heuristics

Here we introduce the secondary objective metrics. In all experiments we use a

primary objective (minimize error), with zero or more secondary objectives.

Complexity

Complexity is a commonly used secondary objective in genetic programming (Mark,

Guido et al. 2007; Schmidt and Lipson 2009). Complexity generally measures the size

or content of a solution. Many algorithms explicitly minimize, or penalize for

complexity in order to reduce bloat (Banzhaf and Langdon 2002) – the tendency to

evolve exceedingly complex solutions.

Often, complexity is incorporated as a penalty in the primary fitness objective when

solutions become large enough. This effectively establishes a fixed tradeoff between

complexity and fitness. When used in multi-objective optimization instead, the

complexity metric biases the search toward simpler solutions (Edwin and Jordan

2003). Simple solutions are favored because they are non-dominated in age.

In our experiments in symbolic regression, we measure complexity as the tree size –

66

the number nodes in the expression's binary tree representation.

Age

Interestingly, the concept of genotypic age as used in ALPS has shown to be one of

the best approaches for avoiding premature convergence and improving results

(Hornby 2009). Our goal in this chapter is to develop this idea further by utilizing

genotypic age as a fundamental search trait.

The age of a solution is generally measured in generations, or alternatively

computational effort measured in fitness evaluations for steady-state algorithms

(Hornby 2009).

All randomly initialized individuals start with age of one. With each successive

application of a variation operator, the age of an individual is incremented by one.

This alone measures the amount of time an individual has existed in the population.

However, we are more interested in the age of the genotype.

To measure the age of the genotype, we need to pass on ages during crossover and

mutation events. There are several options, such as taking the age of the most similar

parent, taking the average age of the parents, etc. The best method reported in the

literature (Hornby 2009), and the method we use, is to inherit the maximum age of the

parents.

Therefore, the age is a measure of how long the oldest part of the genotype has existed

in population.

Novelty

Novelty is a measure of how new or original a solution is, or how densely the search

has explored on similar genotypes. It has also been suggested as a primary search

67

objective (Lehman and Stanley 2010), where the population is evolved in order to

maximize novelty. Maximizing novelty has the effect of increasing the search

coverage, ensuring a high degree of exploration – or even a maximum amount of

exploration versus the computational effort.

Novelty can also be thought of as a diversity metric. The higher novelty values in a

population, the greater the diversity. Therefore, novelty will also prevent pre-mature

convergence, but in a more direct way than age.

In our experiments, we measure novelty as the correlation of a solution with other

solutions of similar fitness. The higher the correlation, the less novel the solution is.

We first sort all solutions by their fitness (the primary objective, such as error on a

data set). We then calculate the correlation coefficients of each solution with its

closest fitness neighbor. We then define novelty measure as one minus this correlation

value.

Random Objectives

In our experiments, we also use random objectives in order to more accurately

Figure 6.1. The novelty objective of a solution. Here, the novelty of equation #4

is equal to the maximum correlation of its residual errors with its two nearest

neighbors in terms of fitness.

Equation #1

Equation #2

Equation #3

Equation #4

Equation #5

Equation #6

Equation #7

Equation #n

Rank by
Primary

Objective

…

Novelty =
Maximum correlation of
residual errors of the
nearest fitness neighbor

68

measure the impact of each secondary objective. If a particular combination does use

one of the three secondary objectives, the objective is replaced with a random

objective.

Each new solution is given a random score on each random objective when initialized.

The random scores are inherited during crossover. This allows some solutions to be

non-dominated by chance, but otherwise implies no other metric of the solution.

In effect, this allows us to measure the impact of each objective over a random noise

objective, since an algorithm may otherwise have sensitivity to the dimensionality of

the multi-objective optimization.

Algorithm

Age-Fitness Algorithm

As in the ALPS method, random individuals are added into the population at each

generation. Rather than flowing up the age layers, they flow through a two-

dimensional space of fitness and age (see Figure 6.2). Young solutions exist in the

same population as the oldest and most fit, but persist because they are non-dominated

on the age dimension of the Pareto space.

A key benefit of the proposed approach is that it does not require a population

partitioning or structuring. For example it does not constrain intermediate layer sizes,

the number of total layers, or layer partitions. These variations all exist within the

larger Pareto space of the search, allowing the age-fitness distributions to vary

dynamically.

Like ALPS, this approach makes no assumptions about the underlying solution

representation. Therefore, it can be applied to nearly any evolutionary search problem

69

to improve the optimization performance.

Multi-objective Optimization

There are a number of ways to implement multi-objective evolution (Ekárt and

Németh 2001; Kalyanmoy and Deb 2001; Zhang and Rockett 2007). In this chapter,

we use the simple random mating with tournament selection method.

Each generation, we select random pairs of individuals, cross and mutate them

probabilistically, and add them to current population. Additionally, a new random

individual is added to the population each generation.

We specify a target population size – analogous to the population size in a traditional

evolutionary algorithm. The goal of the selection is to remove dominated individuals

from the population until the target population size is reached.

Figure 6.2. The Age-Fitness Pareto Population algorithm (A) considers a single

population of individuals moving in a two-dimensional Age-Fitness Pareto space.

Individuals are selected for if they simultaneous have higher fitness values and

lower age than other individuals. Ages increase every generation, or are inherited

during crossover, and new random individuals are added with zero age. In the

Age-Layered Population Structure (ALPS) algorithm, there are several layers of

populations for each age group. New individuals are injected to the youngest

population, and individuals migrate to older populations as their age increases.

Age [generations]

Fitness

Population #1

Age
[generations]

Population #2

Population #3

Population #4

Population #5

Random Individuals

Random
Individuals

A B

70

We used the SPEA2 (Strength Pareto Evolutionary Algorithm) for selection (Zitzler,

Laumanns et al. 2001). SPEA2 is one of the most popular multi-objective methods. It

scores and selects solutions based on how many other solutions dominate it. Non-

dominated solutions on the Pareto frontier are always selected. If the number of

solutions on the Pareto frontier are larger than the target population size, SPEA2

iteratively removes the solution with the closest neighbors.

Experiments

We compare several combinations of ALPS and multiple objectives on the Symbolic

Regression problem. Here we describe the experimental setup.

Symbolic regression

See the description in the section "Symbolic Regression" on page 4.

Random test problems

We tested each algorithm on 1000 randomly symbolic regression problems. Each

evolutionary search was performed on a single quad-core computer. The testing

procedure was the same as described in the section "Test Problems" on page 54.

Algorithm Settings

We used standard algorithm settings for symbolic regression – 75% crossover, 1%

mutation. We used a population size of 1000. This was large enough such that the

Pareto frontier always fit inside the population in all experiments. Solutions were

allowed to use add, subtract, multiply, divide, sine, cosine, a variable, or a constant

coefficient.

Results

Results are split into sections: the age-fitness optimization algorithm, and the

71

combinations of multiple objectives.

Age and Fitness Objectives

This section summarizes the experimental results comparing the three algorithms: (1)

the ALPS algorithm, (2) Age-Fitness Pareto algorithm, and (3) the Deterministic

Crowding algorithm with randomized individuals.

Our first observation is that the fitness trends versus the computational effort of each

algorithm are quite similar (Figure 6.3). On average, the ALPS algorithm has the

lowest error early on while the Age-Fitness Pareto algorithm has the highest error.

This difference, however, does not appear to be significant due to the overlapping

standard errors.

Later into the evolution, all algorithms converge to similar fitness trends. This

suggests that the algorithms are reaching common local optima. The deterministic

crowding method does clearly perform worse here as it is the last to converge on to

this trend. Near the end however, the average fitness values are very similar, as most

runs for all algorithms do converge to the exact solution.

Figure 6.3 also shows the rate that each algorithm identifies the exact target solution.

Here we have clear difference and non-overlapping standard errors for each algorithm.

The ALPS algorithm again has the highest exact solution rate early on in evolution.

All algorithms show the standard s-shaped convergence rates where computational

effort increases greatly for the hardest of the test problems.

Late in the searches, the algorithms begin to plateau at different rates of finding the

exact solution. The Age-Fitness Pareto algorithm performed the best, finding the exact

solution approximately 5% more often than the ALPS algorithm.

72

Importantly, Figure 6.3(right) further demonstrates that the hardest problems solved

by ALPS were solved by the Age-Fitness Pareto algorithm using a third of the

computational effort.

The deterministic crowding algorithm, with the added randomized individual per

generation, performed worst of the three algorithms. Here, deterministic crowding

identified the exact target solution approximately 5% less often than the ALPS

algorithm, and approximately 10% less often than the Age-Fitness Pareto algorithm.

The deterministic crowding algorithm used a randomized individual each generation.

However, it still performed significantly worse that the other algorithms. This suggests

that the performance improvement is not coming solely from increased diversity

through random individuals. Therefore, the genotypic age is playing an important role.

Finally, we looked at the amount of solution bloat experienced by each algorithm over

the course of the evolutionary searches in Figure 6.4.

Figure 6.3. The fitness and convergence rate to the exact solution of the compared

algorithms versus the total computational effort of the evolutionary search. The

fitness is plotted (left) is the normalized mean absolute error on the validation

data set. Fitness is normalized by the standard deviation of the output values.

Convergence to the exact solution (right) is percent of the trials which reach

epsilon error on the validation data set. The error bars indicate the standard

error.

10
8

10
10

10
-2

10
0

10
2

10
4

Computational Effort [evaluations]

F
it
n

e
s
s
 [
m

e
a

n
 a

b
s
o

lu
te

 e
rr

o
r]

ALPS

Age-Fitness Pareto

Det. Crowding

10
8

10
10

0

10

20

30

40

50

60

Computational Effort [evaluations]

E
x
a

c
t
S

o
lu

ti
o

n
 F

o
u

n
d

 [
%

]

ALPS

Age-Fitness Pareto

Det. Crowding

3x the
computational

effort

16x the
computational

effort

73

We define bloat as the binary tree size of the best solution in the population minus the

binary tree size of the target solution. Therefore, the most bloated solutions have

positive bloat values, and overly simple solutions have negative bloat values.

In these results, all algorithms started with high amount of bloated solutions early on

in the evolutionary searches. On average, the bloat decreased as the search progressed,

and the algorithm converged toward exact solutions.

Interestingly, the deterministic crowding algorithm dropped the most in solution bloat.

This suggests that the algorithm is under-fitting – it is stagnating at simple local

optima.

In contrast, the ALPS and Age-Fitness Pareto algorithms have similar, more-complex

solutions on average, which converge toward slightly bloated solutions. On average,

ALPS was the least bloated early on in the evolutionary searches, but bloated the most

as the searches progressed.

On average, the deterministic crowding algorithm experience the least bloat,

Figure 6.4. Solution bloat over the course of the evolutionary search. Solution

bloat is defined as the binary tree size of the best individual in the population

minus the binary tree size of the target solution. The error bars indicate the

standard error.

10
8

10
10

-2

0

2

4

6

8

10

12

Computational Effort [evaluations]

S
o

lu
tio

n
 B

lo
a

t
[t
re

e
 s

iz
e

]

ALPS

Age-Fitness Pareto

Det. Crowding

74

suggesting that could be under fitting, stagnating at low complexity local optima. The

ALPS and Age-Fitness Pareto algorithms instead tended toward slightly bloated

solutions on average, which may reflect their higher performance overall.

Multi-objective Combinations

Here we compare the performance of all combinations of secondary objectives: Age,

Complexity, and Novelty. The primary objective is Error. This results in 2
3
 = 8

compared methods. We abbreviate each combination with the letters "E" for Error,

"A" for Age, "C" for Complexity, and "N" for Novelty.

For each algorithm we track the best solution over time, and record its final

performance. Figure 6.5, summarizes the performance of each on all problems. We

consider the error of the best solution (the mean absolute error on a test data set), the

convergence (the percent of times that the algorithm identified the exact known

solution), and the Pareto volume. The Pareto volume measure the percent of the Pareto

space explored by the algorithm. Here, we measure the percent of the

Error*Complexity Pareto space, which are of most interest in the Symbolic Regression

problem.

Our first observation form Figure 6.5 is that using the error objective alone ("E")

performed the worst for all metrics. This is counter-intuitive; it shows that investing

computational effort in any of the three secondary objectives improved performance

on error.

Adding complexity to the error objective ("EC") slightly improved convergence and

Pareto volume, but otherwise has little impact. Adding novelty objective to error

("EN") we see a substantial improvement in all metrics. Similar to results in the

previous experiment, adding age to the error objective ("EA") had the largest impact

75

for a single secondary objective.

Interestingly, combining error, complexity, and novelty ("ECN") improves the

performance over novelty ("EN") or complexity ("EC") alone. Combining complexity

with age ("EAC") however had no visible change form age alone ("EA").

The two best combinations were error, age, novelty ("EAN") and using all four

Figure 6.5. The performance of each combination of the multiple secondary

objectives on random symbolic regression problems. Pane (A) shows the mean

absolute error on the test data set of the best solution found by each algorithm.

Pane (B) shows the convergence rate, the percent of times each algorithm

identified the exact solution. Pane (C) shows the percentage of the Pareto space,

defined by solution error and solution complexity (the two metrics of interest in

the Symbolic Regression), that each algorithm explored.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

E EC EN EA ECN EAC EAN EACN

Error

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

E EC EN EA ECN EAC EAN EACN

Convergence

97.4

97.5

97.6

97.7

97.8

97.9

98

98.1

98.2

E EC EN EA ECN EAC EAN EACN

Pareto Volume
Error & Complexity

Objectives:

E: Error
A: Age
C: Complexity
N: Novelty

A B

C

76

objectives ("EACN"). These two methods had equal performance in terms of test set

error and convergence. However, adding complexity and using all four yielded slightly

higher performance in Pareto volume.

Results in Figure 6.6 show the convergence rate of all combinations versus the

problem complexity. The results are split into three panes to better display the

difference between the results.

We can see that the performance drops for all algorithms as the problem complexity

increases. However, some drop later than others. The differences at the lower

convergence rates appear smaller, but the relative difference between the algorithm is

actually quite large, with some algorithms achieving 10 times or higher convergence

than others.

For one and two objectives (Figure 6.6A), the age objective ("EA") stands out

showing large improvement over all complexity of problems. Error alone performs

worst.

For combinations of three objectives (Figure 6.6B), error, age, complexity ("EAC")

roughly matches the performance of error and age ("EA"). The combination of error,

age, novelty ("EAN") however makes substantial improvement. The improvement also

increases with the problem complexity up to complexity of 33.

Finally, all four objectives (Figure 6.6C), ("EACN") performs well, approximately

equal to the error, age, novelty combination ("EAN").

An interesting observation from these results is that age has such a large impact.

Combining novelty and complexity improves performance, but combining age and

complexity has none. However, combining age and novelty does. This suggests that

77

age is somehow capturing the benefits of complexity and partially the benefits of

novelty on its own.

Complexity only appeared to impact the performance of the Pareto volume. Therefore,

it may still be useful as a secondary objective for identifying parsimonious solutions

and discouraging bloat.

Figure 6.6. The convergence (percent of problems where each method identified

the exact solution) versus the problem complexity. These results are split into

three panes to make the differences more easily identifiable. Pane (A) shows the

results for combinations of two objectives plus the single error objective. Pane

(B) shows the results for three objectives plus the best 2 objective method and

error objective. Pane (C) shows the best of the previous panes with the 4

objective method.

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

Solution Complexity [tree size]

E
x
a

c
t
S

o
lu

ti
o

n
 F

o
u

n
d

 [
%

]

1-2 Objectives

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

Solution Complexity [tree size]

E
x
a

c
t
S

o
lu

ti
o

n
 F

o
u

n
d

 [
%

]

1-3 Objectives

0 5 10 15 20 25 30 35 40 45

0

10

20

30

40

50

60

70

80

90

100

Solution Complexity [tree size]

E
x
a

c
t
S

o
lu

ti
o

n
 F

o
u

n
d

 [
%

]

1-4 Objectives

0 2 4 6 8 10 12

x 10
9

0

10

20

30

40

50

60

70

Computational Effort [evaluations]

E
x
a

c
t
S

o
lu

ti
o

n
 F

o
u

n
d

 [
%

]

F---

FA--

F--U

F-C-

FAC-

F-CU

FA-U

FACU

E
EA
EN
EC
EAC
ECN
EAN
EACN

Objectives:

E: Error
A: Age
C: Complexity
N: Novelty

A B

C

78

Conclusions

This chapter looked at using secondary objectives to improve the performance of

optimizing a primary objective. Previous research has shown that traits such as

genotypic age can be used to greatly improve performance in genetic programming.

We first tested explicitly optimizing for age in a multi-objective search. The Age-

Fitness Pareto algorithm selected solutions based on both low error and low genotypic

age. Results on randomly generated symbolic regression problems indicate that this

approach finds the exact target solution substantially more often than previous

methods over a range of target problem complexities and dataset dimensions.

We then looked at two other secondary objectives: complexity and novelty. We tested

the performance when combining all combinations of the three secondary objectives.

Results showed that the age objective had the largest impact for a single objective.

Performance improved slightly more when using novelty and age.

The two best combinations were error, age, novelty and using all four objectives.

These to combinations were similar in performance, but adding complexity slightly

improved the percentage of the Pareto volume explored.

79

CHAPTER 7. PRIOR MODELS AND SEEDING

Summary

We investigated several methods for utilizing expert knowledge in evolutionary

search, and compared their impact on performance and scalability into increasingly

complex problems. We collected data over one thousand randomly generated

problems. We then simulated collecting expert knowledge for each problem by

optimizing an approximated version of the exact solution. We then compared six

different methods of seeding the approximate model in to the genetic program, such as

using the entire approximate model at once or breaking it into pieces. Contrary to

common intuition, we found that inserting the complete expert solution into the

population is not the best way to utilize that information; using parts of that solution is

often more effective. Additionally, we found that each method scaled differently based

on the complexity and accuracy of the approximate solution. Inserting randomized

pieces of the approximate solution into the population scaled the best into high

complexity problems and was the most invariant to the accuracy of the approximate

solution. Furthermore, this method produced the least bloated solutions of all methods.

In general, methods that used randomized parameter coefficients scaled best with the

approximate error, and methods that inserted entire approximate solutions scaled worst

with the problem complexity.

Introduction

A common challenge in genetic programming is how to take advantage of prior

knowledge and expert knowledge. Utilizing expert knowledge could be used to find

solutions that are more interpretable or reliable in their applications (Moore and White

2006; Casey, Bill et al. 2008). Perhaps most importantly however, expert knowledge

could be used to scale genetic programs to solve increasingly complex problems

80

(Banzhaf and Miller 2004) – freeing new evolutionary runs from having to reinvent all

past knowledge from scratch over and over.

In this chapter, we explore one of the more general forms of expert knowledge:

reusing established or prior solutions to solve a related problem at hand. For example,

if we had a model of the metabolic network in a yeast cell, how could we reuse this

model to find the metabolic network of a mammalian cell using an evolutionary

search? We can generalize this task in genetic programming as the problem of reusing

any previous solution that has the same basic problem structure or tree encoding for a

new problem.

We define seeding as the reuse of a prior knowledge solution by introducing all or any

part of its encoding into the population during a new evolutionary run. By injecting

genes from a prior knowledge solution, seeding is effectively biasing the evolutionary

search toward solutions that use ubiquitous features of the related solution

(Mohammad-Reza and Mohammad 1997), even though solutions to the new problems

may look very different at a higher level.

There are many potential approaches to seed the solutions in an evolutionary search.

Here, we examine six general seeding approaches: injecting prior solutions in their

entirety into the population, injecting pieces of the prior solution, injecting entire

solutions but with randomly rearranged and shuffled versions of the prior solution, and

finally each of these the methods again with either the optimized parameter values

from the prior solution or randomized parameters.

We measure the impact of each method on randomly generated problems over one

thousand evolutionary runs each. We simulated expert knowledge for these random

problems by simplifying and approximating their exact solutions.

81

In the following sections, we overview back ground information in symbolic

regression and seeding, describe each seeding method in greater detail, compare their

results in fitness, convergence, and bloat, and end with discussion and conclusions.

Background

Symbolic Regression

See the description in the section "Symbolic Regression," on page 4.

Equation Complexity

We define the complexity of an equation to be the number of nodes in the equation‟s

binary parse tree. More complex equations are more difficult to find because the

evolutionary search must build and optimize a larger solution.

Past results show that the performance of symbolic regression depends heavily on the

complexity of the exact target equation (Schmidt and Lipson 2005; Schmidt and

Lipson 2006; Schmidt and Lipson 2008). Therefore, we consider the complexity of the

problems in our experiments and how the performances of different methods change

as target complexity increases.

Convergence

We define convergence in symbolic regression as when the evolutionary search

identifies the exact target solution as the top ranked solution in the population without

overfitting.

We test for convergence when generating our final results using a cross validation

dataset. The validation dataset has a much wider range of input values than the

training dataset used for fitness calculations. This helps distinguish between overfit

solutions and exact fits. If the error on the wider cross validation dataset is near zero,

82

we consider the equation to be converged.

The concept of convergence assumes that there is an exact and general equation

underlying the system producing the experimental data. There may be cases however,

where no underlying equation exists.

Seeding Methods

There are many different forms of expert knowledge and ways of incorporating it into

an evolutionary search (Moore and White 2006; Casey, Bill et al. 2008). Here, we

consider one general form of prior knowledge where we have a prior solution to a

simpler problem, or an approximate solution to a more complex problem.

We consider six different policies for using a prior approximate solution: seeding the

population with the full solution, seeding with random shuffles of the full solution, a

mutation operator for injecting building-blocks of the approximate solution into the

population, and finally, using either randomized or optimized parameters for each of

these methods (see Figure 7.1).

Optimized

Coefficients
Randomized
Coefficients

Whole
Equation

Seed

f (x)= 1.3335 x
2

cos(x – 0.4232)

f (x) = α x
2

cos(x – β)

Shuffled
Equation

Seed

f (x)= (x – 0.4232)

cos(1.3335 x
2
)

f (x)= (x – α)

cos(β x
2
)

Building
Block Seed

(x – 0.4232),

cos(1.3335 x
2
),

1.0 x
2

(x – α),

cos(α x
2
),

α x
2

Figure 7.1. Example seed equations for each method (left) and an example

randomly generated target equation plotted next to the automatically generated

approximate equation (right).

-15 -10 -5 0 5 10 15
-50

0

50

100

150

200

250

300

350

400

x

f(
x
)

5.249 x + 2.000 x2 – 2 x sin(x)

5.284 x + 1.257 x2 – 0.507

83

No seeding

In the no seeding case, we use and ordinary evolutionary search with a completely

random initial population and operators. Variance is introduced solely through random

mutation and crossover, and individuals are selected based only on their fitness.

Approximate Equation Seed

In the approximate equation seed, we introduce exact copies of the approximate into

the initial population. Only a few equations are seeded to maintain the initial

population diversity. In our experiments, we introduce one approximate equation copy

for every 10 random initial solutions.

This is the most straight-forward method for using a prior model. The idea is that

evolution will use the seeded equations if it likes and will adapt it to the exact model

of the system.

There is a potential danger to this method however, in that the approximate solution

may trap the evolutionary search in local optima; particularly if the seeded equation is

a local optima itself. In the worst case, the evolution fixates on the seeded solution,

losing diversity, and is unable to improve upon it.

Shuffled Equation

Instead of seeding with the exact approximate equation, we could instead introduce

slightly randomized and rearranged version of the approximation. In the case where

the approximate equation is a local optima solution, randomly shuffling its sub-

expressions would effectively produce random solutions; but random solutions

composed of the same parts of the approximate solution.

Random shuffles of the approximate solution should have roughly the same fitness

84

distribution as ordinary random solutions, but will still introduce all parts of the

approximate equation into the initial population. The idea is that the evolutionary

search can recompose these shuffled solutions if beneficial, but will not be

immediately placed into a local optima solution.

We implement the shuffling by performing two random shuffles of the approximate

solution (or until the fitness changes since shuffles could be neutral). A shuffle

consists of picking two random sub-trees of the equation‟s binary parse tree, and

exchanging them.

Though shuffled equations are less likely to push the evolution into local optima, it

may not be the best use of the approximate equation. The random shuffles could

destroy important parts of the solution, or may be deleterious to the other shuffled

components making them difficult to evolve from.

Building block Mutation

The third method we consider is injecting only individual parts of the approximate

equation into the population. We call these parts the building blocks defined by the

approximate equation.

We define the set of building blocks for a particular equation to be all sub-trees (sub-

expressions) of the equation‟s binary parse tree.

We define a new type of mutation operator using the set of building blocks defined by

the approximate equation. In addition to typical genetic programming mutations, the

algorithm can now replace a sub-expression with one of the building blocks at

random.

The idea behind this method is that it may be easier to reuse individual pieces of an

85

expert model rather than adapt the entire equation at once. This operation provides a

more granular method for the evolutionary search to pick and choose the useful

components of the approximate equation.

One possible danger of this approach is it could produce more bloated solutions,

thereby inhibiting finding a general and parsimonious solution.

Parameter Constants

Finally, for each of the three seeding methods, we can choose to keep the exact

coefficient values used in the approximate solution, or randomize these coefficients.

Randomizing the coefficients is one way to deter or delay the possibility of falling into

a local optima based on the seed, such as in the whole equation and shuffled equation

seed.

The downside of randomizing the constants, however, is that the evolutionary search

must always refit them if used. So, randomizing the parameter coefficients does

discard some of the prior information contained in the approximate equation.

Experiments

Test Problems

We used randomly generated problems to evaluate the performance of each seeding

method. While random equations do not always resemble real-world applications of

genetic programming and symbolic regression, they do provide a base or average case

for comparison. Additionally, we can vary and control the complexity of the equations

and effectively the difficulty of the evolutionary search.

86

For symbolic regression, we can produce a random equation in the same way we

generate initially random population of equations. We generated one-dimensional

equations and then sampled them over the range [-2,2] to produce synthetic

experimental data as would ordinarily be used with symbolic regression. Additionally,

we generated a larger test data set over the range [-10,10]. We use this data set for

reporting the performance and convergence rates of each method in our results.

We generated 100 random symbolic equations and corresponding datasets. We then

ran each method on the same random problems ten times for each equation.

We also generated the random target equations such that their complexities were

evenly distributed. We measure the complexity of an equation as the number of nodes

in its binary parse tree. We also perform symbolic simplification of the equation

beforehand so that redundant or cancelling terms do not exaggerate the complexity

measure.

The random target functions are then evenly distributed between complexities 5 to 35

(or 5 to 35 nodes). Therefore, each seeding method evolves to solve each complexity

of target equation approximately 30 times.

Expert Knowledge in Random Problems

We are using random target equations to generate random problems for testing our

seeding methods. Therefore, we need a method for producing expert knowledge for

each randomly generated problem. Since we are generating the random problems with

a random equation, we know the exact solution to each problem. This allows us to

generate approximate models that are equivalent to an expert-derived approximate

model, or perhaps an expert derived model of a slightly simpler problem.

87

We generate the expert knowledge model based on the randomly generated target

equation. We first want to approximate this equation so that we aren‟t giving the exact

answer for every problem. To do this we take a randomly generated target equation,

and select a random sub-expression that contains at least one operation and is not a

leaf node. We then set this sub-expression equal to a random constant.

This creates a simpler and distorted version of the exact target function; however, the

output of this function may be drastically different. To be considered an expert

knowledge equation, the equation should at least also mimic the general features in the

output of the exact target equation.

To mimic an expert derived approximation, we take this simpler equation and refit all

of its parameters via nonlinear regression so that it fits the more complex target

equation as closely as possible.

The end result is a simpler, but useful approximate model that resembles the target

equation that should still have a good initial fitness during evolution. An example is

plotted in Figure 7.1. This equation still contains much of the exact structure of the

target equation, and is potentially useful for the evolutionary search.

Experimental Setup

We used the fitness prediction algorithm (Schmidt and Lipson 2005; Schmidt and

Lipson 2006; Schmidt and Lipson 2008) to search the space of symbolic equations.

Deterministic crowding was used for selection (Mahfoud 1995), with 1% mutation

probability and 75% crossover probability. The encoding is an operation list acyclic

graph with 64 nodes (Schmidt and Lipson 2007). The operation set contained addition,

subtraction, multiply, sine, and cosine operations.

88

The fitness predictor population contains 1280 predictors, distributed over 80 cores.

The fitness predictor subset size is 128 data points. Predictors are also evolved using

deterministic crowding, but with 10% mutation and 50% crossover.

Results

We executed 1000 trials per seeding method over 100 randomly generated target

equations. We tracked the best solution in each generation, measuring its fitness,

convergence, and bloat over the evolutionary run. Fitness and convergence were

calculated using a withheld test dataset that spanned a larger input range than the

training data set.

Time to Convergence

The time to convergence is the total computational effort for each method to find the

exact target solution in the evolutionary search. Figure 7.2 compares the convergence

time for each seeding method, averaged over all target equations and evolutionary

runs.

Time to convergence measures only the runs that did indeed converge. Therefore, it is

a measure of the best cases for each method; comparing, potentially, how much the

evolution can be sped up with each seeding method. It is important to note however

that fast convergence is not always good; but, it is a measure of the evolvability.

The ordinary evolutionary runs without seeding were the slowest to converge (Figure

7.2) on average. This suggests that all of the seeding methods can speed up the

convergence. The next slowest are the shuffled equation seeding methods. This

indicates that evolving the randomly shuffled seed equations is the most difficult, but

still faster than no seeding at all.

89

The fastest method to converge is the building block seeding, followed closely by the

whole equation seeding. This suggests whole equations and the equation building

blocks are easier to evolve than equations from scratch or randomly shuffled equation

seeds.

The time to convergence appears to be invariant to using either randomized or

optimized parameter constants in the seed. This is particularly interesting because

randomized coefficients must always be re-learned or refit. The invariance to the

coefficient method indicates that the evolvability and convergence times depend

primarily on finding the structure of the equation in the average case.

Figure 7.2. The expected time for the evolutionary search to converge to the exact

target equation for each seeding method measured in function evaluations (runs

that did not converge omitted). Error bars show the standard error.

0

2

4

6

8

10

12

14

16
x 10

9

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 [
e

v
a

lu
a

ti
o

n
s
]

2

4

6

8

10

12

14

16
x 10

11

C
o

n
v
e

rg
e

n
c
e

 T
im

e
 [
e

v
a

lu
a

ti
o

n
s
]

No Seeding

Approximate Equation (Randimized Coefficients)

Building Block Operator (Randomized Coefficients)

Approximate Equation (Optimized Coefficients)

Building Block Mutation (Optimized Coefficients)

Shuffled Approximate Equation (Randimized Coefficients)

Shuffled Approximate Equation (Optimized Coefficients)

90

Figure 7.3. The mean fitness (top) and convergence rate (bottom) for each

method measured over each evolutionary trial. Error bars show the standard

error.

10
6

10
8

10
10

-10
0

-10
-1

Computational Effort [evaluations]

F
it
n

e
s
s
 [
-e

rr
o

r]

10
6

10
8

10
10

0
10
20
30
40

50

60

70

80

90

Computational Effort [evaluations]

C
o

n
v
e

rg
e

n
c
e

 [
%

]

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Computational Effort [evaluations]

C
o

n
v
e

rg
e

n
c
e

 [
%

] No Seeding

Approximate Equation (Randimized Coefficients)

Building Block Operator (Randomized Coefficients)

Approximate Equation (Optimized Coefficients)

Building Block Mutation (Optimized Coefficients)

Shuffled Approximate Equation (Randimized Coefficients)

Shuffled Approximate Equation (Optimized Coefficients)

91

Fitness Over Time

We also tracked the fitness of the top ranked equation over all runs for each method on

the withheld cross validation dataset.

We can see that the methods that use whole equations for seeding (the approximate

equation and shuffled equation seeding methods with optimized constants) have

higher initial fitness as should be expected (Figure 7.3). However, these methods are

overcome by the randomized versions later in evolution.

The standard error in fitness increases over time, making it difficult to discriminate

between the methods. However, we can pick out some additional general trends. All

seeding methods appear to strictly dominate the no seeding method. Also, the most fit

solutions at the end tend to be the least fit solutions early on.

Convergence Over Time

The convergence rates over time are more stable than the fitness, making it easier for

comparing between each seeding method. The convergence rate shows the percentage

of runs that found the exact target solution versus the time (or computational effort)

into the evolutionary run (Figure 7.3).

All runs start with zero convergence and increase gradually on a sigmoid trend to their

maximum convergence performance. Again, all seeding methods dominate the

ordinary non-seeding method. The next worst is the shuffled approximate equations.

The highest convergence methods are the building block and equation seed methods.

The building block seeding method with optimized constants stands out the most in

Figure 7.3. It converges the soonest, and is tied for the highest convergence rate at the

end of each trial with the building block seeding with randomized constants.

92

Figure 7.4. The logistic trends of each seeding method in convergence rate versus

target equation complexity (top), and linear trends in convergence versus the

error of the approximate seed equation from the target equation (bottom). Error

bars show the range based on the standard errors of the trend fit parameters.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

20

40

60

80

100

Approximate Model Error [error ratio]

C
o

n
v
e

rg
e

n
c
e

 [
%

]

No Seeding

Approximate Equation (Randimized Coefficients)

Building Block Operator (Randomized Coefficients)

Approximate Equation (Optimized Coefficients)

Building Block Mutation (Optimized Coefficients)

Shuffled Approximate Equation (Randimized Coefficients)

Shuffled Approximate Equation (Optimized Coefficients)

93

Scaling with Complexity

So far we have only looked at the average performances of each seeding method over

all equations. However, the impact of seeding may depend on the different traits of the

target functions. Here we break down the performance of each method based on the

complexity of the target equation.

Breaking the performances up by the target equation complexity makes the

performance trends noisier. Therefore, we use a trend fit to help visualize the

differences between each method.

For the convergence versus the target equation complexity, we fit a sigmoid trend

curve to each method (Figure 7.4). A sigmoid trend is appropriate for this data since

the convergence rate ranges between 0 and 100% depending on the problem difficulty

(such as complexity). The sigmoid trend curve has two parameters, the origin slope

and the origin offset, making it a low variance trend model.

Based on the sigmoid trends, we want to see which methods drop off in convergence

the latest with increasingly complex target equations.

Shown in Figure 7.4, the non-seeding method drops of the fastest. The best performing

methods are the building block seeding methods. The remaining methods fall in-

between. This result suggests that building block seeding scales the best with the

problem complexity; solving the most complex problems more reliably on average.

Scaling with Seed Equation Error

Next, we look at the convergence rates plotted against the error of the approximate

model that is used for seeding. We can view this as the dependence on the confidence

or quality of our expert knowledge equation – for example, how does the performance

94

vary between highly accurate approximate seed equations and inaccurate seed

equations.

For this data we fit a linear trend to help visualize the differences between each

method (Figure 7.4). This is the most appropriate trend to fit because the seeding

equation error does have a dominating influence over the convergence rates. So, we

can only pick out the local general trends.

We first notice that there are three methods that appear to be invariant to the

approximate model error: no seeding, shuffled equation with random coefficients, and

building block with random coefficients (Figure 7.4). This is not surprising for the

non-seeding method since it does not use the seed equation. The performance of the

other two has the same slope, but higher convergence.

This suggests that the randomized coefficient building block seed and shuffled

equation can use parts of the seeding equation even when it is a poor approximation.

It is interesting to note that even the non-seeding method has a slight decreasing trend

in convergence with the error of the seed equation, despite not using the seed equation.

We generate the seed equation by approximating the exact equation. Therefore, there

is a secondary trend in this figure, which is the target equation‟s sensitivity to

approximations. An equation that is difficult to approximate accurately may contain

more complex features, thereby making the target equation more difficult to fit in

general.

Solution Bloat Over Time

Finally, we examined the bloat of the top ranked solution of each method in each

evolutionary run. We define the bloat as the complexity of the equation (the number of

95

nodes in the equations binary parse tree) minus the complexity of the target equation.

Equations with positive bloat are larger than they need to be while negative bloat

means the equation is too small.

We can see that the whole equation seeding methods start off with higher bloat on

average (Figure 7.5). This means the seed equations tend to be more complex than the

average randomly generated equations. However, all methods converge in complexity

toward the target equation complexity over time.

Overall, none of the methods experienced an excessive amount of bloat over time.

Figure 7.5. The solution bloat of the top ranked solution over the evolutionary

runs. Bloat is measured as the top ranked equation’s complexity minus the target

equation complexity. Error bars show the standard error.

10
6

10
8

10
10

-14

-12

-10

-8

-6

-4

-2

0

2

Computational Effort [evaluations]

S
o

lu
ti
o

n
 B

lo
a

t
[n

o
d

e
s
]

10
5

10
6

10
7

10
8

10
9

10
10

10
11

Computational Effort [evaluations]

C
o

n
v
e

rg
e

n
c
e

 [
%

] No Seeding

Approximate Equation (Randimized Coefficients)

Building Block Operator (Randomized Coefficients)

Approximate Equation (Optimized Coefficients)

Building Block Mutation (Optimized Coefficients)

Shuffled Approximate Equation (Randimized Coefficients)

Shuffled Approximate Equation (Optimized Coefficients)

96

However, we can pick out some general trends.

The non-seeding method has the most bloated solutions, and the highest variance in

bloat – particularly near the end of the evolution. The building block seeding, in

comparison, has the least amount of bloat. This is surprising because the mutation

operator with the building blocks provides a means to create additional bloat.

Therefore, we suspect that the benefits of the seeding itself dominate this metric,

resulting in more exact results on the target solution.

Conclusions

We have explored the effects of incorporating expert knowledge into evolutionary

search. We considered a general expert knowledge case, where the expert knowledge

consists of an approximate solution or a related solution to the problem at hand. We

investigated six seeding methods for utilizing this type of prior expert knowledge:

seeding with the whole solution, the randomly shuffled solution, pieces of the

solution, and using random or optimized parameter coefficients in each of these three

methods.

Our results show that each seeding method can substantially improve the convergence

and fitness performance over not seeding. However, different methods scaled

differently based on the different traits of the target function.

We found that the building block mutation seeding method converged the fastest

among all methods and achieved the highest convergence rates on average for all

problems. It also maintained the highest convergence rates for the most complex target

equations, and was the most invariant to the error and quality of the seeding equation.

We also found that the seeding methods that used whole equations (no seeding, whole

97

equation seeding, and shuffled equation seeding) scaled the worst with the target

equation complexity. Additionally, the methods that used the optimized parameters

(rather than randomized parameters) of the seed equation were the most sensitive to

decreasing quality and accuracy of the seeding equation.

While many other possible types of expert knowledge may exist for genetic

programming, we conclude that in the case of seeding with a prior solution, it is best

to seed with the building blocks of the prior solution, and to randomize the parameter

coefficients before seeding.

98

CHAPTER 8. IDENTIFYING A DOMAIN ALPHABET

Summary

A key to the success of any genetic programming process is the use of a good alphabet

of atomic building blocks from which solutions can be evolved efficiently. An

alphabet that is too granular may generate an unnecessarily large search space; an

inappropriately coarse grained alphabet may bias or prevent finding optimal solutions.

Here we introduce a method that automatically identifies a small alphabet for a

problem domain. We process solutions on the complexity-optimality Pareto front of a

number of sample systems and identify terms that appear significantly more frequently

than merited by their size. These terms are then used as basic building blocks to solve

new problems in the same problem domain. We demonstrate this process on symbolic

regression for a variety of physics problems. The method discovers key terms relating

to concepts such as energy and momentum. A significant performance enhancement is

demonstrated when these terms are then used as basic building blocks on new physics

problems. We suggest that identifying a problem-specific alphabet is key to scaling

evolutionary methods to higher complexity systems.

Introduction

Critical to the success of any genetic programming system is the use of a good

alphabet of building blocks from which solutions can be evolved efficiently.

Typically, GP practitioners will choose generic building blocks based on prior domain

knowledge, but this choice may have profound performance implications. An alphabet

that is too granular may generate an unnecessarily large search space, while an

inappropriately coarse grained alphabet may bias or even prevent finding optimal

solutions. Here we investigate a method that identifies an alphabet appropriate for a

specific problem domain automatically.

99

(a
)

(b

)

 (

c)

F
ig

u
re

 8
.1

.
W

e
d

is
ti

ll
 t

h
e

co
m

m
o
n

 m
a
th

em
a
ti

ca
l

la
n

g
u

a
g
e

n
ee

d
ed

 t
o
 d

es
cr

ib
e

a
 g

ro
u

p
 o

f
sy

st
em

s
u

si
n

g
 s

y
m

b
o
li

c
re

g
re

ss
io

n

a
n

d

a
n

a
ly

si
s

o
f

th
ei

r
m

o
d

el

a
cc

u
ra

cy
/c

o
m

p
le

x
it

y

P

a
r
et

o

fr

o
n

ts
.

W
e

g
en

er
a

te

ex

p
er

im
en

ta
l

d
a
ta

fr

o
m

se

v
er

a
l

r
el

a
te

d

sy
st

em
s

su
ch

 a
s

sp
ri

n
g
 a

n
d

 m
a
ss

m

ec
h

a
n

ic
a
l

sy
st

em
s

(l
ef

t)
.

W
e

th
e
n

 u
se

 s
y
m

b
o
li

c
re

g
re

ss
io

n
 t

o
 f

in
d

 s
ev

er
a
l

a
cc

u
ra

te

m
o
d

el
s

a
t

v
a
ry

in
g
 c

o
m

p
le

x
it

y
 o

f
eq

u
a
ti

o
n

s
(m

id
d

le
).

 F
in

a
ll

y
,

w
e

d
is

co
m

p
o
se

 m
o
d

el
s

o
n

 t
h

es
e

fr
o
n

ts
 t

o
 i

n
d

iv
id

u
a
l

te
rm

s
a
n

d

b
u

il
d

in
g
 b

lo
ck

s.
 T

h
e

m
o
st

 f
re

q
u

en
tl

y
 u

se
d

 t
er

m
s

a
n

d
 b

u
il

d
in

g
 b

lo
ck

s
fo

rm
 a

n
 e

m
er

g
en

t
a
lp

h
a
b

et
 f

o
r

d
es

cr
ib

in
g
 m

o
d

el
s

o
f

th
is

 g
ro

u
p

 o
f

sy
st

em
s

(r
ig

h
t)

.

m

k

v

x

θ

ω

θ

ω

v

x

-4
0

-3
0

-2
0

-1
0

0

-1
.6

-1
.4

-1
.2-1

-0
.8

-0
.6

-0
.4

-0
.20

P
a
rs

im
o

n
y
 [
-n

o
d

e
s
]

Predictive Ability [-log-error]

-9
-8

-7
-6

-5
-4

-3
-2

-1
.6

-1
.4

-1
.2-1

-0
.8

-0
.6

-0
.4

-0
.20

P
a
rs

im
o

n
y
 [
-n

o
d

e
s
]

Predictive Ability [-log-error]

-2
0

-1
5

-1
0

-5
0

-1

-0
.8

-0
.6

-0
.4

-0
.20

P
a
rs

im
o

n
y
 [
-n

o
d

e
s
]

Predictive Ability [-log-error]

M
e

ch
an

ic
al

 A
lp

h
ab

et
Pa

re
to

 B
u

il
d

in
g

B
lo

ck
s

M
e

ch
an

ic
al

 S
ys

te
m

s

m
 g

 c
o

s(
θ

)

k
x

2
1 2m
 g

 xm
 v

2
1 2

m
 x

2
ω

2
1 2

a
n
g

u
la

r
ki

n
et

ic

en
er

g
y

li
n

ea
r

ki
n

et
ic

en
er

g
y

g
ra

vi
ta

ti
o

n
a
l

p
o

te
n

ti
a

l
en

er
g

y

sp
ri

n
g

 p
o

te
n

ti
a

l

en
er

g
y

g
ra

vi
ta

ti
o

n
a
l

p
o

te
n

ti
a

l
en

er
g

y

100

As an example, consider the problem of evolving mathematical expressions that model

data collected from an experimental system. If the system is mechanical, its

expressions are likely to contain various combinations of trigonometric terms or

kinetic energy terms. If the system is biological, then trigonometric terms are unlikely

to appear at all; instead, reaction rates and chemical gradient terms such as Hill

functions are likely to appear. The availability of appropriate building blocks greatly

simplifies both the search space for mathematical models of more complex systems, as

well as our conceptual understanding of the results (Holland 2000). A large portion of

scientific inquiry has been devoted to unraveling these building blocks by hand. Here,

we propose a computational method to explore and learn the language and rules of a

problem domain automatically.

Any mathematical equation, or mathematical model, can be decomposed into various

combinations of simpler building blocks, such as monomials or trigonometric terms.

All of these building blocks are candidates for a common mathematical alphabet of

other related systems. Therefore, to build a domain alphabet automatically, we must be

able to both generate physically meaningful mathematical models, and be able to

identify the nontrivial building blocks from these models.

We use symbolic regression and Pareto analysis to find physically meaningful

mathematical models from experimental data. We are interested in finding the most

accurate equation at different equation complexities; for example, finding the most

accurate model that uses no more than six mathematical operations. These equations

are special in the sense that they are both accurate and parsimonious (Kotanchek,

Smits et al. 2008) – often consisting of different approximations or elaborations of the

physical description of the system.

101

We break down the models found on the symbolic regression Pareto front into

individual terms and building blocks to form a list of candidates for a domain

alphabet. The building blocks are extracted by iterating through all sub-trees (sub-

expressions) of the equations. Many of these building blocks may not be useful for

other systems, such as terms that are overfit to the data or numerical coincidences.

Therefore, we need a way to discriminate among the various building blocks.

In order to determine which building blocks generalize to other systems in a scientific

domain, we need to compare models in two or more systems (Figure 8.1a). We repeat

the automated modeling and Pareto analysis to generate candidate building block lists

for multiple systems (Figure 8.1b). Finally, we calculate the frequencies that each

building block is used in a different system. By considering the frequency and the

complexity of a building block itself, we distill the nontrivial building blocks that are

the most ubiquitous to return the alphabet of the domain (Figure 8.1c).

Background

Genetic Building Blocks

Building blocks (Holland 1975; Goldberg 1989) are simple expressions which

comprise a more complicated solution. While building blocks are most commonly

associated with genetic algorithms, they can also refer to sub-trees in genetic programs

(O'Reilly 1994; Rosca 1995). For example in symbolic regression, the lowest level

building blocks are typically algebraic operations such as add, subtract, multiply, and

divide. However, we can also define higher order building blocks such as squaring and

multiplying with a constant.

We think of a solution, or equation, as being composed of various types of building

blocks (McPhee, Ohs et al. 2008). For example, if we think of an equation as a binary

102

parse tree of mathematical operations (Figure 8.2), the set of building blocks for that

particular equation contains all sub-trees (sub-expressions) of the tree (O'Reilly 1994).

Knowing the building blocks for a particular problem simplifies human conceptual

understanding of the problem (and related problems) by giving higher order meanings

and interpretations of the system‟s mechanics, morphology, or physics. For example,

rather than working with cosine operations and a set of variables, a cosine of an angle

building block could allow us to work instead with a more meaningful concept, such

as the vertical position of a swinging pendulum.

Knowing the basic building blocks of a system ahead of time also greatly simplifies

searching for or building a mathematical model to explain its behavior and

experimental data – such as done in symbolic regression. Rather than having to re-

derive common terms from scratch, over and over again for each model, the algorithm

could benefit from the coarser search of assembling higher order building blocks.

There are an infinite number of potential building blocks however.

f(x1,x2) = (x1 – 3) ·

sin(x2 + -7)

Building Blocks:

x1

x2

k

(x1 – k1)

(x2 + k2)

sin(x2 + k2)

x1·sin(x2 + k2)

k1·sin(x2 + k2)

(a) (b) (c)

Figure 8.2. Example equation (a), its binary parse tree (b), and all possible

building blocks of the equation (c). Building blocks are common sub-expressions

or internal components of a system that simplify building a full mathematical

model.

103

Domain Alphabet

While there are an infinite number of possible building blocks for any system, we

define a domain alphabet as the set of building blocks specific to a particular problem,

domain, or class of systems that generalize to many similar systems. Domain alphabet

building blocks are typically physically meaningful, and are useful for building new

models.

Determining the most useful building blocks can be considered to fall under the

“credit assignment” problem in machine learning. The credit assignment problem is

the task of deciding how to score or weight the importance of individual components

of a model when only given entire systems (Grefenstette 1988).

One difficulty to detecting meaningful building blocks is that some building blocks

may arise by chance due to overfitting the data, or other numerical coincidences. For

example, consider the following equations for two different systems:

f = x
2
 cos(x – 1.01) + 2 x

3

g = x
2
 cos(x – 1.02) – sin(x) + x

We would like to be able to identify a term such as x
2
 cos(x – 1) as a building block

given only f, g, and x values over time (we don‟t know the equations in advance) –

while rejecting others that are less commonly generated during modeling. The more

systems we look at, the less and less likely such a complex building block we be

rediscovered repeatedly by chance during evolution. Therefore, finding large repeated

building blocks is a strong indication the building block is a nontrivial building block

useful throughout the problem domain.

With such information on useful physical terms, the algorithm could reuse them for

104

analyzing future systems, bootstrapping its knowledge into higher complexity

systems. Rather than needing to rediscover common features repeatedly, the algorithm

can simplify the problem to the assembly of solutions within the domain alphabet.

Pareto Front

When generating potential building blocks, we consider the Pareto front (Fonseca and

Fleming 1993; Fonseca and Fleming 1995) produced by symbolic regression which

represents the tradeoff between a model‟s complexity and its maximum predictive

ability for the experimental data. We define parsimony as the inverse of number of

terms in the expression and the predictive accuracy as the error on unseen data.

If we consider the relationship between equation complexity and accuracy of fitting

the experimental data, there are there two qualitative extremes: extremely complex

equations with near perfect accuracy, and simple models with poor accuracy.

Equations in-between these two extremes are the most difficult to identify, but their

structure tends to be the most meaningful (Kotanchek, Smits et al. 2008).

At certain minimum complexities, the predictive ability tends to increase substantially

and then plateau. In other words, there is often a relatively simple model or equation

that captures some intrinsic relationships of the system (but perhaps not perfectly). By

parsimony arguments, we can reason simpler equations to likely be approximations

and more complex equations to be more precise refinements and elaborations of the

exact model or overfit solutions to the data.

Though we can‟t know with certainty what the exact physical model is, it is likely to

exist at least partially on this Pareto front. Therefore, when detecting what building

blocks may form a general physical alphabet, we consider all building blocks on the

Pareto front as candidates for inclusion in the alphabet.

105

Symbolic Regression

See the description in the section "Symbolic Regression," on page 4.

Alphabet Algorithm

Our goal is to identify the primary mathematical building blocks of a particular

problem or domain of systems, thereby building a domain alphabet automatically from

experimentally collected data. Our primary challenge is distilling the nontrivial

building blocks that generalize to other physical systems for inclusion in the domain

alphabet.

Our method has three main steps: (1) finding several mathematical models for two or

more related systems, (2) decomposing these models into their constituent building

blocks, and (3) identifying the most useful and meaningful building blocks for

inclusion in the domain alphabet.

Modeling Groups of Systems

Our first task is to find several system models that define many candidate building

blocks. We collect data from several related physical systems (Figure 8.1a) by

observing their behavior and dynamics over time. The group of systems should

represent qualitatively different dynamics within the same problem domain.

Next, we employ a symbolic regression algorithm (Schmidt and Lipson 2008) to

generate several hypothesized mathematical models of each system for varying model

complexities.

The output of our symbolic regression algorithm is a small set of equations that lie on

the equation accuracy and equation complexity Pareto front for each particular system

(Figure 8.1b). The equations on this front are nontrivial in the sense that they represent

106

the maximum accuracy a model of a given size or complexity can achieve to explain

the system‟s data. The equations on the Pareto front are often different levels of

approximation or elaborations of the exact physical system

Extracting Building Blocks

Now that we have several equations modeling each system, we decompose them into

building blocks. For each equation found on each system‟s Pareto front, we iterate

through every sub-tree (or sub-expression) of the equation, adding the sub-tree to our

list of potential building blocks (Figure 8.2).

During this process, we abstract away the bulk constants found in each equation and

sub-expression to symbolic parameters. For example, we would convert a sub-

expression such as x + 1.427·cos(θ) to k1·x + k2·cos(θ). This allows us to later match

building blocks between different systems that may only vary by their embedded

coefficients.

Additionally, we abstract away variable types based on their units. For example, we

consider variables of angles to be equivalent to variables of lengths, but not equivalent

to velocities. This allows us later to match building blocks between systems with

differences in variable names.

Distilling the Alphabet

We now have a long list of all building blocks found for each system and must distill

this list down to a domain alphabet. We need to identify which are the nontrivial and

meaningful building blocks within this list.

If a particular building block exists repeatedly on the Pareto fronts of other systems, it

is a strong indication that it is a meaningful building block for the domain alphabet. At

107

the very least, the building block is certainly useful for forming a parsimonious model

in more than one system. This observation forms the basis for identifying the domain

alphabet.

If a building block was simply a result of overfitting to the data, it is unlikely to be

repeated on the Pareto front of other systems or different datasets because overfit

solutions are very sensitive to perturbations and noise in the data. Similarly, if the

building block is the result of a numerical coincidence for modeling a particular

dataset, it is unlikely that the same coincidence exists in other systems and in their

datasets.

Therefore, we can use the frequency that a building block is used on the Pareto fronts

as a principle for its generality and importance for a domain of systems. To do this we

iterate through all building blocks and count their total occurrences on the Pareto

fronts of every other system, and number of times each building block was matched by

another.

We form the initial alphabet by rejecting all building blocks that have zero frequency

on the Pareto fronts of the other systems.

The second criterion we can use to gauge the importance of a candidate building block

is its complexity. Very complex building blocks are much less likely to reoccur by

chance or numerical coincidence than simple building blocks. Therefore, we also

consider the complexity of the building block when adding it to the domain alphabet.

After calculating the frequencies and complexities of all potential building blocks we

examine them graphically to verify the results. We plot each building block as a point

on a second type of Pareto space: the building block frequency versus the building

108

block complexity. As we discovery later, the building blocks on this chart that are both

complex and frequently used comprise the physically meaningful domain alphabet.

Experiments

The Mechanical Systems

We explore the alphabet building approach using a few simple mechanical systems: a

harmonic oscillator, a simple pendulum, and a 2D spring pendulum. These systems are

known to have well-defined mathematical models, allowing us to generate data and

verify our results. Schematic diagrams of these systems are shown in Figure 8.3.

The harmonic oscillator (Figure 8.3) is a simple conservative system with one degree

of freedom. The variables are the mass‟s vertical position over time and vertical

velocity over time. The symbolic regression algorithm identifies several equations

modeling the system‟s kinetic and potential energy over time on the

accuracy/complexity Pareto front, including the system‟s exact Hamiltonian equation.

The simple pendulum (Figure 8.3) is a similar system, but with nonlinear

trigonometric terms. The mass‟s position is measured by the pendulum‟s angle, and

the velocity is the pendulum‟s angular velocity. Symbolic regression identifies several

equations modeling the angular energies over time.

The third system is the more complex 2D spring pendulum (Figure 8.3). Here, the

system has two degrees of freedom, two positions, and two velocities measured over

time. The dynamics of this systems are more complex, but still tractable with the

symbolic regression algorithm.

109

The Pareto front of these systems (shown in Figure 8.3) summarizes the equations that

maximize parsimony and accuracy for modeling the experimental data. The terms in

the equations are in this sense useful, and may comprise a common physical language.

System Data Pareto Front of Models

Figure 8.3. Summary of the mechanical systems, the collected data of their

dynamics, and the resulting models found using symbolic regression on the

equation accuracy and complexity Pareto front. Each system was simulated

numerically. The symbolic regression algorithm generates a small set of

equations for each system. This set is a Pareto front, showing the most accurate

equation found for different sizes (complexities) of equations. These equations

are used to distill a common mathematical alphabet of building blocks for

modeling mass, spring, and pendulum mechanical devices.

m

k

v

x

0 2 4 6 8
-4

-2

0

2

4

6

Time [sec]

x [m]

v [m/s]

-20 -15 -10 -5 0

-1

-0.8

-0.6

-0.4

-0.2

0

Parsimony [-nodes]

P
re

d
ic

ti
v
e

 A
b

ili
ty

 [
-l
o

g
-e

rr
o

r]

x + v

k x + v

k x + v2

cos(x) + sin(cos(k v))

k2 x + k2 x v2 – k1 x3

-k1 x + k2 x2 – k3 v2

k1 v2 + sin(k2 x)

θ

ω

0 2 4 6 8 10
-5

0

5

Time [sec]

 [rad]

 [rad/s]

-9 -8 -7 -6 -5 -4 -3 -2
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Parsimony [-nodes]

P
re

d
ic

ti
v
e

 A
b

ili
ty

 [
-l
o

g
-e

rr
o

r]

ω2 + k cos(θ)

ω2 cos(θ)

ω sin(cos(θ))

ω cos(θ)
θ + ω

θ

ω

v

x

5 10 15 20 25
-15

-10

-5

0

5

10

Time [sec]

 [rad]

x [m]

 [rad/s]

v [m/s]

-40 -30 -20 -10 0

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Parsimony [-nodes]

P
re

d
ic

ti
v
e

 A
b

ili
ty

 [
-l
o

g
-e

rr
o

r]

k1 x – k2 v2 – k3 x2 + k4 x cos(θ) – k5 ω2 – k6 x2 ω2

θ + ω x + cos(v)

θ + x – k ω v

cos(θ) – k1 x + k2 v + cos(–k3 x ω)

cos(θ) + k1 x + v2 – k2 cos(θ) + k3 x ω2

k1 x2 + k2 v2 + x2 ω2 – k3 x cos(θ)

k1 x – k2 v2 – k3 x2 + k4 x cos(θ) – k5 x2 ω2

110

We simulated these systems numerically by integrating their differential equations.

We save the position coordinates and the velocities of each component of the system

as the experimental data for use in the symbolic regression algorithm (in Figure 8.3).

Experimental Setup

Our experiments used the fitness prediction algorithm described in (Schmidt and

Lipson 2005; Schmidt and Lipson 2006; Schmidt and Lipson 2008) to search the

space of symbolic equations. The selection method was deterministic crowding

(Mahfoud 1995), with 1% mutation probability and 75% crossover probability. The

encoding is an acyclic graph of 64 operations/nodes (Schmidt and Lipson 2007) and

used single-point crossover. The operation set allowed addition, subtraction, multiply,

sine, and cosine operations.

We allowed solutions to use up to 64 nodes, each possibly representing five types of

mathematical operations, two to four variables, or a parameter constant. Ignoring the

possible real values of coefficients, this space contains roughly 10
54

 parameterized

genotypes.

We distributed the symbolic regression evolution over 20 quad core computers (80

total cores) (Christian, Marc et al. 2003; Francisco, Giandomenico et al. 2005). The

distribution technique partitions the total population of solutions into small local

populations residing on each computer (or core). Periodically (every 1,000 generations

in our experiments), the total population is randomly shuffled solutions across all

computers to better simulate a single large population.

The fitness predictor population contains 1280 predictors, distributed over 80 cores.

The fitness predictor subset size is 128 indices to the full training data set. Predictors

were evolved using deterministic crowding, with 10% mutation and 50% crossover.

111

Our fitness calculation rewards equations for modeling the systems kinetic and

potential energies as described in (Schmidt and Lipson 2009) as measured over the

dataset. The predicted fitness values only calculate over the smaller subset of a fitness

predictor rather than the entire data set.

Results

A Mechanical Alphabet

After building the equation accuracy/complexity Pareto fronts for each system using

symbolic regression and decomposing the building blocks for each equation in each

system, we plot the frequency of each building block versus its complexity (Figure

8.4).

Figure 8.4. The building blocks found for the domain alphabet based on the

harmonic oscillator, simple pendulum, and 2D spring pendulum Pareto front

models. The most frequent and complex building blocks correspond to the kinetic

energy terms for moving masses and potential energy terms for springs and

pendula. Building blocks with zero frequency on the Pareto fronts of other

systems are omitting and not included in the alphabet.

0 1 2 3 4 5 6 7
10

-3

10
-2

10
-1

10
0

Term Complexity [nodes]

F
re

q
u

e
n

c
y
 o

f
A

p
p

e
a

ra
n

c
e

 (
%

)

k x

k v

k v2

k x2

k cos(θ)

k cos(v)

k sin(θ)

k1 x + k2 v

k v cos(θ)

k1 x + k2 v2

k1 cos(θ) + k2 v2

112

We can see that single variable terms are the most common building blocks, as well as

being the simplest possible building blocks. Not shown in Figure 8.4 are the numerous

build blocks that were only found within a single system having zero frequency.

Moving to the next most frequent building blocks, we find cos(θ) and k x2. These are

pendulum and spring potential energies respectively.

Interestingly, the higher complexity building blocks in Figure 8.4 are the result of

matches between inexact equations between the different systems. For example,

k1cos(θ) + k2v
2
 is an exact building block for the simple pendulum system, but also an

approximate solution to the harmonic oscillator.

There are two building blocks in Figure 8.4 which are not exact building blocks for

any of the systems, though they are potentially useful approximate building blocks;

namely, k cos(v) and k sin(θ). The k cos(v) term approximates a kinetic energy and the

k sin(θ) term approximates a single variable term. These terms are both low

complexity and low frequency however. This hints that these are approximate building

blocks and we could elect to reject them after manual inspection.

This result suggests that the terms that are both frequently used and complex tend to

be more physically meaningful for inclusion in the domain alphabet, such as

trigonometric terms representing potential energies or squared velocities representing

kinetic energies.

Utilizing the Alphabet

One application of the domain alphabet is to simplify the search for forming models of

more complex systems. We demonstrate this idea by using an alphabet formed from

just the harmonic oscillator and simple pendulum systems to find a model of the more

113

complex 2D spring pendulum system.

If we repeat the Pareto building block analysis, but now only with the harmonic

oscillator and simple pendulum building blocks we obtain the building blocks shown

in Figure 8.5a.

There are many ways we could utilize these building blocks in the symbolic regression

algorithm. We could introduce them as new functions in the operator set.

Alternatively, we could seed the initial population using random combinations of these

building blocks.

We chose to introduce a mutation operator that could mutate a sub-expression of an

evolving equation to be a random building block from Figure 8.5a. The constant terms

in each building block, k’s, were set to normally distributed random constants at the

mutation event. This approach allows the building blocks to be consistently introduced

during evolution, but also adapted if necessary. In the case that an alphabet building

block is approximate, the evolution can still benefit from using it early on, and adapt

its structure later to fit the exact system model.

There are likely much better methods for utilizing the alphabet building blocks in

symbolic regression as well as other types of expert knowledge. For the scope of this

chapter, we want to show the proof of concept using a simple modification to the

program.

Figure 8.5b compares the symbolic regression of the 2D spring pendulum over time

with and without the building block alphabet obtained from the harmonic oscillator

and simple pendulum. The fitness is shown versus the number of function evaluations,

averaged over ten independent trials.

114

Figure 8.5. The impact of using a domain alphabet obtained from simple systems,

the harmonic oscillator and simple pendulum, to find the model of a more

complex system, the 2D spring pendulum. The alphabet in (top) shows the

common building blocks found from the Pareto analysis of only the harmonic

oscillator and simple pendulum systems. Allowing symbolic regression to use

these terms substantially accelerates the modeling of the more complex 2D spring

pendulum system (bottom). Error bars show the first standard error about the

mean over ten independent trials.

0 1 2 3 4 5 6 7
10

-2

10
-1

10
0

Term Complexity [nodes]

F
re

q
u

e
n

c
y
 o

f
A

p
p

e
a

ra
n

c
e

 (
%

)
k cos(x)

k x

k v

k v2

k1 x + k2 v
k1 cos(x) + k2 v2

10
6

10
7

10
8

10
9

10
10

10
11

10
12

-2

-1.5

-1

-0.5

0

Computational Effort [evaluations]

F
it
n

e
s
s
 [
-e

rr
o

r]

Mean
Convergence

Times

2∙10115∙1010

4

115

Using the alphabet substantially improves performance over time, converging sooner

onto the exact 2D spring pendulum model. The time to convergence is four times

faster using the alphabet building blocks.

This result shows that an alphabet obtained from two simpler systems can be used to

accelerate the modeling of a more complex system using symbolic regression.

Conclusions

Identifying a mathematical alphabet is a means to organize and learn the rules and

language of a particular scientific field or domain. Alphabets are sets of mathematical

building blocks that represent common terms and calculations that pervade different

phenomena. Identifying these building blocks helps to generalize our understanding of

different systems, and potentially simply the modeling of future complex systems.

We proposed an automated method to distill the mathematical alphabet directly from

experimental data using symbolic regression. The method finds a set of equations for

multiple related systems on the accuracy/complexity Pareto front, decomposes these

equations into building blocks, and then calculates the frequencies these building

blocks occur on the Pareto fronts of the other systems.

Our results suggested that building blocks that are both frequently used and complex

tend to be the most physically meaningful to the class of systems; such as spring

potentials and kinetic energies. Other building blocks in the resulting alphabet were

potentially useful approximations common across multiple systems, such as small

angle approximations, but were the least complex and least frequently used.

Finally, we used an alphabet obtained automatically from the harmonic oscillator and

simple pendulum systems to accelerate the symbolic regression of the more complex

116

2D spring pendulum system. The regression using the alphabet found the exact model

in one fourth of the computational effort compared to the regression from scratch,

suggesting an automated method for scaling into higher and higher complexity

systems.

117

SECTION II – MODEL REPRESENTATIONS

CHAPTER 9. DYNAMICAL SYSTEMS

Summary

This chapter describes a new algorithm for automatically reverse-engineering

symbolic analytical models of dynamical systems directly from experimental

observations, for the purpose of modeling, control and exploratory analysis. The new

algorithm builds on genetic programming techniques used in symbolic regression to

infer differential equations from time series data. We introduce the core algorithm for

building coherent mathematical models efficiently and then describe its application to

system identification. The method is demonstrated on a number of nonlinear

mechanical and biological systems.

Introduction

Many branches of science and engineering represent dynamical systems

mathematically as sets of differential equations derived laboriously from basic

principles and through experimentation. Until recently, deriving such models has

relied on human interpretation or simply fitting data to existing models. In contrast,

system identification methods can be used to generate models of a dynamical system

automatically from observations. Most system identification methods today are limited

to linear systems, or to some classes of nonlinear systems provided the underlying

model is known a-priori. Non-parametric methods such as Neural Networks can model

nonlinear systems without a preconceived model, but provide little insight into the

target system‟s internal structure. There is a growing need for methods that will be

able to generate symbolic models of nonlinear systems without relying heavily on

prior knowledge.

118

Our method uses genetic programming to assemble the exact differential equations

that describe an unknown system from scratch (Schmidt and Lipson 2006; Schmidt

and Lipson 2006; Schmidt and Lipson 2008). We represent differential equations as an

acyclic graph of primitive operations - such as abs, exp, and log, or binary operations

such as add, multiply, and divide. The leaves of the graph can represent state-variables

of the system or parameter coefficients. We then evolve initially random equations -

mutating, recombining, and selecting the best fit equations - until a dominant equation

emerges explaining all significant variation in the observed data.

Our algorithm scales favorably into significantly higher-order systems and higher-

complexity equations than previous research by coevolving lightweight fitness

approximations (Schmidt and Lipson 2008). These approximations adapt to the current

population of differential equations in order to predict how well future solutions will

explain the data. While these approximations accelerate learning, our results show

they also emphasize nonlinear features of the system and mediate solution bloat -

biasing the equations to explain basic features before proposing higher-order terms. In

ongoing research, we are exploring modeling stochastic systems where manual

methods to model and control are most overwhelmed (Schmidt and Lipson 2007).

In the following sections, we provide an overview of our system identification method

and describe its adaptation to inferring dynamical systems. We then show new results

on a number of classical nonlinear mechanical and biological systems and discuss

further applications.

Background

Symbolic Regression

See the description in the section “Symbolic Regression” on page 4.

119

Fitness prediction

Fitness prediction is a new technique to measure how well different mathematical

expressions explain experimental data more efficiently and to mediate the pressure to

fit multiple aspects of the data (Schmidt and Lipson 2006; Schmidt and Lipson 2008).

Fitness predictors only measure fit on a small subset of the data, allowing the

algorithm to search solutions faster and build intermediate expressions more easily.

However, the data subset is not static: Predictors co-adapt with the solutions to

maintain an accurate metric for the fit to the entire data set, so that solutions still move

toward a complete model.

See the description in the section “Sub-sample Fitness Predictors” on page 24 for

greater detail.

Inferring Dynamical Systems

One form of a mathematical description of a physical or biological system is a set of

Table 9.1. Fitness prediction algorithm parameters

Solution Population Size 64 (x 8)

Selection Method Deterministic Crowding

P(mutation) 0.05

P(crossover) 0.75

Solution Encoding Operation List (graph)

Max Graph Size 32 nodes

Inputs 7

Operator Set (+, -, *, /, sin, cos)

Terminal Set 2-dimensional (e.g. x, y)

Crossover variable position, single point

Fitness Predictor Sample Size 16

120

ordinary differential equations (ODEs) that describe the time-derivatives of physical

positions or chemical concentrations in the system as a function of its current state.

Unlike Bayesian networks and information-theoretic approaches, ODEs are

deterministic models that describe causal relationships (Bansal, Belcastro et al. 2007)

including feedback loops. Terms in the differential equations can correspond to forces

such as damping or reactions occurring in the system based on their connectivity.

Mathematical models can also be used to predict the behavior of the system in

different conditions – such as attracting basins and bifurcations – predictions that are

not available in statistical models.

Reverse-engineering ODEs is the task of finding both the correct functional form as

well as the parameter constants to fit experimentally collected data. In contrast, many

other methods rely on preexisting models to choose a functional form and then use an

optimization technique only to fit its parameters (Gardner, di Bernardo et al. 2003;

Tegner, Yeung et al. 2003; di Bernardo, Thompson et al. 2005; Bansal, Gatta et al.

2006; Bonneau, Reiss et al. 2006; van Someren, Vaes et al. 2006). However if prior

knowledge is limited, it may not be possible to model the system mathematically

beyond simple linear models with standard methods (X. Wen 1999). In symbolic

regression, both the form and the parameters of the mathematical expression are

searched simultaneously in the space of possible algebraic expressions.

Our goal is to algorithmically find an exact mathematical model of some unknown

dynamical system. In a system of N state-variables that we observe experimentally, we

must identify N (possibly nonlinear) differential equations.

Experimental Data

We can collect data by observing its behavior in time experimentally. We conduct

121

experiments in silico by integrating a known system model from four initial conditions

and observing it for ten seconds. These initial conditions are chosen randomly about

its stable nodes or limit cycles.

Handling Noise

The results shown here were obtained without noise, but in other work we have

experimented with noisy data sources. There are various methods for handling noisy

time-series data – from filtering and smoothing to spline and polynomial fitting.

However, system noise is particularly problematic when calculating numerical

derivatives. We use a Loess Fitting (Cleveland and Devlin 1988) both to smooth the

data and to calculate time-derivatives of potentially noisy experimental data. We have

found empirically this allows yields accurate derivative estimates up to approximately

20% noise (signal to noise). Another approach to handling system noise is to model

noise sources directly (Schmidt and Lipson 2007) by incorporating random variables

into the mathematical model.

Estimating Numerical Derivatives

Our approach to finding the differential equations is to measure error directly on the

time derivative of each state numerically. There are many methods for numerical

differentiation; we have found locally-weighted polynomial fitting (Cleveland and

Devlin 1988) to give the most accurate results. At each data point we fit a locally-

weighted polynomial, and approximate the derivate numerically as the derivative of

the polynomial.

Our fitness function for differential equations then becomes:

fitness(s) =
1

1
()

n
i

i

i i

x
s x

n t







122

where s(xi) is the candidate solution (a differential equation) evaluated at xi and x/t

is the numerically estimated derivative calculated from the data.

There are two key reasons for measuring error on the derivative values rather than

their integrals (the measured time-series values). First, the derivative is a lower level

comparison and more invariant to small perturbations to the exact solution. For

example, f’(x) = sin(x)+0.1 may be extremely similar to f’(x) = sin(x), but their

integrals diverge linearly. Consequently, the fitness landscape is more rugged.

Secondly, and most importantly, measuring error on derivative values rather than

integrating allows us to evaluate the fitness of candidate solutions without integrating

them. Instead, we can perform point evaluations at arbitrary points within the training

data, leading to significantly faster evaluation.

To summarize, we calculate the numerical time-derivative from the data and then use

symbolic regression to find a differential equation for each variable individually. We

then assemble the final model at the end when we have accurate differential equations

for each state-variable.

Results and Discussion

We chose seven two-dimensional dynamical systems that are well studied to

demonstrate system identification of various physical and biological models: The

glider, bacterial respiration, predator prey, bar magnet, shear flow, van der Pol, and

Lotka-Volterra models (Strogatz 1994). These systems exhibit many remarkable

dynamics (e.g. bi-stability, hysteresis, limit cycles) and are frequently used to

understand behavior of other related systems.

123

For each system, we generate time-series data by integrating the known model over

ten seconds, from four different initial conditions. We record 100 data points per

integration for a total of 400 data measurements. Initial conditions were chosen

Table 9.2. Inferring various physical and biological dynamical models

 System Inferred Time
Point
Evals

Glider

 20.05 sin v v      20.0499999 sinv v     10.219
sec

1.03
B

 cos /v v     1 cos /v v     5.062
sec

0.50
B

Bacterial
Respiration

2
20

1 0.5

x y
x x

x


  

 

1.999

19.994 0.998
 1.995 /

y
x x

x x


   



75.047
sec

7.59
B

2
10

1 0.5

x y
y

x


 

 

 2.00001
10

 2.00006 /

y
y

x x


 



 30.547
sec

3.09
B

Predator-
Prey

4
1

y
x x x

x

 
    

 

 2 1.003
4.002

1.003

x y
x x x

x

 
   



 81.718
sec

8.26
B

0.075
1

x
y y y

x

 
    

 

2 30.772

0.075
30.772 30.772

x y
y y

x

 
   

 

290.57
8 sec

29.38
B

Bar
Magnets

   1 1 2 10.5 sin sin          1 1 2 1sin 0.5 sin        11.75
sec

1.19
B

   2 2 1 20.5 sin sin          2 2 1 2sin 0.5 sin         15.609
sec

1.58
B

Shear Flow

cot cos  
cos

cos
sin


 


  3.562

sec
0.36

B

2 2(cos 0.1 sin) sin       0.099 sin 0.9 sin cos cos       

33.859
sec

3.42
B

van der Pol

31
10

3
x y x x

  
      

  

39.999 9.999 3.333x x y x     

25.547
sec

2.58
B

1

10
y x   0.1y x   0.859

sec
0.09

B

Lotka-
Volterra

23 2x x x y x      23 2x x x x y      4.25
sec

0.43
B

22y y x y y     22 y y y x y     1.063
sec

0.11
B

124

randomly near each system‟s stable nodes or limit cycles.

We distributed the symbolic regression evolution over 4 computers and eight total

logical processors using the island model (Francisco, Marco et al. 2003). Every 100

generations, we reshuffle all solutions across all populations. Table 9.1 shows specific

settings for the fitness prediction algorithm.

With eight island populations, successful convergence is quite high for these systems.

We ran each system once and recorded the time before convergence and the total

number of point evaluations (the number of times any function is evaluated in any data

point). Results are shown in Table 9.2.

The time to convergence is on the order of one to five minutes over all systems. Most

of the differential equations converge in less than 30 seconds. The most difficult

equation, dy/dt in the predator-prey model, took just under approximately 5 minutes.

The time to find each differential equation depends primarily on the complexity of its

expression and the subtleties of its nonlinearities. For example, in the predator-prey

equation, most time is spent finding the (1+x) denominator.

It is important to note that the algebraic form and parameter values may not exactly

match the known model. For example, in the shear flow mode, the algorithm finds a

trigonometric transformation of sin
2
+a*cos

2
 to a–(1–a)*cos

2
, which is equivalent.

Additionally, while the known models use precise parameter constants, such as 0.05,

the algorithm usually finds close approximations to these constants, such as 0.4999.

We could reduce this by running nonlinear regression on the final model to polish off

its parameters. Some amount of inaccuracy in the parameters may however be the

result of artifacts in the numerical differentiation.

125

Conclusions

We have proposed a new method for building mathematical models of dynamical

systems automatically. The modeling process utilizes symbolic regression using

fitness prediction to build differential equations from experimental data.

Symbolic regression with coevolved fitness prediction allows the algorithm to find

coherent models reliably in multi-dimensional systems. Fitness predictors specify a

small subset of the total training data, effectively focusing regression on a smaller

number of features at any given time. In parallel, fitness predictors coevolve to

maintain accurate fitness predictions with respect to the cumulative dataset mediate

solutions drifting too far away from objective gradient. In this fashion, predictors both

reduce computational effort allowing the algorithm to find solutions faster and

allowing regression to explore more diverse function-space.

Applying this algorithm to system identification allowed us to infer a number of

nonlinear physical and biological systems directly from data.

126

CHAPTER 10. IMPLICIT EQUATIONS

Summary

Traditional Symbolic Regression applications are a form of supervised learning, where

a label y is provided for every x and an explicit symbolic relationship of the form y =

f(x) is sought. This chapter explores the use of symbolic regression to perform

unsupervised learning by searching for implicit relationships of the form f(x,y) = 0.

Implicit relationships are more general and more expressive than explicit equations in

that they can also represent closed surfaces, as well as continuous and discontinuous

multi-dimensional manifolds. However, searching these types of equations is

particularly challenging because an error metric is difficult to define. We studied

several direct and indirect techniques, and present a successful method based on

implicit derivatives. Our experiments identified implicit relationships found in a

variety of datasets, such as equations of circles, elliptic curves, spheres, equations of

motion, and energy manifolds.

Introduction

An implicit equation represents a mathematical relationship where the dependent

variable is not given explicitly. For example, an implicit function could be given in the

form f(x,y) = 0, whereas an explicit function would be given in the form y = f(x).

Implicit equations can be more expressive and are often used to concisely define

complex surfaces or functions with multiple outputs. Consider, for example, the

equation of a circle: It could be represented implicitly as x
2

+ y
2

- r
2

= 0, explicitly

using a multi-output square root function as y = sqrt(r
2

- x
2
), or as a parametric

equation of the form x = cos(t), y = sin(t), t = 0..2π. Our goal is to automatically infer

implicit equations to model experimental data.

127

Regressing implicit relationships can be thought of as a form of unsupervised learning.

Ordinarily, Symbolic Regression is used for supervised learning, where a label y is

provided for every input vector x and a symbolic relationship of the form y = f(x) is

sought. When seeking an implicit relationship of the form f(x,y) = 0, we are looking

for any pattern that uniquely identifies the points in the dataset, and excludes all other

points in space.

Like clustering methods and other data mining approaches (McConaghy, Palmers et

al. 2009), unsupervised learning has the potential to find unexpected relationships in

the data (Mackin and Tazaki 2000; De Falco, Tarantino et al. 2002; Hetland and

Sætrom 2005). For example, unsupervised learning can create a model from positive

examples only, and then use that model to detect outliers that do not belong to the

original set. This is important in many practical applications where negative examples

are difficult or costly to come by. For example, when training a system to monitor a jet

engine, a learning algorithm will typically be trained using sensor data from intact

operation only, but will be required to alert an operator if abnormal sensor data is

detected.

Implicit equations can also provide deeper insight into the mechanism underlying an

observed phenomenon by identifying conservations. For example, when observing a

pendulum, an explicit equation can be used to fit the data and thus predict the

pendulum's future state based on its current and past states. In contrast, searching for

implicit relationships can lead to finding equations of invariants, such as conservation

of energy or momentum (Schmidt and Lipson 2009). These conservations can also be

used to make predictions, but provide more insight into the underlying principles,

beyond prediction.

128

While symbolic regression has been used to find explicit (Bautu, Bautu et al. 2005;

Duffy, Engle-Warnick et al. 2007; Riolo, Soule et al. 2007) and differential equations

(Bongard and Lipson 2007), it is not immediately obvious how it could be used to

search for implicit equations (Figure 10.1). Symbolic regression ordinarily models and

predicts a specific signal or value. In implicit equations, the equation always evaluates

to zero over the dataset.

A key challenge is that there are an infinite number of valid implicit equations for any

given dataset. For example, sin
2
(x) + cos

2
(x) - 1 is exactly zero for all points in the

dataset, but it is also exactly zero for all points not in the dataset. There are also an

infinite number of relationships that are arbitrarily close to zero, such as 1/(1000 + x
2
).

In order to utilize symbolic regression, we need to devise a fitness function that avoids

these trivial solutions.

We experimented with a number of fitness functions for searching invariant equations.

We explored minimizing the variance of the function from zero over the dataset while

Figure 10.1. Many datasets exist that do not have explicit dependent variables,

such as an elliptic curve shown here. Instead, this type of data must be modeled

with an implicit equation. We explore using symbolic regression to infer these

types of models.

129

penalizing trivial equations that are zero everywhere, and numerically solving the

implicit equation and minimizing its distance to each data point. Due to the difficulty

of trivial solutions and susceptibility to local optima, none of these direct methods

worked well.

Based on these results, we looked for a different metric that would relate an implicit

equation to the dataset. Rather than attempting to model the data points themselves or

the zeros of the target function, we decided to look at the gradients of the data. We

found that we could derive implicit derivatives of the data variables using an arbitrary

implicit equation, and then compare the two. Instead of fitting data points directly, this

approach fits line segments (partial derivatives) derived from the data to the line

segments (implicit derivatives) of the implicit function.

To test this approach, we experimented on modeling a number of implicit systems –

ranging from equations of circles to equations of motion. We found this to be a

reliable method for all these systems, whereas the other methods failed to find even

the equation of the circle with similar computational effort.

In the remaining sections, we describe the direct methods in more detail, our proposed

fitness for arbitrary implicit equations, the experiments and results on modeling

implicit systems, and finally, concluding remarks.

The Implicit Equation Problem

The need to search for implicit equations arises when we do not know or do not have

an explicit dependent variable in a dataset. Instead, we are given a large vector of data

points and our goal is to find an equation that holds true for all of these points. For

example, an equation that when solved numerically reproduces the points in the

dataset.

130

An implicit equation has the form:

f(x,y,...) = 0

where x, y, etc. are independent variables of the system. Implicit equations in this form

may or may not have an explicit equation in general (it may not be possible to solve

for any single variable). However, these equations can be solved numerically or

graphically when the equation is known.

Our task is to identify expression f(x,y,...) that satisfies the uniquely for all points in

the dataset.

Naive Methods

It might be tempting to search for equations that evaluate to zero for all data points in

the dataset. A simple fitness function for this would be second moment or squared-

error from zero. The problem with this naive method is quickly obvious however:

evolution almost immediately converges to a trivial solution such as x – x = 0 or x +

4.56 - y x/y, etc. These trivial solutions are zero everywhere and are not particularly

interesting or useful for analyzing the data.

We tried a slight modification of this method by adding a test for trivial solutions such

as 0 = 0. For each candidate equation, we would perform a quick symbolic

simplification to see if the result reduces to zero. Unfortunately, the evolution always

converged to more complex identities equal to zero than we could add to our

simplification test. For example, (x - 1) - (x
2
 – 2 x + 1)/(x - 1) and -sin

2
(x) - cos

2
(x) + 1,

or more complex elaborations of zero identities.

A third method we tried was rewarding the function for being non-zero away from the

points in the dataset. In this circumstance, evolution still converged on trivial solutions

131

that were arbitrarily close to zero over most of the data, but still nonzero away from

the data. For example, solutions such as 1/(1 + x
2
), can become arbitrarily close

implicit equations over the data, but are still trivial.

Finally, we decided to try numerically solving the candidate implicit equations and

comparing with the data points. This method is extremely slow as the numerical

solution requires an iterative procedure. It also has serious evolvability problems.

Many candidate equations do not have implicit solutions (for example, f(x) = 1/x
2

never crosses zero) which makes finding the numerical solution non-convergent.

We modified this procedure slightly to find the local absolute valued minimum of a

candidate equation around each point in the data set, summing the distance from the

data points to their minima on the implicit function and the distance of the minima

from zero. In the case that there is no local minimum for a data point, we capped the

iterated procedure to a maximum distance.

This approach was able to identify implicit versions of simple lines, such as x + y = 0,

and once finding the correct implicit equations in the unit circle dataset (though these

solutions were not repeatable). Unfortunately, all runs on more complex dataset, and

most runs on the unit circle dataset, became trapped in local optima solutions. A

common type of local optima evolved zeros around a part of the dataset (for example

1/(x + a) - b - y can model the left and bottom sides of a circle accurately), but rarely

jumped to fit remaining data points.

While this final direct method may be a workable approach with more sophistication,

it is far from elegant or efficient. Below, we describe a more direct and greatly more

reliable and efficient fitness calculation for implicit equations.

132

The Implicit Derivatives Method

The difficulties of the direct methods (Table 10.1) suggest that comparing the zeros of

the candidate implicit equation directly is insufficient to reliably find accurate and

nontrivial models.

Table 10.1. A summary of direct methods and their difficulties

Method Difficulty

Equations that equal zero at all data

points

Trivial solutions such as 0 = 0, x - x =

0, etc.

Equations that equal zero near data, but

grow with distance

Places too many constraints on the

resulting equations

Equations that equal zero but have

non-zero derivative

Places too many constraints on the

resulting equations

Equations that equal zero but not

symbolically zero when simplified

Trivial solutions, just more complex

zero identities such as cos
2
(x

3
) +

sin
2
(x

3
) - 1

Equations that Equal zero, but nonzero

at random point away from data

Trivial solutions such as f(x) = 1/(100

+ x)
2
, which is non-zero near x = -100

Numerically solve equation, measure

distance from data points to closest

zero

Difficult to evolve, many degenerate

equations do not have solutions, and

computationally expensive

133

Rather than looking at the individual points, we decided to look at the local derivatives

of these points. If the candidate implicit equation is modeling the points in a

meaningful way, it should be able to predict relationships between derivatives of each

variable. Importantly, we must also be able to measure such a relationship readily

from the dataset.

For our method, we propose using the ratio of partial derivatives between pairs of

variables (implicit derivatives). The idea is that dividing two partial derivatives of a

candidate implicit equation f(...) = 0 cancels out the implicit f(...) signal, leaving only

the implied derivative between two variables of the system.

For example, in a two-dimensional dataset we could measure variables x(t) and y(t)

over time. The system's implicit derivatives estimated from time-series data would be

dx/dy ≈ x'/y' and dy/dx ≈ y'/x', where x' and y' represent the time-derivatives of x and y.

Similarly, given a candidate implicit equation f(x,y), we can derive the same values

through differentiation: dx/dy = (df/dy)/(df/dx) and dy/dx = (df/dx)/(df/dy). We can now

compare dx/dy values from the experimental data with dx/dy values from a candidate

implicit equation f(x,y) to measure how well it predicts indirect relationships between

variables of the system.

Finally, we can use this process in a fitness function for implicit equations. We simply

measure the error on all implicit derivatives that we can derive from each candidate

equation. In our experiments, we return the mean logarithmic error of these

derivatives:



















N

i i

i

dx

df

dy

df

dy

dx

N 1

1log
1

134

where N is the number of data points, dx/dy is a implicit derivative estimated from the

data, and (df/dy)/(df/dx) is the implicit derivative derived from the candidate implicit

equation.

Handling Unordered Datasets

The implicit method can also be applied to unordered and non-time series data as there

are several ways to estimate implicit derivatives from experimental data. An implicit

derivative is simply a local relation of how two variables covary. In 2D, the implicit

derivative is the slope of the tangent line. In 3D, the implicit derivatives lie on the

tangent plane. In higher dimensions, they lie on the n-dimensional tangent hyperplane.

To generalize this procedure for arbitrary unordered data, one can fit a hyperplane, or

higher-order surface such as a conic section (Shpitalni, M et al. 1997), to local clouds

of data points. From each hyperplane, one can then sample implicit derivatives by

taking the implicit derivative of the hyperplane equation (Figure 10.2).

We verified that this procedure works in our experimental datasets by randomly

Figure 10.2. Implicit derivatives can be estimated from unordered, or shuffled

data, non-parametrically by fitting a hyperplane or higher-order surface to

neighboring points. After fitting the neighboring points, simply take any of the

implicit derivatives of the locally fit surface.

135

shuffling them and discarding their time ordering. The method regresses the same

implicit equations as in our results below using this procedure.

Experiments

We experimented on six implicit equation problems of varying complexity and

difficulty (Figure 10.3). The simplest are the equation of a circle and an elliptic curve.

These are well-known two dimensional systems with only two implicit derivative

(dx/dy and dy/dx) that require implicit equations. A similar but slightly more difficult

problem is the 3-dimensional sphere. In each of these systems we can collect data

uniformly on their implicit surfaces.

The next three systems are dynamical systems of varying complexity: a simple linear

harmonic oscillator, a nonlinear pendulum, and a chaotic spring-pendulum. We

simulated single trajectories of each system, recording the positions, velocities, and

accelerations for the implicit datasets. In these systems, we are seeking the implicit

equation of motion. In the spring-pendulum we are seeking a similar implicit equation,

the Hamiltonian, which only uses position and velocity data. The data used for each

system is shown in Figure 10.3.

From this data, we estimate the partial derivatives from the data (dx/dy) by taking the

ratio of the time derivatives. For the circle, elliptic curve, and sphere, we picked an

arbitrary time trajectory around their surfaces (two in the case of the elliptic curve).

This works because the time component cancels out in the ratio. We could also have

fit a local plane to each point to estimate the partial derivatives non-parametrically of

unordered data as discussed earlier.

136

Figure 10.3. Data sampled from six target implicit equation systems. Data is

collected uniformly for the geometric systems. In the dynamical systems, the data

is a single simulated trajectory from a random initial condition.

1

0

-1

-1 0.5 0 0.5 1

3

2

1

0

-1

-2

-3

-1.5 -1 -0.5 0 0.5 1 1.5 2-5 -2.5 0 2.5 5

0 2 4 6 8

20

0

-20

-3 1.5 0 1.5 3 -15 -10 -5 0 5 10

3

0

-3

4

2

0

137

We used a basic symbolic regression algorithm (Schmidt and Lipson 2006) to search

the space of implicit equations. We use the deterministic crowding selection method

(Mahfoud 1995), with 1% mutation probability and 75% crossover probability. The

encoding is an acyclic graph (Schmidt and Lipson 2007) with a maximum of 128

operations/nodes. The operation set contains addition, subtraction, multiply, sine, and

cosine operations.

Results

We conducted 20 independent trials on each system, recording fitness values and

solutions overtime. Evolution was stopped after a solution converged onto a near

perfect solution. Figure 10.4 shows the mean fitness of the top-ranked solution during

the evolutionary runs on a validation dataset.

Each evolutionary run identified the correct implicit equation for these systems,

although different systems required more computation than others. The circle took less

than a minute to converge on average; the elliptic curve, sphere, and pendulum took

five to ten minutes on average; and the spring pendulum took approximately one to

two hours.

In comparison, none of the direct methods could find solutions to any of these

systems, even with considerably more computational effort. In the case of the circle,

the implicit derivatives methods obtained the correct solution 20 out of 20 trials in

under one minute per trial. In contrast, the direct methods did not obtain the correct

solution even once in 20, one hour trials. The best solution found by the direct method

over these runs was a/(x
2
 + b) - y – c = 0. In the remaining target systems, the direct

methods performed even worse.

138

Figure 10.4. Fitness of the symbolic regression algorithm using the implicit

derivatives fitness for each of the six systems. Results are the top ranked solution

versus time, averaged over 20 independent trials. Error bars indicate the first

standard error.

Fi
tn

es
s

[-
lo

g
er

ro
r]

Fi
tn

es
s

[-
lo

g
er

ro
r]

Fi
tn

es
s

[-
lo

g
er

ro
r]

0

-0.01

-0.02

-0.03

-0.04

0

-0.01

-0.02

-0.03

-0.04

0

-0.15

-0.3

-0.45

-0.6

0

-0.2

-0.3

-0.6

-0.8

0.02

-0.06

-0.1

-0.14

-0.18

0

-0.04

-0.08

-0.12

-0.16

108 109 1010 108 109 1010 1011

108 109 1010 1011 108 109 1010 1011

108 109 1010 1011 108 109 1010 1011 1012 1013

Fi
tn

es
s

[-
lo

g
er

ro
r]

Fi
tn

es
s

[-
lo

g
er

ro
r]

Fi
tn

es
s

[-
lo

g
er

ro
r]

Effort [evaluations] Effort [evaluations]

Effort [evaluations] Effort [evaluations]

Effort [evaluations] Effort [evaluations]

139

Implicit Pareto Fronts

Over our experiments, we also tracked the Pareto frontier of the implicit equation

fitness and complexity for each system (Figure 10.5). This front shows the tradeoff

between equation complexity and its ability to model the implicit data (Smits and

Kotanchek 2004). Here, we measure the complexity of an equation as the number of

nodes in its binary parse tree.

The Pareto fronts tend to contain cliff features where fitness jumps rapidly at some

minimum complexity. In the cases where even more complex equations are found on

the front, even several times more complex, the improvement in fitness is only

marginal.

For each system, the simplest implicit equation to reach the highest qualitative fitness

on the Pareto front was the exact target equation. Looking more closely at the higher

complexity solutions, we found they were elaborations on the exact solution -- for

example, extraneous terms with very small coefficients, perhaps compensating for

small errors in estimating the partial derivatives from the data.

We also noticed that simpler and lower fitness solutions on the fronts contained

approximations to the exact solutions – for example, small angle approximations in the

pendulum and spring pendulum systems.

140

Figure 10.5. The fitness and equation complexity Pareto fronts found for each of

the six systems. The exact solutions are the simplest equations to reach near

perfect fitness. More complex solutions show elaborations on the exact solution,

improving fitness only marginally.

Fi
tn

es
s

[-
lo

g
er

ro
r]

Fi
tn

es
s

[-
lo

g
er

ro
r]

Fi
tn

es
s

[-
lo

g
er

ro
r]

0

-0.04

-0.08

-0.12

-0.16

0

-0.2

-0.4

-0.6

-0.8

0

-0.2

-0.4

-0.6

-0.8

0

-0.04

-0.08

-0.12

-0.16

0

-0.5

-1

-1.5

-2

0

-0.4

-0.8

-1.2

-1.6

-11 -9 -7 -5 -3 -18 -14 -10 -6 -2

-20 -15 -10 -5 -18 -14 -10 -6 -2

-60 -40 -20 0 -35 -25 -15 -5

Fi
tn

es
s

[-
lo

g
er

ro
r]

Fi
tn

es
s

[-
lo

g
er

ro
r]

Fi
tn

es
s

[-
lo

g
er

ro
r]

Parsimony [-nodes] Parsimony [-nodes]

Parsimony [-nodes] Parsimony [-nodes]

Parsimony [-nodes] Parsimony [-nodes]

141

Conclusions

The ability to search for implicit equations enables searching for multi-dimensional

surfaces, equations of motion, and other invariant models in experimental data.

However, identifying meaningful and nontrivial implicit equations poses difficult

challenges.

We explored several naive fitness methods for rewarding implicit equations to model

data. These methods, which considered the individual data points and the zeros of the

implicit equations directly, were unable to solve the simplest implicit equations

reliably or consistently.

We showed that looking instead at ratios of partial derivatives of local data points

provided a reliable search gradient for a variety of implicit systems. This method

identified geometric equations such as elliptic curves and 3-dimensional spheres, as

well as equations of motions in nonlinear dynamical systems.

142

CHAPTER 11. NATURAL LAWS

Summary

For centuries, scientists have attempted to identify and document analytical laws that

underlie physical phenomena in nature. Despite the prevalence of computing power,

finding natural laws and their corresponding equations has resisted automation. A key

challenge to finding analytic relationships automatically is defining algorithmically

what makes a correlation in observed data important and insightful. We propose a

principle for the identification of non-triviality. We demonstrate this approach by

automatically searching motion-tracking data captured from various physical systems,

ranging from simple harmonic oscillators to chaotic double-pendula. Without any

prior knowledge about physics, kinematics or geometry, the algorithm discovered

Hamiltonians, Lagrangians, and other laws of geometric and momentum conservation.

The discovery rate accelerated as laws found for simpler systems were used to

bootstrap explanations for more complex systems, gradually uncovering the

"alphabet" used to describe those systems.

Motivation

Mathematical symmetries and invariants are known to underlie nearly all physical

laws in nature (Anderson 1972), suggesting that the search for many natural laws is

inseparably a search for conserved quantities and invariant equations (Noether 1918;

Hanc, Tuleja et al. 2004). Automated techniques for generating, collecting and storing

data from scientific measurements have become increasingly precise and powerful, but

automated processes for distilling this data into knowledge in the form of analytical

natural laws have not kept pace. This trend is incommensurate with the rapidly

increasing influx of scientific measurements (Clery and Voss 2005; Szalay and Gray

2006) coupled with the growing complexity of systems being studied (Strogatz 2001;

143

Marquet 2002). There is thus a pressing practical need for new forms of scientific data

mining (Ra, l et al. 1999; King, Whelan et al. 2004).

The most prohibiting obstacle to overcome in order to search for conservation laws

computationally is finding meaningful and nontrivial invariants. Here we introduce a

new principle for identifying useful analytical relationships. We then demonstrate how

a search algorithm based on this principle identifies meaningful analytical

relationships in data captured from a variety of physical systems (Figure 11.1).

Our goal is to find natural relationships where they exist, with minimal restrictions on

their analytical form (i.e. freeform). Many methods exist for modeling scientific data:

Some employ fixed-form parametric models derived from expert knowledge, others

use numerical models (such as neural networks) aimed at prediction. Alternatively, we

seek the principal freeform analytical expression that explains symbolically precise

conservation relationships, thus helping distill the dataset from correlations into

scientific knowledge.

Figure 11.1. Mining physical systems: We captured the angles and angular

velocities of a chaotic double-pendulum (A) over time, using motion tracking (B),

then automatically searched for equations that describe a single natural law

relating these variables. Without any prior knowledge about physics or geometry,

the algorithm found the conservation law (C), which turns out to be the double-

pendulum’s Hamiltonian. Actual pendulum, data and result shown.

144

Method Overview

The established method for search a space of mathematical expressions to minimize

various error metrics is known as Symbolic regression (Koza 1992), a method based

on evolutionary computation (Forrest 1993). See the description of the section

“Symbolic Regression” on page 4 for more information.

While symbolic regression is typically used to find explicit (Duffy and Engle-Warnick

2002; Elena, Andrei et al. 2005; Cyril and Alberto 2007) and differential equations

(Bongard and Lipson 2007), symbolic regression cannot readily find conservation

laws or invariant equations. We simply do not know a priori what exactly the

equations should model or what they should evaluate to, and so a direct error metric is

elusive. Rather than trying to model a specific signal, we are trying to detect any

underlying physical law that the system is obeying, which may or may not be constant

(e.g. a Lagrangian).

A particular challenge is requiring the detected law to be a function of the system‟s

state while avoiding trivial or meaningless relationships. For any system over the state

space x, there are, in fact, infinitely many trivial equations over x that satisfy a

conserved quantity, such as sin
2
(x1)+cos

2
(x1) or x1+4.56–x2x1/x2. Additionally, there

are infinitely many arbitrarily-close trivial conservations, such as 4.56+1/(100+x1
2
).

Clearly, we need a more robust principle for distinguishing good conservation law

candidates from poor ones, than simply invariance alone.

The identification of nontrivial relationships is known to be a major challenge even for

human scientists: Many published invariant quantities have turned out to be

coincidental (Nee, Colegrave et al. 2005). The mere appearance of a conserved value

is insufficient for a conservation law. The key insight into identifying nontrivial

145

conservation laws computationally is that the candidate equations should predict

relationships between dynamics of subcomponents of the system. More precisely, the

conservation equation should be able to predict relationships among derivatives of

groups of variables over time, derivatives that we can also readily calculate from new

experimental data.

One instance of such a metric is the partial derivatives between pairs of variables. For

example, in a two-dimensional system we could measure variables x(t) and y(t) over

time. The system‟s partial derivatives estimated from time-series data would then be

x’/y’ ≈ ∆x/∆y and y’/x’ ≈ ∆y/∆x (where x’ and y’ represent the time-derivative of x and

y). Similarly, given a candidate conservation equation f(x,y), we can derive predicted

values through differentiation: (δf/δy) / (δf/δx) ≈ δx/δy and (δf/δx) / (δf/δy) ≈ δy/δx. We

can now compare ∆x/∆y estimates from the experimental data with δx/δy predictions

from a candidate conservation expression f(x,y) to measure how well it predicts

intrinsic relationships in the system. In higher dimensional systems, multiple variable

pairings and higher order derivatives yield a plethora of criteria to use. The section

"Calculating the Predictive Ability" below details how to take accurate partial

derivatives of f as it must be a symbolic derivative with inter-variable dependencies

for higher-dimensional systems. Using the partial derivative pairs, we define a new

type of search criteria for measuring how well a candidate analytical expression

represents a nontrivial invariance over the experimental data.

146

Figure 11.2. The computational approach for detecting conservation laws from

experimentally collected data. (A) First, calculate partial derivatives between

variables from the data, then search for equations that may describe a physical

invariance. To measure how well an equation describes an invariance, derive the

same partial derivatives symbolically to compare with the data. Finally, return

the most parsimonious equations for the hypothesized physical laws. (B) The

representation of a symbolic equation in computer memory is a list of successive

mathematical operations. (C) This list representation corresponds to a graph,

where nodes represent mathematical building blocks and leaves represent

parameters and system variables. Both (B) and (C) correspond to the equation

f(θ,ω)=17.719–4.771ω
2
+4.714cos(θ)–ω

2
cos(θ). To search for conservation

equations, the algorithm mutates and recombines these structures to search the

space of equations.

147

An important consequence of the partial derivative pair measure is that it can also

identify relationships that represent other nontrivial identities of the system beyond

invariants and conservation laws. For example, if the system is confined to a manifold,

the manifold equation can also derive accurate partial derivative pairs. Similarly, the

partial derivative pair can identify equations such as Lagrangian equations, the energy

equivalent to the equation of motion in classical mechanics, which summarizes the

systems dynamics, but is not invariant.

One can control, to an extent, the type of law that the system might find by choosing

what variables to provide to the algorithm. For example, if we only provide position

coordinates, the algorithm is forced to detect a manifold in the system‟s state-space. If

we provide velocities, the algorithm is biased to find energy laws. If we additionally

supply accelerations, the algorithm is biased to find force identities and equations-of-

motion. There may exist, however, other or previously unknown analytical laws given

these or other types of variables.

Results

We used the algorithm summarized in Figure 11.2 to search for analytical laws in data

captured from several synthetic and physical systems using various sets of system

variables. We present here key results for a number of physical experimental systems;

See section "Detecting Laws in Synthetic Systems" below for a study of synthetic

systems, geometric symmetries, and manifolds. A video of these systems and

visualizations of the search for their law expressions is available online (Schmidt and

Lipson 2009).

We collected data from standard experimental systems typically used in undergraduate

physics education: An air-track oscillator and a double pendulum (Figure 11.3). After

148

placing infrared markers on the moving components, we placed the target system in an

arbitrary initial condition and recorded its transient behavior using cameras and

motion-tracking software. This process provided time-series data of the marker

positions. We then processed the numerical derivative of the positions to obtain

velocities, accelerations, and so forth.

Without any additional information, system models, or theoretical knowledge, the

search using the partial derivative pairs criterion was able to find several analytical

law expressions directly from this data. We experimented on two configurations of the

air-track: two-spring single-mass, and three-spring double-mass. Similarly, we

collected time-series data from a pendulum and a double-pendulum (Figure 11.3)

using motion-tracking.

The single-car air-track is a harmonic oscillator with slight damping from the air and

its two springs. With only minimal noise and damping, it was the simplest physical

system that we examined. Given velocity and position data from 30 seconds of

observation, the algorithm detected the system‟s energy conservation and Lagrangian

equations within five minutes. Given additionally acceleration data, it detected the

system‟s differential equation of motion corresponding to Newton‟s second law.

The double-mass air-track consisted of two coupled harmonic oscillators of different

masses. There was significant noise in this dataset as a result of compression of the

middle spring. The algorithm still detected the Lagrangian and Hamiltonian equations.

The pendulum is a nonlinear oscillator. Given only position data, the algorithm

detected that the device is confined to a circle. Given angular positions, velocities, and

accelerations, it detected energy conservation, the Lagrangian, and the Newtonian

equation of motion. The algorithm also detected several inexact expressions through

149

small angle approximations – for example using x in place of sin(x) and –x
2
 in place of

cos(x). To detect the complete nonlinear trigonometric terms, the algorithm required

data spanning larger angles (roughly ±40˚).

The double-pendulum is the most complex system we studied. It is a coupled

nonlinear oscillator system that exhibits rich dynamics (Jaeckel 1998) and chaos at

certain energies (Shinbrot, Grebogi et al. 1992) making it challenging to model (Mor

Physical System Schematic Experimental Data Inferred Laws

114.28v
2
 + 692.32x

2
Hamiltonian

v
2
 – 6.04x

2
Lagrangian

a – 0.008v – 6.02x
Equation of motion

-142.19x1 – 74.65x2 + 0.12x1
2
 –

1.89x1x2 – 1.51x2
2
 – 0.49v2

2
 +

0.41v1v2 – 0.082v1
2

Lagrangian

1.37·ω
2
 + 3.29·cos(θ)

Lagrangian

2.71α + 0.054ω – 3.54sin(θ)
Equation of motion

(x – 77.72)
2
 + (y – 106.48)

2

Circular manifold

ω1
2
 + 0.32ω2

2
 –

124.13cos(θ1) – 46.82cos(θ2) +

0.82ω1ω2cos(θ1 – θ2)
Hamiltonian

Figure 11.3. Summary of laws inferred from experimental data collected from

physical systems. Depending on the types of variables provided to the algorithm,

it detects different types of laws. Given solely position information, the algorithm

detects position manifolds; given velocities the algorithm detects energy laws;

given accelerations, it detects equations of motion and sum of forces laws. These

laws contain bulk parameters.

150

M 2007; Liang and Feeny 2008). We focused only on detecting its energy laws.

Similar to the single-pendulum, there are several approximate equations that mask the

identification of its exact laws. Additionally, there is significantly higher measurement

noise and dampening errors due to higher velocities of the second arm. However, these

challenges were overcome by balancing data measured from the double pendulum

while operating at its two different regimes – namely, in-phase and chaotic regimes.

 An interesting approximate law for the double pendulum that emerged was

conservation of angular momentum. Given only data measured while the pendulum

was chaotic (e.g. at high energy), the algorithm tends to fixate on this law. The

conservation of momentum equation is simpler than other valid laws and is

approximately correct for high velocities where gravity is negligible, as with the high

energy chaotic dataset.

Similarly, given only data from low velocity in-phase oscillations, the algorithm

fixated on small angle approximations and uncoupled energy terms. By combining the

chaotic data with low velocity in-phase oscillation data, the algorithm detected the

precise energy laws.

Performance

Any “good” scientific theory must be both predictive and parsimonious. Similarly, a

key challenge of any machine learning algorithm is balancing accuracy versus

parsimony. Some equations may be more accurate but overfit the data, while others

may be more parsimonious but oversimplify (Edwin and Jordan 2003; Gregory, Denis

et al. 2003); the right balance is difficult to specify in advance. Instead of producing a

single result, the algorithm produces a small set of final candidate analytical

expressions on the accuracy-parsimony Pareto front, which represents the tradeoff

151

between equation complexity and the predictive ability on the experimental data. We

measured parsimony as the inverse of the number of terms in the expression.

The Pareto front for the double pendulum (Figure 11.4A) reveals a few particularly

simple equations that predict the partial derivative pairs very accurately. Predictive

accuracy was measured using cross-validation with the partial derivative pairs

criterion. Numerically, the nature of the partial derivative pairs criterion tends to

produce a large inflection where predictive ability jumps rapidly at some minimum

complexity. Predictive ability then improves only marginally with more complex

equations (Figure 11.4A). It is interesting to note that the conservation of angular

momentum equation lies on the Pareto front, though it is inexact. The double

pendulum‟s Hamiltonian lies at the inflection. In all of our experiments, the solution at

this inflection has been an exact theoretical law.

Searching a space of equations for a natural law and discovering the Pareto front can

be a computationally intensive task, possibly requiring several hours or days of

computation. However, the search over function-space is readily parallelizable as

many candidate functions need to be evaluated simultaneously. We distributed our

computations over eight quad-core computers using the island-population model

(Christian, Marc et al. 2003; Francisco, Giandomenico et al. 2005).

A 32-core implementation detected two-dimensional geometric invariants in

approximately 5 minutes. The single-mass air-track laws take approximately 10

minutes. The double-mass air-track laws take approximately one to two hours. The

pendulum laws take approximately 15 minutes. And the most challenging double-

pendulum system takes approximately one to two days of computation (Figure 11.4B).

152

Figure 11.4. Parsimony vs. accuracy, and performance. (A) The Pareto front

(solid black curve) for physical laws of the double-pendulum and the frequency

of sampling during the invariant equation search (grayscale). The Pareto front

shows the trade-off between equation complexity (or parsimony) and ability to

model a predictive invariance. At a critical complexity of ~32, there is a strong

point of inflection. The equation at the inflection corresponds to the exact energy

conservation law of the double-pendulum, highlighted. A second momentum

conservation law encountered is also highlighted. (B) The computation time

required to detect different physical laws for several systems. The computation

time increases with the dimensionality, equation complexity, and noise. A notable

exception is the bootstrapped double pendulum, where reuse of terms from

simpler systems helped reduce computational cost by almost an order of

magnitude, suggesting a mechanism for scaling higher complexities.

-k1 ω1 – k2 ω2 + k3 ω1 cos(θ1 – θ2) + k4 ω2 cos(θ1 – θ2)

k1 ω1 ω2 – k2 cos(θ1 – θ2)

k1 ω1
2 + k2 ω2

2 – k3 ω1 ω2 cos(θ1 – θ2) – k4 cos(θ1) – k5 cos(θ2)

Parsimony [-nodes]

P
re

d
ic

ti
v

e
 A

b
il

it
y
 [

-l
o

g
 e

rr
o

r]

A k1 θ2 – k2 ω1
2 – k3 ω2

2 + k4 ω1 ω2 cos(θ1 – k5 θ2) + k6 cos(θ2) + k7 cos(θ1) – k8 cos(k9 θ2) – k10

cos(k11 – k12 θ2)

-k1 ω1
2 – k1 ω2

2 + k1 ω1 ω2 cos(θ2) + k1 cos(θ2) + k1 cos(θ1)

102

10-3

101

100

10-1

10-2

ω2·cos(θ1 θ2) + ω1

0

-2

-0.4

-0.8

-1.2

-1.6

SimpleComplex

Less

Predictive

More

Predictive

T
im

e
 t

o
 D

e
te

c
t

S
o

lu
ti

o
n

 [
h

o
u

rs
]

B
Single Pendulum (θ,ω)
Harmonic Oscillator (x,v,a)
Harmonic Oscillator (x,v)
Single Pendulum (θ,ω,α)
Double Harmonic Oscillator (x1,x2,v1,v2)
Double Pendulum (θ1,θ2,ω1,ω2)
Seeded Double Pendulum (θ1,θ2,ω1,ω2)

153

In the worst case, the time to identify the equations depends exponentially on the

complexity of the expression itself and roughly quadratically on the system

dimensionality (Figure 11.4B). The impact of noise also couples with these factors.

For comparison, the simulated double-mass air-track and simulated double-pendulum

datasets (where measurements are noiseless) take approximately one-tenth of the

computational effort to analyze. A summary of performance versus noise level is

provided in the section "Impact of Noise" below.

The Justification Problem

Though the algorithm can detect physical laws in their mathematical form, we are still

faced with the challenge of justifying and giving words to their meaning. One

difficulty is that we cannot know with certainty the units of bulk constants in the law

expressions – for example combinations of masses, lengths, etc. embodied in the

system. Secondly, the equation may model something that is inherently difficult to

observe directly, such as total energy.

A more systematic approach to parsing the coefficients is to analyze multiple datasets

from the same systems, albeit with different configurations and parameters. To

demonstrate this approach, we used several virtual double-pendula with randomly

chosen masses and lengths, to generate several new synthetic datasets. We fit the free

coefficients of the automatically-discovered model to each dataset, and then invoked

the equation search algorithm again to seek a relationship between the coefficients and

the parameter sets. Arbitrarily setting k1=1, the algorithm identified that

k2=m2L2
2
/(m1L1

2
+ m2L1

2
), k3=2m2L2/(m1L1 + m2L1), k3=19.6/L1, and

k4=19.6m2L2/(m2L1
2

+ m1L1
2
) where 19.6 is the only absolute constant whose units are

necessarily m/s
2
. A similar approach can be used to identify coefficients that vary

slowly over time, for example due to damping, creeping, or ecological drift. In such

154

cases, the multiple datasets would come from different time windows of the same

system.

Bootstrapping

Thus far, the algorithm has detected natural laws ab inito without prior knowledge

about physics, kinematics, or geometry, with a growing performance cost for

increasingly complex systems. In contrast, scientists are able to leverage knowledge

from simpler systems to explain more complex systems. Can an algorithm do this as

well?

One method to utilize prior knowledge is seeding the equation search by initializing

the algorithm‟s initial set of candidate expressions with terms from equations from

simpler systems. For example, the single-pendulum (nonlinear oscillation) and the

double-harmonic oscillator (coupled oscillation) equations provide clues to the laws

governing the more complex double-pendulum (coupled nonlinear oscillation). To

seed the set of equations for analyzing the double-pendulum, we shuffled terms of the

simpler systems, exchanging velocity symbols with double-pendulum velocity

variables, etc., and randomized parameters to generate many inexact initial

expressions. This seeding approach does not constrain the equation search, but simply

biases it to reuse terms from previous laws.

Bootstrapping the double-pendulum search with the single-pendulum and double-

harmonic oscillator terms reduced the search time by nearly an order of magnitude,

from 30-40 hours of computation to 7-8 hours (Figure 11.4B). Based on this result, we

conjecture that bootstrapping may be critical for detecting laws in higher order

systems that are veiled in complexity. We also expect there are more effective means

to utilizing prior information, including human expert knowledge.

155

A statistical analysis of the sub-expression frequency and complexity across

populations of various physical systems revealed that terms that appear more

frequency that expected for their complexity tend to be more physically meaningful,

such as trigonometric terms representing potential energies, squared velocities

representing kinetic energies, or linear force combinations. These terms may comprise

an "emergent alphabet" for describing a range of systems, which could accelerate their

modeling and simplify their conceptual understanding.

Conclusions

In conclusion, we have demonstrated the automatic discovery of physical laws, from

scratch, directly from experimentally-captured data. The presented approach detected

nonlinear energy conservation laws, Newtonian force laws, geometric invariants, and

system manifolds in various synthetic and physically implemented systems without

prior knowledge about physics, kinematics or geometry. The concise analytical

expressions found are amenable to human interpretation and help reveal the physics

underlying the observed phenomenon.

Might this process diminish the role of future scientists? Quite the contrary. Scientists

may use processes such as this to help focus on interesting phenomena more rapidly,

and interpret their meaning. Much like design automation allows engineers to delegate

mundane design tasks to computers and focus more on creative and conceptual issues,

automated mining processes might elevate scientists to think of new conceptual

frameworks, leaving machines to see if these new frameworks help generate more

predictive and parsimonious explanations to observed phenomena.

156

Materials and Methods

The Predictive Ability Criterion

To search for potential conservation equations, we need a method that discriminates

trivial equations, such as coincidental invariants, from equations that represent

intrinsic relationships, such as energy conservation. We define a potential invariant

equation to be nontrivial if it can predict differential relationships between two or

more variables.

One such relationship that is readily quantifiable from both the equation and

experimental data is the partial derivative between pairs of variables. If our

experiments collect time-series data, we can estimate the partial derivative between

any pair of variables by taking the ratio of their numerical derivatives over time. For

example, in a system with two state-variables x and y:

x dx dy

dt dty





 (Equation 11.1)

We use nonparametric fitting – local polynomial fits (Cleveland and Devlin 1988) – to

estimate the time-derivatives of each state-variable. In the case where we do not have

time-series data, but instead random point samples, we could alternatively estimate the

partial derivatives directly using two-dimensional non-parametric fitting.

A candidate equation – an equation we wish to test for triviality – can also derive the

same partial derivatives between variable pairs using basic calculus. We do this by

taking the ratio between partial derivatives of the equation. For example, for an

equation f(x,y) over variables x and y:

157

x f f

y xy

  

 
 (Equation 11.2)

We now have two estimates of the partial derivative: one estimated from the data, and

one predicted by the candidate equation f. To measure how well the equation predicted

this relationship, we take the difference of (Equation 11.1) and (Equation 11.2) over

the dataset.

1

1
log 1

N
i i

i i i

x x
abs

N y y





  
       

 (Equation 11.3)

There are many metrics for combining the residuals – such as squared-error, mean

error, correlation, etc. Here, we chose to use the mean-log-error for numerical reasons.

The magnitude of the partial derivatives can grow large when the denominator

approaches or crosses zero. The mean log-error squashes these high-magnitude

residuals, while not discarding them entirely. In cases where the denominator is

precisely zero, we discard the data sample. By convention, we measure the negative

mean-log-error to define a maximization criterion.

Calculating the Predictive Ability

Here we detail the predictive ability calculation in greater generality. While Eqns.

(Equation 11.1) and (Equation 11.2) work for 2-dimensional systems using only

numerical approximations, we need to consider symbolic relationships for higher order

systems.

Specifically, we need to handle the case where one variable is dependent on another in

order to calculate partial derivatives in (Equation 11.2) correctly. Consider calculating

158

δx/δy in a 3-dimensional system with variables x, y, and z. When taking the partial

derivative of f(x,y,z) , we can‟t assume variable independence in general. Therefore,

we need to perform a symbolic derivative.

For example, consider the equation of a sphere: f(x,y,z) = x
2
 + y

2
 + z

2
. When

calculating δf/δx, we must consider y and z being dependent on x or vice-versa. Using

the chain-rule, the symbolic derivative is thus:

2 2 2 2 2 2
y z

x y z x y z
x x x

  

  
      

(Equation 11.4)

In order to evaluate δf/δx we need to fill in the partial derivatives on the right-hand-

side of (Equation 11.4). We have already approximated these values from the data in

(Equation 11.1). Therefore, we can re-write (Equation 11.4) as:

2 2 2 2 2 2
y z

x y z x y z
x x x





 
        

 (Equation 11.5)

In general however, we should not assume that every variable is interdependent on all

others – only a subset. For example in a 3-dimensional system, we only need to

assume one pair of dependent variables; and in a 4-dimensional system, two pairs. So,

continuing this example of the sphere equation, we have either:

2 2 2 2 2
y

x y z x y
x x






      

 (Equation 11.6)

or

159

2 2 2 2 2
z

x y z x z
x x






      

 (Equation 11.7)

For the general case, we can pick either case (Equation 11.6) or (Equation 11.7) for

our calculation of (Equation 11.3). We call this choice the variable pairing – which

variables we assume are interdependent. We now refine (Equation 11.3) – the measure

of predictive ability – to incorporate the variable pairing:

1

1
min log 1

N
i i

pairing
i i i pairing

x x
abs

N y y





         
      

 (Equation 11.8)

We could optionally measure error using all possible pairings. However, we have

found empirically that taking the worst-case pairing, as in (Equation 11.8), provides

the best results for our computational invariant equation search.

One final adjustment we can make to the partial derivative pair metric is the sign of

the of the Δx/Δy and δx/δy terms in (Equation 11.8). The partial derivative pairs define

a cloud of line segments in phase space, therefore we are only interested in matching

the line but not necessarily the direction of the line. Negating the Δx/Δy term or taking

the absolute value of both can affect the signs of terms in the optimal equation (for

example, sign differences between Lagrangian and Hamiltonian equations).

160

Searching the Space of Implicit Equations

The partial derivative pairs metric, (Equation 11.3), effectively defines a landscape

over the space of equations. While the landscape is difficult to visualize due to its

dimensionality and size, it is smoother and more well-defined than one might expect.

Figure 11.5. Ancestor trajectories in equation space while searching for the

equation of an ellipse. Dots indicate crossover and mutation events while lines

represent parameter tuning over time. (A) Several initially random equations

with varying predictive ability evolve independently before coalescing toward the

exact solution over the running time of the algorithm. (B) The ancestors also vary

in equation complexity – measured as the number of nodes in their expression

trees. Initial equations tend to have higher complexity, but simplify over time

toward the exact solution. (C) The same trajectories plotted over predictive

ability and complexity shows the ancestor trajectories converge toward a simple

and high predictive ability neighborhood before finding the correct equation

structure whose parameters can be tuned to the exact solution.

Time [seconds]

P
re

d
ic

ti
v
e

 A
b

ili
ty

 [
-l
o

g
-e

rr
o

r]

A

Time [seconds]

C
o

m
p

le
x
it
y
 [
n

o
d

e
s
]

B

Complexity [nodes]

P
re

d
ic

ti
v
e
 A

b
ili

ty
 [

-l
o
g

-e
rr

o
r]

C

161

Our method uses genetic programming to explore this landscape. In fact, most of the

time, starting from a small number of random initial points in the landscape, this

method can descend to the global optimal equation. We call the paths the algorithm

takes to the final solution its trajectory in equation space.

See the description in the section "Symbolic Regression," on page 4 for a general

description and background of the symbolic regression problem.

One way to visualize the evolution of the equation genome is to track the ancestors of

the final equation over the running time of the algorithm. Figure 11.5 shows the

ancestry trees for the equation of the ellipse. Several initially random equations evolve

independently before coalescing. Predictive ability is initially low and some ancestors

Accuracy Equations in Sequence Event

-1.4197 x + x – c3 – y random

-1.41347 x + x + x – c4 – y mutation

-1.41339 x + x + x – sin(c3) – y mutation

-1.13805 x + x + x – sin(y) – (x – x) crossover

-1.08904 (x + x)·x – sin(y) – (x – x) mutation

-1.08574 (x + x)·x – sin(y) – c1 mutation

-1.01841 (x + x)·x – y – c1 mutation

-0.978484 (x + x + x)·x - y – c13 mutation

-0.914336 (x + y – c3)·y + x·x·c15 mutation

-0.303559 (x + y – c4)·y + x·x·c15 mutation

-0.0692607 (x + y – sin(x))·y + x·x·c15 crossover

-0.0140815 (x + y – x)·y + x·x·c15 mutation

-0.0050732 (x + y – x)·y + x·x·c16 mutation

-0.0050732 y·y + c3·x·x mutation

Figure 11.6. Sequence of solutions as they evolve to model the equation of an

ellipse. This sequence represents a single trajectory in Figure 11.5. Small

mutations and crossover events during the evolutionary search slowly

converge this sequence onto the exact equation.

162

parent less accurate equations that eventually lead toward the exact solution (Figure

11.5A). Equation complexity is also initially high on average (Figure 11.5B). After

several generations however, the ancestry converges to simple and predictive

equations, eventually finding an equation whose parameters can be tuned to find the

exact solution (Figure 11.5C).

 We can also look at an individual trajectory (Figure 11.6) to see how the equations

vary during the evolutionary search. The first equation is randomly initialized and has

poor accuracy. Gradually, point mutations vary individual terms in the equation.

Crossovers introduce larger changes, such as adding or replacing terms evolved in

other ancestry sequences. In each step, the accuracy improves, until convergence onto

the exact ellipse equation.

Representing Invariant Equations

The acyclic graph (Figure 11.7B) represents symbolic equations and is encoded

internally as floating-point assembly. Operations can load an input variable or a

parameter value, or perform a floating-point operation on any previous operation

outputs (e.g. add, subtract, multiply, sine, or cosine commands). Each operation

represents a leaf or parent node in the acyclic graph. The graph is rooted by the final

operation in the list. Figure 11.7A shows a raw encoding of an example equation.

We can construct the graph of a list encoding by tracing backward from the last

operation recursively. One notable consequence of this encoding is that some

operations are unconnected in the graph – no operations branching from the output

node may reference certain nodes. In effect, these vestigial sections are free to drift

during regression since they have no impact on the equation (phenotype). These

sections are omitted in Figure 11.7A.

163

We initialize the algorithm with random equations by generating a random list of

floating-point operations, limited to 128 operations. This puts a deep limit on the size

of the equation graph, and narrows the search to human-interpretable equations

(equations we could fit on a piece of paper). Each node could represent one of five

types of mathematical operations, two to four variables, or a parameter constant.

Ignoring the infinite parameter space, this is effectively a search space of roughly

10
108

 parameterized equations.

Analysis of Results

Detecting Laws in Synthetic Systems

In addition to physical laws such as Hamiltonians, Lagrangians, and equations of

motion, the partial derivative pair criterion can also decipher implicit equations and

geometric constraints. Table 11.1 summarizes the algorithm‟s search over time and the

Figure 11.7. Two equivalent representations of an example equation f(θ,ω) =

17.719 – 4.771∙ω2 + 4.714∙cos θ – ω2∙cosθ. (A) The algorithm stores and evolves

equations represented by a list of floating point operators over a system’s

variables. Each operation can load a variable, load a parameter, or perform an

mathematical operation on any previous operation. Unused lines have been

omitted for clarity. (B) The raw list can be interpreted more intuitively by an

acyclic graph where several sub-trees are reused by multiple terms. Both (A) and

(B) represent the same equation.

f(θ,ω) = 4.771·(3.714 – ω2) + cos(θ)

+ (3.714 – ω2)·cos(θ)

(0) <- load [3.714]

(1) <- load [ω]

(2) <- mul (1), (1)

(3) <- sub (0), (2)

(4) <- load [θ]

(6) <- cos (4)

(7) <- mul (3), (6)

(9) <- load [4.771]

(12) <- mul (9), (3)

(13) <- add (12), (6)

(15) <- add (13), (7)

A B
+

x +

–

x

4.771

ω ω

3.714

cos

θ

x

164

Pareto fronts for several synthetic manifolds and simulated dynamical systems.

Systems with parameter constants tend to exhibit gradual convergence whereas

parameter-less equations converge rapidly at differing times. There is a similar

inflection trend among all the Pareto fronts – an equation with some minimum

complexity achieves very high predictive ability. The inflection of the double linear

oscillator is more subtle, which we suspect is due to the large number of terms and

polynomial approximations in its Hamiltonian equation.

The algorithm‟s search over a space of equations for a natural law and building the

Pareto front is a computationally intensive task, possibly requiring several hours or

days of computation. However, the search is readily parallelizable as many candidate

functions need to be evaluated simultaneously. We distributed our computations using

the island-population model (Christian, Marc et al. 2003; Francisco, Giandomenico et

al. 2005) and used a fitness-prediction model (Schmidt and Lipson 2008) to reduce

overall computational cost and to improve the local search gradient.

In a 32-core implementation, 10 minutes for the pendulum to a day for the double

pendulum. The time for two-dimensional geometric invariants to be found on the

Pareto front during the algorithm‟s search was approximately 5 minutes. The single-

mass air-track laws took approximately 10 minutes to appear. The double-mass air-

track laws took approximately one to two hours to appear. The pendulum laws took

approximately 15 minutes to appear. And the most challenging, the double-pendulum

system, took approximately one to two days of computation.

165

Table 11.1. The predictive ability and Pareto fronts of several synthetic manifolds

and simulated dynamical systems. Error bars denote the standard error of

predictive ability

System Predictive Ability Over Time
Accuracy/Complexity Pareto

Front

Circle:

x
2
 + y

2

Elliptic Curve:

x
3
 + x – y

2

Sphere:

x
2
 + y

2
 + z

2

Linear Oscillator:

a – 0.1·v + 3·x

Linear Oscillator:

x
2
 + 0.3·v

2

166

Table 11.1 (cont.) The predictive ability and Pareto fronts of several synthetic

manifolds and simulated dynamical systems. Error bars denote the standard

error of predictive ability.

System
Predictive Ability Over

Time

Accuracy/Complexity Pareto

Front

Pendulum:

α – 9.8·sin(θ)

Pendulum:

ω
2
 – 9.8·cos(θ)

Double Linear

Oscillator

x1
2
 + (x1 – x2)

2
 + (1 –

x2)
2
 + 2·v1

2
 + v2

2

Double Pendulum

ω1
2
 + 0.5·ω2

2
 +

ω1ω2cos(θ1 – θ2) –

19.6cos(θ1) –

9.8cos(θ2)

167

Equation Accuracy and Complexity Tradeoff

For any finite set of experimental data, there is potentially an infinite set of equations

that maximize any type of error metric. For example, a 1000
th

 order polynomial can

perfectly fit any dataset of 1000 or fewer unique data points. While it is immensely

more difficult to find arbitrarily accurate equations using the partial derivative

predictive ability criterion, it is still important to have some qualitative understanding

of what the domain of equations looks like.

Consider the relationship between equation complexity and accuracy of fitting the

experimental data. Qualitatively there two extremes: complex equations (e.g. a Taylor

series, neural networks, or Fourier series) with arbitrarily high accuracy, and the most

simple models with baseline accuracy. Equations that are simultaneously simple and

accuracy are the most difficult to find. Figure 11.8 shows the Pareto front of equation

accuracy versus equation complexity for the double-pendulum.

The algorithm may also fail to find interesting relationships, due to either lack of

convergence, inappropriate building blocks, or absence of any governing law. In this

case, the front may be poorly formed with only exceedingly complex solutions

reaching high predictive ability.

At certain minimum complexities, the equation‟s predictive ability jumps dramatically

and then plateaus. We can reason this equation is the most likely candidate, as further

elaborations yield marginal improvement in predictive ability. The equation at the

inflection in this example is indeed the conservation of energy equation (Hamiltonian),

supporting this assumption.

168

Impact of Noise

The presence of noise can make estimating derivatives difficult because derivatives

can be highly sensitive to noise. We use Loess smoothing (Cleveland and Devlin

1988) – a non-parametric fitting method – to remove high frequency noise from the

motion tracking system. Loess smoothing updates each sample in the dataset by fitting

a small order polynomial to the sample and its nearest neighbors.

Other methods, such as filtering and convolution, also reduce high-frequency noise,

but do not readily produce estimates of the signal derivative. Using Loess smoothing,

we obtain the numerical derivatives directly from the smoothing procedure by

Figure 11.8. The accuracy/complexity Pareto front of the double pendulum. The

Pareto front shows the tradeoff between equation complexity and its ability to

derive accurate partial derivative. At some minimum complexity (32 nodes),

predictive accuracy jumps rapidly. Equations almost twice as complex improve

the accuracy only marginally. These high complexity equations tend to contain

the simpler exact equation, but add many smaller terms to compensate noise. The

parsimonious and accurate equation at the inflection is the Hamiltonian and

Lagrangian of the double pendulum.

Parsimony [-nodes]

P
re

d
ic

ti
v
e
 A

b
ili

ty
 [

-l
o

g
-e

rr
o
r]

169

evaluating the symbolic derivatives of the local polynomial fits at each data sample.

We have examined the impact of noise on the predictive ability for the double linear

oscillator (Figure 11.9). Noise reduces the ability to find accurate invariant equations

substantially, either simply requiring more time to compute or obscuring the equation

entirely depending on the noise strength. We measure the noise strength (percent

noise) as the ratio of the standard deviation of the random noise to the standard

deviation of the exact signal.

Data Collection and Preprocessing

We used motion tracking cameras and software (Vicon MX) to collect data on

physical systems such as the double-pendulum. We place several infrared markers on

the experimental device, place it into an arbitrary initial condition, and observe its

dynamics.

Figure 11.9. The mean predictive ability on a withheld test set of the best

equations detected versus the amount of normally distributed noise in the data

set for the simulated double linear oscillator. Error bars show the standard error.

The percent noise is the ratio of the standard deviation of the noise and the

standard deviation of the original signal.

170

The motion tracking produces time-series data of 3-dimensional Euclidean position

coordinates for each infrared marker. We use many infrared markers in order to

minimize noise and occlusions effects during the tracking. Afterward, we then

combine the time-series of each marker to calculate the essential state-variables of the

system – 2-dimensional coordinates, angles, etc. For example, in the double-

pendulum, we project all 3-dimensional tracking points to its principle plane, and then

calculate the angle of the two pendulum arms by taking the arctangent between

segments of the infrared markers.

While motion tracking systems have become quite accurate and automated (Greg and

Eric 2002), we must still handle noise and occlusion in the time-series data. Noise

amplifies when the system experiences high velocities or when the number of cameras

that can see a particular infrared marker changes.

In the double-pendulum, the infrared markers on the second arm become occluded

from nearly all cameras when it passes behind the upper arm. In this case, the motion

tracking produces null position coordinates, which we strip out before processing.

Therefore, some of our time-series data contains gaps.

Evolutionary Parameters

We use the fitness prediction algorithm (Schmidt and Lipson 2005; Schmidt and

Lipson 2006; Schmidt and Lipson 2008) to search over symbolic equations. The

selection method was deterministic crowding selection (Mahfoud 1995), using 1%

point-mutation probability and 75% crossover probability. The encoding each

equation was an acyclic graph with a maximum of 128 operations/nodes (Schmidt and

Lipson 2007). We used single-point crossover to exchange the operations in the parent

equations. The operator set contained addition, subtraction, multiply, sine, and cosine.

171

We distributed the symbolic regression evolution over 8 quad core computers (32 total

cores) using the island distributed computation method (Christian, Marc et al. 2003;

Francisco, Giandomenico et al. 2005). We spread a population of 2048 equations over

32 CPU cores; therefore each island population has 64 equations.

The fitness predictor population contains 512 predictors, distributed over 32 cores.

The fitness predictors consist of 128 indices into the full training data set. The

predictors are evolved with deterministic crowding, using 10% mutation and 50%

crossover rates.

We calculate fitness using variations of (Equation 11.8), where we modify the signs of

partial derivative pairs using negation or absolute value to vary the types of equations

we search for. For predicted fitness values, we only calculate (Equation 11.8) over the

smaller subset of the fitness predictor rather than the entire data set.

Results with Missing Building Blocks

It is interesting to note that in the absence of appropriate building blocks, the

algorithm develops approximations. For example, eliminating sine and cosine as

building blocks causes the pendulum invariant to be expressed as ω
2
 + k1θ

2
 – k1θ

4
,

Table 11.2. Summary of Detected Approximations with Missing Building Blocks

Building Blocks Detected Pendulum Law Approximation Discovered

*, +, –, cos(), sin() ω
2
 – 19.6·cos(θ) Exact Solution

*, +, –, sin() ω
2
 – 19.5999·sin(-1.57079 + θ) Trigonometric identity

*, +, – ω
2
 + 9.7108·θ

2
 – 0.7042·θ

 4
 Taylor series expansion (4

th
 order)

172

thereby exploiting the Taylor series expansion. Eliminating cosine but not sine results

in other identities, such as cos(θ) = sin(θ + π/2) or more complex equivalences (Table

11.2).

173

CHAPTER 12. SYMBOLIC NOISE SOURCE MODELS

Summary

In this chapter we propose a genetic programming approach to learning stochastic

models with unsymmetrical noise distributions. Most learning algorithms try to learn

from noisy data by modeling the maximum likelihood output or least squared error,

assuming that noise effects average out. While this process works well for data with

symmetrical noise distributions (such as Gaussian observation noise), many real-life

sources of noise are not symmetrically distributed, thus this approach does not hold.

We suggest improved learning can be obtained by including noise sources explicitly in

the model as a stochastic element. A stochastic element is a random sub-process or

latent variable of a hidden system that can propagate nonlinear noise to the observable

outputs. Stochastic elements can skew and distort output features making regression of

analytical models particularly difficult and error minimizing approaches inhibiting.

We introduce a new method to infer the analytical model of a system by decomposing

non-uniform noise observed at the outputs into uniform stochastic elements appearing

symbolically inside the system. Results demonstrate the ability to regress exact

analytical models where stochastic elements are embedded inside nonlinear and

polynomial hidden systems.

Introduction

Random noise is found in many natural and engineered systems, such as random

diffusion, noisy actuators or sensors, and human input (Kulkarni 1995). Most learning

algorithms handle noise by fitting the maximum likelihood or least squares error of

noisy data (Kulkarni 1995; Carl Edward 1997). This approach works well when noise

is distributed symmetrical about the true system output, such as white noise, Gaussian

noise, and any zero mean noise superimposed over the output.

174

When noise exists internally in the system, it can be coupled with nonlinear

components of the system. In other words symmetric internal noise can be scaled,

offset, and in general transformed to produce non-symmetric noise distributions on the

output. In these situations, the noise has deformed the maximum-likelihood output

from the theoretical noiseless system, and the regressed models may no longer

describe the analytical structure of the system.

We call this type of noise a stochastic element – a random process inherent to the

system, affecting its behavior and observable output. Noise from stochastic elements

can propagate nonlinearly to the system‟s output and produce non-uniform variation.

The most common approach to handling noise is to model its expectation, either

through averaging or least-squares fitting (Kulkarni 1995; Carl Edward 1997). While

the expectation of a noisy system is valuable for finding a model with minimal error, it

can be misleading when finding a descriptive analytical model of the system (e.g.

symbolic regression). In the worst case, it can distort the observed output of the

system, preventing the true system structure from being found.

In this chapter, we aim to improve regression of a noisy system based on the notion

that observed noise that is coupled to the system may itself provide additional

information about the system‟s analytical structure. For example, if the output noise

appears to grow quadratically, there is likely to be some quadratic structure in the

system. Our approach is to use symbolic regression to model the output noise

explicitly, decomposing noise as uniform stochastic elements inside the system to

produce a noisy model. We then compare the noise observed in candidate models to

the variation in the training data to calculate fitness. The final analytical model is

obtained by removing the stochastic terminals used.

175

In the remaining sections, we discuss the distortion produced by stochastic elements,

describe our approach in greater detail, show some simple results, and finish with

concluding remarks.

Background

Distortion from Stochastic Elements

Expected values of a noisy output can disguise and distort analytical structure when

the system contains internal stochastic elements (Schaffer, Ellner et al. 1986; Kleijnen

2006). Noise can be multiplied into the system or pass through a nonlinear operation

to significantly change the expected output values. Figure 12.1 shows three simple

examples where a stochastic element hides or distorts analytical features.

Figure 12.1a shows a sine function, f(x) = sin(x) with a stochastic element giving rise

to a random phase offset, f(x) = sin(x + R). The noise does not change the magnitude

of the sine wave but does shift data samples left or right. The expectation of the output

shows a sine function with correct phase but with smaller amplitude than the target

analytical model, f(x) = A*sin(x).

The system in Figure 12.1b is a simple linear function, f(x) = x, multiplied by a

stochastic element, f(x) = x*R. The multiplied noise completely hides the linear growth

from the expectation. The expected output becomes simply f(x) = 0.

Figure 12.1c is a quadratic function, f(x) = x
2
, with noise added to the input, f(x) = (x +

R)
2
. This noise again shifts the data points left or right, but does not change the y-

intercept. The expected output model however is quadratic with a y-offset, f(x) = x
2
+A.

Though these are simple examples, they give insight into how stochastic elements can

distort expectation models from the exact analytical model, or even hide features. In

176

the next section, we describe a simple approach to incorporating stochastic elements

into models in order to recover exact analytical models despite this difficulty.

Regressing Noisy Data

Noise is found in almost all experimental data and is a central focus in many areas of

machine learning (Arnold 2001). Here, we briefly overview how noise is traditionally

handled in regression problems.

Often experimental data is pre-processed to remove outliers (Rousseeuw and Leroy

1987), remove white noise (Kleijnen 2006), and more generally, smooth features.

Common techniques for preprocessing include convolving with a low-pass-filter (e.g.

box or sliding window, Gaussian filter), local least-squares fitting, and spline fitting.

The aim of preprocessing is to transform the data set to be more representative of the

expected outcome or maximum likelihood of the system through interpolation or

statistical properties among neighboring data points. These processes make

assumptions about the underlying system and its noise distribution but are still used

frequently in practice to improve predictive performance.

In contrast, we are interested in exploiting the existence of nonlinear noise to reveal

internal structure of the unknown system. In this sense, the goal is broader and

removing noise coupled to the system could remove information.

Modeling Noise and Confidence

One is often interested in the confidence of predictions made by a regressed model.

Accurate models predict the maximum-likelihood value, but the variance of outputs

for this value may be large.

177

The most common non-parametric approach to measure confidence is to examine the

residual errors of the model on the training set. This leads to a natural two-step

procedure:

(1) Regress a best fit model

(2) Derive a statistical model of the residual error

In the case of white noise, residual errors appear uniformly distributed and can be

modeled globally such as calculating its mean and variance.

(a)

(b)

(c)

Figure 12.1. Three basic examples where a stochastic element hides or distorts

analytical features of the system to different extents. Blue dots show the observed

system output, the red line shows the expectation of the output, and the green line

show the target analytical model with stochastic elements removed.

178

If noise is coupled to the system by an internal stochastic element, the residual error

may vary greatly over the input space. In this case, local statistical models are used to

model confidence among neighboring inputs (Touretzky, Leen et al. 2007).

Deriving a statistical model of the residual error in this fashion requires assuming a

noise distribution model, such as the normal distribution. In nonlinear regression,

where an analytical model of the system is assumed, the noise distribution can be

derived automatically from the model. Most commonly, confidence intervals are

calculated on the model fitting parameters (Vugrin, Swiler et al. 2007). Parameter

confidences then translate into nonlinear output confidence ranges on the model

output.

In contrast, the method proposed in this chapter models noise explicitly in the model

parametrically without a predetermined model structure.

Symbolic Regression

See the description in the section “Symbolic Regression” on page 4 for background

the symbolic regression problem.

The fitness objective in symbolic regression, traditionally, is to minimize error on the

training set (Koza 1992; Augusto and Barbosa 2000; Schmidt and Lipson 2005). Later

in this chapter however, we define a new objective geared specifically to reward

candidate solutions with noise distributions that match the noise observed in the

training set.

Learning Noise Algorithm

The basic idea of our approach is to include behavior of stochastic elements inside the

analytical model. Instead of using an error minimization objective, we attempt to find

179

a model of stochastic elements with the simplest distribution explaining all features

and noise in the training data. The final analytical model identifies the origin of noise

as well as its effect on out observations.

Much research has been done on bounding noise error and modeling error

Individual ind = (encoding E, stochastic elements S)

Input variables X

Function evalute():

 For each s in S

 s = random value [-1, 1]

 End

 …

 val = evaluate ind normally

 …

 Return val

Individual ind

Training data D of (x,y) pairs

Number of samples N

Function fitness():

 fitness = 0

 For each d in D

 yin, ymax

 Repeat N times

 y = ind.evaluate(d.x)

 If (y < ymin) ymin = y

 If (y > ymax) ymax = y

 End

 If (ymin < d.y < ymax)

 fitness += 1/(ymax - ymin)

 Else

 fitness += – min(|d.y - ymax|, |d.y - ymax|)

 End

 End

 Return fitness

Figure 12.2. Pseudocode for evaluating a model with stochastic noise sources

to estimate the noise envelope or distribution (top), and pseudocode for

calculating the resulting fitness metric for the candidate model (bottom).

180

distributions (Xavier and David 2003; Touretzky, Leen et al. 2007; Vugrin, Swiler et

al. 2007). The distinction here is that we are modeling individual noise components

explicitly inside a system. The analytical model is regressed from scratch, rather than

relying on an assumed system model or distribution model.

We use symbolic regression to find an analytical model which incorporates uniform

random variables to explain residual error parametrically in addition to finding a best

fit. In the next two sections, we describe how we incorporate stochastic elements into

candidate models and describe a new objective function to explain observed noise.

Decomposing Stochastic Elements

Our basic building block for a stochastic element is a uniform random variable with

range -1 to 1 inclusive that returns a random value every time it is read or evaluated by

the model. Symbolic regression can incorporate this random variable anywhere in its

models to help explain the noise distribution.

R() = uniform random value [-1, 1]

(a)

(b)

Figure 12.3. An example binary expression tree (a) for the function f(x) = e
x
sin(x),

and a similar tree modeling a stochastic element (b) for the function f(x) = e
x
sin(x

+ R()).

181

Nearly all types of random variables and distributions can be derived from this

uniform random variable. Symbolic regression treats this variable like it would any

other attribute variable, and can derive combinations and transformations to non-

uniform distributions. For example, the Normal distribution can be derived from

querying the uniform random variable twice:

Normal(0,1) =)()cos()1()ln()2ln( RRA

Symbolic regression most commonly represents candidate solutions as expression

trees (Figure 12.3a).

We treat stochastic elements as a new variable in the terminal set that can be used

anywhere in the expression tree to model the noise in experimental data (Figure

12.3b). The new terminal value is special however in that it is randomized every time

it is evaluated, even when appearing multiple times in the same expression tree.

The Noise Distribution Objective

Now that candidate models can include random variables, their output predictions will

have some distribution. Our goal for this distribution is to explain all variation found

in the training data, and do so in the narrowest and simplest way.

A distribution explains a training data point if the data point falls inside the model‟s

distribution at that point. For example if f(x=10) has a distribution between [-9,-3], it

explains the training data point if its value is -6, but not if it is 4.

We can approximate the distribution of a candidate model at a training point by

sampling it. In our experiments, we find the range of output for a training input by

storing the minimum and maximum output from 100 model evaluations.

182

Note however that a trivial solution would be a large (or perhaps infinite) distribution

where all training data lies inside the distribution. Therefore, we must introduce a

second objective to minimize the size of the distribution.

If a training data point lies inside the model‟s distribution, we want to minimize the

height of the distribution at that point. If the point is not covered by the distribution,

we want to minimize the distance of that point from the distribution. We can combine

these two objectives into a single fitness criterion:











),())((1

|)((|min
)(

yx)range(f(x)yifxfrange

)range(f(x)if yxfrangey
ffitness

This is a two-step fitness objective, summarized in Figure 12.4. The model must first

cover the point with its distribution, and then it must minimize the area of its

distribution. As shown in Figure 12.4b, training points not explained by the

distribution contribute negatively to the fitness, and points that are explained

contribute positively.

Pseudocode for evaluating a model that contains stochastic elements, and for

(a)

(b)

Figure 12.4. The fitness objective for explaining training data with a with model

that has stochastic elements and output distribution. If a training point falls

inside the model distribution, the objective is to minimize the height of the

distribution. If the point falls outside, the objective is to minimize the distance of

the point to the distribution.

183

evaluating the distribution fitness of a model is shown in Figure 12.2.

Experiments

We modify a symbolic regression algorithm (Schmidt and Lipson 2005) to include

stochastic elements and regress based on distributions rather than error minimization.

This algorithm utilizes adaptive sampling of the training set to reduce computational

cost, which is particularly high for finding the output distribution of candidate models

during regression.

Parameters for all experiments are summarized in Table 12.1. In deterministic

crowding, offspring replace their most similar parent if they have equal or higher

fitness and are discarded otherwise. Population size, mutation probability, and

Table 12.1. Summary of Experiment Setup

Solution Population Size 64

Selection Method Deterministic Crowding

P(mutation) 0.05

P(crossover) 0.75

Solution Encoding Operation List (graph)

Operations 16

Local Variables 4

Evolved Constants 4

Inputs 1

Operator Set +, -, *, /, sin, cos

Terminal Set x, c1, c2, c3, c4

Crossover variable, single point

Fitness Sample Size 4

Distribution Samples 100

184

crossover probability have been tuned empirically. Crossover produces a higher fit

child approximately 20% of the time with these setting on the operation list encoding.

The candidate solutions (algebraic expressions) are lists of operations on local

variables. The number of operations and local variables were tuned for computational

performance. The encoding size, terminal set, and operator set are over-represented

(no experiments requires all for convergence). Single point crossover is used on the

operation list at a variable offset.

To measure fitness, the output distribution is measured on four inputs from the

training set, one hundred times. The minimum and maximum values are then used to

calculate the fitness described earlier.

We test on three simple example systems each with a uniform stochastic element

coupled in the system:

 f1(x) = 10 sin(x + R)

 f2(x) = x
2

sin(x + R)

 f3(x) = (x + R) - 1.5 x
3

These experiments demonstrate the finding the exact structure and parameters of the

system despite internal stochastic noise which offset the expected output.

Results

This section gives results on three simple examples of regressing stochastic elements

embedded in a hidden system to demonstrate our approach. We show screen captures

of different stages during regression to show the progress toward the analytical model.

185

f(x) = 10R

(a)

f(x) = 10 sin(x) + 5R

(b)

f(x) = 10 sin(x + R)

(c)

Figure 12.5. The best model found at three points during regression of f(x) = 10

sin(x + R). The green points show the training data, the grey area shows the

model’s distribution, and the blue line shows the analytical model with stochastic

elements removed.

(a)

f(x) = x
2

R

(b)

f(x) = x
2

sin(x + R)

(c)

Figure 12.6. The best model found at three points during regression of f(x) = x
2

sin(x + R). The green points indicate the training data, the grey area indicates the

model’s distribution, and the blue line indicates the analytical model with

stochastic elements removed.

f(x) = -1.5 x + 3R

(a)

f(x) = x R - 1.5 x
3

(b)

f(x) = (x + R) - 1.5 x
3

(c)

Figure 12.7. The best model found at three points during regression of f(x) = (x +

R) - 1.5 x
3
. The green points are the training data, the grey area is the model’s

distribution, and the blue line is the analytical model with stochastic elements

removed.

186

The time to regress each system successfully ranged from one to five minutes. The

primary computation time consists in computing the candidate model distribution at

each training point. We use random sampling to determine the output ranges at each

point, but a more intelligent sampling method could be used to scale the application to

higher complexity systems.

Figure 12.5 shows three stages during regression of the function f(x) = 10 sin(x + R),

where R is a stochastic element variable that returns a uniformly random number in

the range x = -1 to x = 1 inclusive each time it is read.

Early on, candidate solutions are linear with distributions that cover all the training

points – shown in Figure 12.5a. In Figure 12.5b, the solutions have inferred the sine

function in the system, but the noise distribution is just added linearly to the output. In

the next stage, Figure 12.5c, the solution has converged on the sine function with the

stochastic element located inside the sine function.

Figure 12.6 shows the regression of the function f(x) = x
2

sin(x + R) which is similar to

the first experiment but now has a variable amplitude sine wave. Candidate solutions

converge on quadratic amplitude noise very quickly – Figure 12.6b. Shortly after, the

sine function is found and the analytical model converges in Figure 12.6c.

The third experiment uses a polynomial function but with noise simply added linearly

to the output. This is a case where the minimum error model is the same as the

analytical model but it is important that we can differentiate this type of noise as well.

Figure 12.7a shows early candidate solutions are linear with an additive noise range.

In Figure 12.7b, the analytical model has been found but the noise distribution has not

yet explained all data points. Figure 12.7c shows the converged solution identifying

the correct analytical model and its distribution.

187

Conclusions

Stochastic elements existing inside a hidden system can produce nonlinear and non-

uniform noise at the observable outputs. There are many cases where the expected

value output or minimum error regression can be deceiving toward finding an exact

analytical model as done in symbolic regression.

We have presented a simple approach to model stochastic elements directly as uniform

random features using symbolic regression. The objective for candidate models with

stochastic elements is to explain (overlap) all training data points in its distribution and

minimize the area of the distribution used.

Results show this approach can find the exact analytical model despite misleading

nonlinear and non-uniform output noise. In three basic experiments, regression of the

output distribution found the correct system structure and location of the stochastic

elements with parameters existing in the hidden system.

188

CHAPTER 13. STOCHASTIC REACTION MODELS

Summary

Many systems, particularly in biology and chemistry, involve the interaction of

discrete quantities, such as individual elements or molecules. When the total number

of elements in the system is low, the impact of individual reactions becomes non-

negligible and modeling requires the simulation of exact sequences of reactions. In

this chapter, we introduce an algorithm that can infer an exact stochastic reaction

model based on sparse measurements of an evolving system of discrete quantities. The

algorithm is based on simulating a candidate model to maximize the likelihood of the

data. When the likelihood is too small to provide a search gradient, the algorithm uses

the distance of the data to the model's estimated distribution. Results show that this

method infers stochastic models reliably with both short time gaps between

measurements of the system, and long time gaps where the system state has evolved

qualitatively far between each measurement. Furthermore, the proposed metric

outperforms optimizing on likelihood or distance components alone. Traits measured

on the search novelty, age, and bloat suggest that this algorithm scales well to

increasingly complex systems.

Introduction

Stochastic systems pervade nearly all areas of science, from quantum properties of

atomic particles, to chemical reactions in a chemical bath, to fluctuations in

populations or ecosystems. All stochastic systems are at least partially random,

making them difficult to model dynamically or deterministically. Instead, Monte Carlo

methods are often employed to simulate and analyze their behavior.

A particularly important Monte Carlo method was developed by Dan Gillespie in 1977

189

in order to model chemical reactions kinetics (Gillespie 1977). The Gillespie

algorithm performs an exact and statistically-correct simulation of a stochastic system

based on a set of discrete chemical reactions, reaction coefficients, and initial

conditions. The Gillespie algorithm has been used extensively in systems biology, and

also similar domains. Traditionally, the set of reactions that model a stochastic system

must be developed and theorized manually by experts.

In this chapter we introduce an evolutionary algorithm that automatically hypothesizes

about the reactions and reaction rates taking place in a system simply by analyzing

raw experimental data, even with large time gaps between observations (see Figure

13.1). The proposed method searches over a space of reactions in order to find the

maximum likelihood model that agrees with the experimental observations.

The key challenges to searching over stochastic models is the computational cost of

Figure 13.1. Overview of the modeling problem. A stochastic system evolves an

exact behavior over time shown in blue. Periodically, the state of system can be

measured (shown in red dots), a sample of the exact time evolution of the system.

The task is to infer a maximum likelihood stochastic model (right) for this system

from these periodic measurements. Actual data and solution shown.

600 700 800 900 1000 1100 1200 1300 1400
600

700

800

900

1000

1100

1200

1300

1400

1500

x

y

Periodic Samples of a
Stochastic System

x

x + y

y

2 x

2 y

ø

0.1

10

10

Maximum Likelihood
Stochastic Model

190

estimating likelihood values from a model and maintaining a search gradient. Except

for only the most trivial systems, the probability density of a set of stochastic reactions

cannot be solved over time. Instead, the model can be simulated (or sampled)

repeatedly. However, efficient sampling methods fail over large time spans (Gillespie

2007), making it difficult to estimate distribution tails.

The proposed method overcomes this difficulty by using a two-component

optimization metric. The metric attempts to maximize the log-likelihood of the data

given a candidate model. However, if the likelihood is too small to provide a gradient

for the search, the criterion changes to the distance of each data point to the estimated

probability density of the candidate model. In effect, this distance component allows

even extremely inaccurate models to improve despite having zero likelihood. Once

models get close enough to the data, where their likelihoods can be estimated

accurately through sampling, the metric switches to maximize the likelihood.

This metric also reduces the computational complexity, as the accuracy of estimating

the tails of distributions is less important. The algorithm can thereby use fewer

samples (fewer simulations of a candidate model) and still estimate a useful likelihood

gradient.

Background

Here we introduce important concepts in stochastic simulation algorithms, density

estimation, and evolutionary algorithms.

Stochastic Simulation Algorithms

The exact stochastic simulation algorithm was first developed in (Doob 1945) and

later applied to chemical kinetics in (Gillespie 1977). The makes few assumptions

about the system except that the environment is well mixed.

191

The basic algorithm involves two steps: (1) sampling a time delay until the next

reaction occurs, and (2) sampling among possible reactions which occurs. Each of

these samples are dependent on the number of molecules in the current state. When

there are a large number of molecules, the time until the next reaction can be

extremely small. The counts of each species also influences which reaction is more

likely to occur. The system is simulated by repeatedly applying reactions and

incrementing time by the sampled time amount, resulting in a random walk, time-

series trajectory. See (Gillespie 1977) for more details.

The exact simulation of the Gillespie algorithm becomes critically important when the

number of molecules is sufficiently small. In this case, single reactions can

significantly impact reaction propensities and future states (e.g. reaching a terminating

state). When the number of molecules is exceedingly large, the system dynamics are

approximately deterministic because a large numbers of reactions tend to average out

random fluctuations.

The exactness of the Gillespie algorithm does come at a computation cost, and several

methods have been proposed to improve its performance, while still preserving

exactness where necessary.

For our simulations, we use the modified Poisson tau-leaping procedure that ensures

that at most one critical reaction occurs per leap (Cao, Gillespie et al. 2005). The tau-

leaping speeds up the stochastic simulation by estimating the number of reactions

occurring during a time period tau. The value of tau is chosen such that the change in

reaction propensities during tau is arbitrarily small. When the tau leap is not large

enough to provide useful speed up, the algorithm defaults to an exact simulation.

192

Kernel Density Estimation

In order to calculate the likelihood of a the data given a candidate model, we need to

estimate the probability density of the model at each data point. There are many ways

to estimate probability densities.

A simple method is to use a histogram. The histogram divides all samples (in our case

counts of molecules after simulating a model) into a number of bins. The density is

then the bin frequency divided by the bin width. Several methods exist for choosing

optimal bin widths and positions (Hideaki and Shigeru 2007).

A major drawback to binned histograms however is that they are locally flat

everywhere. In other words, they have no local gradient that is amenable to

optimization.

An alternative to a histogram, and the method used in our experiments, is kernel

density estimation (Rosenblatt 1956; Parzen 1962). Kernel density estimation is a non-

parametric method to estimate probability density functions. It sums a series of kernel

functions that are centered on each sample. We used a Gaussian kernel function,

meaning each sample contributed a Gaussian density around its sample value.

Choosing a uniform kernel for example would produce a result similar to a binned

histogram.

The Gaussian kernel produces density estimates, useful for optimizing, however we

still need to specify bandwidth. The bandwidth is analogous to the bin width in a

binned histogram. Variable kernel bandwidth selection is the technique of selecting a

different bandwidth for each sample (Terrell and Scott 1992). Variable bandwidths

allow the kernels to be narrow in high density regions, capturing high details of the

distribution, and wide in less certain low-density areas.

193

In our experiments, we used the square-root law (Abramson 1982) for selecting the

bandwidths per sample. This technique requires an initial estimate of the density –

here, we used an ordinary histogram with optimize bins chosen by minimizing the

mean integrated squared error (MISE) (Hideaki and Shigeru 2007). The final result is

a smooth continuous estimate of the probability density that captures both sharp and

diffuse features in the distribution.

Evolutionary computation

See the description in the section "Evolutionary Computation" on page 3 for more

information.

Algorithm

The proposed method for inferring a maximum likelihood stochastic model uses an

evolutionary algorithm to search for sets of reaction channels and rates to match the

Figure 13.2. The encoding of a solution representing a stochastic model of

discrete reactions. A series of chemical reactions (top) are represented by

corresponding integer coefficients and real valued rate constants for each

reaction (bottom).

a1,1 x1 + a1,2 x2 b1,1 x1 + b1,2 x2
c

Reactions:























































nmmm

n

n

mnmmm

n

n

bbb

bbb

bbb

c

c

c

aaa

aaa

aaa

,2,1,

,22,21,2

,12,11,1

1

1

,2,1,

,22,21,2

,12,11,1



















integers integersreals

a2,1 x1 + a2,2 x2 b2,1 x1 + b2,2 x2
c

… ……

Encoding:

194

data. In this section, we describe the evolutionary encoding of candidate models in the

search, and the fitness function.

Encoding

The stochastic model consists of a series of reactions. Each reaction specifies an

integer number for the inputs, an integer number for the outputs, and a real valued

number for the reaction rate. If a reaction does not use an input, its input value is 0;

likewise for outputs.

We use a fixed, maximum number of reactions for our experiments. Candidate models

can opt to use fewer reactions than the maximum by setting the reaction rate to 0, or

setting the inputs and outputs to 0.

Figure 13.2 summarizes our encoding for a stochastic model. It consists of a matrix of

integer valued input coefficients for each reaction, a vector of real valued coefficients

for each reaction, and a matrix of integer valued output coefficients for each reaction.

A random encoding is produced by filling each matrix with random integers, normally

distributed with zero mean and standard deviation of 1, and filling the reaction vector

with random positive real values, normally distributed with zero mean and standard

deviation of 1.

The mutation operator works by randomizing each individual element with a fixed

point mutation probability. The crossover operation recombines two parent encodings

to form a new offspring. We use a random single point crossover on the reactions – for

example, copying the first n reactions (inputs, outputs, and rate) from the first parent,

and the remaining from the second parent.

The complexity of the encoding is defined as the sum of all integer valued reaction

195

coefficients on both inputs and outputs of the reactions.

Likelihood Estimate

Our goal is to find a maximum likelihood model. We cannot estimated the likelihood

of a model explicitly, however, we can estimate the likelihood of seeing the

experimental data given a specific model. This gives a measure of how well a

particular model agrees with the data. In other words, we are trying to maximize the

following expression:

)|(
1

mMxPLikelihood
n

i

i 


Here, n is the number of data points (measurements of a system state), xi is a particular

data point, m is a particular model, and P is the probability density of the model m at

data point i. Rather than working directly with probabilities, it is numerically more

stable to work with the log of probabilities, or the Log-Likelihood:

 



n

i

i mMxPLikelihoodLog
1

)|(log

To evaluate the likelihood, we need to estimate the value of P(xi | M = m). We do this

by sampling the model m – that is, simulating the model over the time span from the

previous data i – 1 point to the current data point i.

Figure 13.3 visualizes the simulation process. The candidate model is simulated, using

the previous state, until the time reaches the current state. Each simulation is then

added to a kernel density estimator, described above, to estimate the probability

density P. The log of the density is then summed for each state x of the system to the

cumulative log-likelihood value.

196

Fitness Function

Ultimately we want to maximize the likelihood of a candidate model, but since we can

only approximate the density function, most random models will tend to have zero

likelihood and no gradient to optimize on because we cannot accurately estimate the

tails of the probability density function.

Our solution to this problem is to use a two-component fitness metric. The two

components are:

1. The log-likelihood as usual, and

2. The distance of the data point to the median value of the estimated distribution

When a model has near zero likelihood (e.g. lower than epsilon = 10
-6

 in our

experiments) we subtract the distance of the data point to the median value of the

distribution. Otherwise, the fitness is equal to the log-likelihood. This fitness metric is

Figure 13.3. Comparing a candidate model with the experimental data. The left

pane shows the hypothetical exact behavior of a system in blue, and two known

measurements of the system at red dots. The candidate model is simulated

multiple times, starting from the first measurement for t seconds, in order to

estimate a probability distribution of the model (right). The state of the second

measurement is then compared with this distribution to evaluate the quality of

the model to reproduce the measurement.

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1
t = 2.27

x and y State Values [# of particles]

600 700 800 900 1000 1100 1200 1300 1400
600

700

800

900

1000

1100

1200

1300

1400

1500

t = 2.27 t = 2.27

PD
F

af
te

r
t

se
co

n
d

s

x y

x

y

Experimental Data Point Simulated Model on Data Point

197

summarized in Figure 13.3.

By adding the log-likelihood component to the distance component, the fitness

function remains monotonically increasing for improving models. This allows

initially poor random models to move their distributions close enough to the data

points such that their density estimations can be used to maximize the likelihood.

Experiments

We perform proof of concept experiments on the basic Lotka-Volterra model (Lotka

1925; Volterra 1926). The target reactions for this system are shown below:

0

2

2

10

1.0

10

y

x

y

yx

x









The Lotka-Volterra reactions model a predator prey system. In the first reaction, prey

(represented by x) grow exponentially. In the second reaction, prey may meet

predators (represented by y), causing a prey to die and predators to increase in

number. Finally in the last reaction, a predator can die out.

We generated data sets of 10 pairs of measurements of the Lotka-Volterra system.

Each pair consists of a random initial condition, followed by a measurement after

simulating for a fixed time duration.

In our experiments, we compare two types of data sets, those with short time gaps,

where measurements are made in short succession (time steps of 0.002), and long time

gaps (time steps of 0.1) where the state of the system changes dramatically between

measurements. An example of the long time gaps data set is shown in Figure

13.1(left), where each green arrow is a pair of measurements.

198

In the evolutionary algorithm we use a population size of 30, crossover probability of

50%, and mutation probability of 15%. We allow a maximum of 3 reactions in each

model. In estimating a model density for a data point, we sample 100 independent

simulations. We track various statistics of the best solution throughout each trial,

including fitness on training and test data sets. We terminate all trial runs after 300

Figure 13.4. The search performance of the three compared fitness metrics. The

top panes show performance when data points appear in rapid succession with

short gaps in time. The bottom panes show performance when there are long

gaps of time between data points. The left panes show the likelihood score of the

best model during the search. The right panes show the percent of runs that

identified the exact solution for the amount of computational effort. Error bars

indicate the standard error.

-50 0 50 100 150 200 250 300 350
-20

0

20

40

60

80

100

120

L
ik

e
lih

o
o
d

short all

short dist

short like

-50 0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

E
x
a
c
t

S
o
lu

ti
o
n
 [

%
]

short all

short dist

short like

Computational Effort [generations] Computational Effort [generations]

Li
ke

lih
o

o
d

E
xa

ct
 S

o
lu

ti
o

n
 [%

]

Short Time Gaps in Experimental Data:

Long Time Gaps in Experimental Data:

-50 0 50 100 150 200 250 300 350
-2

0

2

4

6

8

10

12

L
ik

e
lih

o
o
d

long all

long dist

long like

-50 0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

100

E
x
a
c
t

S
o
lu

ti
o
n
 [

%
]

long all

long dist

long like

Computational Effort [generations] Computational Effort [generations]

Li
ke

lih
o

o
d

Ex
ac

t
So

lu
ti

o
n

 [%
]

199

iterations (generations) of the evolutionary algorithm.

We repeated the evolutionary algorithm using three different fitness metrics:

1. Log-likelihood only

2. Median distance only

3. The proposed distance and Log-likelihood metric

Therefore, we will be able to evaluate strengths or weaknesses of each component in

the proposed metric.

Results

The first results is that the evolutionary algorithm is able to find the maximum

likelihood model for all three compared fitness metrics. For the short time gap data

set, Figure 13.4 (top) shows that all three metrics reach approximately 90%

convergence to the exact known model. Both the likelihood and hybrid metrics

perform 100% convergence after 100 generations.

In terms of computation time, each generation took approximately 1 minute. Most

computation cost lies in simulating various candidate models to estimate their

probability densities for each data point.

On the data set with large time gaps, Figure 13.4 (bottom) shows greater

differentiation between the three metrics. The two-component metric reaches the

highest likelihood models and convergence, followed by the likelihood only metric.

The distance metric only performs the worst.

200

Interestingly, when the time gaps are short, the performance of the two-component

metric and likelihood metric only are approximately the same. This indicates that on

short time gaps, the probability density of random candidate models is more likely to

provided a useful search gradient, because data points are close to their initial

conditions. Here, there is no benefit to using the extra distance component in the

fitness metric.

However, the distance metric appears to be crucial when the data set has large time

gaps (Figure 13.4). Here, the two-component metric out performs the other metrics.

Also interesting is that the distance metric alone performs very poorly. This metric

allows models to get their distributions centered on the data, but does not optimize the

likelihood making it inadequate on its own.

In Figure 13.5 we compare the relationship between the log-likelihood score and the

distance metric. We can see that the distance is correlated with the log-likelihood, but

Figure 13.5. The relationships between the distance metric of a model and its

corresponding likelihood given the experimental data. Each point in the plot is a

random candidate model during the likelihood search.

201

imperfect. There is large variance vertically in the log-likelihood for fixed distance,

indicating that log-likelihood metric is inaccurate or at least unstable at the tails of the

model probability distribution.

Finally, we collected various traits of the best solution for each algorithm during each

search, shown in Figure 13.6. The first observation is that the genotypic age (Hornby

2006) of the best solution (measured in generations) is roughly equal to the total

Figure 13.6. Traits of the best model over time during the evolutionary search.

The top left plot shows the genotypic age of the best solution (the number of

generations any part of the solution existed in the population). The top right

shows the novelty of the best solution (how different it is from the rest of the

population). The bottom pane shows the bloat of the best solution (ratio its

complexity with the target solution complexity). Error bars indicate the standard

error.

-50 0 50 100 150 200 250 300 350
0

50

100

150

200

250

A
g
e
 [

g
e
n
e
ra

ti
o
n
s
]

long all

long dist

long like

Computational Effort [generations]

G
en

o
ty

p
ic

 A
ge

-50 0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

Iterations

N
o
v
e
lt
y

long all

long dist

long like

Computational Effort [generations]

N
o

ve
lt

y

-50 0 50 100 150 200 250 300 350
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

B
lo

a
t

[%
]

long all

long dist

long like

Computational Effort [generations]

B
lo

a
t

202

generations on average. This indicates that the evolutionary search is not being trapped

by local optima, otherwise the best solutions would appear younger as younger

solutions would replace solutions in local optima. Interestingly, the distance metric

algorithm tended to have the highest ages, suggesting that it avoided local optima

most, perhaps by identifying an attracting region for the global optima most reliably.

The novelty of the best solution over time, shown in Figure 13.6, shows that the

populations are initially very diverse before converging onto optima. But no clear

difference between the compared metrics is apparent. Novelty (Lehman and Stanley

2010) is defined as the average distance summed over the reaction coefficients of a

candidate solution to nearest neighbors in the current population.

In terms of bloat (Banzhaf and Langdon 2002), the algorithm starts off with a low

bloat ration after random initialization. The bloat tends to increase quickly, and then

fall toward a ratio of 1 (no bloat) as the best solution converges to the target (Figure

13.6). The distance only metric tended to reach higher bloat, which may be a reflection

that it was less likely to converge to the target.

One final observation is that for these traits in Figure 13.6, there appears to be very

little difference between the likelihood metric and the two-component metric. The key

difference is only in the overall performance (Figure 13.4). This suggests that the role

of the distance component is to help models move toward the data so that the

likelihood component can be used, and does not impact other aspects of the population

or evolutionary algorithm.

Conclusions

In this chapter we introduced an automated algorithm for identifying stochastic

reaction models. The proposed method used an evolutionary algorithm to identify a

203

maximum likelihood set of reactions and reaction coefficients. Instead of only

optimizing likelihood, the proposed algorithm used a two-component fitness metric

that optimized the distance of a candidate model's distribution from the data point

when the likelihood was too small to provide an accurate search gradient.

The experiments indicate that the likelihood metric alone performs well on data with

short time gaps in data set. However, when the data set contained large time gaps,

where the state of the system evolved far from the local behavior the two-component

fitness metric performed best, finding the exact target solution faster and more

reliably. Observations on the age, novelty, and bloat of the best solution indicate that

the algorithm avoids local optima, and could scale well with increasing complexity

systems.

204

CHAPTER 14. TREE AND GRAPH ENCODINGS

Summary

In this chapter, we analyze two general-purpose encoding types, trees and graphs

systematically, focusing on trends over increasingly complex problems. Tree and

graph encodings are similar in application but offer distinct advantages and

disadvantages in genetic programming. We describe two implementations and discuss

their evolvability. We then compare performance using symbolic regression on

hundreds of random nonlinear target functions of both 1-dimensional and 8-

dimensional cases. Results show the graph encoding has less bias for bloating

solutions but is slower to converge and deleterious crossovers are more frequent. The

graph encoding however is found to have computational benefits, suggesting it to be

an advantageous trade-off between regression performance and computational effort.

Introduction

In this chapter, we analyze the differences between a tree and graph encoding in

genetic programming. The choice of solution encoding in genetic programming can

have dramatic impacts on the evolvability, convergence, and overall success of the

algorithm (Franz 2006). Algorithms and encodings are often described by their bias-

variance trade-off – error introduced by predisposed structure (bias), and error

introduced by representative power and accommodation (variance) (David 1997;

Domingos 2000; Uday and Cezary 2003). In this chapter, we examine such trade-offs

more precisely, considering their representations, solution bloat, overfitting, and

convergence over a range of complexity problems. In contrast with previous research,

we examine these performance trends across problems with a systematically-generated

range of complexities.

205

Tree encodings are well-known for their representative power and used heavily in

genetic programming (Koza 1992). Tree encodings are generally rooted with each

branch describing a unique or isolated sub-structure. In contrast, graph (or network)

encodings describe groups of interacting or re-used structures.

Graph encodings allow direct re-use of subcomponents components, and can thus

promote modularity and regularity in solutions. Graphs can also have a computational

advantage by reducing the evaluation frequency of commonly reused structure within

the solutions. However, the inherent tradeoff between modularity and regularity

(Lipson 2007) suggest that reuse of modular substructures also creates internal

coupling that may sometimes hinder evolvability. As a special case of graphs, tree

encodings can often be adapted to graph encodings which may be more natural to the

problem being solved when latent features are commonly reused.

We compare these two encoding approaches systematically using the symbolic

regression problem (Koza 1992; Schmidt and Lipson 2005). Symbolic regression is a

well-known genetic programming benchmark problem with precise definitions of

performance and convergence. Additionally, symbolic regression provides a natural

measurement of problem complexity and difficulty, allowing us to explore

performance trends as problem complexity increases,

The Tree Encoding

Structure

The tree encoding is a popular structure in genetic programming (Koza 1992),

particularly in symbolic regression. Tree encodings typically define a root node that

represents the final output or prediction of a candidate solution. Each node can have

one or more child nodes that are used to evaluate its value or behavior. Nodes without

206

children are called leaf nodes (or terminals) that evaluate immediately from an input,

constant, or state modeled within the system.

Tree encodings in symbolic regression (Koza 1992; McKay, Willis et al. 1995) are

termed expression trees. Nodes represent algebraic operations on children, such as

add, sub, multiply, divide. Leaf nodes represent input values (e.g. x1 = 1) or evolved

constant values (e.g. c1 = 3.14). An example expression tree is shown in Figure 14.1a.

Evaluating an expression tree is a recursive procedure. Evaluation is invoked by

calling the root node, which in turn evaluates its children nodes, and so on. Recursion

stops at the leaf nodes and evaluation collapses back to the root. Recursion can be

computationally expensive, particularly in deep trees

Evolutionary Considerations

Crossover of expression trees swaps two sub-trees from two parent individuals. The

crossover points are typically chosen at random in each parent (McKay, Willis et al.

1995; Schmidt and Lipson 2005).

An immediate consequence of this procedure is that offspring can become extremely

large by chance. For example a leaf node swapped with the root node of another

parent could double the depth of the child‟s tree. Therefore, it is common practice to

crop children or avoid crossovers that produce trees over some threshold depth.

A second consequence is repeated or duplicate structure. For example if the individual

encodes the function f(x) = (x – 1)
4
, the sub-expression (x – 1) must exist four times in

the tree. The duplicate expressions can dominate the crossover point selection

focusing recombination on (x – 1) sub-trees.

Along the same line from the previous example, duplicate expressions make mutation

207

more difficult. To produce f(x) = (x – 1.23)
4
 (from the previous example), the constant

must be mutated 4 times.

The Graph Encoding

Structure

The graph encoding is similar to the tree, but child nodes are no longer unique –

multiple nodes may reference the same node as its child.

Graph encodings in symbolic regression are termed expression graphs, or operation

lists. Each node in the graph can represent algebraic operations, constant values, or

input variables. An example graph expression is shown in Figure 14.1b.

A useful feature of graph encodings is that they lend well to efficient non-recursive

representations. For experiments in this chapter, we use a list of operations that modify

a set of internal variables, R. Local variable represent internal nodes in the graph and

are necessary to build-up non-trivial expressions

In the list encoding, each operation in the list can reference one or more input

Tree: f(x) = (x + 1)
4

(a)

Graph: f(x) = (x + 1)
4

(b)

Figure 14.1. Example expressions of f(x) = (x + 1)
4
 in the tree encoding (a) and

graph encoding (b). The graph encoding reuses redundant sub-expressions but

is more susceptible to deleterious variation.

208

variables, evolved constants, or internal variables. The result from each operation is

then stored in an internal variable. After all operations are completed, the final local

variable is returned as output.

Avoiding recursion, without the need to cache or compile a tree expression, provides

significant speed up computationally. We will analyze this improvement later in the

chapter.

Evolutionary Considerations

Crossover in the graph encoding exchanges two sections of the operator list to form a

child. For experiments in this chapter we use single point crossover that is chosen

randomly.

The graph encoding reuses sub-expressions (multiple operations can reference the

same sub-expression). Unlike the tree, crossovers in the graph are less likely to focus

on redundant structure since it can be represented in a single operation (or internal

variable).

For the same reason, crossover and mutation can be significantly more deleterious. An

alteration to an operation producing a reused internal variable will affect all other

operations which reference it. In contrast, variation in the tree encoding is localized to

individual branches.

Experiments

Experimental Setup

The symbolic regression algorithm and past experiments on scaling complexity can be

found in (Schmidt and Lipson 2005). For experiments in this chapter, we have simply

swap out the tree and graph encodings described earlier.

209

Parameters for all experiments are summarized in Table 14.1. Population size,

mutation probability, and crossover probability are the same used in (Schmidt and

Lipson 2005).

For experiments in this chapter we use correlation fitness (McKay, Willis et al. 1995)

since it is a naturally normalized metric that translates well between multiple

experiments and different target functions.

Evolution is stopped after the best candidate solution has converged on the training set

(convergence defined later), or after a maximum of one million generations.

Table 14.1. Summary of Experiment Setup

Solution Population Size 64

Selection Method Deterministic Crowding

P(mutation) 0.05

P(crossover) 0.75

Inputs 1

Operator Set +, -. *, /, sin, cos

Terminal Set x, c1, c2, c3, c4

Graph Encoding

List Operations 16

Internal Variables 4

Evolved Constants 4

Crossover variable, single point

Tree Encoding

Initial Depths 1-5

Crossover single branch swap

210

Target Complexity

We define complexity as the number of nodes in a binary tree needed to represent the

function (Monroy, Arroyo-Figueroa et al. 2004; Schmidt and Lipson 2005). Target

functions are generated randomly, and then simplified algebraically (e.g. collecting

terms, canceling quotients, and evaluating constants) to give a more accurate

representation of the targets minimum size.

This metric for complexity does not perfectly match problem difficulty. For example,

f(x) = x1 x2 x3 is most likely more difficult to regress than f(x) = x1 + x2 + x3 + x4 for

combinatorial reasons. However, as seen in Section 7, the correlation with problem

difficulty is strong and larger target functions take longer to regress symbolically on

average for random functions.

Random Test Problems

A key focus of this chapter is to examine performance trends between the two

encoding schemes over a range of different complexity problems. We collect results

on randomly generated functions to get sufficient samples over several complexity

targets.

Random targets are generated by randomizing a tree encoding. The target first

simplified algebraically before measuring its complexity. Each encoding is then run on

the same target functions.

The training data is generated by sampling the target function randomly over the range

R
n
  [0, 2] for all input variables 200 times. The test set is generated similarly by

sampling over the range R
n
  [0, 4].

Results are collected over 500 randomly generated target functions, divided evenly

211

among complexities (1, 3, 5, …, 19), or 50 random targets per complexity.

Additionally we test on two input feature sizes: single variable and 8-variable.

Convergence Testing

Convergence is defined as having greater than 0.9999 correlation on the training set.

Evolution is stopped if the best candidate solution reaches this correlation.

Note that convergence on the training set may not mean the target function has

converged; the solutions may have overfit to the training data. For this reason we

report convergence on the test set (test set correlation greater than 0.9999) in

experimental results.

Results

Solution Complexity and Bloat

Bloated solutions are those which are excessively complicated. In machine learning,

bloat is synonymous with “overfitting” where solutions contain complex structures

that do not exist in the target function to explain the fitness objective.

We measure bloat as the complexity of the regressed solution minus the complexity of

the target function:

Bloat = (# nodes in solution) – (# of nodes in target)

This definition of bloat will be zero if the evolved solution is the exact same size as

the target (perfect case) or positive it is larger. In rare cases, converged solutions may

use fewer nodes if further simplification on the target function is possible but not

caught by our algebra library.

212

We measure the effective number of nodes in the graph encoding by converting it to a

binary tree. This always increases the number of nodes but allows better comparison

with the tree encoding results.

The mean bloat of each encoding type is shown in Figure 14.2 at each target function

complexity. In the 1-variable case, the tree encoding has higher average bloat over all

complexities. The amount of bloat (for both encodings) tends to increase with target

complexity. Bloat is also higher on average in the 8-variable targets than the single

variable targets.

Convergence Rate

In this experiment we measure the convergence rate for each encoding over target

function complexity – the percent of runs where the best solution achieves greater than

0.9999 correlation on the withheld test set. Figure 14.3 shows the test set convergence

for each complexity target function. Both encodings drop in convergence with higher

complexity target functions. Each encoding is run on the same target functions.

(a) 1-variable

(b) 8-variable

Figure 14.2. Bloat of converged solutions for 1-variable functions (a), and 8-

variable functions (b). Each point is averaged over 50 randomly generated target

functions. Error bars show the standard error.

213

The tree encoding achieves slightly higher convergence than the graph encoding over

medium sized targets. However, their general trends in both the 1-variable and 8-

variable cases appear to be comparable.

Convergence Evaluations

In this experiment we measure the number of point evaluations before convergence on

the training set. A point evaluation is a single execution of a candidate solution on a

given input. Therefore, this is a metric of the total computational effort required for

convergence.

Figure 14.4 shows the mean number of point evaluations to convergence for each

encoding where the runs had converged on the training set. In the single variable case,

the graph encoding always takes more evaluations on averaged to converge than the

tree encoding. This suggests that the graph encoding is less evolvable, or perhaps more

conservative considering it is less likely to bloat.

(a) 1-variable

(b) 8-variable

Figure 14.3. Test set convergence versus target function complexity for 1-variable

functions (a), and 8-variable functions (b). Each point is corresponds to 50

randomly generated target functions.

214

In the 8-variable case however, the difference in point evaluations decreases for higher

complexity targets. At complexity ten and higher both encodings perform roughly the

same. These figures show only runs where both encodings converged on the training

set. In the 8-variable case the effort appears to require less computation, but fewer

runs were able to converge before a million generations.

Evolvability

In this experiment we measure the number of beneficial crossover occurring during

evolution. A beneficial crossover occurs when a child achieves higher fitness than its

most similar parent.

Figure 14.5 shows the rate of beneficial crossovers for both encodings over the range

of complexity target functions. In the single variable case, the tree encoding

experiences more beneficial crossovers than the graph encoding, particularly at low

complexities.

(a) 1-variable

(b) 8-variable

Figure 14.4. The number of point evaluations before convergence on the training

set versus the target function complexity for 1-variable functions (a), and 8-

variable functions (b). Points are averaged over 50 randomly generated target

functions. Error bars show the standard error.

215

Computational Performance

In addition to evolvability, bloat, and convergence, the efficiency of encodings can

have a large impact on the difficulty of problems that can be solved in practice. In this

section we benchmark the tree and graph encodings.

Figure 14.6 shows the computational performance, measured in point evaluations per

second over a range of complexities. The graph encoding remains roughly constant

because it has a fixed encoding size. Variation still exists because it still executes

operations in its list that do not affect the output.

The tree encoding is efficient on simple functions of less than five nodes. Performance

drops significantly with complexity however as recursion deepens with complexity.

The computational performance result indicates the tree encoding does not scale as

well with complexity. At five nodes and higher, the graph encoding using an operator

list more than triples the performance of the tree encoding.

(a) 1-variable

(b) 8-variable

Figure 14.5. The rate of beneficial crossovers versus target function complexity

for 1-variable functions (a), and 8-variable functions (b). Results are averaged

over 50 random test problems. Error bars show the standard error.

216

Conclusions

We have compared two encoding schemes in increasingly complex problems using

symbolic regression. While the tree and graph encodings are similar in application,

they offer distinct advantages and disadvantages in genetic programming.

We have tested these two encodings on randomly generated nonlinear target functions,

for both single variable and 8-variable input spaces.

Results show that the tree encoding solutions exhibit consistently higher bloat over all

complexity targets. The tree encoding however offers slightly higher convergence rate

(finding an exact fit) and time to converge, but there was no large trend difference

over complexity. The tree encoding experiences more beneficial crossovers (offspring

more fit than most similar parent) on single variable targets. Beneficial crossovers

decrease with complexity. On 8-variable targets both encodings experienced similar

trends in beneficial crossover trends. Finally, the computational comparison shows

that the graph encoding is more efficient than the graph for high complexities.

Figure 14.6. The point evaluations per second versus the function complexity.

217

From these results we conclude the graph encoding to be a attractive alternative to

traditional tree based problems (e.g. symbolic regression). Graph encodings provide

similar performance in convergence over a range of complex target functions and

different input sizes, and do so with less bloat. The graph encoding experiences fewer

beneficial crossovers and converges slightly slower, however the computational

performance outweighs this drawback.

218

SECTION III – INTERPRETING RESULTS

CHAPTER 15. PARAMETER MAPPING

Summary

Recent automated scientific discovery processes hold the potential to accelerate

scientific inquiry in many fields, but also present scientists with a new kind of

challenge: How to assign meaning to the discovered relationships, and how to

reconcile the new knowledge with current understanding. We used automated

modeling to gain new insights into cellular differentiation dynamics. The process

discovered a new and substantially simpler model of the dynamics of cellular

differentiation of Bacillus subtilis that is equally predictive on unseen data. Further, it

identified a new invariant, which through a process of automated-mapping was found

to be closely tied to the differentiation period of the cell. This prediction was validated

using a set of new experiments. We argue that beyond the value of these two specific

new models to the understanding of Bacillus subtilis, the search for invariants and

their mapping to existing knowledge may be a way of identifying governing principles

of other biological systems. Just as physical conservations, such as the conservation of

energy, can help understand physical processes, so can biological conservations help

identify new homeostatic properties selected for by evolution.

Introduction

Increasing throughput of experimentation and data collection has placed a growing

demand on automated modeling and knowledge discovery techniques (Ball 2009;

Mitchell 2009; Waltz and Buchanan 2009). While recent developments in automated

scientific knowledge discovery have the potential to accelerate scientific inquiry in

many fields (King, Rowland et al. 2009; Schmidt and Lipson 2009), scientists will

219

increasingly be faced with the challenge of interpreting these models and reconciling

new insights with existing knowledge.

In this chapter, we juxtapose automated modeling with the current biological

understanding of cellular differentiation of Bacillus subtilis. We first developed a

computational method for automatically generating symbolic models of single-cell

dynamics using data collected from multiple cells. We then compared these data-

driven models to existing, manually-derived models produced from first principles.

The automatically-generated data-driven models appeared to have a markedly simpler

form than the established manually-derived models, but could not be readily

understood. We then developed an additional method for elucidating the meaning of

the automatically-generated models by mapping components of one model to its

counterpart. We begin by describing the target biological system and the

computational technique, and then follow with new models generated and how these

models led to new insight when compared to the manually-derived models.

The genetic circuit that controls differentiation of Bacillus subtilis cells into a state of

competence for uptake of extracellular DNA is well-suited for automated analysis,

because it is well characterized yet poorly understood. For example, the genes and

proteins comprising the competence gene regulatory circuit have been identified and

characterized. Furthermore, we can quantitatively measure the dynamics of multiple

components of the competence circuit simultaneously and at the single-cell level. The

resulting data reveal the dynamics of interactions within the cellular differentiation

circuit. Despite these features, a comprehensive understanding of how individual

biochemical reactions comprising the competence circuit contribute to cellular

differentiation is currently lacking. The presently accepted model for this circuit has

been derived from known biochemical reactions, yielding the differential-equation

220

model shown in Figure 15.1(left).

New techniques for real time high resolution single-cell measurements of gene circuit

dynamics can now provide new data that includes information about cell-cell

variability (Figure 15.1 (right)). This presents an opportunity for automated scientific

methods, which rely heavily on experimental data, to identify improved empirical

models of these dynamics, and possibly new insight into the local, single-cell

dynamics.

We used two types of automated modeling approaches which analyze experimental

data: The first is a search for time-delay differential equation models (Bongard and

Lipson 2007), and the second method is a search for invariant equations and conserved

quantities (Schmidt and Lipson 2009). We then used a method we call automated-

mapping (described below) to uncover how the automatically-generated models map

onto existing manually-derived models. We perturbed the parameters of one model

and generated synthetic data sets, and then fitted the automatically-generated models

to those generated data sets. This process highlighted the correspondences between the

parameters of the two models. Moreover, by using the perturbation itself as an

experimental parameter, we could use the symbolic modeling algorithm itself to also

uncover the specific nonlinear mapping between the automatically-generated models

and the manually-derived models. When such a mapping exists, it shows how the

manually-derived model understanding collapses to the mathematical model inferred

directly from the data.

221

Based on the dynamical modeling and its mapping, we found that that the key

dynamics of the B. subtilis cellular differentiation behavior can be captured in a six-

parameter dynamical model, as compared to the 14-parameter state-of-the-art model.

In addition, the conserved quantity search identified a previously-unknown invariant

equation. We cannot tell immediately what the conserved value measures or

represents. However, the mapping shows that the invariant parameters are linked to

the duration of competence events in the cell, suggesting that the competence duration

Figure 15.1. Manually-derived versus automatically-generated biological models

and the mapping challenge. Most biological models are derived by hand using

expert knowledge of the system, related systems, and qualitative understandings

of the underlying biology (left). When large amounts of experimental data are

available, empirical models can be inferred automatically by a computational

search for the most parsimonious model that accurately predicts the dynamics

(right). The automatically-generated model potentially provides new insight into

the system but does not have any accompanying explanation. Our solution to this

problem is to additionally learn a mapping from the known biological model to

the automatically-generated model, identifying which understood parameters

collapse to simpler explanations in the automatically-generated solution. Actual

models and data shown. K and S represent the protein concentration levels of

ComK and ComS, respectively. α, and β terms correspond to the basal and

maximum rates of protein expression, respectively. λ denotes the linear and δ the

enzymatic degradation rates of ComK and ComS. The meanings of the

parameters on the right are unknown.

222

may be a fixed or regulated property in each individual cell. After modifying the

bacillus strain and collecting new data, we verified that the magnitude of the invariant

predicts the duration of competence events observed in each cell.

Below, we introduce the automated modeling methods and the biological system in

greater detail. We then analyze the resulting models and their mappings to the

manually-derived model and discuss our findings and conclusions.

Current Biological Understanding

The B. subtilis competence system exemplifies in its simplest form the typical

problems associated with developing a comprehensive and conceptual understanding

of the operational principles of gene regulatory circuits. Under conditions of stress

such as nutrient deprivation, B. Subtilis cells can transiently become competent and

take up DNA from the environment and incorporate it into their chromosome.

Therefore, competence is believed to provide genetic diversification and templates for

gene repair.

The differentiation of cells into the competence state is triggered in an autonomous

and stochastic manner. Once differentiated, cells remain in the competent state only

for a transient period of time. The probabilistic initiation and transient duration of the

competence state at the single-cell level is controlled by a gene regulatory circuit

which constitutes a nonlinear system with excitable dynamics (Süel, Garcia-Ojalvo et

al. 2006). At the heart of the competence circuit is the transcription factor ComK,

whose expression is necessary and sufficient for competence (Sinderen, Luttinger et

al. 1995; Hahn, Luttinger et al. 1996). ComK positively auto-regulates its own

expression thereby forming a positive feedback loop (Maamar and Dubnau 2005;

Smits, Eschevins et al. 2005). The cell exits from the transient state of competence via

223

a negative feedback loop in which ComK indirectly represses the expression of its

activator ComS (Süel, Garcia-Ojalvo et al. 2006). The competing positive and negative

feedback loops are described by a two dimensional model of ComK and ComS, based

on the known biochemical reactions, shown in Figure 15.1(left). This model accounts

for experimental observations and has been shown to be predictive (Süel, Garcia-

Ojalvo et al. 2006; Suel, Kulkarni et al. 2007).

The B. subtilis competence behavior is well-suited for automated knowledge discovery

methods because the organism is experimentally accessible. In particular, the

dynamics of multiple gene circuit components can be measured simultaneously at the

single-cell level using quantitative multicolor fluorescence time-lapse microscopy

(Figure 15.2). However, despite these advantages, how individual biochemical

reactions at the molecular level contribute to nonlinear dynamics and physiology at the

cellular level remains poorly understood.

We measured the activities of ComG and ComS promoters simultaneously at the

single-cell level using quantitative time-lapse microscopy, utilizing the spectrally

distinct fluorescent protein reporters cfp and yfp. Transcriptional reporter constructs

were integrated into standard non-essential sites of the B. subtilis chromosome. We

followed 33 B. subtilis cells containing these reporters that transiently differentiated

into the competence state and collected time-series trajectories of ComS and ComG

promoter dynamics. Furthermore, we also utilized a genetically modified B. subtilis

strain in which the competence circuit was perturbed to generate oscillations (Suel,

Kulkarni et al. 2007). Together, the native and modified strains allowed us to record

pulse and oscillatory dynamics of the competence circuit under two distinct parameter

regimes, thereby providing additional information on the operation of the competence

circuit.

224

Figure 15.2. Transient and oscillatory dynamics of competence events in single B.

subtilis cells. Filmstrips in panels A and B show overlays of phase contrast and

two-color fluorescence images. Blue and orange colors depict the reporter for

competence PcomG and negative feedback loop component PcomS, respectively.

Panel A shows a single wild type cell that differentiates into the competence state

and then exits (indicated in blue). Panel B, shows cells containing a modified

competence circuit (for details see text and SOM) that give rise to oscillations in

competence where cells undergo consecutive events. Panels C and D depict time

traces of promoter activity obtained from quantitative image analysis of

fluorescent reporters during the competence events shown in panels A and B

respectively. Blue and orange colors utilized in the graphics are consistent with

the colors depicted in the filmstrips and time traces, where blue indicates

competence and orange the activity of the negative feedback loop necessary for

exit from competence.

225

Automated Modeling

Automated modeling is a process that builds a new model of a system directly from

experimental data rather than from prior knowledge or assumptions about the

underlying biological mechanisms. Automated modeling can potentially provide a

different or unbiased perspective on experimental observations.

The automated modeling method we used here is called symbolic regression (Koza

1992). See the description in section "Symbolic Regression" on page 4 for more

information. Symbolic regression is an established algorithm that generates analytical

equations for a particular experimental data set, without recourse to expert knowledge.

It uses an evolutionary search (Forrest 1993) to look for the most parsimonious

mathematical model (Rissanen 1978) that fits the experimental data for a given set of

variables and set of functional building-blocks.

Ordinarily, symbolic regression attempts to create a single model that explains the

entire data set (Duffy and Engle-Warnick 2002; Elena, Andrei et al. 2005; Bongard

and Lipson 2007; Cyril and Alberto 2007). In the B. subtilis system however, each

individual cell may behave differently due to variation in their physical size or internal

composition, corresponding to parameter changes in a more general model.

In order to find a single model that captures the behavior of all cells in the

experimental data, we created a variation of the standard symbolic regression

algorithm which we refer to as multi-set regression. Instead of optimizing equation

structures with specific parameter values, we optimize just the equation structure,

while allowing the parameter values to vary for each individual cell. The figure of

merit of a candidate equation model is then how well it could be made to fit the curve

of each and every cell in the experimental data as illustrated in Figure 15.3 steps 1-4.

226

F

ig
u

re
 1

5
.3

.
T

h
e

a
u

to
m

a
te

d
 m

o
d

el
in

g
 m

et
h

o
d

 a
tt

em
p

ts
 t

o
 m

o
d

el
 m

u
lt

ip
le

 c
el

ls
 w

it
h

 a
 s

in
g
le

 e
q

u
a
ti

o
n

,
a
n

d
 t

h
en

 i
d

en
ti

fy
 a

n
o
n

li
n

ea
r

m
a
p

p
in

g
 t

o
 a

 p
re

v
io

u
s

u
n

d
er

st
o
o
d

 m
o
d

el
.

T
h

es
e

eq
u

a
ti

o
n

s
co

n
ta

in
 s

y
m

b
o
li

c
p

a
ra

m
et

er
s

w
h

ic
h

 v
a
ry

 f
o

r
ea

ch
 c

el
l,

ra
th

er
 t

h
a
n

 c
o
n

st
a
n

t
co

ef
fi

ci
en

ts
.

T
h

e
a
lg

o
ri

th
m

 s
ea

rc
h

es
 f

o
r

th
e

m
o
st

 p
a
rs

im
o
n

io
u

s
eq

u
a
ti

o
n

 w
h

ic
h

 a
cc

u
ra

te
ly

 p
re

d
ic

ts
 t

h
e

d
y
n

a
m

ic
s

o
b

se
rv

ed
 i

n
 t

h
e

ex
p

er
im

en
ta

l
d

a
ta

 u
si

n
g
 a

n
 e

v
o
lu

ti
o
n

a
ry

 s
ea

r
ch

.
W

e
th

en
 a

tt
em

p
t

to
 i

d
en

ti
fy

 a
 m

a
p

p
in

g
 o

f
th

is

m
o
d

el

to

 t
h

e
cu

rr
en

tl
y

u

n
d

er
st

o
o
d

sy

st
em

m

o
d

el

b

y

v
a
ry

in
g

p

a
ra

m
et

er
s

o
f

th
e

m
a
n

u
a
ll

y
-d

er
iv

ed

m

o
d

el
,

si
m

u
la

ti
n

g

it

n
u

m
er

ic
a
ll

y
 t

o
 g

en
er

a
te

 n
ew

 d
a
ta

,
a
n

d
 t

h
en

 f
it

ti
n

g
 t

h
e

a
u

to
m

a
ti

ca
ll

y
-g

en
er

a
te

d
 m

o
d

el
 t

o
 t

h
e

g
en

er
a
te

d
 d

a
ta

.
W

e
 t

h
en

se
a
rc

h
 f

o
r

a
 n

o
n

li
n

ea
r

r
el

a
ti

o
n

sh
ip

 b
et

w
ee

n
 t

h
e
 p

a
ra

m
et

er
s

o
f

th
e

tw
o
 m

o
d

el
s.

227

Additional information on the multi-set regression method is provided in the section

"Multi-set Symbolic Regression" below.

Dynamical Model

Our first attempts to find a first-order dynamical model of the B. subtilis

differentiation failed to find any accurate expressions. A lack of a convergence like

this typically occurs if the data is purely random, or if the algorithm does not have the

correct variables or functional building-blocks (e.g. attempting to model a quotient

without using division). Here, we were attempting to model the numerical derivative

(Cleveland and Devlin 1988) of each variable, using only addition, subtraction,

multiplication, and division.

We began finding accurate models only after allowing the search algorithm to

introduce a fixed time-delay for each variable. The manually-derived biological model

also required a fixed time-delay to fit all data sets.

The requirement of the time-delay in the automatically-generated model is consistent

with the manually-derived model and the recent finding that ComK represses ComS

expression indirectly through RapH. Such a time-delay was shown to increase the

parameter regime for excitable dynamics in the manually-derived model. Therefore,

the requirement of a time-delay in the automatically-generated model demonstrates

that critical features of gene regulatory circuit dynamics can be identified with this

approach.

The most parsimonious model found that fit the data as well as the manually-derived

model using fixed time-delays is shown in Figure 15.1(right). Figure 15.2C and D

show agreement of the automatically-generated model with experimental data. We

further validated the generalization of this model by acquiring new data from a

228

genetically modified Bacillus strain. The initial section of these trajectories was used

for the time-delay history and to optimize parameters.

Interestingly, the automatically-generated model is as accurate as the current

biological model over the different dynamic regimes, but has eight fewer free

parameters. The simplicity of the automatically-generated model compared to the

manually-derived model suggests that several parameters involved in the production

of ComK can be reduced to single parameters, suggesting a potentially overlooked

simplicity in the generation of functional dynamics. There appears to be a small subset

of parameters that account for the dynamics of the core competence circuit. Many

other parameters do not seem to be as critical.

A small subset that contributes to function is reminiscent of other observations in

biology such as the fact that only a few positions in proteins contribute to protein

function and most others can be mutated without any measurable effect. Such

properties have been suggested to be critical for evolution of biological networks.

Invariant model and conserved quantities

We also performed a separate search to detect a conserved quantity in the B. subtilis

dynamics. Similar to the symbolic regression method, the invariant-seeking algorithm

(Schmidt and Lipson; Schmidt and Lipson 2009) searches for invariant expressions

that remain constant over the dataset. The motivation for this search is that in many

physical systems, invariant quantities are signatures of governing laws such as the

conservation of energy. The discovery of invariants in a biological system may

therefore help uncover the fundamental principles governing the observed dynamics.

229

F

ig
u

re
 1

5
.4

.
T

h
e

a
u

to
m

a
ti

ca
ll

y
-g

en
er

a
te

d
 c

o
n

se
rv

ed
 q

u
a
n

ti
ty

 (
A

)
m

a
p

s
o
n

to
 a

 s
m

a
ll

 s
et

 o
f

p
a
ra

m
et

er
s

in
 t

h
e

m
a
n

u
a
ll

y
-

d
er

iv
ed

m

o
d

el

(B

)
w

h
ic

h

co

rr
es

p
o
n

d

to

th

e
d

eg
ra

d
a
ti

o
n

o
f

C
o
m

K

a
n

d

p

ro
d

u
ct

io
n

o
f

C
o
m

S

(C

).

W

h
en

ev

a
lu

a
ti

n
g

th

e

co
n

se
rv

ed
 q

u
a
n

ti
ty

 o
n

 d
a
ta

 c
o
ll

ec
te

d
 f

ro
m

 t
w

o
 d

if
fe

re
n

t
ty

p
es

 o
f

B
.

su
b
ti

li
s

st
ra

in
s

(D
),

 a
 s

o
rt

 d
u

ra
ti

o
n

 s
tr

a
in

 (
b

la
ck

)
a
n

d
 a

lo
n

g
er

 d
u

ra
ti

o
n

 s
tr

a
in

 (
re

d
),

 t
h

e
 m

a
g
n

it
u

d
e

o
f

th
e

co
n

se
rv

ed
 v

a
lu

e
se

p
a
ra

te
s

in
to

 t
w

o
 d

if
fe

r
e
n

t
g
ro

u
p

s
(E

),
 s

u
g
g
es

ti
n

g
 t

h
e

co
n

se
rv

ed
 q

u
a
n

ti
ty

 i
s

ti
ed

 t
o
 t

h
e

d
u

ra
ti

o
n

 o
f

c
o

m
p

et
en

ce
 e

v
en

ts
.

230

We used the invariant search algorithm to look for invariants consisting of the ComK

and ComS values and their first derivatives – as might be required for some energy or

momentum conservation (Schmidt and Lipson 2009). Among the candidate

conservations, the function H shown in Figure 15.4A was the simplest relation and

also remained invariant even on the forward experimental data of the mutated strain.

Figure 15.4 also shows the invariant H plotted for several cells (pane D) of two

different B. subtilis strains which are plotted in pane E. There is some variance in the

conserved value for each cell which scales with the magnitude of the conserved value.

We fit this invariant to all data sets for both the wild and mutated strains. Since we do

not know what the units and offset of the invariant are, we normalized each fit by

arbitrarily fixing the last coefficient, c6, to one. While there exists some residual

variance - either from noise or approximations in the conserved value - the normalized

conserved values show a clear separation between the wild and mutated strains, with

very little overlap (Figure 15.4E). In fact, given data from an unknown strain, the

magnitude of the conserved quantity could be used to predict which strain the cell

belongs to.

Mapping to Current Biological Understanding

The automated modeling results gave two previously-unknown descriptions of the

experimental data: a substantially simpler dynamical model, and an unknown

conserved quantity. The difficulty is how to explain and interpret these models in

order to gain new biological insight. In essence, we have new answers derived from

experimental data, but without any accompanying explanations.

Our solution to the interpretation challenge is to learn a mapping – from the current

manually-derived biological model, to the automatically-generated data-driven model.

231

The mapping we are interested in is the relationships between the free-parameters of

the manually-derived model and the free-parameters of the automatically-generated

models. If a simple mapping exists, it can show how parameters in the manually-

derived model collapse to the simpler automatically-generated dynamical model, and

which qualities of the known biology affect the automatically-generated conserved

quantity.

Automated-mapping - using model perturbations as "experiments"

We refer to the method for learning the parameter mapping as automated-mapping

between two models. The basic process, summarized in Figure 15.3 steps 5 and 6,

starts by simulating the manually-derived model numerically with random parameter

variations. The automatically-generated model is then fit to each simulated trajectory.

The result is a set of parameter values for the manually-derived model, and the

corresponding parameter values for the fitted automatically-generated model. We

repeat this process for several hundred random parameter variations, thereby

generating a dataset of matching parameters of both models.

We first looked at linear correlations between the manually-derived dynamical model

parameters and the automatically-generated model parameters. Figure 15.5B shows

the strength of the correlations in a bipartite graph. The correlations suggest that each

parameter in the automatically-generated dynamical model co-varies with a small

number of parameters in manually-derived model. Interestingly, some parameters of

the manually-derived model appear to have little influence on automatically-generated

model and its dynamics, and therefore are apparently irrelevant to explaining the

observed behavior in this regime.

232

F

ig
u

re
 1

5
.5

.
T

h
e

m
a
p

p
in

g
 b

et
w

ee
n

 t
h

e
m

a
n

u
a
ll

y
-d

er
iv

ed
 m

o
d

el
 a

n
d

 t
h

e
a
u

to
m

a
ti

ca
ll

y
-g

en
er

a
te

d
 d

y
n

a
m

ic
a
l

m
o
d

el
 c

o
n

n
ec

ts

th
e

si
m

p
le

r
d

a
ta

-d
ri

v
e
n

m

o
d

el

w
it

h

th
e

cu
rr

en
t

b
io

lo
g
ic

a
l

u
n

d
er

st
a
n

d
in

g
.

T
h

e
b

ip
a
rt

it
e

g
ra

p
h

(B

)
sh

o
w

s
th

e
li

n
ea

r

co
rr

el
a
ti

o
n

st

re
n

g
th

s
b

et
w

ee
n

m

o
d

el

p
a
ra

m
et

er
s

–

a
u

to
m

a
ti

ca
ll

y
-g

en
er

a
te

d

m
o
d

el

p
a
ra

m
et

er
s

a
r
e

o
n

th

e
le

ft

si
d

e,

m
a
n

u
a
ll

y
-d

er
iv

ed
 m

o
d

el
 p

a
ra

m
et

er
s

a
re

 o
n

 t
h

e
ri

g
h

t
si

d
e.

 T
h

e
n

o
n

li
n

ea
r

m
a
p

p
in

g
 (

C
)

sh
o
w

s
th

a
t

m
u

lt
ip

le
 p

a
ra

m
et

er
s

o
f

th
e

m
a
n

u
a
ll

y
-d

er
iv

ed
 m

o
d

el
 c

o
ll

a
p

se
 t

o
 t

h
o
se

 i
n

 t
h

e
si

m
p

le
r

a
u

to
m

a
ti

ca
ll

y
-g

en
er

a
te

d
 m

o
d

el
.

T
h

e
p

a
ra

m
et

er
 p

lo
ts

 (
A

)
sh

o
w

th
a
t

th
e

m
a
p

p
in

g
 i

s
in

 s
tr

o
n

g
 a

g
re

e
m

en
t

w
it

h
 t

h
e

a
u

to
m

a
ti

ca
ll

y
-g

en
er

a
te

d
 m

o
d

el
 o

v
er

 a
 w

id
e

ra
n

g
e

o
f

p
a
ra

m
et

er
 v

a
lu

es
.

233

The linear correlation shown in Figure 15.5B are averaged across a large area of the

dataset, but the strengths of the correlations vary depending on the specific regime of

the data. These fluctuations suggest that the relationships between the parameters are

nonlinear. To investigate this further, we used the same automated model search

algorithm to find relationship between the parameters of the two models, essentially

using the parameter variations as "experiments".

The nonlinear mapping (Figure 15.5C) showed high accuracy; predicting the

automatically-generated model parameters from the larger manually-derived model

parameters with goodness-of-fit of over 0.95 for most parameters (Figure 15.5A). This

suggests that the B. subitilis cellular differentiation dynamics are, in fact, operating on

a simpler manifold with reduced dimensionality.

For ComK, the automatically-generated model correlates linearly with the parameters

of the manually-derived model that describe the maximum production and linear

degradation of ComK. However, for ComS, parameters of the automatically-generated

model exhibit less correlation with production terms of the manually-derived model,

and much more correlation with the degradation of ComS. Therefore, the production

of ComK and the degradation of ComS appear to account for most of the nonlinear

dynamics of the competence circuit. Only a small subset of parameters accounts for

the data, which is similar to observations made in proteins and metabolic networks.

This suggests perhaps a common evolutionary solution to selection pressures.

This key insight from the mapping indicates which parameters of ComK and ComS

contribute most to the dynamics of the competence circuit. These results also suggest

that perturbations of those parameters should give greatest effects.

234

Conserved Quantity Mapping

The mapping found for the unknown conserved quantity (Figure 15.4A) using the

automated-mapping procedure also provides insight into the meaning of the conserved

quantity. Similar to the dynamical model mapping, we fit the invariant to the data

generated from the manually-derived model, using symbolic regression to identify the

nonlinear relationship between the invariant parameters and the manually-derived

model parameters.

The mapping shows that the conserved quantity only depends on two types of

understood parameters of the system: parameters controlling the degradation of ComK,

and parameters controlling the production of ComS (see Figure 15.4B and C). In fact,

these parameters are known to impact the duration of competence events in the B.

subtilis system. The duration of transient competence events are determined by the

ComS mediated negative feedback loop. The longer it takes for ComS concentrations

to decrease, the longer the duration of competence. Parameters describing the

production rate and concentration of ComS can therefore affect the duration of

competence events (Suel, Kulkarni et al. 2007). Therefore, the mapping suggests that

the conserved quantity is related to competence durations.

We tested this prediction by looking at the invariant evaluated on data collected from

the wild type and a modified strain with higher expression of ComS (Figure 15.4D).

Increased production of ComS in the modified strain was accomplished by introducing

a copy of the native ComS promoter driving ComS into a plasmid maintained at five

copies per cell. Effectively, this modification resulted in a six fold higher production

rate of ComS (βS) compared to wild type. The invariant values obtained from the

competence dynamics recorded from the wild type and modified strains cluster into

two groups. High magnitudes for the short duration wild type, and low magnitudes for

235

the long duration mutated strain. In fact, the separation is clear enough that the

invariant magnitude could be used to predict which strain an unknown cell belongs to

and therefore its expected competence duration. These results confirmed our

hypothesis based on the mapping that the conserved quantitative is related to

competence durations.

The key insight from the conserved value and its mapping is that competence duration

is tied to a conservation taking place in each cell. It has recently been shown that B.

subtilis competence durations determine physiological function (Ça atay, Turcotte et

al. 2009). Specifically, the duration of competence has been demonstrated to dictate

the efficiency and range of DNA concentrations over which the competence circuit

can perform its biological function. It is thus noteworthy that the conserved property

identified here maps to parameters governing this critical property of competence.

Conclusions

In this chapter, we have identified a simpler model of the dynamics of cellular

differentiation of Bacillus subtilis, that is equally predictive on unseen data. This result

demonstrates a useful application for reducing the complexity of mathematical models

describing biochemical interactions. We further proposed the search of invariants as a

way to uncover the natural laws governing the dynamics of this system. Indeed an

invariant was discovered and was found to be closely related to the differentiation

period of the cell. This prediction was validated using a new set of experiments. The

search for invariants may be a way of identifying key principles of other biological

systems as well. We suggest that the ability to identify such conservations can be

informative for understanding increasingly complex systems in the future.

A fundamental question is whether algorithmic methods for modeling and

236

hypothesizing about experimental systems can ultimately be human-competitive: Can

such methods produce elegant and predictive models on par with human experts, and

if so, will and how could human experts understand these models. In this chapter, we

have shown one of the first instances of an algorithm producing a concise, human-

readable model that is consistent with a large amount of experimental data, and is

substantially simpler that a recently published model for the same phenomenon. But

that accomplishment only led to a new challenge: How to assign meaning to the

resulting models and reconcile them with existing knowledge. Our solution was to use

the automated-modeling process itself to find relationships between the new model

and existing knowledge, by using model perturbations as "experiments". We believe

that this kind of hurdle will become increasingly challenging as the use of automated

modeling algorithms becomes more prevalent. The need for new methods to help

machines "teach" their findings to humans, for example by drawing analogies to

known information, may be essential to long term progress in science, and become a

new frontier for Artificial Intelligence research.

Methods

Multi-set Symbolic Regression

Models are encoded as an equation and a set of parameters for each unique set of data

points (measurements of a single bacterial cell) in the data. Our automated modeling

method is based on the symbolic regression algorithm (Koza 1992). See the

description of section “Symbolic Regression” on page 4 for more detail on this

technique.

Symbolic regression has been used to model explicit (Duffy and Engle-Warnick 2002;

Elena, Andrei et al. 2005; Cyril and Alberto 2007) and dynamical systems (Bongard

237

and Lipson 2007) in past research, it does not ordinarily take advantage of multiple

dataset from unmatched sources, such as data recorded from multiple cells, each cell

with different parameters such as physical size. In order to use multiple datasets at

once to get a large enough description of the system, we developed a multi-set

regression method. The method searches for a single equation set that can be fitted

well to each data source independently (e.g. each individual cell), requiring only

parameter adjustments, but no change in form.

Model Selection

We selected the automatically-generated model by considering the Pareto front

(Kung, Luccio et al. 1975; Parke, Ryan et al. 2007) produced by symbolic regression

between model complexity and its accuracy on the experimental data. Complexity is

measured as the inverse of number of terms in the expression. Equations that are both

simple and accuracy are the most challenging to find and identify, and their behavior

is more interesting (Schmidt and Lipson 2009). In particular, the most interesting

solutions on this frontier appear at cliff points, where the predictive ability to increases

and then plateaus (Edwin and Jordan 2003; Gregory, Denis et al. 2003).

The Inferred Dynamical Model

We performed the multi-set regression technique using data collected from several

different cells. The top rows of Figure 15.6 show data from different cells used to

search for the model. The fit of the automatically-generated model is shown in solid

black lines. The automatically-generated model fits each cell, capturing their key

dynamics, despite the inherent stochastic behavior of the system.

238

Fitting these data sets with a first-order model required a time-delay in the dynamical

model, as described in the main text. It may also be possible to model this data using a

second-order (or higher-order) model however, we were unable to find any simple

second-order models that generalized to other data sets. Calculating multiple

derivatives from the data set is difficult numerically, especially when estimating initial

Figure 15.6. Collected data and the fit of the automatically-generated dynamical

model. ComK florescence (AFU) is shown in blue dots, ComS florescence (AFU) is

shown in red dots, and the automatically-generated model is shown in black for

each. The automatically-generated model was found using data from the top four

rows. The bottom row shows that the model generalized to other behaviors such

as oscillating competence events.

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45
0

50

100

150

200

250

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

450

200

250

400 400

180

350

160

600

200

300

350

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

45 45 45

100 25 35

45 40 40

80 90 70

239

conditions. Also, second order systems are less common in the chemical and

biological context.

The model is fit to this data by sweeping the time-delays and least-squares fitting the

model to the numerical derivative of the data for each variable, ComK and ComS. We

then integrated the model using the DDE23 time-delay differential equation solver –

specifying the absolute error tolerance and relative error tolerance to 10
-9

.

Figure 15.6 also shows data not used to find the model (bottom row). Here, the model

generalized to different behavior from the training data to model oscillating

competence events.

Nonlinear Dynamical Model Mapping

We used the automated-mapping method to find an equation relating each parameter

of the automatically-generated dynamical model to the parameters of the manually-

derived model. We generated data for each parameter by simulating the manually-

derived model with randomly perturbed parameter values and fitting the

automatically-generated model to each simulated trajectory. We then searched for an

equation to predict the value of the automatically-generated model parameters based

on those in the generating manually-derived model.

The resulting mapping for the dynamical model is shown in Figure 15.7. The search

identified a simple mapping equation for each parameter with high goodness of fits.

Based only on the parameter values of the manually-derived model, the mapping can

predict the optimal fitted parameter values in the automatically-generated model with

R
2
 values over 0.95, with the exception of parameter bK which was 0.51.

240

Figure 15.7. The parameter mapping relating the parameters of the expert

biological model and the automatically identified dynamical model. The left plots

show the predicted parameter value in the automatically-generated model based

on the parameters of the expert model versus the actual best fit parameter of the

automatically-generated model. The parameter equations found are shown to the

right. The percent shown for each term indicates the percent of the variance

explained by each term.

KKKKKK αβ λ.Γδa  911345

-40 -20 0 20 40 60 80
-40

-20

0

20

40

60

80

actual parameter

p
re

d
ic

te
d
 p

a
ra

m
e
te

r

Parameter a
G

0.2%16%30%53%

-2000 -1000 0 1000 2000 3000
-1500

-1000

-500

0

500

1000

1500

2000

actual parameter

p
re

d
ic

te
d

 p
a

ra
m

e
te

r

Parameter b
G

n

K

n

KK
KK

 k .

 k β.
 λ.b




014443

627364
117462

31% 12%

K

n

KK

-

K

KK
KK δ kβ.

 Γ.

 Γ δ.
 λ.c 


 51061661

00902301

10640
998138

56% 10%

-5 0 5 10 15 20 25
-5

0

5

10

15

20

actual parameter

p
re

d
ic

te
d
 p

a
ra

m
e
te

r

Parameter c
G

21% 0.1%

R2 = 0.98983

R2 = 0.51265

R2 = 0.97510

P
re

d
ic

te
d

P
re

d
ic

te
d

P
re

d
ic

te
d

Actual

Actual

Actual

Parameter aK

Parameter bK

Parameter cK

0 50 100 150 200 250
-50

0

50

100

150

200

250

300

actual parameter

p
re

d
ic

te
d
 p

a
ra

m
e
te

r

Parameter b
S

-10 -5 0 5 10
-10

-5

0

5

10

actual parameter

p
re

d
ic

te
d
 p

a
ra

m
e
te

r

Parameter a
S

1155322006969260
672106

 . Γ.

 Γδ
α λ.a

G

GS
SSS




22%56% 19%

 Γ.

 Γ δ.
 Γ δ. λ.b

G

GS
GSSS

101864110

526717
252912342732




82% 21%

SGS

SG

S
S . .

...
c 


15160 003930

/7187/589913040





6%77% 0.1%

R2 = 0.99365

R2 = 0.96847

R2 = asdf

9%

-0.5 -0.4 -0.3 -0.2 -0.1 0

-0.5

-0.4

-0.3

-0.2

-0.1

0

actual parameter

p
re

d
ic

te
d

 p
a

ra
m

e
te

r

Parameter c
S

R2 = 0.98987

P
re

d
ic

te
d

P
re

d
ic

te
d

P
re

d
ic

te
d

Actual

Actual

Actual

Parameter aS

Parameter bS

Parameter cS

241

It is interesting that such an accurate mapping exists. The two models could just as

easily fit the same data in discontinuous or random ways. Instead, the mapping

suggests equivalence between the two, described by the mapping equations in Figure

15.7.

Conserved Quantity Mapping

We also used the automated-mapping method to identify a nonlinear mapping between

the automatically-generated conserved quantity and the manually-derived biological

model. We simulated the manually-derived model with varying parameters to collect

synthetic data, then fitted the invariant to each simulated trajectory. We then looked

for an equation modeling the resulting fitted parameters in the conserved quantity as a

function of the parameters in the manually-derived model.

Figure 15.8 shows the resulting map for the automatically-generated conserved

quantity. The conserved quantity parameters were more difficult to model than the

dynamical model. This is likely a result of higher sensitivity and variance when fitting

an invariant equation. The mapping however still shows strong correlations.

The result of the conserved value mapping is that we now have a method to directly

calculate the conserved value from the manually-derived model directly without the

need to tune parameters – they are explicitly prescribed by the mapping.

Interpreting a Conserved Quantity

Many conserved quantities correspond to a fundamental physical or natural law – such

as conservation of energy or momentum. However, we are not certain what the

automatically-generated conserved quantity represents in the competence circuit.

In developing our analysis of the unknown conserved quantity, we make many

242

comparisons with a known conserved quantity, such as conservation of energy in a

pendulum. We collected data both from a real and a simulated double pendulum

(Schmidt and Lipson 2009) and apply the same types of analysis to the total energy

equation of the double pendulum. This allowed us to compare the unknown conserved

quantity with an understood conservation both with and without noise or loss.

Conserved quantities are often difficult or unintuitive to understand. In fact, many

conserved quantities cannot be directly observed. For example, the concept of energy

is abstract. In the double pendulum, we can tell that the conserved quantity (total

energy) is predictive of magnitudes of the velocities of the pendulum and the

maximum heights it reaches. But we cannot directly measure it; it has to be inferred

from other measurements. It could have an arbitrary offset, and possibly, arbitrary

scale; yet still be predictive of the dynamics of the double pendulum.

Figure 15.8. The parameter mapping relating the parameters of the expert

biological model to the automatically-inferred conserved quantity. The left plots

show the predicted parameter value in the conserved quantity of the mapping

versus the actual best fit parameter of the conserved value. The parameter

equations found are shown to the right.

R2 = 0.8858

R2 = 0.4088

-4.8 -4.6 -4.4 -4.2 -4 -3.8 -3.6 -3.4 -3.2 -3 -2.8

x 10
-3

-5

-4.5

-4

-3.5

-3

-2.5
x 10

-3

actual

p
re

d
ic

te
d

0.5 1 1.5 2

x 10
-3

1

1.2

1.4

1.6

1.8

2

2.2
x 10

-3

actual

p
re

d
ic

te
d

-0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15
-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

actual

p
re

d
ic

te
d

R2 = 0.3245

KK

K

Γδ..

λ
c

255021487932
1




SS

KK

βk

 / Γ. λ.
c

0013000130
2




SS βk

.
c

05240
3 

P
re

d
ic

te
d

P
re

d
ic

te
d

P
re

d
ic

te
d

Actual

Actual

Actual

-2.5

-5

2.2

1

-0.3

-0.56
-0.55 -0.15

0.5 2

-4.8 -2.8 0 1 2 3 4 5 6

x 10
-5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

-5

actual

p
re

d
ic

te
d

R2 = 0.6963

3 4 5 6 7 8 9 10

x 10
-5

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
x 10

-5

actual

p
re

d
ic

te
d

R2 = 0.9449

-0.022 -0.02 -0.018 -0.016 -0.014 -0.012 -0.01 -0.008
-0.021

-0.02

-0.019

-0.018

-0.017

-0.016

-0.015

-0.014

-0.013

actual

p
re

d
ic

te
d

R2 = 0.7854

KKK

S
Γ

.

δΓ

.
 k.c

0009000090
00204 

SKK

SK

βδ Γ.

kλ
c

4771
5 

S

S

β

k
c 6

P
re

d
ic

te
d

P
re

d
ic

te
d

P
re

d
ic

te
d

Actual

Actual

Actual

5.5

1

9.5

4.5

-0.013

-0.021
-0.022 -0.008

3 10

0 6

243

Similarly, the conserved quantity automatically-inferred for the B. subtilis competence

system is predictive of the duration of competence events in each cell. It is quite

possible that this quantity is also abstract as in the double pendulum and we may not

be able to interpret this quantity any better than we can interpret and understand the

concept of energy.

Nevertheless, we know that the conserved quantity is tied to the competence duration,

and that the duration can greatly impact fitness and adaptability of the cell. It is likely

that optimal durations are controlled in the cell or at least selected for by evolution.

Therefore, we could interpret the conserved quantity as a control value of each cell for

the competence durations. However, the scale, offset, or units we define for this value

could be arbitrary; as with energy.

Normalizing Unknown Conserved Quantities

One challenge when analyzing and comparing unknown conserved values is that they

are invariant to scaling and offset. For example, if the formula f if is conserved, so is

the formula af + b where a and b are any real constants. The key problem is that we do

not know the “units” of the conserved value. Therefore, we need a method for

normalizing each fitted conserved quantity – removing the scale a in the previous

example.

One way to normalize the scale is to divide the entire invariant equation by one of the

coefficients that that appear linearly in the formula since these will also contain the

scaling factor. Ideally, we could divide by the scale exactly, but the coefficients also

contain the parameter of that coefficient. Normalizing by different coefficients

produces different scales and different orderings depending on the parameter used.

One way to visualize this problem is to plot the coefficient values of the conserved

244

value formula for both the wild and mutated B. subtilis strains. In Figure 15.9, we

plotted pairs of coefficients (or 2D projections) of conserved value formula fitted to

the experimental data collected from both the wild and mutated strains.

In these projections we can see that the wild and mutated types form distinct clusters

based on the coefficients of the invariant. In several of the projections we can even

separate them by a 2D hyper-plane of coefficients.

In particular, all projections shown in Figure 15.9 that have coefficient k7 as an axis

appear well separated. This suggests that k7 alone is useful for normalizing with,

though combinations may be even better. In the main text, we show the conserved

Figure 15.9. The clusters of coefficient values of the unknown conserved quantity

equation colored by the B. subtilis strain. Each plot shows a projection onto a

different pair of coefficients.

245

value after normalizing by k7.

Sampling Parameters Values for Automated Mapping

In the automated-mapping technique, we use the bacillus models to generate data by

simulating the system with different model parameters. This allowed us to compare

the parameters of each model over many different data sets. Here we detail the

procedure used to generate data on the parameters.

We started by fitting the manually-derived model to one of the experimentally

collected cell data sets. For this comparison we fitted to the oscillatory data set shown

in the bottom left of Figure 15.6 which happens to have more interesting dynamics

over a longer period of time. We fit the manually-derived model by sweeping the

time-delays for each variable, and using nonlinear regression to fit the numerical

derivatives of the data for each variable. We use the beginning of the experimentally

collected data as the initial time-delay history, interpolating between data points as

necessary.

Next, we estimated the valid ranges of the parameters in the manually-derived model.

We did this by sweeping the value of each parameter individually, holding the other

parameters to their fitted values, until the system became unstable or exceeded

experimentally observed ranges in either variable. This range also indicates the

relative impacts of each parameter that allows us to perturb all parameter equally.

We simulate the manually-derived model multiples times varying the parameters in

Matlab using the DDE solver with absolute error and relative error tolerances set to

10
-9

. For each sample, each parameter is modified by a random percent between zero

and 25% of the parameter‟s valid range. We collected a thousand 30-hour trajectories.

246

Finally, we take the automatically-generated dynamical model and fit it to each of

these simulated trajectories – again by sweeping the time-delays and using nonlinear

least squares fitting to the numerical derivatives. This procedure gave us a thousand

sets of parameters for each model which corresponded to the same data.

Real and Simulated Perturbations

This section verifies that the model produces similar effects when perturbed to wet

experiments. As described above, we collected data on a wild and mutated strain of B.

subtilis. The genetically modified strain increased the production of ComS. This

resulted in longer duration competence events and increased variability in competence

events.

Figure 15.10. Verifying the perturbations of the models with the physical changes

in the wild (black) and mutated (red) strains. Pertubing only the parameters that

correspond to production of ComS in the simulated model produces similar

changes to those seen in experiment.

55 60 65 70 75 80 85 90 95 100

-20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 40 50 60 70 80 90 100 110 120 130
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40
10

1

10
2

10
3

Time [hours]
Time [hours]

Time [hours]Time [hours]

N
o

rm
al

iz
ed

 C
o

m
K

N
o

rm
al

iz
ed

 C
o

m
K

In
va

ri
an

t
In

va
ri

an
t

Simulation:

Experiment:

1

0

1

0

103

101

100

-20

0 40

0 40 0

0 40

15

247

We first tuned the model to the experimental data of the wild type data. We then

simulated the model in Matlab with lightly varied parameters to resemble small

variance among cells of the same type.

Next, we increased the parameters which correspond to production of ComS: alpha-S,

beta-S, and k-S. This is done to mimic the change in the modified B. subtilis strain.

In Figure 15.10, we show the side by side comparison between the simulated effects

on the model and the experimental modified strain. The model does not show

increased variance because it is a deterministic differential equation model and does

not model the low-level stochastic nature of the system. However, the model predicts

the same effect on competence durations as in experiment. The durations increased,

and the normalized conserved quantity value increased.

248

CHAPTER 16. PARAMETER MODELS

Finding Symbolic Parameters

The search over equation space produces equations with bulk parameters; however,

we can use a second equation search to identify the fully parameterized equation with

symbolic parameters such as lengths, masses, etc. For example, in Chapter 11 our

method found the following equation for the double pendulum with bulk parameters:

 2 2

1 1 2 2 3 1 2 1 2 4 1 5 2cos cos cosk k k k k          

The question is what are the symbolic representations for the ki coefficients? To find

the fully parameterized equation, we simply need data from similar systems but with

different physical configurations and hence varying bulk parameters – for example,

collecting data from several double pendula that have different arm lengths and

masses.

One way to help identify the units in a potential invariant equation is to require the

evolved expressions to be consistent in physical units, and to provide the algorithm

with physically-meaningful building blocks such as the masses and lengths of the

system‟s components, while requiring all other constants to remain unit-less. This

approach still does not eliminate completely some fundamental ambiguities.

Alternatively, once we have found the invariant equation with bulk coefficients, we

can refit it very easily to data from another system that has different parameters. If we

do this on several different system configurations, we can obtain bulk coefficients for

each configuration of the system versus the physical parameters (e.g. ki values versus

length and mass values of the collection of systems).

With bulk coefficient values from several systems, we can now find an equation for

249

each individual coefficient using explicit symbolic regression (e.g. find the equation of

ki as a function of the system masses and lengths).

We have done this in silico using 100 simulated double pendula with random masses

and arm lengths. We first collected data from these double pendula by simulating them

numerically and then refitting the coefficients of the double-pendulum equation for

each. Since the partial derivative pairs metric is scale invariant, we divide out the first

coefficient to put all equation in a normal form. This allows us to compare coefficients

across multiple double pendulum equations. Finally, we use explicit symbolic

regression to find the equation for each coefficient:

k1/k1 = 1

k2/k1 = m2L2
2
/(m1L1

2
 + m2L1

2
)

k3/k1 = 2.00055m2L2/(m1L1 + m2L1)

k4/k1 = 19.6/L1

k5/k1= 19.6·m2L2/(m2L1
2
 + m1L1

2
)

where m1, L1, m2, and L2 are the masses and lengths of the first and second arms

respectively. The remaining coefficient 19.6 is a multiple of the gravitational

acceleration 9.8 m/s (which we do not vary).

By multiplying the coefficients by their common denominator m1L1
2
 + m2L1

2
, we can

finally write out the fully parameterized equation for arbitrary double pendula:

 2 2 2 2

1 1 2 1 2 2 2 2 1 2 1 2 1 2

1 1 2 1 2 2 2

() 2 cos

19.6 ()cos 19.6 cos

L m m m L m L L

L m m m L

    

 

    

   

250

Finding explicit equations for the parameters is much simpler than finding equations

from scratch. Symbolic regression found each coefficient expression in less than 30

seconds, compared with the tens of hours required to find the original bulk coefficient

equation.

251

SECTION IV – APPLICATIONS

CHAPTER 17. METABOLIC NETWORKS

Summary

Many challenges of systems biology involve reverse-engineering metabolic networks

by using experimental data to determine metabolic fluxes. Traditionally, specification

of the form of the analytical mathematical model appropriate to a particular metabolic

system relies heavily on prior knowledge about the system, the experimental design,

and how closely the system relates to established metabolic models. Here, we propose

an automated process to build mathematical models with limited prior knowledge, or

alternatively, adapt the form of a hypothesized model to suggest a more accurate

structure. The algorithm alternates between generating multiple potential models

commensurate with experimental data and designing new experiments that are

optimized to differentiate models based upon disagreements between their predictions.

We demonstrate the algorithm‟s ability on a noisy seven-dimensional model of yeast

glycolytic oscillations and compare its performance with related methods. We further

show that this method can symbolically correct impaired and overspecified expert

models. We suggest that this approach may help study dynamic and non-linear

components of complex metabolic and signaling systems, and may even provide

optimized design and control of experiments in real-time.

Introduction

Many remarkable behaviors in nature arise from complex signaling or metabolic

networks, and hence the ability to rapidly develop a predictive network model is

essential to understanding and controlling these behaviors. A mathematical description

is one way to represent the dynamics of a network amenable to human interpretation,

252

but finding a full analytical expression can be arduous – particularly in

multidimensional systems with nonlinear reactions, feedback, and oscillations that are

common in biology. Here we propose a method that generates such a model

automatically () without any prior knowledge of the metabolic system under study. It

can be applied either to existing time-series data or wet-lab experiments suggested (or

controlled) by the algorithm.

Identifying metabolic and signaling network models is of pressing practical interest

(Stolovitzky and Califano 2007). A variety of methods have been used to infer gene

regulatory networks (GRN) (Gardner, di Bernardo et al. 2003; Styczynski and

Stephanopoulos 2005), including genetics, biochemistry, and molecular biology

(Levine, Hu et al. 2007). Most often, preexisting models are used to provide a

functional form, and then an optimization technique is used to fit the model

parameters. Because of the breadth of data available, much of signaling network

inference is based upon high-throughput mRNA microarray data for gene arrays,

while metabolic network analysis considers both gene expression and high-throughput

Figure 17.1 Automated analytical modeling: Noisy time series data reflecting

anaerobic metabolism concentrations over time are automatically translated into

a set of coupled analytical differential equations without prior knowledge of the

system (actual data and equations).

253

mass spectrometry of metabolites (Nielsen and Oliver 2005). There are various

challenges specific to the inference of metabolic networks from such data

(Nemenman, Escola et al. 2007), since metabolism includes not only transcriptional

regulation of enzymes, but also the conversion of substrate species with stoichiometric

constraints. The computational challenge is exacerbated by the range of metabolic

time constants and concentrations, which can easily span a several orders of

magnitude, respectively.

While there remain many unsolved problems in the inference of GRN models,

metabolic networks surpass many other biological networks in terms of their breadth,

detail, quantitative nature, and experimental validation. Currently, it is possible to

obtain quantitative, dynamic measurements of metabolic concentrations, metabolite

fluxes, and genetic modification simultaneously, providing an important connection

between the transcriptome/proteome and cellular phenotype (Ni and Savageau 1996;

Kauffman, Pajerowski et al. 2002).

The most common mathematical form used to describe a metabolic network is a set of

ordinary differential equations (ODEs) that describe the time-derivatives of chemical

concentrations in the system as a function of its current state. ODEs are amenable to

human interpretation because they are deterministic models and explicitly encode

causal relationships (Bansal, Belcastro et al. 2007), including feedback loops that are

difficult to model using other methods. Terms in the differential equations correspond

to reactions occurring in the system based on their connectivity, such as first- and

second-order rate laws, power laws, and Michaelis-Menten kinetics (Koza 2001).

Methods such as symbolic regression (Koza 1992; Augusto and Barbosa 2000; Duffy

and Engle-Warnick 2002; Hoai, McKay et al. 2002) can be used to identify differential

254

equations automatically from experimental data (Schmidt and Lipson 2006; Bongard

and Lipson 2007; Schmidt and Lipson 2007), however, substantial challenges remain

to scale into the dimensionality and functional complexity necessary for biological

applications.

In this chapter, we introduce a method to automatically construct mathematical models

of a biological system, and apply this technique to infer a seven-dimensional nonlinear

model of glycolytic oscillation in yeast – the largest automatically identified system to

date – using only noisy observational data in silico. This method is enabled by three

new techniques for searching for differential equation models: graph-based symbolic

encoding (Schmidt and Lipson 2007), fitness prediction (Schmidt and Lipson 2006;

Schmidt and Lipson 2008), and estimation-exploration (Bongard and Lipson 2005;

Zykov, Bongard et al. 2005; Bongard and Lipson 2007).

Background

Metabolic Modeling

Given the breadth of metabolic networks, we find it useful to classify systems biology

metabolic models into three categories: comprehensive (exact and complete) versus

local (surrogates or approximations), static versus dynamic, and linear versus non-

linear. Genome-scale modeling using generalized mass action (Jamshidi and Palsson

2008) is linear, dynamic, and comprehensive. Flux balance analysis (FBA) and

metabolic control analysis (MCA) are linear, static, and comprehensive. Metabolic

flux analysis (MFA) is linear, static, and localized (Varma and Palsson 1994).

Dynamic flux balance analysis (dFBA) (Mahadevan, Edwards et al. 2002; Gadkar,

Varner et al. 2005) and dynamic metabolic control analysis (MCA) (Fell 1992;

Mendes and Kell 1996; Kell 2004) are linear, static, and fall between localized and

255

comprehensive. Biochemical systems theory, also known as the S-System approach, is

nonlinear, dynamic, localized (Beard, Qian et al. 2004; Crampin, Schnell et al. 2004).

Cybernetic modeling is nonlinear, dynamic, and falls between localized and

comprehensive (Young and Ramkrishna 2007). It is becoming more widely

recognized that highly detailed comprehensive models suffer from the identifiability

problem (Schmidt, Madsen et al. 2008), because of the inability to distinguish

experimentally between parameter combinations that produce identical measurements,

and that additional methods are needed to reduce model complexity. We focus this

chapter on an approach to identify local or effective models for non-linear and

dynamic subsets of larger systems, and hence explore the underlying physiology and

enable external control of the system and the optimized design of wet-lab experiments.

Metabolic models, in contrast to signaling ones, require strict adherence to the

stoichiometry of the equations, i.e., chemical mass balance. Such mathematical models

can be used to predict the behavior of the network in different conditions, such as

attracting basins and bifurcations – predictions that are not readily available in

statistical models. Stoichiometric methods can also be used to identify some

qualitative properties of biological systems. For example, if a model can be linearized,

it is possible to create a Jacobian matrix that can subsequently be decomposed into

stoichiometric and gradient matrices to reveal kinetic and thermodynamic components

(Jamshidi and Palsson 2008), but this technique may not be applicable to problems

that are not readily linearized or for which perturbations take the system far from the

reference model.

Integration of a parameterized system of differential equations is known as the

forward metabolic network problem. In contrast, the inverse problem involves

determining the nature of the equation network underlying observed behavior using

256

techniques such as reverse engineering or systems identification. Reverse-engineering

a metabolic network consists of determining both the correct functional form of a set

of ODEs to describe the system and the proper set of model parameters to fit

experimentally collected data to within a given tolerance. The inverse metabolic

problem is universally recognized as very hard (Kell 2004; Kell 2006) and most likely

NP complete (Mendes and Kell 1996; Styczynski and Stephanopoulos 2005). As a

result of the nonlinear and coupled nature of the equations, enzymatic kinetics studied

in isolation or with small, singular perturbations, often used to explore network

connectivity, may not be informative regarding the behavior of the complete system,

particularly under large amplitude dynamic perturbations to multiple variables.

Conventional local nonlinear solvers can be inadequate for the ill-conditioned and

multi-model inverse problem presented by the nonlinear, differential-algebraic

constraints associated with dynamic biochemical pathways, and various global

nonlinear optimization approaches have been developed to solve the inverse problem

(Mendes and Kell 1998; Moles, Mendes et al. 2003; Beard, Qian et al. 2004; Crampin,

Schnell et al. 2004).

Methods

Searching for Differential Equations

Genetic programming is a widely studied class of evolutionary algorithms inspired by

biological evolution (Koza 1992). In a traditional genetic program, an initially random

population of solutions evolves iteratively in computer memory to maximize some

objective – for example, to model experimental data with the lowest squared error.

Solutions with the highest fitness persist in the population to recombine (genetic

crossover) and mutate to replace less fit individuals.

257

Symbolic regression uses genetic programming to evolve (compete) algebraic

expressions to explain experimental data (Koza 1992). Unlike polynomial regression

or neural networks which also fit data, symbolic regression searches a space of

analytical equations to explain experimental observations. Symbolic regression

composes equations using basic algebraic building blocks with the aim to formulate

simpler (e.g., fewer parameters) or more natural expressions (robust to perturbations)

that are more likely to correspond to the underlying intrinsic behavior mechanisms of

the system.

Symbolic regression compares candidate equations by calculating their residual errors

on the experimental data – also known as the equations fitness metric – for example,

using square-error or correlation. In past research, algorithms have used all available

data at once to evaluate the fit. However, this metric can be overly stringent and

inhibit solutions from building intermediate expressions needed for the final model.

Instead, we use the technique fitness prediction to reduce overall computational cost

and to improve the local search gradient (Schmidt and Lipson 2006; Schmidt and

Lipson 2008). Fitness predictors measure error on only a small subset of the data. The

data subset is adapted, however, as a population of fitness predictors (data subsets)

evolves in parallel with symbolic regression of differential equations. Predictors are

rewarded for accurately approximating many equations‟ error on the full data set. All

differential equations measure fitness using the top-ranked predictor. In contrast to

standard symbolic regression, equations compete on an accurate fitness approximation

but are free to drift in more trajectories. Predictors adapt to defeat poor deviations.

Conceptually, fitness prediction allows a genetic algorithm to search a wider range of

solutions by adapting the fitness heuristic and reducing its computational cost. An

258

interesting result (Schmidt and Lipson 2008) shows that symbolic regression is

substantially more successful when solutions are pressured to explain only a few

features of the systems at any given time rather than the entire data set at once. This

allows solutions to drift from the objective gradient, but the focus adapts with the

solution population to prevent excessive divergence from the intended gradient.

Model Encoding

The ability to identify an accurate and parsimonious differential equation model using

symbolic regression relies critically on the genetic encoding (e.g., the genotype

organization of a symbolic expression). To search the space of candidate symbolic

analytical equations, we use an acyclic graph encoding for symbolic regression that

scales well computationally and exploits the shared structures found in many

metabolic networks (Schmidt and Lipson 2007). Traditionally, symbolic expressions

2 2 2 2 2 6 2 2 4 4 2

dN
k S k S N k S N k S N

dt
   

Figure 17.2. Analytical model representations for NADH in the cell glycolysis

model - a tree encoding (left pane) and a graph encoding (right pane). Both panes

encode the same equation, but while the tree encoding is simpler to manipulate

algorithmically (e.g., alter subexpressions), it requires redundant subtrees and is

prone to produce large equations that may not accurately represent the biological

system. The graph encoding couples subtrees, thereby biasing equations to

preserve simpler shared expressions.

259

have been represented as binary-trees, where parent nodes represent algebraic

operations such as addition or multiplication, and leaf nodes represent symbolic

variables and parameter constants (Figure 17.2A, left pane). However, trees can

produce complex and bloated equations, often resulting in unsuitable models for

understanding the underlying system. Instead, the graph encoding produces models

that are more concise on average by reusing and coupling sub-expressions in the

genetic encoding (Schmidt and Lipson 2008).

The acyclic graph encoding represents a symbolic expression by interpreting nodes as

mathematical operations such as addition and multiplication. Leaf nodes represent

state-variables or parameter constants (Figure 17.2B, right pane). The encoding for the

graph is an ordered list of operations much like assembly code: Each operation builds

up successive sub-expressions in the final expression, using any preceding operations

and symbolic variables. The graph encoding takes advantage of redundant sub-

expressions, such as coupled reactions in metabolic networks, and is biased against

bloated solutions and overfitting (Schmidt and Lipson 2007).

The acyclic graph (illustrated in Figure 17.2) that represents symbolic equations was

encoded internally as floating-point assembly code. The encoding consists of a list of

floating-point operations and parameter values. Operations can load an input variable

or a parameter value (set command), or perform a floating-point operation on any

previous operation outputs (add/sub/multiply/divide commands). Each operation

corresponds to a leaf or parent node in the graph. The graph is rooted by the final

operation in the list. Table 17.1 shows several raw encodings generated by the

algorithm after regressing the yeast glycolysis model.

260

Table 17.1. Raw encodings of glycolysis differential equations found.

S1 S2 S3 S4

(0)  set <A3>
(1)  set [-7.15469]
(2)  set <S1>
(3)  mul (1) (2)
(4)  set [-10.6171]
(6)  div (4) (3)
(10)  set <S1>
(12)  set <S3>
(13)  div (3) (12)
(15)  sub (6) (10)
(16)  div (13) (15)
(17)  sub (16) (0)
(18)  sub (16) (17)
(22)  mul (18) (18)
(23)  set [0.07081]
(24)  div (23) (0)
(25)  mul (18) (22)
(26)  add (24) (25)
(27)  div (3) (26)
(28)  set [-2.469]
(31)  sub (27) (28)
return (31)

(0)  set [-0.2349]
(1)  set [-6.00913]
(2)  set <S2>
(3)  mul (1) (2)
(4)  add (0) (3)
(5)  set [-6.70044]
(7)  mul (5) (2)
(8)  set <N2>
(9)  mul (7) (8)
(10)  add (4) (9)
(11)  set [14.6053]
(12)  set <S1>
(13)  mul (11) (12)
(14)  set [0.0710]
(15)  set <A3>
(16)  div (14) (15)
(19)  mul (15) (15)
(21)  mul (19) (15)
(22)  add (16) (21)
(23)  div (13) (22)
(24)  add (10) (23)
(25)  set [-0.1942]
(26)  add (24) (25)
(27)  set [-0.4663]
(28)  sub (26) (27)
(29)  set [1.01609]
(31)  div (28) (29)
return (31)

(0)  set [6.01392]
(1)  set <S2>
(2)  mul (0) (1)
(3)  set [-64.187]
(4)  set <S3>
(5)  mul (3) (4)
(6)  add (2) (5)
(7)  set [16.0479]
(9)  mul (7) (4)
(10)  set <A3>
(11)  mul (9) (10)
(12)  add (6) (11)
(13)  set [-6.0004]
(14)  set <S2>
(15)  mul (13) (14)
(16)  set <N2>
(17)  mul (15) (16)
(28)  add (12) (17)
(29)  set [1]
(31)  div (28) (29)
return (31)

(0)  set [-0.02674]
(1)  set [62.8684]
(2)  set <S3>
(3)  mul (1) (2)
(4)  add (3) (0)
(5)  set [-12.727]
(6)  set <S4>
(7)  mul (5) (6)
(8)  add (4) (7)
(9)  set [12.7542]
(10)  set <S5>
(11)  mul (9) (10)
(12)  add (8) (11)
(13)  set [-98.402]
(15)  mul (13) (6)
(16)  set <N2>
(17)  mul (15) (16)
(18)  add (12) (17)
(19)  set [-15.712]
(20)  set <S3>
(21)  mul (19) (20)
(22)  set <A3>
(23)  mul (21) (22)
(24)  add (18) (23)
(25)  set [1.01302]
(26)  mul (24) (25)
(27)  set [1.00701]
(28)  mul (26) (27)
(29)  set [0.0213]
(31)  add (28) (29)
return (31)

N2 A3 S5

(1)  set [5.95097]
(2)  set <S2>
(3)  mul (1) (2)
(5)  set [-17.8537]
(6)  set <S2>
(7)  mul (5) (6)
(8)  set <N2>
(9)  mul (7) (8)
(10)  add (3) (9)
(11)  set [-99.130]
(12)  set <S4>
(13)  mul (11) (12)
(15)  mul (13) (8)
(16)  add (10) (15)
(17)  set [0.9840]
(18)  mul (16) (17)
(19)  set [0.9841]
(20)  div (18) (19)
(27)  set [-0.0003]
(28)  add (20) (27)
(29)  set [1.01106]
(31)  mul (28) (29)
return (31)

(0)  set [0.08596]
(1)  set [128.854]
(2)  set <S3>
(3)  mul (1) (2)
(4)  add (0) (3)
(5)  set [-1.37961]
(6)  set <A3>
(7)  mul (5) (6)
(8)  add (4) (7)
(9)  set [-32.0337]
(11)  mul (9) (2)
(13)  mul (11) (6)
(14)  add (8) (13)
(15)  set [-14.53]
(16)  set <S1>
(17)  mul (15) (16)
(18)  set [0.0714]
(19)  set <A3>
(20)  div (18) (6)
(23)  mul (6) (6)
(25)  mul (23) (19)
(26)  add (20) (25)
(27)  div (17) (26)
(28)  add (14) (27)
(29)  set [0.99359]
(31)  mul (28) (29)
return (31)

(0)  set [1.30265]
(1)  set <S4>
(2)  mul (1) (0)
(3)  set [-3.1032]
(4)  set <S5>
(5)  mul (3) (4)
(6)  add (2) (5)
(25)  set [-2265.4]
(26)  add (6) (25)
(28)  sub (26) (25)
(29)  set [-0.0001]
(31)  add (28) (29)
return (31)

261

The connected components of the graph define a sequence of operations that

correspond to a single equation, as shown in Table 17.1.

In our experiments, we are effectively searching the rational functions (seven-variable

quotients of polynomials) of at most 32 operations (nodes in an acyclic graph

representation). This places a limit on the total number of parameters also to 32. The

discrete search space size, neglecting real-valued parameters, is thus 6
32

 – or roughly

10
25

 parameterized functions.

Model Accuracy and Complexity Tradeoff

For any given system, there a potentially infinite set of equations that closely fit any

finite set of experimentally collected data. Therefore, it is important to have some

qualitative understanding of what the domain of reaction rate equations looks like. For

example, a 1000
th

 order polynomial can perfectly fit any data set of 1000 or fewer

unique time samples. Therefore, it is important to understand the qualitative features

of the equation-space which can also help us distinguish between true intrinsic models

and coincidental fits.

Consider the relationship between equation complexity and accuracy of fitting the

experimental data. Qualitatively, there exist extremely complex equations (e.g., Taylor

series, neural networks, and Fourier series) with near perfect accuracy as well as

simple, single-parameter models with baseline accuracy (e.g., the mean reaction rate).

The behavior of equations in between these two extremes is more interesting.

Figure 17.3 shows the Pareto front of equation accuracy versus equation complexity

for modeling a particular reaction rate (dS1/dt described below). It demonstrates a cliff

point in the trade-off between model accuracy and complexity. Starting at the lower

right corner of the figure and increasing the model complexity by moving to the left,

262

there is a certain complexity where model accuracy jumps dramatically and then

plateaus. In other words, there is a relatively simple equation that can model the

system‟s behavior accurately (but perhaps not perfectly). By parsimony arguments, we

can reason this equation to be the most-likely model of the system. The equation at the

inflection at this example is indeed the correct S1 model, supporting this assumption.

Automated Experimental Design

Once the symbolic regression step has evolved a population of candidate solutions to

fit the current set of training data, there may be several coherent solutions for

modeling the data in different ways – particularly in high-dimensional domains with

sparse data where many equivalent explanations exist for the simplest behavior. But

which mathematical explanation of the system is correct? The estimation-exploration

algorithm (EEA) is a method to automatically design a new experiment that can help

differentiate the current solution candidates and refine their structure (Bongard and

Figure 17.3. The pareto front of model accuracy versus its simplicity. There is an

inherent trade-off between complexity and accuracy to the training data. Many

complex functions have very high accuracy, however the exact solution lies at the

sharp inflection near 28 nodes, balancing high accuracy and simplicity.

-40 -30 -20 -10 0
-6

-5

-4

-3

-2

-1

0

1

Model Parsimony (-nodes)

M
o

d
e

l
A

c
c
u

ra
c
y
 (

-e
rr

o
r)

263

Lipson 2005; Zykov, Bongard et al. 2005; Schmidt and Lipson 2006; Bongard and

Lipson 2007). The purpose of the EEA is to decipher which model is likely to be

correct by searching for experiment settings, perturbations, or procedures that cause

current models to disagree most in their predictions. Figure 17.4 summarizes the high-

level symbolic regression of differential equations and the automated experiment

control of the proposed algorithm.

The first step in our exploration of an “unknown” metabolic network is to perform a

series of randomly selected experiments – perhaps just observing nominal stable

behavior, such as stable nodes and limit cycles. As candidate solutions compete to fit

these training data, there is a tendency to produce multiple solutions that explain the

behavior in different ways. Given multiple solutions competing to explain the current

data, we can then search in parallel for new experiment designs to maximize

disagreement in the predictions of the set of solutions. For a dynamical system such as

glycolysis, we design new experiments as sets of initial conditions into which we

place the system and then record its transient trajectory as governed by the differential

equations in the black box. We dictate the most informative experiment to be the set of

initial conditions in which the current population of solutions has the highest statistical

variance in its predicted dynamics. The candidate experiment producing the most

disagreement in the prediction of competing models is the most informative

experiment to carry out and the one most likely to eliminate overfit models that are

unable to make useful predictions (Zykov, et al., 2005).

Once identified by the EEA, we can then perform the most controversial experiment

on the real system, acquire new data, and once again compete solutions to explain

them. We repeat this process (Bongard and Lipson 2005; Zykov, Bongard et al. 2005;

Bongard and Lipson 2007) until a single dominant solution emerges.

264

Distributed Computation

Genetic programs are readily parallelizable to several computers and server clusters

where available. We distributed the symbolic regression evolution over four

computers and eight total logical processors using the island distributed computation

method (Francisco, Marco et al. 2003). The island model partitions the population of

solutions into separated smaller populations residing on each computer (or core). We

spread a population of 512 individuals over eight CPU cores; therefore each

population has 64 individuals.

The island model populations are faster to evolve because there are fewer individuals

and less work to calculate fitness values per population. We migrate solutions between

populations at regular intervals. Every 10,000 iterations (averaged over all

populations), we randomly shuffle all solutions among random pairs of populations.

Figure 17.4 The coevolution of models through symbolic regression and fitness

prediction, and experiments by the estimation-exploration algorithm. Candidate

solutions compete to explain current experimental data, and experimental initial

conditions compete to maximize disagreement in the predictions of the various

solutions. This process of synthesizing coherent models and controversial

experiments continues until a single dominant solution emerges.

(virtual)

Wetlab

Automated

Experiment

Design

Fitness

Prediction

Graph Encoding

Equation Search

Collected

Data

265

Noise Effects on Numerical Derivatives

Measurement noise makes approximating the gradient (numerical derivatives) more

difficult because derivatives can be highly sensitive to noise. We used non-parametric

fitting, Loess smoothing (Cleveland and Devlin 1988), which could overcome a

significant amount of noise, up to a point depending on the noise strength and

frequency.

Loess smoothing updates each sample in the data set by fitting a small order

polynomial to the sample and its nearest neighbors. If the neighbor size is significantly

wider than the sample rate, the polynomial will remove high-frequency noise. Other

methods, such as filtering and convolution, also reduce high-frequency noise, but they

do not readily produce estimates of the signal derivative. Using Loess smoothing, we

can obtain the numerical derivative directly from the smoothing procedure by

evaluating the symbolic derivative of the local polynomial fit at each data sample.

In Figure 17.5, we can see the effect of Loess smoothing for calculating the numerical

derivative versus the amplitude of the noise and its frequency relative to the sampling

rate. These graphs come from smoothing the signal f(t)=sin(wt) over t=[0,2π]. The

number of features (of the data set) is defined as 2πw (the number of periods in the

data set). We can see that error on the signal itself is most affected by the noise

frequency. In contrast, the error of the numerical derivative using Loess smoothing is

affected by both noise amplitude and the number of features in the data set (frequency

of the signal).

This result suggests that smoothing cannot remove all noise from data, even for small

amounts, and that smoothing breaks down for the numerical derivative values for

high-frequency features in the data.

266

Residual error f(t) = sin(wt)

Residual error f’(x) = wcos(wt)

Figure 17.5. The residual squared-error after Loess smoothing versus the

magnitude of the noise and the density of features relative to the noise frequency

(sample rate) for a sine-wave signal and its numerical derivative. The signal error

is most sensitive to the noise magnitude but more robust to the number of

features. In contrast, the error on the numerical derivative has much higher

sensitivity to the number of features. The state of the art of what the symbolic

regression algorithm can handle with Loess smoothing is roughly the medium-

blue to dark-blue regions.

267

The Glycolytic Oscillation Models

We begin with a published numerical model (Wolf and Heinrich 2000; Ruoff,

Christensen et al. 2003) of glycolytic oscillation in yeast for the system upon which

our algorithm experiments. Table 17.2 and Table 17.3 provide details of the models

shown in Figure 17.6.

In this seven-variable model, the respiratory chain (mitochondrial oxidative

phosphorylation) is completely inhibited. The reaction network for this system, shown

in Figure 17.6 (left), contains the main reactions of glycolysis and adjacent reactions

producing ethanol and glycerol. In Table 17.2 we list the chemical species and their

rate/mass balance equations and initial conditions, and in Table 17.3 the associated

reaction fluxes and kinetic coefficients. During model development, the complexity of

the model was reduced by omitting many of the glycolytic reactions, and by lumping

together other reactions, so that several of the model variables denote concentrations

of pools of intermediates rather than concentrations of the individual compounds, e.g.,

the pools of triose phosphates (glyceraldehydes-3-phosphate, dihydroxyacetone

phosphate) and pyruvate and acetaldehyde. This simplification has been rigorously

justified using a judiciously applied quasi steady-state approximation (Heinrich,

Rapoport et al. 1977).

This particular model is capable of reproducing glycolytic oscillations with a period in

the range of 0.10 to 12 min and has been used to study the temperature dependence

and temperature compensation of yeast glycolytic oscillations (Ruoff, Christensen et

al. 2003).

268

We simulate collecting wet-lab experimental data by adding noise sampled from the

normal distribution to each state-variable in the time-series. Each state measurement is

given 10% noise (where the standard deviation of the noise is 10% of the standard

deviation of the corresponding state-variable in its stable cycle). We then calculate the

derivatives of the resulting seven state-variables numerically using locally weighted

polynomial fitting (Cleveland and Devlin 1988).

Table 17.2. The chemical species in the model (NM, IM, and OS are the

normal, impaired, and overspecified models, respectively).

Variable Description Model
Species rate or

mass balance

Initial

conditions

A2 ADP All 2 3A A A  1.525 mM

A3 ATP All
3 1 3 52 2A v v v    2.475 mM

N1 NAD
+
 All 1 2N N N  0.923 mM

N2 NADH

NM

OS 2 2 4 6N v v v  
0.077 mM

IM
2 2 PN v J 

S1 Glucose All
1 1GS J v  1.187 mM

S2

Glyceraldehydes-3-

phosphate and

dihydroxyacetone

phosphate pool

NM

OS 2 1 2 62S v v v  

0.193 mM

IM 2 1 22S v v 

S3
1,3-

bisphosphoglycerate
All

3 2 3S v v  0.050 mM

S4
Cytosolic pyruvate

and acetaldehyde pool

NM 4 3 4 PS v v J  

0.115 mM
IM

4 3 PS v J 

OS 4 3 4 P sinkS v v J v   

S5
Extracellular

concentration of S4
All   5 7PS J v

0.077 mM

0.10 

269

Table 17.3. Description of the reaction fluxes and their kinetic coefficients

Reaction enzymes or processes Model Reaction Coefficient value

Incoming flux of glucose across

cell membrane
All constantGJ  2.5mM/minGJ 

Hexokinase,

phosphoglucoisomerase, and

phosphofructokinase, where KI is

the inhibition constant and the

exponent „q‟ is the cooperativity

coefficient of ATP inhibition

All

1 1 3
1

31

q

I

k S A
v

A

K


 

  
 

 1 100 mM/min

0.52 mM

4.0

I

k

K

q







Glyceraldehydes-3-phosphate

dehydrogenase
All 2 2 2 1v k S N

2 6.0 mM/mink 

Phosphoglycerate kinase,

phosphoglycerate mutase,

enolase, and pyruvate kinase

All 3 3 3 2v k S A 3 16.0mM/mink

Alcohol dehydrogenase
NM OS 4 4 4 2v k S N

4 100 mM/mink 

IM Absent

Nonglycolytic ATP consumption All 5 5 3v k A

1

5 1.28 mink 

Formation of glycerol from triose

phosphates

NM OS 6 6 2 2v k S N

6 12.0 /mink mM

IM Absent

Degradation of pyruvate and

acetaldehyde in the extracellular

space

All 7 5v kS
11.8 mink 

Carbon sink term to the pyruvate

pool accounting for the carbon

loss to cellular synthetic

processes (fatty acid

biosynthesis, amino acid

production)

OS

4
3

31

sink
sink

IATP

k S
v

A

K


 

  
 

 20 mM/min

0.52 mM

sink

I ATP

k

K





Membrane transport of pyruvate

and acetaldehyde into

extracellular space (As =

membrane surface, P =

membrane permeability, and V =

cellular volume)

NM

OS
  

  
 

4 5
S

P

A P
J S S

V

113.0 minSA P

V

 
 

 

IM  4
S

P

A P
J S

V

 
  
 

 *

* In the case of the impaired model, mammalian cells do not typically take in lactate from the

extracellular space, so the dependence on S5 was eliminated to ensure that the model would act like a

mammalian cell.

270

Generating Data

We generated data by numerically integrating the glycolysis model from an initial

state and recording the state-variables over the transient trajectory. The initial state is

either randomly chosen (for collecting initial data before regression) or chosen by the

algorithm. For a given initial state, we record the trajectory every 0.1 minutes until we

have acquired 100 samples. Given the approximately one-minute period of the limit

cycle, this allows us to observe the transient behavior that occurs as the initial state

progresses towards the limit cycle, but not redundantly sample the limit cycle for

typical initial states. The algorithm runs a new experiment (perturbs an initial state and

collects new data) every 50,000 iterations (roughly every 10 minutes). All initial states

were confined to viable environments as indicated in Table 17.4. The upper-bound

constraints are doubled for the test set to expand the phase space by a factor of 2
7
 and

measure how well models extrapolate and predict new behavior.

Once the data are generated, we simulate physical measurements by adding normally

distributed random noise to each state-variable in each time-sample. The standard

deviation of the random noise added to each state is relative to the standard deviation

of the state-variable in the system‟s stable limit cycle. This gives variables with large

magnitude oscillations higher noise than variables with smaller magnitudes. This also

makes the noise independent of measurement units. We used 10% noise, i.e., the ratio

of the noise standard deviation to the variable standard deviation is 0.1.

We smooth the noisy time-series numerically using Loess locally weighted

polynomial fitting (Cleveland and Devlin 1988) with window size of 50. Additionally,

we approximate the derivative of the time-series by evaluating the derivative of the

local polynomial fit of each point.

271

Symbolic Regression Algorithm Settings

We use the fitness prediction symbolic regression algorithm described in (Schmidt and

Lipson 2008) to build different equations to fit time-series data. We use a population

Table 17.4. Model variables, the allowed range of initial states for the training

data set, and the standard deviation of the limit cycle used to compute the

amount of added noise.

Variable Name Range
Standard

deviation

S1 Glucose [0.15, 1.60] 0.4872

S2

Glyceraldehydes-3-phosphate

and dihydroxyacetone

phosphate pool

[0.19, 2.16] 0.6263

S3 1,3-bisphosphoglycerate [0.04, 0.20] 0.0503

S4
Cytosolic pyruvate and

acetaldehyde pool
[0.10, 0.35] 0.0814

N2 NADH [0.08, 0.30] 0.0379

A3 ATP [0.14, 2.67] 0.7478

S5
Extracellular pyruvate and

acetaldehyde pool
[0.05, 0.10] 0.0159

272

size of 512, distributed over eight CPUs/cores. We use the deterministic crowding

selection method, with 5% mutation probability and 75% crossover probability. The

encoding is an operation list acyclic graph with a maximum of 32 operations/nodes.

Single-point crossover exchanges operations in the operation list at a random split.

The operation set contains addition, subtraction, multiply, and divide algebraic

operations.

The fitness predictor population contains 128 predictors, distributed over eight

CPUs/cores. The fitness predictor subset size is 16 indices to the full training data set.

Predictors are evolved via deterministic crowding, with 10% mutation and 50%

crossover.

We calculate fitness using the correlation coefficient between the candidate solution‟s

predicted derivative values and the numerically estimated derivatives from the training

data. We also include a small absolute error term to provide a weak gradient to match

the scale and offset of the data. The fitness function for a solution s is therefore:

cov(,) 1
()

x y

x y
fitness s x y

n


 
   

 ,

where s is a candidate differential equation, x is the model‟s predicted derivative

values, y is the numerical derivative from the training data, ζx and ζy are their

respective standard deviations, and cov(x,y) is the covariance of x and y. The

summation is the small mean-absolute-error term, with є equal to 10
-6

. When

calculating the exact fitness of a candidate solution, x and y values cover the entire

training data. When predicting fitness, the x and y values cover only data samples

referenced by the predictor.

273

Regression Procedure

During regression for each compared algorithm – symbolic regression, nonlinear

regression, and neural network regression – we track accuracy on both the training and

test data sets over time. Only the training data set is used to update the models. By

recording the accuracy of the model of the test set over time as well, we can analyze

later how well the regression procedure is generalizing the model to data not in the

training set (e.g. Figure 17.12 and Figure 17.13). Additionally, we record performance

on a third validation data set. The validation data set (same size and phase distribution

as the training data) is used only to choose the best point during regression that

maximizes generalization (a method known as “early-stopping”) for display in Figure

17.13.

In nonlinear regression and neural network regression, the training set was constant,

with 200 trajectories as described earlier. In contrast, the symbolic regression

algorithm‟s training set begins with 10 random trajectories, but adds new trajectories

chosen by the algorithm throughout regression. For all algorithms, the test data set was

held constant. The test data set contained 100 random trajectories as described

previously.

Results and Discussion

We have applied this automated modeling procedure to the in silico analysis of a

seven-dimensional model of glycolytic oscillations in yeast. We have tested the

regression of the entire system ab initio (without any prior knowledge) and compared

prediction results with nonlinear regression and neural nets. Finally, we determined

the ability of the algorithm to adapt and correct a partially incorrect hypothesized

model chosen by the experimenter to fit the exact system, i.e., to augment expert

modeling.

274

Reverse-engineering Glycolytic Oscillations in Yeast

We used the models of glycolytic oscillations in yeast shown in Figure 17.6A to

simulate experimenting on a wet system. Glycolytic oscillation is one of the most

common examples of oscillatory behavior at the cellular level and enables a broader

understanding of the underlying dynamic processes that lead to rhythmic behavior. Of

such systems, anaerobic glucose metabolism in yeast is one of the most commonly

studied. In a particular region of parameter space, all of the glycolytic intermediates

show an oscillatory behavior with a variation in the frequency of oscillation observed

across species. In the vicinity of the attractor that is responsible for these oscillations,

the system never reaches steady state and hence this behavior cannot be readily

analyzed by equilibrium, stoichiometric approaches such as metabolic flux balance

analysis (Varma and Palsson 1994). We use this oscillatory system to demonstrate the

capability of our approach to infer without constraining the equations governing a

nonlinear dynamical metabolic system.

Our experiments involved placing the yeast glucose model (Figure 17.6A), in a

numerical black box and then allowing our algorithm to conduct experiments on this

black box. For our studies, we collect data by numerically integrating the differential

equations in the black-box glycolysis model and adding noise. Initial states are

constrained to a specified range, and the initial states for the test data are sampled over

a larger volume in state-variable space to determine how well models can extrapolate

and predict new behavior.

275

A. Exact Model

B. Impaired Model

C. Overspecified Model

Figure 17.6. Reaction networks for anaerobic metabolism in a yeast cell. Left:

The exact model includes membrane transport of glucose and

pyruvate/acetaldehyde. Reactions in red involve ATP production/usage, and

reactions in blue involve redox species production/usage. Middle: The impaired

model does not produce either glycerol or ethanol. Right: The overspecified

model has an additional sink for pyruvate/acetaldehyde (S4).

276

Our goal is to find the exact differential equations of the unknown system

algorithmically. More specifically, we are interested in modeling metabolic networks

as a dynamical system – a set of ordinary differential equations. In a system of N state-

variables that we observe experimentally, (e.g., extracellular concentrations of glucose

(S1) or NADH (N2) over time), we must identify N (possibly nonlinear) differential

equations. Synthesizing the mathematical models of a dynamical system is the most

computationally intensive task in our procedure. We first smooth and then

differentiate the observed time-series data to produce its derivatives. We then search

for the differential equations that reproduce each numerically estimated derivative.

We calculate the numerical time derivative of each variable in the dataset so that we

can measure error of each candidate differential equation explicitly without numerical

integration, using the measurements of other variables in lieu of their yet-unknown

equations (Bongard and Lipson 2007). The time to find a set of equations thus grows

nearly linearly with the number of equations. However, the number of experiments

and the time to find each differential equation depend primarily on the complexity of

each equation‟s expression. The simplest equation, S5 (external pyruvate/

acetaldehyde), required approximately one minute for ~3 × 10
6
 evaluations, and ~1

model/experiment/evolution cycle. In contrast, the time to regress one of the most

complex differential equations in the glycolysis model, A3 (ATP), was approximately

1-2 hours, and involved ~4 × 10
11

 point evaluations on four workstations (eight 2.4

GHz cores), representing ~200 model/experiment evolution cycles. Figure 17.7 shows

correlation plots of the top-ranked individual during regression for each differential

equation.

We conducted ten independent trials to collect data and model each equation. Figure

17.7 shows the runs that reached the highest performance on the training data (blue).

277

Additionally, we measured performance on the test data (shown in red), as described

earlier. Variables S3 (1,3-bisphosphoglycerate) S4 (cytosolic pyruvate and

acetaldehyde pool), N2, and S5 were the fastest equations to infer, and their

performance curves gradually converge monotonically during regression. Equations

for S1, S2 (Glyceraldehydes-3-phosphate and dihydroxyacetone phosphate pool) and

A3, which have the most nonlinear structure, show performance that is more rugged.

Dips in the training data performance indicate that data from a new experiment

revealed dynamics that were not in the current data set (or perhaps underemphasized).

Such dips tend to precede large improvements in performance. The equations with the

best fits to the training data in ten trials are shown in Table 17.5.

Table 17.5. The differential equations describing glycolytic oscillation of the

generating model (left pane) and the inferred model from the training data,

which had 10% noise (right pane).

Original system Automatically inferred system

 

  

   

    

  

 


3 11

4

3

3 12
2 2 24

3

3
2 2 2 3 3 3

4
3 3 3 4 2 4 5

2
2 2 2 2 4

3 3 1
3

100
2 5

1 13.68

200
6 6 *

1 13.68

6 6 64 16

64 16 13 100 13

6 18 100

200
1 28

1 13.68

* A SdS
.

dt + * A

* A SdS
* S S N

dt + * A

dS
* S * N S * S * A S

dt

dS
* S * A S * S * N S * S

dt

dN
* S * N S * N S

dt

dA * A S
- . * A

dt * A
 

 

3 3 34

3

5
4 5

128 32 *

1 3 3.1*

* S A S

dS
. * S S

dt


 




     

 

       

         

  

3 11

4

3

3 12
2 24

3

3
2 2 2 3 3 3

4
3 3 3 4 2 4 5

2

98.79
2 53

1 12.66

200.23
6.87 6.87 0.95

1 13.80

6 00 6 00 64 16 16 08

64 04 16 03 13 03 100 11 13 21

0 055 5 99

A SdS
.

dt + A

A SdS
S N

dt A

dS
. S . N S . S . A S

dt

dS
. S . A S . S . N S . S

dt

dN
. .

dt
    


       

 

   

2 2 2 2 4

3 3 1
3 3 3 34

3

5
4 5

17 94 98 82

192.24
1 12 124 92 31 69

1 12.50

1 23 2 91

S . N S . N S

dA A S
. A . S . A S

dt A

dS
. S . S

dt

278

Figure 17.7. The fit to the data of the highest ranked solution during regression

for each glycolysis variable. The blue series show the correlation coefficient to the

training data, and the red to the test data. The training data contain 10% noise

while the test data have none. The test data contain a larger range of allowed

state variables (i.e., sampled with weaker constraints) to measure whether the

model can extrapolate and predict new behavior.

279

The automatically inferred equations are nearly identical to the black-box generating

numerical model. Some slight differences remain: most notably, the parameters are

inexact, which results in a slight mass imbalance, and one nonlinear term is

approximated by a linear term in the S2 equation.

Integrating the inferred model (shown in Figure 17.8), however, shows the same

behavior as the original system. Since symbolic regression does not have any inbuilt

"chemical logic," it is unable to recognize and constrain reaction rate expressions that

appear in multiple ODEs. The ramifications of this are twofold: first, the inferred

model incurs small mass imbalances within the system that manifest themselves as a

carbon loss or a source term in the energetic pools (ATP and NADH); second, the

inferred model compensates for the imbalances by adding compensatory terms. These

terms manifest themselves in the equations for S2 and N2. Mass-balance logic can be

built into future implementations, albeit with some performance costs (see

“Discussion”).

Specifically, the S2 equation approximates the N2*S2 term and adds a constant term

(0.9467) to the ODE. The N2*S2 term comes from the balance of v2 and v6, where v2 is

the conversion of S2 to S3, and v6 is the loss of S2 to glycerol production. Both the v6

and v2 fluxes are NAD dependent, which gives rise to the N2*S2 term through a simple

application of mass action kinetics. The decoupled N2*S2 dependence is now

represented it as a linear combination of (N2 + S2). For the N2 equation, the combined

action of v2 and v6 are properly inferred. However, there is (once again) a small

constant term (-0.0549) in the N2 ODE that compensates for the fact that the NAD

pool is not being strictly conserved.

280

When looking at the experimental tests the algorithm chose during regression, it is not

immediately obvious what data and initial conditions are most informative in a seven-

dimensional domain. However, we can pick out some basic empirical trends. Figure

17.9 shows the most differentiating data points among the population of equations

within a single time-series. The left side of the figure provides a phase-space

representation of each variable and its time-derivative. The points in these trajectories

Figure 17.8. The exact black box model and inferred model integrated over time.

The inferred model shown in Table 17.5 differs from the exact model by a slight

mass imbalance. Integrated over 10 minutes, the inferred model captures the

same behavior. While small differences in derivative values tend to accumulate

during integration, the inferred model captures the integrated behavior

remarkably well. The inferred model predicts early behavior accurately and

exhibits the same qualitative dynamics later in time, differing only slightly in the

phase.

0 5 10
0

0.5

1

1.5

2

Time (min)

S
1

0 5 10
0

0.5

1

1.5

2

2.5

Time (min)

S
2

0 5 10
0

0.05

0.1

0.15

0.2

Time (min)

S
3

0 5 10
0.05

0.1

0.15

0.2

0.25

Time (min)

N
2

0 5 10
0

1

2

3

Time (min)

A
3

0 5 10
0.04

0.06

0.08

0.1

0.12

Time (min)

S
5

0 5 10
0

0.1

0.2

0.3

0.4

Time (min)

S
4

1.6 1.8 2 2.2

0.106

0.108

0.11

Inferred Model

Black Box Model

281

are color coded by the frequency of their use calculating comparing equations (via the

fitness prediction). In a single time-series, the importance (frequency of references by

the fitness predictors) of a given point is not necessarily those system states with high

derivative magnitudes. Instead, heavy importance tends to lie near inflections around

the limit cycle for most variables.

The right half of Figure 17.10 shows the range of initial conditions (red) chosen by the

estimation-exploration algorithm as it suggests new experiments for each iteration in

Figure 17.9 The glycolysis system near the stable limit cycle in the course of a

single experiment, with colors representing frequency with which the fitness

predictor examines each point within a single time-series.

Least Used Most Used

dS1/dt dS2/dt dS3/dt

dS4/dt dN2/dt dA3/dt

dS5/dt

S1
S2 S3

S4
N2 A3

S5

282

the series. The blue points show the range of derivative values for randomly chosen

states. The dashed line shows the limit cycle for each variable.

With the exception of A3, the EEA is preferentially choosing new experiment initial

conditions near extremities of the allowed range of each variable, away from the limit

Figure 17.10. The initial condition experiments (red) chosen by the algorithm to

differentiate solutions in comparison to a random distribution of initial

conditions (blue). The algorithm tends to focus on nonlinear states away from the

limit cycle (dashed black line) within the experimental constraints imposed upon

the estimation-exploration algorithm.

Algorithm Chosen Experiments

Randomly Chosen Experiments

dS1/dt dS2/dt dS3/dt

dS4/dt dN2/dt dA3/dt

dS5/dt

S1
S2 S3

S4
N2 A3

S5

283

cycle. These initial conditions are more likely to amplify nonlinear features of the

system, which is also consistent with the observed behavior of the fitness predictor.

Therefore, the maximum disagreement criterion for new experiments may in effect

reveal information about the nonlinear terms, which appear to be the most used data

points for synthesizing models within single trajectories. Initial conditions and

measurements on the limit cycle provide much less information than ones that lie

outside the limit cycle for which the system must descend into the limit.

The amount of noise in the system affects the frequency of finding the exact

differential equation for each state-variable differently. Figure 17.11 shows the rate of

convergence (success rate) for each equation within one hour of regression. The most

complicated differential equations (S1, S2, and A3) are also the most sensitive to noise.

We have found that noise obscures subtle features in these equations, resulting in

partial regression of the exact equations. For example, in the solution for S2 in Table

17.5, the v1 reaction term is found exactly, but the v4+v6 reactions are approximated.

Sequence of Solutions

Since symbolic regression begins with randomly generated solutions (differential

equations), it is interesting to observe the evolutionary path these solutions take

toward the final model. Table 17.6 shows one evolutionary sequence for the S1

variable.

The solutions tend to grow gradually in complexity from the initially random

solutions. The fit to the data improves incrementally. Finally, a solution that contains

most of the exact model emerges, and the solution prunes down as it fits the last

remaining features.

284

A

B

Figure 17.11. (A) The rate of successful inference of the exact differential

equation for each state-variable versus the observation noise in the system after

one hour of regression. The convergence rate is calculated from ten independent

trials on each equation at each noise level. (B) The rate of successful inference of

the exact differential equation for all variables versus the total amount of data

given to the system. The error bars indicate the standard deviation in

convergence among the seven variables.

0 5 10 15 20
0

20

40

60

80

100

C
o

n
v
e

rg
e

n
c
e

 (
%

)

Measurement Noise (%)

9.6 9.8 10 10.2 10.4 10.6 10.8

76

78

80

82

84

86

S
1

S
2

S
3

S
4

N
2

A
3

S
5

Avg.

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Training Data Size (examples)

C
o

n
v
e

rg
e

n
c
e

 (
%

)

285

Predictive Accuracy Compared to Other Methods

Searching the space of symbolic differential equations is unique in that it does not

require prior information about the system or a prior model. Hence it is difficult to

Table 17.6. Seven snapshots of the best solution during regression of S1. The

solution is plotted in red and the systems limit cycle is shown in blue.

Generation
Fit to Limit

Cycle
Current Best Model

2

190

2,605

316,029

407,083

2,835,858

4,444,185

286

compare this model inference process with the process of historical development of an

existing metabolic model. To demonstrate the capabilities of this approach to specify a

compact representation of a model, as might be needed for prediction and control of

metabolism in a bioreactor, we have compared our approach with two relevant

methods: nonlinear regression and neural-network regression.

Neural networks are recognized as being useful for predicting a time series when the

underlying mechanism is unknown or is too complex to be easily represented, or noisy

data limits the analysis (Crampin, Schnell et al. 2004). Such numerical models are less

amenable to human interpretation, but can model and predict data similar to data used

for training. In the neural network regression, we use a 1024-neuron hidden layer

network mapping the seven state-variables to their seven respective time-derivatives.

The output layer consists of linear perceptrons. We use standard back-propagation to

train the network and bias-node weights.

In nonlinear regression, a preexisting mathematical model is chosen to be fitted to the

data. The selected preexisting model is assumed to closely relate to the actual,

underlying model of the system but may have a slightly different structure – it may be

missing key terms, or have unnecessary terms, or incorrect terms. Regressing data to

the wrong model may provide a low-error fit, but with parameter values that are in fact

quite different from the actual ones because of the adjustments required to fit the

wrong model to the data.

For the nonlinear regression comparison, we chose two slightly different preexisting

glycolysis models, also shown in Figure 17.6 – one that is a simplification of the exact

model (the “impaired” model) and one that is more complex in that it replaces some

dynamics with an additional sink term (the “overspecified” model).

287

Figure 17.12. Performance comparison between symbolic regression, nonlinear

regression, and neural network regression. Results are averaged over 100 trials –

error bars represent the standard error. Training data performance (top pane)

shows that all algorithms accurately explain the training data. The negative slope

of the correlations when the results from the training regression are applied to

the test data indicates varying degrees of overfitting. Note that symbolic

regression uses more point evaluations in the same amount of running time

because it is a parallel search, whereas nonlinear regression and neural network

back-propagation use serial updates.

0.1164 0.1165 0.1166 0.1167 0.1168 0.1169 0.117 0.1171

2.16

2.18

2.2

2.22
Symbolic Regression - without prior model

Nonlinear Regression - with impaired model

Nonlinear Regression - with overspecified model

Neural Network Regression

288

The impaired model is produced by eliminating the glycerol (v6) and ethanol (v4)

production and having the NADH→NAD recycle occur with the production of lactate

from pyruvate. This essentially converts the yeast model into that of a mammalian

cell. The overspecified model is produced by relaxing the assumption of no carbon

loss to other cellular synthetic processes in the yeast model (fatty acid biosynthesis,

amino acid production, etc.). This is accomplished by adding a carbon sink term (vsink)

to the pyruvate pool, whose rate is primarily controlled by the presence of ATP.

We tested performance of each method on modeling the time-derivative of S4, the

equation that differs the most between the impaired and overspecified nonlinear

regression models. The symbolic regression algorithm must search for and fit the

equation from scratch, whereas the nonlinear regression and neural network modeling

Table 17.7. The equations for S4 (pyruvate and acetaldehyde pool) for the exact,

impaired, and overspecified models shown in Figure 17.6. The exact values for

the parameters are k3 = 16, k4 = 100, and AsP/V = 13.

Model name Differential equation
Regressed

parameters

Exact model   
    

 

4
3 3 2 4 4 2 4 5

SA PdS
k S A k S N S S

dt V

3 16.03, 16.01k

4 100.11k

13.21, 13.03SA P

V

Impaired

model

 
   

 

4
3 3 2 4

SA PdS
k S A S

dt V

3 13.76635k

 21.2331SA P

V
,

Overspecified

model

  
     

   
  
 

44
3 3 2 4 4 2 4 5 3

31

S sink

IATP

A P k SdS
k S A k S N S S

dt V A

K

3 15.8508k

4 94.812k

12.0785SA P

V

sink 0.411579k

 0.5264ATPk

289

must tune parameters. The training data are static and were generated using the exact

model – there were no algorithmically chosen experiments. As before, the test dataset

has an upper-bound constraint that is twice that used for the training data set.

Additionally, the training dataset again contains 10% random noise on every

measurement. We stop regression after the solutions stop improving when evaluated

on the test data set.

On average, all four algorithms model the training data equally well, but some do not

generalize well when the regression results are applied to the broader test dataset that

was not used for training (Figure 17.12). It is clear that nonlinear regression of both

related models can explain a substantial amount of the S4 dynamics, particularly within

the training data. However, extrapolation to the wider domain of the test data only

reaches correlation of approximately one half. Similarly, the neural network accurately

models the training data, but as shown by the early dip in correlation, significantly

overfits before converging, possibly due to the added noise. Figure 17.13 summarizes

the best average results of these algorithms (see “Materials and methods”).

Differentiating Hypothesized Models

One useful application of the differential equation search is that it can also be used to

adapt or improve existing hypothesized models. For example, the algorithm can

modify a hypothesized model by altering its existing structure and terms, pruning

unnecessary terms, or adding new terms to identify the exact intrinsic model. While

methods for simplifying complex models already exist (Schmidt, Madsen et al. 2008),

no previous method is able to compose new terms in a model or correct erroneous

terms. Using automated data acquisition, the algorithm can also design experiments to

differentiate hypothesized models and test their correctness where they disagree most.

290

To use the algorithm to refine a given model or set of models, we modify its

initialization by seeding the initial population with the chosen models. Effectively, this

biases the algorithm to reuse the structure of the given model, but does not restrict the

algorithm from making large alterations. We have tested the impact of seeding

regression of the glycolysis S4 differential equation using the impaired and

overspecified models.

A B C

Figure 17.13. Correlations of the various regressions averaged over 100 trials on

equation S4 – error bars represent the standard error. (A) The correlations

between the training data and each initial model before the model is regressed to

the training data by the corresponding algorithm. Symbolic regression and

neural network regression must model the system from scratch and initially have

zero correlation. The impaired and overspecified models are close

approximations to the exact model and therefore have positive correlations. (B)

The mean correlation of the best solution from ten runs of each algorithm to the

training data. The training data contain 10% random noise, which results in

slight variances – most notably in the neural networks. The best solution from

each algorithm correlates well to the training data with low standard error. (C)

The mean correlation of each method to the test data. The assumed structures of

the impaired and overspecified models limit their ability to model a wider phase

domain. The neural network appears limited by noise in the system, but does

achieve a higher correlation on average with the test set than do the impaired and

overspecified models.

0

0.2

0.4

0.6

0.8

1

Initial
Correlation

0

0.2

0.4

0.6

0.8

1

Train Set
Correlation

0

0.2

0.4

0.6

0.8

1

Test Set
Correlation

Symbolic
Regression

Impaired
Model

Overspecifie
d Model

Neural
Network

291

Figure 17.14. Performance comparison of symbolic regression when correcting a

hypothesized model. Results are averaged over 100 trials – error bars represent

the standard error. The blue curves represent the performance of the algorithm

to the S4 equation without any prior model. For the other two pairs of curves, the

symbolic regression algorithm was seeded with an incorrect hypothesized model

(black = impaired, red = overspecified) and the algorithm had to modify the

seeded model to fit the original training data. The graph shows the performance

for both the training data used for the regression (top pane), and the test data

(bottom pane) used to evaluate the training regression.

10
8

10
9

10
10

10
11

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Computational Effort (point evaluations)

T
ra

in
in

g
 S

e
t

C
o
rr

e
la

ti
o
n

S
4

10
8

10
9

10
10

10
11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Computational Effort (point evaluations)

T
e
s
t

S
e
t

C
o
rr

e
la

ti
o
n

S
4

0.11 0.115 0.12 0.125 0.13 0.135 0.14 0.145

2.4

2.5

2.6

Symbolic Regression - no prior model

Symbolic Regression - initial impaired model

Symbolic Regression - initial overspecified model

292

There are two possible impacts that seeding a hypothesized model can have on

symbolic regression. In the best case, the seeded model may be very close and the

algorithm only needs to make minor adjustments to converge to the intrinsic model.

Alternatively, the seeded model may be absurd, in which case there is no benefit and

the algorithm evolves from scratch. Figure 17.14 exemplifies these two behaviors for

the S4 differential equation.

In the overspecified case, the seeding has improved by a factor of ten both the speed to

regress and the reliability in comparison to regressing from scratch. In effect, the

algorithm has corrected the model by removing the sink term and fixing the

differences in parameters. In the impaired model case, the effect is much less

dramatic. The algorithm must construct the two missing terms. However, the seeding

improves the reliability of convergence on average. There is also the possibility that

the initial seeding might trap the algorithm in a local error minimum from which the

present algorithm cannot escape. Similar problems have been encountered and

addressed in conventional nonlinear regression schemes by, for example, choosing

random data points at some distance from the regressed solution to ensure that it is in

fact a global rather than local minimum. Similar approaches could be taken with our

method, although it is unclear whether this would provide any advantage to regression

from scratch.

Conclusions

We have proposed a method for building ODE models of metabolic networks

automatically from noisy experimental data. The modeling process explores the space

of symbolic differential equations using symbolic regression for building

mathematical equations and an estimation-exploration algorithm for designing new in

silico or even wet-lab experiments to test and refine candidate models.

293

We demonstrated identifying the differential equations of the largest automatically

inferred system to date, from noisy experimental data of a biological system. We

showed in silico, with simulated measurement noise, regression of glycolytic

oscillations in yeast. The glycolysis system studied exhibits a stable seven-

dimensional limit cycle and contains subtle nonlinear terms that have taken rigorous

investigation to unravel (Higgins 1964; Goldbeter and Lefever 1972; Richter, BETZ et

al. 1975; Termonia and Ross 1981; Smolen 1995; Goldbeter 1996; Wolf and Heinrich

2000; Ruoff, Christensen et al. 2003).

We also compared the nonlinear regression of two approximate glycolysis models

with symbolic regression and with neural network regression. While each algorithm

modeled the training data well, searching for the exact differential equation

generalized to the withheld test data most reliably and accurately (on a wider range of

data that was not used for regression) without overfitting.

Finally, we showed that seeding symbolic regression with a human-hypothesized

model or closely related model can significantly improve the ability and speed to find

the exact model for the unknown metabolic network. In contrast to other techniques

for model reduction, this approach can also expand a nonlinear model to include

features not present in the hypothesized or baseline model, and, most importantly,

design experiments that can test hypotheses and correct subtle differences using

experimental data to identify how a particular metabolic system differs from one

described by an established model – how genetic or environmental influences can

affect the mathematics that describes the metabolic behavior of a system.

294

CHAPTER 18. INSECT WING BUILDING BLOCK ANALYSIS

Summary

A key challenge in developing a dynamical model based on experimental data is

determining what mathematical building blocks are necessary to explain the system‟s

dynamics. Any mathematical model can be reduced down to various combinations of

simpler building blocks, such as monomials or trigonometric terms, which greatly

simplify both our conceptual understanding and the search space of the system model.

Here, I propose a method using Functional Data Analysis (FDA) to discriminate

between random expressions and meaningful building blocks which could be useful in

building a full system model. Detecting individual building blocks is difficult because

they can be coupled with other nonlinear terms. Functional linear regression however

provides an elegant means for dealing with these terms so that we can evaluate the

merits of the building block itself. I experimented with motion-captured data of an

insect wing during hovering flight. The method distinguished a small number of

building blocks from several hundred possible building blocks generated by an

equation search algorithm. The building blocks distilled using FDA are amenable to

human interpretation, providing hints to the physical processes occurring during insect

flight.

Introduction

Building blocks are simple expressions which comprise a more complicated

mathematical model. More precisely, if we think of an equation as a binary parse tree

of mathematical operations (Figure 8.2), the set of building blocks contains all sub-

trees (sub-expressions) of the tree.

295

There are two main benefits to being able to determine building blocks given only

experimental data. Building blocks give us insight into the internal physics of the

system without having to know the entire system model. For example, we may be able

to determine the rate expression for an individual chemical reaction in a pool of

reactions occurring in a metabolic network. This may be particularly useful in

complex systems, such as where many reactions produce or consume a certain

chemical, but modeling all reactions at once is intractable.

Secondly, if we had a method for calculating the merits of a building block, we could

potentially search for building blocks automatically, gradually building up the full

system model. This may be a method for scaling into modeling enormously complex

systems that currently exceed our ability to unravel or understand.

Determining a useful building block can be considered to fall under the notorious

“credit assignment” problem in machine learning. In short, the credit assignment

problem is how to score or weight the importance of individual components of a

model when only given entire systems. For example, what is the importance of the

gears of a bicycle for riding quickly? This clearly depends on the other components of

bicycle, such as the gear ratio, the wheels, etc.

In the context of detecting building blocks, we are interested in asking how useful a

component is for explaining the dynamics of the larger system. For example, a small

term such as ω(t)cos(θ(t)) may capture an important nonlinear feature in the data, but

on its own, cannot explain or fit all of the data very well. So, perhaps it is an essential

term to the physical model of the system, such as an orientation dependent drag force.

Could we detect this to be the case?

296

In the remaining sections I introduce the dataset I used for analysis, describe my

method at recombining and registering the data, describe the building block detection

method, and finally end with concluding remarks.

The Insect Wing Data

The dataset I analyzed is from motion capturing of an insect wing during flight. The

this dataset described in (Ristroph, Berman et al. 2009) was provided by Gordon

Berman in the Cornell Dragonfly group (Figure 18.1). They captured video from three

high-speed cameras at 1000 frames per second, and then did volume reconstruction of

the wings by intersecting the volume projections of each camera.

The portions of the data I am looking at are the angular positions of the insect‟s right

wing – namely yaw, pitch, and roll. The dataset covers approximately 34 consecutive

periods of the insect flapping its wing.

Figure 18.1. The tracked position of the fly (top pane) and the correpsonding

angles of the right wing (bottom pane). This data was recorded over

approximately 34 flapping periods during 140 milliseconds of flight.

300

150

150

450 10

200

x

y z

Time [ms]

A
n

g
le

 [
ra

d
a

in
s]

-0.5

3.5

0 140

ϑ1

ϑ2

ϑ3

297

 Plotted in 3D (Figure 18.2), we can see the periods overlap very closely. Described in

the next section, I chopped up this time-series to compare the dynamics amongst the

periods. Overall, the periods are very consistent, but there is some drift over time.

Looking at the phase plots, (plots of dθi/dt vs. θi), we can see the limit cycles of each

angle fairly clearly (Figure 18.3). The phase plot of the first angle θ1 is nearly circular,

suggesting it is a simple linear oscillator. The other phase plots however show more

complex limit cycles, that likely have more complex building blocks explaining their

dynamics. Building a functional linear model based on the period number explains

much of the variation among the periods (Figure 18.4).

I also conducted PCA and multi-variate PDA on this data. The PCA analysis showed

the first few principle components (PCs) focused on the magnitude of peaks of

individual variables, further PCs were much harder to decipher. The PDA analysis was

inconclusive, but suggested there could be some significant accelerations from drag

forces (e.g. significant coefficients on velocity terms).

Figure 18.2. The three dimensional plot (left pane) of the right wing angles (θ1, θ2,

and θ3). There is slight variation among the periods but overall they line up

neatly. After chopping up the periods, there is covariance between different

peaks of each angle (right pane).

Time [ms]

A
n

gl
e

[r
ad

ai
n

s]

-0.5

3.5

0 4

298

Data Registration

Data registration is the process of deforming the time axis of a dataset in order to

make key, repeated features or events in the data overlap synchronously in time.

In registering this data, I first split the time series into periods for each wing flap.

Choosing a mean period (mean time between peaks) resulted in poorly registered data.

There appeared to be some drift in the period lengths over time.

Figure 18.3. Phase plots of the three angles of the right wing (dθi/dt vs. θi), in

order (θ1, θ2, and θ3). The first angle appears to be a simple harmonic oscillator,

whereas the other two angles show more complex sub-cycles, likely containing

higher order building blocks in their physical model.

299

To account for the drifting periods, I wrote a short program to register the slices of the

periods. The method starts with an initial set of slices: S = (t0, t1, t2, … tN). Each slice

of the data is rescaled to have the mean period length. The method then uses simulated

annealing to stochastically vary the slice positions in order to greedily improve the

correlation between all period slices (Figure 18.5).

 θ(t) = β1(t) + β2(t) Period(t)

Figure 18.4. Functional linear models based on the period number explains much

of the variation between periods. The linear coefficients (left), the fit and

description of the drift (middle), and R
2
 scores (right).

θ(t) = β1(t) + β2(t) Period(t)

θ2: first half drifts up,
second half drifts down

R2 = 0.5835148

θ3: mostly drifts down

R2 = 0.3740646

θ1: peaks drift up

R2 = 0.3190167

β1(t) β2(t)

2

-0.5
0 4 0 4

β1(t) β2(t)

0.5

0.1
0 4 0 4

β1(t) β2(t)

2.5

1

0 4 0 4 0 4

2

-0.5

0 4

0 4

0.6

0

3

0.5

0.002

-0.01

-0.005

0.005

0.006

0

300

After the slice registration, I applied time warping registration on using the third angle

(blue) which had the most distinct features (Figure 18.6). The time warp lines up

smaller features within each period.

The positions of the slices (after optimizing for registration) reveal a slow drift in

period length over time (Figure 18.6). Early on, the periods are longer than average. In

the middle, the periods become shorter than average. The last periods settle near the

average. This may correspond to the S-shaped flight positions of the fly shown in

Figure 18.1. In which case, the period length (or frequency) of the wing flaps

correlates with the lateral thrust, where the fly drifts right at low frequency, and left

with high frequency in the right wing.

Building Block Results

The major challenge to detecting a meaningful or useful building block is that the

building block may be distorted by some nonlinear transformation in a higher order

building block or it may be buried in variation from other terms. For example, say the

exact equation for the angular acceleration of the second angle was the equation:

Figure 18.5. The registration method slices the data into each periods, scaling

length of each slice to have the same period (left pane). The method optimizes the

positions of the slices in order to maximize the correlation among all the periods

(right pane).

301

D
2
θ2 ≈ 9.26 – 31.78·sin(θ2) – 7.74·cos(θ1 – 6.56) – 10.58·cos(θ3 –

12.62)·cos(θ1 – 6.56)

Ideally, we could detect if a term such as cos(θ1 – 6.564) is a building block ahead of

time given various D
2
θ2, θ1, θ2, and θ3 data values. This term appears both linearly and

multiplied with another term in the full exact model.

Functional linear regression provides an elegant way to abstract away the coupled and

additive terms to the building block we wish to test. Consider fitting the following

two-parameter functional linear model:

D
2
θ2 = β1(t) + β2(t)·cos(θ1(t) – 6.56) + ε(t)

In this model, the basis expansions of the coefficients, β1(t) and β2(t), can fill-in the

blanks around the building block term to reproduce the exact signal: where β1(t)

assumes 9.26 – 31.78·sin(θ2) and β2(t) mimics –7.74 – 10.58·cos(θ3 – 12.62).The

building block in this linear model allows the β1(t) and β2(t) to be simpler, in that they

do not need to reproduce the cos(θ1(t) – 6.56) signal in addition to the other terms.

Figure 18.6. The registered data (left pane) and the shifts in periods after

optimizing the slice positions (right pane). The periods over time drift slowly,

correlating with the slight drift in the position of the fly in Figure 18.1.

P
er

io
d

 O
ff

se
t [

m
s]

0.15

-0.2
0 35Period Number

0 1 2 3 4

-0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

time

R
e

g
is

te
re

d

v
a

lu
e

1

A
n

gl
e

[r
ad

ai
n

s]

-0.5

3.5

Time [ms]0 4

302

Therefore, we should be able to apply a more aggressive smoothing penalty to β1(t)

and β2(t) in this model than a model with an incorrect building block, such as a

random function:

D
2
θ2 = β1(t) + β2(t)·random(t) + ε(t)

In this extreme case, β1(t) must reproduce D
2
θ2 on its own and β2(t) must become zero

in order to fit the data. Therefore, for the null case, we can force β2(t) to equal zero and

simply fit:

D
2
θ2 = β1(t) + ε(t)

Based on these observations, we can define a procedure for measuring how well a

candidate building block helps explain the data. We sweep the λ-penalty for both the

null model and the building block model and compare their cross-validation

performance curves versus λ.

Definition: To be considered a successful building block, the cross-validation

error should both reach a lower minimum than the null model, and remain at a

low value for longer as the smoothing penalty increases. A poor building block

will show a cross-validation performance very similar to the null model –

either not improving the minimum error or not improving the tolerance to a

higher smoothing penalty.

I examined the building blocks found for a model of the angular acceleration of the

second angle, D
2
θ2, which is shown in Figure 18.7. This equation was generated

automatically using an algorithm, so we are not certain in advance the building blocks

will show to be useful individually in the function linear models. In addition to

detecting building blocks, we are also validating the components of this model.

303

The cross-validation scores of the four major building blocks (solid red) strictly

dominate the scores of the null model (dashed black), reaching both lower minimum

error, and spiking in error at a later λ-penalty. (see Figure 18.8).

It‟s also interesting to note that the building block models have more interesting

features, such as dips and distinct minima. This indicates the building blocks are

impacting the bias of the functional linear model, in this case beneficially, and not

simply adding additional freedom.

We can also examine the cross-validation curves for poor building blocks (Figure

18.9). These building blocks were also generated by the modeling algorithm as

f = 9.26 – 31.78·sin(θ2) – 7.74·cos(θ1 – 6.56) – 10.58·cos(θ3 – 12.62)·cos(θ1 – 6.56)

Figure 18.7. An equation modeling D

2
θ2(t) and its individual building blocks. This

equation was generated by an algorithm, so we are interested in testing whether

its building blocks also show to be useful individually using the function linear

model procedure.

0 0.5 1 1.5 2 2.5 3 3.5 4

-10

-5

0

5

10

15

20

Time [ms]

D
2


2

Data

sin(o2)

cos(
1
-6.56)

cos(
3
-12.63)

cos(
3
-12.63).*cos(-6.56412 + 

1
)

sin(
2
) - cos(-6.56 + 

1
) - cos(-12.63 + 

3
).*cos(

1
-6.56)

304

alternative models of different complexity. In these sweeps, the cross-validation fails

to satisfy either reaching a lower minimum error or tolerating a higher smoothing

penalty than the null model.

Additionally, the curves have very few or weak features, suggesting they are not

introducing much bias to the model. In some cases, the performance is

sin(θ2(t)):

cos(θ3(t) – 12.6275):

cos(θ1(t) – 6.56412):

cos(θ3(t) – 12.6275)·cos(θ1(t) – 6.56412):

Figure 18.8. The cross-validation error of the functional linear model using

various building blocks for D
2
θ2(t), (red lines) shown in Fig. 8 and the null

functional linear model (dashed black lines) versus the smoothing penalty λ. In

each case the null model is dominated by the building block model for all

coefficient smoothing penalties.

-8 -7 -6 -5 -4 -3 -2

0
.2

0
0

.2
5

0
.3

0
0

.3
5

0
.4

0
0

.4
5

q

g
c
v
1

-8 -7 -6 -5 -4 -3 -2

0
.3

0
.4

0
.5

0
.6

0
.7

q

g
c
v
1

-8 -7 -6 -5 -4 -3 -2

0
.2

5
0

.3
0

0
.3

5
0

.4
0

0
.4

5
0

.5
0

q

g
c
v
1

-8 -7 -6 -5 -4 -3 -2

0
.3

0
.4

0
.5

0
.6

0
.7

q

g
c
v
1

305

indistinguishable from the null model. The method also rejects several other building

blocks hypothesized by other generated models.

It‟s important to note that the smoothing on the building blocks needs to be as loose as

possible. For example, when building a basis for cos(θ), it is okay to heavily smooth θ,

but since the cosine makes the signal more complex, we do not want to require as

t:

θ1(t)·ω2(t):

ω2(t)·cos(θ1(t)):

ω2(t)·sin(θ2(t) - 1.49·θ1(t) – 3.61):

Figure 18.9. Cross-validation error of several poor building blocks (solid red) and

the null model (dashed black). The poor building blocks fail to either achieve

lower minimum error or tolerate higher smoothing penalties. The poor building

blocks, other than t, were also building blocks generated by the modeling

algorithm.

-8 -7 -6 -5 -4 -3 -2

0
.3

0
0

.3
5

0
.4

0
0

.4
5

0
.5

0
0

.5
5

q

g
c
v
1

-8 -7 -6 -5 -4 -3 -2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

q

g
c
v
1

-8 -7 -6 -5 -4 -3 -2

0
.3

0
.4

0
.5

0
.6

0
.7

q

g
c
v
1

-8 -7 -6 -5 -4 -3 -2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

q

g
c
v
1

306

much smoothing on the building block expansion. Otherwise, the distinction between

useful and poor building blocks diminishes. I believe this occurs because a heavily

smoothed building block does not substantially change the bias of the linear model,

and therefore simply increases the flexibility of the linear model. In this case the

building block cross-validation curves appear as copies similar to the null model but

shifted to the right at higher smoothing penalties.

Finally, there are some important limitations to this approach. First of all, it cannot

distinguish perfectly the useful building blocks from all possible building blocks. This

depends on the data available for making the distinction and also the fact that there

exist many approximations to the building blocks of the system.

However, these results show that this procedure can pick out very useful building

blocks, and reject very poor building blocks. Additionally, we may be able to improve

the resolution with additional data.

Conclusions

In this chapter, I explored detecting building blocks of nonlinear systems using FDA.

Building blocks are small subcomponents of a full mathematical model such as

nonlinear terms. The ability to detect a building block enables us to model and test

individual components of a system, such as individual reactions occurring in a cell,

without having to find or build an entire system model. Or alternatively, it could be

used to build the complete model of a complex system incrementally, allowing the

model to scale into high-dimensional domains.

The proposed method builds a functional linear model using a candidate building

block expression of the system. The basis expansions of the linear model‟s coefficients

mimic (or fill-in) the model components that surround the building block, so that we

307

can judge the merits of the building block without knowing the full model ahead of

time. A useful building block is defined as having a building block functional linear

model that both reaches a lower cross-validation error and tolerates higher smoothing

penalties, spiking in error later in the sweep, than the null linear model. Poor building

blocks fail to meet one or both of these requirements.

I examined this approach on a dataset of the dynamics of an insect wing during

hovering flight. I used a custom registration procedure for slicing the time series into

scaled periods of the wing‟s flapping. The adjusted scaling of the periods after

registration showed a slow drift in the period length that appears to correlate with the

lateral drift of the insect‟s position over time. Further analysis of the dataset showed

small drifts in the wing angles over the consecutive periods and covariances between

different peaks in the period. However, much of this variation was explained by a

linear functional model of the period number. It is likely that these variations are a

combination of noise and slight drift and are unimportant to understanding the

dynamics of the wing itself.

I used building blocks from several models of this data generated from an equation

search algorithm. The building block method using functional linear models identified

four promising building blocks for the generated full models, while rejecting many

other building blocks from alternative generated models. The successful building

blocks dominated the cross-validation scores of the null model.

Based on this result, the building block method might be a useful method for

validating a complete model as well. The building blocks of a full model that

accurately represents the systems basic physical mechanisms should all individually

be useful for explaining the data in a functional linear model.

308

CHAPTER 19. USER PREFERENCE MODELING

Summary

A major challenge in interactive evolution is extracting user preferences with minimal

probing. We introduce an interactive multi-objective co-evolutionary algorithm that

actively selects the most informative probes: We simultaneously co-evolve a

population of candidate models that explain users‟ selection so far, and a population of

candidate probes that cause the most divergence among model predictions, thereby

elucidating model uncertainties (divergence). As progress is made, we begin selecting

for probes with the highest expected outcome averaged among different models,

thereby exploiting model certainties (consensus). In the evolution of pen stroke

drawings, we find this technique to be highly effective at extracting preference models

from very limited human interaction. Using only pair-wise preference questions,

strategy and preference in pen stroke drawings are extracted in fewer than ten user

probes. Our results show that the optimal questions to probe the user need not include

drawings similar to the target drawing. Instead, the user models converge on trends in

the user responses, thereby extrapolating strong preference for target drawings which

the models are never actually trained to prefer.

Introduction

Interactive evolution is a powerful explorative search technique that utilizes human

input to make subjective decisions on potential problem solutions (Dawkins 1996;

Takagi 2001). The fitness landscape in each domain is thereby determined explicitly

by the human user. Reliance on human input however, induces two major challenges:

First, the time cost to collect human input greatly prohibits the discovery of complex

solutions. Second, the quality and accuracy of human input greatly degrades with

repeated prompts for input.

309

In this chapter, we introduce a co-evolutionary algorithm to maximize the information

obtained from the user and minimize the necessary interaction. We co-evolve a

population of individual solutions with a population of models that predict the user‟s

preference. Co-evolved solutions are used both to maximize user preference, and also

to probe the user in order to refine uncertainty in the user models, two objectives that

are not necessarily aligned.

Our primary hypothesis is that intelligently probing the user for input based on their

co-evolutionary behavior can generate more accurate user models than conventional

modeling from very limited user interaction. New user probes must challenge and

refine uncertainty and ambiguity in the model population.. We claim that – like the

game of 20 questions – the co-evolved individual solutions provide invaluable

information to select these new user probes and find optimal user questions base on

answers to previous probes.

To further simplify the interaction with the user, all probes for input ask the user for a

single preference decision between two individual solutions (e.g. drawings).

Correspondingly, our user model encoding is a comparator which predicts preference

between pairs of solutions. This is also a very natural design for a human‟s preference.

Decisions about how preferable an individual is must be made in the context of

another individual. Although this mechanism cannot assign fitness values, evolution

can utilize it effectively in selection and ranking.

The key goal in this chapter is to extract accurate user models through minimal user

interaction. Human users can only answer a small number of questions before

becoming “numb” to prompts (Hollnagel 1993). Therefore, we perform experiments

which evolve pen stroke drawings using ten or fewer user prompts. The accuracy is

310

evaluated based on the user‟s preferred target drawing.

We then compare our results with the interactive costs of a random search and a

perfect local search algorithm. The random search comparison shows how effectively

the exponential domain can be narrowed through co-evolution. The perfect local

search comparison, where the user essentially draws their exact preference explicitly,

shows how the interactive co-evolution of user models and probes algorithm can

extract a specific preferred drawing from the user with fewer user probes and much

simpler binary preference questions.

Related Work

In this work we utilize genetic programming where a population of potential problem

solutions is evolved in a Darwinian fashion (Koza 1992). We also utilize co-evolution,

where two or more populations are evolved which directly or indirectly impact the

evolution of each other in order to improve final solutions (Hillis 1991) (Zykov,

Bongard et al. 2005). In traditional interactive evolution, a human user is presented

with one or more candidate individuals being evolved for selection. The human user

directly performs selection and favored individuals are selected for propagation of

offspring into the next generation (Poli 1996; Takagi 2001).

A new area of research involves partial human interaction. In these algorithms, the

user provides constraints on the problem to narrow traditional evolutionary search

(Poli and Cagnoni 1997). A very promising area in interactive evolution research is

agent based modeling. In this research, many user models are learned through

interaction in order to study their collective behavior (Bonabeau 2002; Ihsan, Eric et

al. 2005). In this chapter, we investigate how to discover the most optimal user models

with the minimal amount of user interaction through co-evolution.

311

In user preference modeling research, a candidate critique agent (CCA) is trained to

estimate the favor for single individual solutions. The CCA learns weights on

individual parameters to give exact fitness values (Bishop 1996; Linden, Hanks et al.

1997). The weights introduce constraints on individuals and hence the CCA is very

similar to partial interaction techniques.

Our co-evolutionary design is based on an estimation-exploration algorithm (EEA)

setup. Unlike classical evolution, an EEA consists of three components: A population

of estimators, a population of exploratory solutions, and a target hidden system

(Larrañaga and Lozano 2002; Zykov, Bongard et al. 2005). In this case the evolving

problem solutions comprise the exploratory population, the ensemble of comparator

models are the estimation population, and the abstract fitness landscape of the user‟s

preference is the target hidden system.

Fitness of Comparisons

Comparison vs. Fitness

In this chapter, we utilize a pair-wise preference model as the basic element to define

the complex fitness domains explored in interactive evolution domains. Subjective

selection must be done in the context of one or more other individuals to have

meaning (Figure 19.1). We claim that the decision between two individuals is a

fundamentally easier and more natural decision than assigning precise preference

values to single individuals.

312

Prompting the user to make individual comparison has proven very effective in other

interactive evolution techniques such as incorporating human comparison into

tournament selection (Poli and Cagnoni 1997). In this chapter, we use the comparisons

indirectly by co-evolving comparator models. The model population is used to evolve

individuals and the user‟s input does not perform explicit selection.

User Interaction

The user interface presents two individuals to the user, and asks to click which one is

more preferable, or optionally select them to be equally preferable, or for debugging

purposes, request a new pair. An example of the screen shown to the user during

runtime is shown in Figure 19.2.

The right-most panel displays performance and debugging information for expert

users. The bottom-most panel shows the current best individuals in the population

produced by the comparator model of the user.

Which drawing is more interesting?

Figure 19.1. Example comparision between two pen drawings.

313

Preference Relation Graphs

The Relation Graph

Comparator models define a fitness landscape through cascading many comparisons.

For example, if indA is better than indB and indC is better than indA, it follows logically

that indC is also better than indB. Therefore, relations between each individual can be

thought of as a directed graph.

It is important to note that comparison relations are prone to cyclical reasoning. For

example, indA could be better than indB, indB better than indC, and indC better than

indA. We avoid this by storing all comparisons as an acyclic tree.

Figure 19.2. The user interface presented to the user.

314

This tree in Figure 3 contains six individuals stored after five prompts to the user,

where arrows indicate each better-than response. Note that there are nine relations that

can be derived from this graph. The first five are the arrows shown. The next two are

Ind1 better than Ind5 and Ind1 better than Ind6. The last two are Ind2 better than Ind5

and Ind2 better than Ind6.

To continue growing the relation tree, each prompt to the user contains one individual

already in the tree, and one individual from the current population. The main

advantage of this technique is it provides the potential for the number of known

relations to grow at a binomial rate with user prompts in the ideal case, and a linear

rate in the worse case.

Minimizing User Prompts

A large problem in interactive evolution we address in this chapter is the user

becoming over worked. A user often becomes “numb” to new prompts after a while,

meaning they begin to put less thought into their selections and produce noisy data

(Hollnagel 1993). To reduce this effect, we take large strides to minimize the

Figure 19.3. Example comparison relational graph of six individuals.

315

necessary interaction with the user. We apply active learning to maximize the potential

information gained in each new prompt to the user. The goal when presenting a new

prompt is for the response to refine the current comparator model and refine

uncertainties and generality.

In the co-evolutionary setup, we train an ensemble of user models. The average of the

ensemble then performs all selection in the individual population evolution (Kohavi

1995). We examine their separate predictions to measure their uncertainty and

ambiguity. For example, different models in the ensemble may have strongly

disagreeing predictions for different pairs. One may strongly predict a greater-than,

while others may weakly predict a less-than. This is a case where feedback on a high

variance relation will greatly improve the generality of the ensemble.

To select a new comparison prompt to the user, we consider two factors: the variance

of the pair in the ensemble, and the strength of their predictions. In other words, we

Figure 19.4. Example Pareto front plot of eight potential comparison pairs.

316

are interested pairs that have highly different predictions that are very strong and

perhaps overfit in the model. These two parameters form a Pareto front for prompt

selection (Ficici and Pollack 2001).

The prompt selection is done by generating all pairs of individuals with one from the

current relation tree and one from the current population. These pairs are then

considered on a bivariate graph defined by their variances and prediction strengths.

The Pareto front consists of points that are non-dominated. This Pareto front favors

pairs that are both high variance and strong predictions. In other words, comparators in

the ensemble have strong differing opinions on the predicted outcome. Points on the

front with low confidence and high variance correspond to ambiguous pairs that are

unexplored areas of the prediction domain. The high confidence and low variance

predictions correspond to pairs that are well defined cases which can be refined to

higher detail.

Predicting Comparisons

Basic Comparator

A simple comparator takes two individuals as input, and outputs three cases: better-

than, equal, and worse-than. When comparing individuals however, we are only

interested in their better-than or worse-than outcome. Therefore, the interface of the

Figure 19.5. The basic structure of an individual comparator user model.

317

comparison predictor takes two individuals, and outputs two confidence values for

better-than and worse than. This structure is shown below in

The two outputs provide confidence values for each case. Their difference yields the

final outcome in selection, and strength in user prompt calculation.

Neural Network Comparator

Neural nets are a natural fit for most comparison user modeling. They have robust

regression power with excellent interpolation and extrapolation characteristics

(Cybenko 1992). Their classification output also corresponds to their statistical

confidence in their prediction. In other words, noisy samples or conflicting samples

reduce prediction confidence but in general maintain prediction accuracy (Hermann

1995). The basic structure of a comparator neural net is shown in Figure 19.6.

We use a network with a single hidden layer. We choose a number of hidden units

sufficiently large enough for the domain. We then utilize early stopping on RMS with

a eight-fold validation set to avoid over-fitting (Lawrence and Giles 2000).

Figure 19.6. The structure of a neural network user model.

318

Algorithm

The interactive co-evolution of user models and probes algorithm presented in this

chapter maintains three essential components: the individual population, the relations

graph, and the comparator model ensemble. The algorithm operations on these

components in five stages: calculating the best comparison pair, requesting the user‟s

input, generating new relations based on the feedback received, training the

comparator model ensemble, and evolving the individual population using the

comparator model.

The algorithm consists of five stages that operate on the individual population, the

relations graph, and the comparator model ensemble. The first stage chooses the best

Pareto pair of individuals to present to the user as above. The algorithm then pauses

for the user to respond. Next, all possible comparisons derived from the response

when added to the relations graph are calculated. Then the comparator models are

randomized and re-trained to their early stopping point. Finally, the individual

population is evolved for one thousand generations before returning to stage 1.

The algorithm loops until the user is satisfied with the top ranked individual co-

evolved by the comparator ensemble. As long as the user has a consistent preference,

further iterations will stabilize and simply fine tune the preferred result.

Experiments Evolving Drawings

Drawing Encoding

In this experiment we evolve drawings produced by a series of closed pen strokes.

Each individual encodes each coordinate drawn to on a 32 by 32 pixel image. In our

experiments we predefine the number of strokes for each drawing, but this could

easily be evolved as well in future work.

319

The search space for these types of drawings increases exponentially with the number

of pen strokes. The number of possible individuals for N pen strokes is calculated

below.

Ndualsble indivi# of possi

s# of pixel

1024

10243232





The large search space makes the discovery of preferable individuals an excellent

Figure 19.7. The comparator model based interactive evolution algorithm basic

outline.

320

application for an evolutionary algorithm.

User Model Encoding

The comparison user model is encoded as a neural network as described in above. We

choose to compare images based upon their image moments. Specifically, the zero and

first order moments plus the first three Hu Invariant Moments, yielding a total of

twelve inputs to each neural net.

The parameters for training the neural nets are summarized in Table 19.1. These

parameters are chosen empirically and they perform well for this experiment.

Although they can influence comparison performance in extreme cases, they generally

only impact the training time required.

Evolutionary Settings

We use standard genetic programming to evolve individuals in this experiment with

the exception that all selection and fitness comparisons are performed using the

Table 19.1. Neural Network Training Parameters.

Parameter Value

Hidden Layers 1

Hidden Units 32

Learning Rate 0.001

Momentum 0.5

Cross Validation Folds 8

321

trained comparator model ensemble. Individuals are not given explicit fitness values

but are instead ranked using the averaged comparator ensemble. A summary of the

evolution parameters is shown in Table 19.2.

We use Deterministic Crowding for selection because it is a natural fit for a pair-wise

comparator. The Deterministic Crowding method maintains population diversity

through child-parent elitism and tends to follow multiple divergent pathways to the

final solution (Mahfoud 1995). This results in more variety in user prompt selection

and better generalization of the comparator fitness landscape.

Shape Preference Results

Square Drawings

The first experiment conducted tests the ability of algorithm to identify and infer a

user‟s preference for “square-like” drawings from initially random pen drawings. Each

individual is encoded as a series of four pen strokes. In this experiment we compare

Table 19.2. Evolution Parameters.

Parameter Value

Population Size 64

Selection
Deterministic Crowding using the

comparator ensemble

Mutation Probability 0.05

Crossover Probability 0.75

322

with random search and local search techniques. These comparisons gauge how

effectively our algorithm reduces the interactive cost with the user to discover the

target drawing.

To quantify the difficulty of this problem we calculate the probability of finding a

“square-like” drawing through random search. Note that the square is uniquely

determined by two of its vertices. Given that a “square-like” drawing can have any

orientation or size, and we allow the 3
rd

 and 4
th

 vertices to have some noise of four

pixels, the probability and expected random individuals observed, T, to find such a

drawing is calculated below.

4096)(

%024.0
4096

1

32

4

)32()32()32()32(

)4()4()32()32(

)(#)(#)(#)(#

)(#)(#)(#)(#

4

4

2222

2222

4321















square

square

square

square

TE

P

P

pixelspixelspixelspixels

locloclocloc
P

Therefore, the probability randomly generate a square is 0.39% and the expected

iterations to encounter a square in a random search is 256.

An alternative to interactive evolution is an interactive local search algorithm. In this

technique, the user is given a random individual and asked to fine tune parameters

individually. In pen stroke drawing this corresponds to adjusting the x and y

coordinates of each pen stroke vertex to desired locations. This technique can be

viewed as very simplistic partial interactive evolution where the use effectively

constrains each parameter individually.

The local search algorithm we compare with can be thought of as a perfect algorithm

323

for transforming a random drawing into the target drawing. The user is assumed to be

an oracle that makes perfect choices to optimally tweak parameters with the minimum

number of prompts.

Here we calculate a lower bound on the expected number of local adjustment steps

necessary to shape a random pen stroke drawing to a square shape. Recall that a

square is determined by two vertices. So we begin by calculating the expected

diagonal of the square from two random points on the 32 by 32 pixel grid.

15

10
32

10912

32

||

22

22

31

0

31

0

21

1 2









 
 

yxd

xx

yx
x x

Next, the expected mean of these two points, and all random vertices is the center

point of the grid (x=15, y=15). This means that the two remaining points are expected

to be at the center of the final square. Hence, they must each move half a diagonal,

<d>/2.

In the easiest case, these points move only along an individual axis. In the worst case,

they move diagonally, stepwise on the grid. The expected number of steps per vertex

is calculated below.

1815
16

1
15

0

22 






 

x

xxsteps

Therefore, the lower bound on the total number of expected local updates to the x and

y coordinates of the two remaining vertices is approximately 36.

Note that this is a lower bound approximation on the expected minimum number of

324

user prompts required for a perfect local search algorithm to form a pen stroke

drawing of a square at any orientation. An expert user is required to identify a desired

diagonal and then isolate the remaining vertices accordingly.

Figure 19.8 shows a standard run for a square drawing using the comparator user

model interactive evolution algorithm. The user has a specific strategy to prefer shapes

with parallel sides and right angles consistent with a square. The user‟s preferred

drawing for each comparison is shown in green, non-preferred drawings are shown in

red, and drawing deemed to be equivalent are shown in dark yellow. This is a very

representative run since the initial random prompts do not include any box-like

drawings. If by chance they do, the runs tend to converge on a box shape immediately.

First, notice that none of the comparisons shown to the user involve a square. Based

Figure 19.8. The prompts given to the user and the resulting top three guesses

over six iterations.

325

upon the several non-square comparisons, the comparator model is able to infer that

the user is likely to prefer a square shape. If in fact the user was not knowingly

seeking squares but giving feedback on some unknown preference, the algorithm

would predict and identify box-like solutions they are likely to favor.

The algorithm successfully found a square in its top three guesses after four user

prompts, and ranked a square as its top guess after six prompts. This is a vast

improvement over the random search which is expected to require 4096 user

interactions before finding an approximate square.

Figure 19.9 compares the user comparator model algorithm with the perfect local

search and random search algorithms. The logarithmic scale shows that the user

comparator model makes significant improvement over the perfectly performing local

search and vastly reduces the search cost over random search.

Star Drawings

In this experiment, the algorithm evolves drawings with six pen strokes. Here we

evaluate the algorithm ability to identify a preference for star-shaped drawings.

Figure 19.9. The number of user prompts expected between the compared

algorithms to find a square shape.

Square Pen Stroke Drawing Comparison

1 10 100 1000 10000

Random

Search

Perfect Local

Search

User Model

Search

Expected User Prompts

326

We quantify the difficulty of this problem by calculating the probability of finding an

approximate star shape randomly. To approximate the number of star shapes possible,

we split the drawing space into six regions: a center where no vertices can be, and fix

surrounding regions for each vertex, all of equal area. Note that a five point star is

uniquely determined, by region in this case, but three of its vertices. The probability

and expected random individuals observed, T, to find an approximate star shaped

drawing is calculated below.

6.777)(

%128.0
3888

5

)32()32()32()32()32(

)32
6

1
()32

6

2
()32

6

5
(

)(#)(#)(#)(#

)(#)(#)(#)(#)(#

22222

3222

54321
















star

star

star

star

TE

P

P

pixelspixelspixelspixels

loclocloclocloc
P

Therefore, the probability to randomly generate a star drawing individual is 0.128%,

and the expected number of random generations to encounter one is 777.6. Note that

this is an easier search than finding a square since we are not requiring specific angles,

so the acceptable star shapes could be quite deformed.

Following the same logic as above, we now approximate a lower bound on the

expected user necessary to form a star pen stroke drawing.

As found earlier, the expected distance between two random vertices on the 32 by 32

pixel grid is approximately 15. To simplify this calculation we make an approximation

that the expected locations of the other three vertices lay at the center of the star. The

radius of this star with line length 15 is easily calculated to be approximately 8. The

expected number of steps, moving both in x and y is calculated below.

327

98
9

1
8

0

22 






 

x

xxsteps

Therefore, the lower bound on expected local updates of the three remaining vertices

is approximately 27.

Again, that this is a lower bound for a perfect local search algorithm to form a pen

stroke drawing at any orientation. A user would need to identify a starting edge and

then tune remaining vertices accordingly.

Figure 10 shows a standard run to evolve an approximate star shaped drawing. The

user has a general strategy when answering comparison prompts to prefer shapes with

Figure 19.10. The prompts given to the user and the resulting top three guesses

over seven iterations.

328

multiple sharp pointed corners such as a star shape has. Preferred draws are shown in

green, non-preferred in red, and equivalent drawings in dark yellow. This is a

representative run since the initial random prompts are very dissimilar to the target star

shape. In the unusual case, early prompt may resemble the target shape by random

chance, resulting in nearly immediate convergence to the star shape.

Notice in Figure 10 that a very well formed star is derived as the top predicted shape

after five user prompts. No prior prompts required a star shape. Instead the comparator

model inferred the star shape as an optimum solution given the user responses

favoring shapes with multiple sharp edges.

The next three prompts answered by the user are shown to demonstrate the comparator

model is stable and continues to favor the consistent star-like shapes with further

input. Therefore, the algorithm has likely converged on the star shape preference.

Figure 19.11 shows the comparison of the three algorithms. Again, the user

comparator model makes substantial improvement over the perfectly performing local

search and random search.

Figure 19.11. The number of user prompts expected between the compared

algorithms to find the target star shape.

Star Pen Stroke Drawing Comparison

1 10 100 1000

Random

Search

Perfect Local

Search

User Model

Search

Expected User Prompts

329

Inferring the User's Fitness Landscape

Discovering a Clock Drawing Preference

In this experiment we want to visualize the fitness landscape being learned by the

comparator model. To do this, we modify our pen stroke drawing individual to have

only a single pen stroke originating from the center of the drawing area. The search

space of the individuals is now only a single coordinate, x and y. We can then display

relative fitness values for all possible individuals in a 3D surface.

For this experiment, the single pen stroke encoding is considered to be a clock hour

hand. The user is then asked to prefer clocks drawn where the time is closer to some

time of day that they prefer. The user for the experiment chooses to prefer clock

drawings where the hand points to either 3:00 or 7:00. Therefore, this experiment has

two equally favour global maxima solutions.

Fitness Landscape of a Comparator

To determine if the comparator accuracy learns the dual solutions in this experiment

we need some way to calculate a fitness landscape from a comparator model.

Therefore, we need to define a fitness calculation for a single individual using the

binary comparator.

For this experiment, the search space for all clock drawings is the total number of

pixels, 32
2
. For this small search space, it is feasible to list all possible drawings and

compare them with a particular drawing. We calculate an effective fitness by taking

the average confidence of better-than and worse-than outcomes when compared with

all possible 32
2
 clock drawings.

 

x y

yxIndWorseyxIndBetterFitness)),(()),((
32

1

2

330

In this expression, Better() and Worse() are the two confidence outputs of the basic

comparator model described above.

Landscape Results

Figure 19.12 shows four fitness landscapes of the comparator model over six user

prompts. At zero prompts, the fitness landscape is entirely flat.

After two prompts, the comparator model has identified a single preferred clock time

region, 3:00. It also strongly disfavors clock times between 7:00 and 11:00. After two

further prompts, the comparator now favors times between 1:00 and 5:00. This

appears to be an intermediary stage where the comparator has learned to favor clock

hands of a minimum length. This is clear by noticing the fitness landscape shows very

low fitness for short clock hands near the center, and high fitness for hands at the

extremities between 1:00 and 5:00. Finally, after six prompts the comparator has

successfully identified the two preferred regions near 3:00 and 7:00.

Notice that the fitness values on the xz-plan resemble an arch which peaks at

approximately the clock hand 3:00 position. Correspondingly, the yz-plane fitness

values exhibit the same phenomenon although slightly less accurately near the 7:00

clock hand position. This final resulting landscape shows the comparator has inferred

a very friendly fitness landscape for the evolutionary search. Very gradual gradients

exist near the target clock hand locations that should be easily descended.

It‟s interesting to note that the comparator landscape also exhibits a few other medium

fitness clock hand areas such as near the 9:00 position. This is a weakly favored region

that the algorithm shows some probability for preference in. Since these are local

maxima, evolution is likely to focus on these areas. The Pareto criteria hence is likely

to prompt the user to refine these regions in additional iterations.

331

Conclusions

Experiments in this chapter show the interactive co-evolution of user models and

probes algorithm to be effective at extracting preference models and resulting

solutions using only limited human interaction. The approach used two-image

preference questions to extract strategy and preference in pen stroke drawings in fewer

than ten questions.

In comparison to the perfect local search algorithm, where the user essentially draws

their exact preference explicitly, the interactive co-evolution of user models and

probes algorithm requires roughly ten times fewer total user input. Furthermore, the

prompts to the user are presented in much simpler binary preference questions.

Finally, our results showed that the optimal questions to the user need not include

drawings similar to the target. Instead, the user models extrapolated preference for

target drawings which the models are never explicitly trained to prefer.

Figure 19.12. The clock time fitness landscapes calculated over six user prompts.

332

CHAPTER 20. PUBLIC GOODS GAMES

Summary

This chapter proposes empirical models of an individual‟s behavior in the Public

Goods game and analyzes their predictions. These models were extracted directly

from experimental data using an automated algorithm – the main topic of my thesis

research – that searches for the simplest empirical formula that model key dynamics in

the dataset. An interesting feature that arose repeatedly across several models was the

individual‟s cumulative earnings when compared relative to the group, suggesting that

players behave differently depending on their overall success. The inferred models

also suggest that individuals adapt their behavior based on the mean behavior of the

group which tends to improve their cumulative earnings.

Introduction

In this chapter, I apply symbolic regression to model individual behavior in the Public

Goods Game (Hardin 1968). Public Goods Games are of particular interest in studying

behavior or economics, as they test the choices people make to cooperate for greater

benefit. I analyzed experimental data from the research of Jessie Barker, Pat Barclay,

and Professor Kern Reeve that is yet to be published (only the results of my analysis

are discussed here). This research considered two variations of the game: the standard

game where players decide whether or not to cooperate and contribute to the public

good, and the game with tug-of-war competition where players must also choose how

much to spend to increase their share of the public good.

In the remaining sections, I briefly introduce background on the automated modeling

approach, the methods and variables considered in the models, the modeling results,

and finally discussion and conclusions.

333

Background

The following experiments apply symbolic regression to the Public Goods Games

data. See the description in the section “Symbolic Regression” on page 4 for more

details on this technique.

Methods

The experimental data contains five key variables of the behavior of the players: the

round number, the contribution to the public good per round, the amount kept per

round, the amount invested in competition (for tug-of-war) per round, and the total

cumulative earnings.

In analyzing this data, I normalized all money amounts to fractions of the player‟s

total money allotted per round. The symbols for these variables and their meanings are

shown in Table 20.1. Secondly, I calculated the mean fractions across the groups of

Table 20.1. Model symbol definitions.

Symbol Meaning

n Round number

xn
Fraction invested in the public good by an individual in

round n

yn Fraction kept by an individual in round n

zn Fraction invested in competition by an individual in round n

qn Cumulative earnings of an individual in round n

334

players per round. These variable symbols are listed in Table 20.2.

In this chapter, I am interested in modeling how players choose to invest and allocate

their allotted money per round. We can construct several different types of models

using these variables. For example, perhaps strategies just drift over time, or perhaps

they depend on outcomes of the previous round.

I attempted searching for models using several different sets of variables and different

types of outputs. However, I found the most parsimonious and interpretable models

when modeling the fractions each player will invest in the next round, as a function of

how they and the group played in the previous round.

Because we are modeling a fraction value, I imposed a special constraint on the model

using a sigmoid function. I forced all models to be inside of a logistic equation. The

logistic equation (Figure 20.1), squashes values between zero and one, which

producing effective fraction values.

Table 20.2. Model symbols for group averages.

Symbol Meaning

group(xn)
Mean fraction invested in the public good by the group in round

n

group(yn) Mean fraction kept by the group in round n

group(zn) Mean fraction invested in competition by the group in round n

group(qn) Mean cumulative earnings of the group in round n

335

Using the logistic function constraints, we are now searching for equations that go into

the squashing function. This changes our interpretation of the resulting formula.

Instead of modeling the signal directly, they model a strength or tendency for the

fraction to tend toward zero or one – for example, a desire to contribute to the public

good, or a desire to defect.

Results

Results are split into two sections: the model of the normal Public Goods Game, and

the tug-of-war version with competition.

The modeling algorithm actually produces a list of potential models for any given

dataset that span a range of model complexities. In this section, I have manually

picked out the most parsimonious model in this list that picks up the most of the

variance in the data.

Figure 20.1. The Logistic Function squashes all inputs to the range from zero to

one. This function is used in the model structures because we are modeling a

fraction value (e.g. the fraction of money invested in the public good). The input

to the logistic function then has an interpretation of a strength toward zero (large

negative values) or one (large positive values).

336

Normal Public Goods Game

In this standard version of the game, there is only one effective decision variable: how

much to invest in the public good. The fitness change for a player in a single round of

the game is given by:

The best model obtained is shown in Figure 20.2.

This model has two terms inside of the sigmoid. The first is a ratio of the cumulative

earnings of the player to the earnings of the group. Interestingly, the player is less

likely to contribute to the public good if they are earning more than average. The

second term is the group‟s mean contribution, which shows the player is more likely to

Model:

r = 0.762859

Figure 20.2. The model obtained for an individual’s contribution to the public

good (x) in the normal Public Goods Game. The left pane shows the correlation

of the model predictions with the data. The right pane shows the predictions of

the model (the 3D surface) next to the experimental data (the blue dots). The

model suggests that a player is less likely to contribute if they have high

cumulative earnings relative to the group, however they are more likely to

contribute if others in the group contribute. The fitted parameters are α =

3.51853, β = 6.21075, γ = 5.08922.

337

contribute if the group is contributing. The balance of these two factors appears to

determine whether the player will contribute or not.

We can write a general condition for players to contribute to the public good (x) for

the normal Public Goods Game by solving for the threshold value analytically:

Likely to contribute to public good if:

This predicts that if the group‟s mean contribution is sufficiently high, the player is

more likely to contribute to the public good. Similar modeling of the yn+1 signal

produces a nearly identical model, but with the sign of the coefficients reversed and

with slightly different magnitudes.

Next, let‟s assume that this model captures the mean behavior of the group, and

examine the fitness landscape for an individual player against the field. To do this, we

can substitute the modeled xn+1 in for the mean group(x) behavior in the fitness

function. Additionally, let‟s assume the player‟s cumulative earnings are the same as

the group (q ≈ group(q)). The fitness function is then:

Solving the derivative with respect to x equal to zero, and the substituting x for

group(x) indicates that the fitness has an analytical fixed point at x* = 0. The Eshel‟s

test (double partial derivative) yields zero, but we can also visualize this graphically:

338

The effective fitness landscape for an individual, assuming the inferred model is

shown in Figure 20.3. The individual can only move along xn-axis, and can improve

fitness by contributing less. However, contributing less also decreases the mean group

contribution. Therefore, the model predicts that all trajectories of successive rounds

played on this surface tend toward zero contribution by all players, assuming that the

players play rationally. Therefore, the fixed point is stable.

Tug-of-War Public Goods Game

In this version of the Public Goods Game, there are now three options: contribute to

the public good, invest in the tug-of-war, or keep. Here, I looked for a model of each

option. The fitness change for a player in a single round is given by:

Figure 20.3. The fitness landscape for an individual against the field assuming

that the group behaves according to the model. The individual’s fitness improves

for increasing group contribution (group(x)) and decreasing individual

contribution (x). Thus, the model predicts that players will contribute less and

less, tending toward zero contribution.

339

The best model obtained for the contribution is shown in Figure 20.4.

Again, we see the ratio of the cumulative earnings to the mean of the group. We can

interpret this model as if the player has been successful and kept (y) or competed (z) in

the previous round, to continue not contributing to the public good. Additionally, the

model indicates that the tendency to contribute (x) arises from an ambient alpha term,

suggesting that players may want to cooperate innately.

Model:

r = 0.666172

Figure 20.4. The model obtained for an individual’s contribution to the public

good (x) in the tug-of-war version of the game. The left pane shows the

correlation of the model predictions with the data. The right plane shows the

predictions of the model (the 3D surface), next to the experimental data (the blue

dots). This model suggests if the player is doing well in cumulative earnings and

kept and/or competed an amount previously, she/he is less likely to contribute.

The fitted parameters shown are α = 1.62552, β = 4.61882, γ = 1.37634.

340

We can write a general condition for players to contribute to the public good (x) by

solving for the threshold value analytically:

Likely to contribute to public good if:

The best model obtained for the amount kept (y) is shown in Figure 20.5.

For a third time, we see the ratio of the cumulative earnings to the mean of the group

arising in the data-driven model. This model suggests that the player is less likely to

keep if the mean group contribution is high. However, the player is more likely to

Model:

r = 0.672141

Figure 20.5. The model obtained for an individual’s fraction kept (y) in the tug-

of-war version of the game. The right pane shows the correlation of the model

with the data. The model predictions (the 3D surface) is plotted next to the

experimental data points (blue dots). The model suggests that if the group is

contributing, the player is less likely to keep. However, if the player has been

successful in total earnings and kept in the previous round, she/he is more likely

to continue keeping. The fitted model parameters shown are α = 0.0319059, β =

4.52439, γ = 1.90551

341

keep if she/he has high cumulative earnings relative to the group and kept in the

previous round.

We can write a general condition for players to keep (y) by solving for the threshold

value analytically:

Likely to keep fraction if:

The best model found for the fraction invested in competition (z) is shown in Figure

20.6.

 This model suggest that if the group kept a lot and the player also kept a lot in the

previous round, she/he is less lightly to invest in competition in the next round.

Additionally, if the group contributed to the public good a lot and the player invested

in competition, she/he is more likely to invest in competition again.

Likely to compete fraction if:

We can write a general condition for players to compete (z) by solving for the

threshold value analytically (above). This translates the model into a more qualitative

condition based on the logistic function.

Next, let‟s again assume that these models capture the mean group behavior and look

at the fitness landscape of an individual player against the field. As before, we

substitute the modeled xn+1 in for the mean group(x), yn+1 for group(y), etc. in the

fitness function and assume the player‟s cumulative earnings are equal to the group (q

342

≈ group(q)). The fitness function then becomes:

Unfortunately, I could not analyze this effective fitness analytically – Mathematica

was unable to solve for the fixed points. However we can try to analyze it graphically.

Figure 20.7 shows the effective fitness landscape of an individual playing against the

field, assuming the group plays according to the xn+1 and yn+1 models. Unlike in the

normal game model, we can‟t plot all group behaviors at once because there are too

many variables to plot. This surface corresponds to when the group played 50% in

contribution (x) and 50% competition (z) in the previous round.

Model:

r = 0.552488

Figure 20.6. The model obtained for an individual’s fraction invested in

competition (z) in the tug-of-war version of the game. The left pane shows the

linear correlation of the model predictions with the data. The right pane shows

the model predictions (the 3D surface) next to the experimental data. The model

suggests that if the group is keeping and the player kept on the previous round,

she/he is less likely to compete. Secondly, if the group is contributing and the

player competed in the previous round, she/he is more likely to compete again.

The fitted model parameters shown are α = 0.81949, β = 1.44882, γ = 4.38114.

343

Here the optimal behavior for the individual is to invest at least 50% in competition (z)

and the rest in contribution (x). Since this is similar to what the group is doing, it

won‟t change the group values for the next round. So, this represents a partially stable

scenario where the model predicts the group will converge to high competition (z) and

contribution (x).

Plotting the surface for different group conditions in the previous round produces

similar fitness landscapes. Nearly all have optima near 50-100% investment in

competition. So this model predicts high amounts of competition persist through

successive tug-of-war public good rounds.

Figure 20.7. The effective fitness landscape for an individual playing against the

field, assuming the group plays according to the xn+1 and yn+1 models, and in

the previous round the group played 50% in contribution (xn) and 50% in

competition (zn). The optimal behavior for the individual in this circumstance is

to play similarly: investing at least 50% in competition and the rest in

contribution. The fitness surface predicted by the model looks similar for other

group conditions, most with optima at zn = 100%.

344

Discussion

I think there are two interesting general aspects of these results. First, the appearance

and re-appearance of the ratio of the cumulative earnings term and the group earnings

is quite curious. It is unusual for this to appear by chance several times. The overall

cumulative success in earnings appears to be a strong predictor of the player‟s

behavior.

In the model results, we saw that this success factor caused players to contribute to the

public good less (in the case of the normal game), or to continue previous actions if

the player has been successful.

The second interesting feature of these models is that all of the modeled influences on

contribute (x), kept (y), and compete (z) all appear to be influences that would improve

the player‟s earnings; For example, the player being more likely to contribute if the

group is contributing more on average.

This suggests that players are behaving rationally, and are goal oriented toward

improving their earnings in response to the group and their previous actions.

Conclusions

In conclusion, this chapter used an automated search to extract several empirical

models of player behavior in the Public Goods Game. The modeling algorithm

identified a common feature that suggests players may change parts of their behavior

based on their cumulative success. The models also suggest that players decide their

next behavior as a function of the group‟s behavior from the previous round.

345

CHAPTER 21. OPTICAL FILTERS

Summary

The main challenge in using high Q resonators is their high sensitivity to fabrication

errors that affect all the parameters of the resonator. Here we show that solely by

choosing carefully the degree of all-optical tuning of the resonators using an

evolutionary algorithm, a drastically distorted transmission function can be restored.

Results show the ability to combine a small number of devices in series to form

arbitrary transmission filters and recover the transmission of damaged devices by re-

adjusting dynamic parameters. Finally, we describe a similar approach to reverse-

engineer the precise structure and parameters of an unknown optical device directly

from observational data.

Introduction

High Q ring resonators have been shown to enable novel functionalities on chip (Xu

and Lipson 2006; Xu, Sandhu et al. 2006; Xu and Lipson 2007), however the main

challenge in using high Q resonators is their high sensitivity to fabrication errors.

These errors affect the dimensions of all the parameters of the resonator such as its

radius, its quality factor Q and its resonance wavelength. As a results complex

transmission functions, that are obtained by coupling such resonators are then

drastically distorted.

Here we show that solely by choosing carefully the degree of tuning of the resonators,

i.e., its resonance wavelength, a drastically distorted transmission function (due to

variations in all of its geometrical parameters) can be recovered. The resonance

wavelength of ring resonators can be tuned in silicon using all-optical modulation of

the effective index induced due to two photon absorption, as recently demonstrated in

346

(Almeida, Barrios et al. 2004) and (Almeida, Barrios et al. 2004). Here the degree of

tuning of each ring‟s resonances is determined by applying an optimization algorithm

to the system.

The structure analyzed is shown in Figure 21.1. Each stage of the device is a double-

ring resonator. It consists of a pair of silicon ring resonators coupled to a pair of

parallel silicon strip waveguides. The double-ring resonator has a sharp transmission

line (EIT-like mode) resulting from a mode due to the interference between the two

ring resonators (Xu, Sandhu et al. 2006). By tuning the resonance wavelength of each

resonator in the pair, one can control the effective-Q of this mode providing a high

degree of freedom to tailor the spectrum. The structure of each stage of the device is

defined by the parameters listed in Table 21.1. The range of each parameter

corresponds to the one that is typically achieved experimentally in such structures (Xu,

Shakya et al. 2006):

Figure 21.1. Ring-resonator device structure. Each component contributes to the

final transmission.

347

R is the nominal radius of each ring resonator. κ is the field coupling coefficient

between the waveguide and each ring resonator. It is defined as the amplitude of

electric field coupled into the ring divided by the amplitude of electric field in the

input waveguide. Its value is between 0 and 1.  is the field loss per round in the ring.

Due to the optical scattering, the amplitude of electrical field drops to e


 of the

original amplitude after it pass one round in the ring. For example  = 0.003 for a ring

resonator with radius of 5 microns corresponds to an intrinsic Q of 91,000 for each

ring resonator. 0 describes the deviation of the real distance between the two rings

from the nominal distance R, as defined in Figure 21.1. 1 and 2 are defined as the

phase shift per round in a ring with radius R for the light at the wavelength of 1 and

2, respectively. Since the resonant wavelength of each ring resonator depends on the

effective index of the ring, 1 and 2 can be tuned at real time using nonlinear effects

Table 21.1. Range of parameters describing each doubled ring resonator. The

parameters controlled externally by all-optical effects are 1 and 2.

Variable Restricted Range

κ 0.0 – 1.0

α 0.0 – 0.005

Φ0 0 - 2

Φ1 0 - 2

Φ2 0 - 2

R 3000 – 10000 nm

348

in silicon from 0 to 2 using for example low power external beams that are incident

on the rings for injecting free carriers.

The transmission response of such structure depends strongly on the parameters in

Table 21.1. An example of such a spectrum is shown in Figure 21.7 (dotted line) for

three rings with parameters listed in Table 21.2. In this chapter, we simulate

manufacturing errors by randomly off setting all parameters of each device by 10% of

their range. As seen Figure 21.7 (dashed line), such small errors to all devices can

drastically change the filter transmission.

In order to compensate for the variation in all the parameters we use an evolutionary

algorithm to determine the tuning of only the parameters Φ1 and Φ2, in each ring (the

Table 21.2. The parameters for the ring device with transmission function shown

in Figure 2 as the dotted line. We simulate manufacturing errors on this device

by adding 10% random errors to all parameters. The damaged transmission

function is shown in Figure 2 as a dashed line.

Variable Device #1 Device #2 Device #3

κ 0.5785 0.6765 0.6807

α 0.0003253 0.002216 1.165e-5

Φ0 3.9812 5.982 2.011

Φ1 5.639 2.2582 4.0312

Φ2 5.482 5.481 4.647

R 8731 7217 8628

349

ones that can indeed be controlled externally by injecting carriers using for example

two photon absorption induced by another beam of light incident on the ring

(Almeida, Barrios et al. 2004; Almeida, Barrios et al. 2004)) that lead to a

transmission spectrum that is very close to the original one. To measure the

performance of each candidate filter (Ferreira 2002) we define the degree of variation

between the original transmission spectrum and the deformed filter by the mean-

squared-error:

  
i

ii TTMSE
2

)()'(

where the summation is over a set of training data (a range of wavelengths), T(i)‟ is

the transmission of the damaged filter, and T(i) is the transmission of the designed

filter. Solutions with low error (high fitness) are selected (Crow and Kimura 1979) to

survive in the population or and to generate new solutions while high error solutions

are rejected or replaced. The best candidate solution in the population is tracked over

each generation to measure the algorithm‟s progress. Eventually, the performance of

the best solution plateaus after several iterations and the solution is returned.

Candidate filter solutions are encoded as a list of parameters for each device (up to 10)

of the ring series. New solutions are formed by crossing two low-error solutions in the

current population to randomly recombine their parameters. New solutions are also

formed by mutation – randomizing some parameters in the filter.

The qualitative box-filter behavior (shown in Figure 21.7 as solid line) is fully restored

in the recovery stage by readjusting solely the Φ1 and Φ2 parameters. Note that some

precision is lost. This result however shows that the dynamic parameters Φ1 and Φ2

alone are powerful enough to restore significant defects. Figure 21.8 describes the

remaining error (i.e., distortion of the transmission function) as a function of number

350

of generation for which the algorithm is run. One can see that after 10
3
 generations,

which corresponds to approximately 5 min of computational efforts on a 3GHz

machine, a very small mean square error is achieved.

Filter Design Using Evolutionary Computation

We used an evolutionary algorithm to design arbitrary optical filters using

combinations of rings connected in series. In this section, we provide a brief overview

of evolutionary algorithms, specifics on our implementation, and results designing a

low-pass filter, box-filter, band-pass filter, and ramp filter.

Evolutionary Algorithm Overview

See the description in the section “Evolutionary Computation” on page 3.

Filter Encoding

The transmission function of the ring device described in above is accurately

described by a 7-tuple list of variables that can be chosen at design time for

manufacturing. Certain variables have range restrictions, summarized in Table 21.1, to

ensure that the devices can be manufactured and that the transmission formula holds.

Our goal is to combine multiple ring devices in series in order to realize some arbitrary

desired transmission function. Therefore, our encoding is contains an ordered list of

parameters for each device in the series.

In our experiments, we limit the number of devices used per filter solution to ten. The

encoding for each device is given one additional binary variable to indicate if the

device is included in the series. If the flag is set to omit the device, the device

parameters still exist in the filter encoding but are shorted out or bypassed and need

not be manufactured.

351

 The mutation evolutionary operation for this encoding can randomize a

parameter (e.g. set kappa in device #1 to a random value in its allowed range) or

randomly include or exclude the device from the series.

The crossover evolutionary operation we use for this encoding is called single-point

crossover. One device in the series is picked as the crossover point. The child then

inherits the devices before this point from its first parent, and the remaining from its

second parent.

Fitness Objective

Our first experiment is to evolve the parameters of the ring devices in the encoding

such that the combined transmission matches some desired function (e.g. a low-pass

filter). After picking a desired transmission function, we generate training data of 1000

points over the 1544-1550nm wavelengths.

Our objective is to have the candidate solution filters match the training data as closely

as possible. Therefore, we define the fitness objective as the sum-of-squares error

from the training data. By convention, we negate the squared error to make the fitness

a maximizing objective.

  
i

ii yxfilterfilterfitness
2

)()(

Figure 21.2.. Example filter encoding with a maximum of three devices. Each

device consists of seven independent parameters and a flag to include or omit the

device from the final series. In this figure, device #2 is flagged as omitted.

352

where filter is a candidate solution encoding, filter(xi) is the output transmission, xi is

the input transmission, and yi is the desired transmission.

Experimental Setup

In this experiment we use a basic parametric evolutionary algorithm (Koza 1992) to

evolve the filters. We use a population size of 100, crossover probability of 75% and

mutation probability of 5%. We use Deterministic Crowding (Mahfoud 1995) to

generate successive generations. Solutions are evolved for 10K generations (roughly

10-15 minutes of computing). These are the first settings we tried and are most-likely

not optimal, but they turn out to work well.

Filter Design Results

Here we show we show the best solution found in 10 runs of the algorithm for four

common filter types: low-pass, box, band-pass, and ramp. Each run takes

approximately 10-15 minutes on a single computer. All runs converged on the general

shape of each filter with some approximating the flat regions more closely than others.

Here, we show the solutions that gave the tightest fit in Figure 21.3, Figure 21.4,

Figure 21.5, and Figure 21.6.

 κ α Φ0 Φ1 Φ2 G R

#1 0.756 0.0011 2.271 -4.052 -5.029 1.131 7253

#2 0.3229

.584e-

5
2.062 0.8498 0.8406 1.259 9502

#3 0.6476 0.001951 -1.61 -2.379 4.681 1.118 7311

Figure 21.3. Evolved low-pass filter. The target transmission is shown as a dotted

line and the best evolved solution is shown in solid. This solution used three

devices in its encoding, shown in the right pane.

353

κ α Φ0 Φ1 Φ2 G R

#1 0.7514 0.000583 -2.387 3.117 -4 1.216 5562

#2 0.
817 0.0006682 -5.122 5.754 -4.701 1.338 3349

Figure 21.6. Evolved ramp filter. The target transmission is shown as a dotted

line, the best evolved solution is shown in solid. This solution used two devices in

its encoding, shown in the right pane.

κ α Φ0 Φ1 Φ2 G R

#1 0.4413 0.00239 -3.373 -5.627 1.591 1.122 9
45

#2 0.443 0.004919 -1.945 4.56 -4.715 1.073 9482

#3 0.762 0.004901 3.232 4.77 5.705 1.253 9390

#4 0.6479 0.001545 0.1748 2.714 -2.263 1.145 6894

Figure 21.5. Evolved band-pass filter. The target transmission is shown as a

dotted line, the best solution is shown in solid. This solution used four devices in

its encoding, shown in the right pane.

 κ α Φ0 Φ1 Φ2 G R

#1 0.8381 0.001291 4.794 5.923 1.255 1.1 8940

#2 0.3981 0.001429 1.385 2.361 -1.48 1.315 5070

#3 0.6987 0.002343 -3.96 0.977 -4.26 1.379 8580

#4 0.6304 0.000572 1.31 0.716 -5.7 1.391 5908

#5 0.7856 0.003336 -3.13 -0.35 -1.54 1.132 96
2

Figure 21.4. Evolved box filter. The target is shown as a dotted line, the best

evolved solution is shown in solid. This solution used five devices in its encoding,

shown in the right pane.

354

In these experiments, solutions converged to the qualitative shape of the target

transmissions very quickly in less than 1000 generations. Remaining generations

produced successive approximations to the “flat” regions and discontinuous regions of

the target filter.

Error and Damage Recovery Results

Small damage or manufacturing errors can cause deviations from the intended

functionality of optical devices.

Error and Damage Effects

In this experiment we damaged the κ, α, and Φ0 parameters of each device in an

evolved filter by adding a random 10% offset, see Figure 21.7. An obvious

consequence of even small error is that it can propagate large error to successive

components leading to meta-stable or unpredictable states.

Fortunately the Φ1 and Φ2 phases on each device can be re-tuned dynamically. Using

the same evolutionary algorithm as before, we can find the optimal Φ1 and Φ2 settings

Figure 21.7. A damaged five-device filter. The κ, α, Φ0, R, and G parameters are

offset by 10% random manufacturing error. The qualitative box-filter

transmission function has been restored however some precision is still lost.

355

on the damaged devices to attempt to restore the series to its original transmission.

The evolutionary algorithm is identical to the previous experiment except now the

parameters κ, α, Φ0 G, and R have been fixed assuming they have been fabricated. The

previous algorithm is modified by hard-coding the fixed parameters to their damaged

values and only evolving the Φ1 and Φ2 parameters on each device.

Damage Recovery Results

Results in this experiment show the evolutionary algorithm both finding the desired

transmission filter and recovering the designed functionality after all parameters have

suffered 10% manufacturing error or damage.

The experiment has three steps:

1. Evolve an optimal filter for the desired transmission function

2. The designed filter undergoes 10% error on all parameters

3. Evolve the tunable Φ1 and Φ2 parameters to recover the designed

transmission

The 10% random error to all device parameters significantly changes the filter

transmission, shown in Figure 21.7. The qualitative box-filter behavior is fully

restored in the recovery stage by readjusting the Φ1 and Φ2 parameters, however, some

precision is lost that cannot be recovered, shown in Figure 21.8.

It is possible that larger errors and damage could be unrecoverable. Results in Figure

21.8 show however that the dynamic parameters Φ1 and Φ2 alone are powerful enough

to repair substantial defects.

356

Figure 21.8. Recovering a damaged device – box, LPF, and ramp filters. The left

pane shows the error of the best filter being evolved before fabrication. 10%

random error is then added to all fixed parameters on all devices. The right plane

shows the best filter being evolved to recover from manufactured errors.

Errorbars show the standard error.

357

Inferring Parameters of a Built Device

In this section we investigate the related problem of modeling an existing optical

system. The objective is now to reverse-engineer the parameters of a given physical

device. Due to variation in manufacturing, physical devices may not match designed

behavior exactly. Using the same evolutionary algorithm in the first experiment, we

can search for the exact parameters that were realized in the manufactured device.

The procedure is identical to the filter design procedure in the first experiment except,

rather than evolving device parameters to match some theoretical desired transmission,

we can evolve parameters to match the transmission measured experimentally from a

physical device. Instead of generating training data synthetically, we can generate

training data by measuring the transmission of the physical device and use the same

fitness objective as before.

Since the training data now comes from a real device, there must exist a set of

parameters that will match the measured training data exactly, assuming our device

model is sufficient. Therefore, we can continue evolution until solutions converge

 Hidden Inferred

 #1 #2 #1 #2

κ 0.62 0.3674 0.3674 0.62

α 0.00221 0.003282 0.003283 0.002213

Φ0 -0.3867 2.059 2.059 -0.3866

G 1.312 0.784 1.002 1.026

R 6667 9115 9115 6667

Figure 21.9. Inferring the physical parameters of a 2-device filter. The inferred

model matches the hidden system to within very low error. Note that the order of

devices and the gain levels of each individual device cannot be determined due to

algebraic properties of multiplying the transmission of each device. The total gain

is inferred correctly however (1.312*0.784 = 1.002*1.026 = 1.0028).

358

precisely on the measured data. We can then use the converged solution to infer the

exact parameters that were manufactured directly from observational data alone.

In this experiment, inferring the device parameters of an unknown filter takes

significantly more computation than designing a filter since we must evolve models to

convergence (very low error). This experiment ran 75K generations, or roughly one

hour on a single computer.

The hidden system is inferred correctly, shown in Figure 21.9. Note however that the

order of devices is switched and the gains of each individual device do not match. This

is a result of the multiplicative properties of a signal transmitting between devices.

The total gain of the filter is inferred correctly – the product of the gain of each device

in each filter is identical.

Figure 21.10. Reverse-engineering random 4-device filters give precise

transmission measurements (blue) and noisy transmission measurements (green).

Error bars show the standard error.

359

Figure 21.10 shows the results from inferring parameters of random 4-device filters.

Given precise measurements from the physical device, the algorithm finds the filter

model reliably with low error. If only noisy measurements are available from the

physical device, the algorithm finds the device consistently at the same rate, but error

measured asymptotes sooner because the noise cannot be modeled exactly.

Conclusions

In conclusion we have shown the ability to overcome manufacturing variations and

recover the intended functionality by determining the parameters that can be

controlled externally using all-optical effects

We have shown the ability to find combinations of optical devices and parameters to

design arbitrary transmission filters. If a device is damaged after manufacturing, we

have shown that the dynamical parameters can be re-adjusted with the same algorithm

to recover the intended functionality. Finally, we propose using this approach in the

future to reverse-engineer the parameters of an unknown manufactured device directly

from observational data.

360

CONTRIBUTIONS

Primary Contributions

Chapter 4

 Introduced a new algorithm based on coevolution and approximating fitness

calculations to reduce computational cost

 Demonstrated substantial improvements in performance over previous and

alternative methods

Chapter 5

 Introduced a new algorithm based on comparing and predicting ranks of

solutions to accelerate performance

Chapter 6

 Introduced a new multi-objective evolutionary algorithm that optimizes

solution genotypic age

 Demonstrated improvement over previous population-structure methods

 Introduced an algorithm based on using multiple secondary objectives

 Analyzed the impact of different combinations of secondary objectives: error,

age, complexity, and novelty

Chapter 7

 Introduced and compared several new methods for reusing prior models or

knowledge in an evolutionary search

Chapter 8

 Introduced a new algorithm for extracting meaningful model building-blocks

based on intersecting modeling results from multiple systems

361

Chapter 9

 Described new techniques for indentifying ODE models from experimental

data

 Demonstrated identifying a variety of dynamical systems

Chapter 10

 Introduced a new criterion for identifying nontrivial implicit equations

 Demonstrated identifying a variety of surfaces and invariant manifolds

Chapter 11

 Introduced a new method to infer physical laws from raw experimental data

based on identifying invariant quantities in time-series data

 Demonstrated detecting conserved quantities from motion tracking data

Chapter 12

 Introduced a new method to represent and evolve noise sources and model

stochastic elements explicitly in a symbolic model

 Introduced a new fitness metric to identify models with the simplest noise

envelope that enclosed the experimental data

Chapter 13

 Described new techniques for evolving stochastic reaction models

 Introduced a new fitness metric to identify a maximum likelihood stochastic

model from experimental data, even when likelihood estimates are unavailable

or inaccurate

 Demonstrated the approach on the Lokta-Volterra system using sparse data

with large time gaps between measurements

362

Chapter 14

 Introduced a new encoding for symbolic expressions based on a acyclic graph

equation encoding, and compared with ordinary tree encodings

Chapter 15

 Introduced a new method for relating an automatically inferred model to a

prior, well-understood model based on identifying a mapping between model

parameters

 Introduced a new technique for evolving symbolic models that can use

multiple different coefficients values to model different experiments on the

same system (e.g. time series of different cells)

 Identified a new and simpler dynamical model of bacillus competence

 Identified a new conserved quantity in bacillus competence, found to be related

to the cell's competence duration

Chapter 16

 Introduced a new method for identifying a fully-parameterized model from an

automatically inferred model with bulk coefficients

Chapter 17

 Introduced new techniques for modeling and designing experiments to analyze

metabolic networks

 Demonstrated inferring a yeast metabolism model from noisy time-series data,

the largest and most nonlinear dynamical automatically identified ODE system

at the time

 Demonstrated correcting a manually-derived model and a closely related

model from another system using experimental data

363

 Demonstrated substantial improvements in numerical prediction over other

regression methods

Chapter 18

 Introduced a new method for testing the importance of individual building-

blocks based on analyzing cross-validation curves and functional data analysis

 Demonstrated modeling of motion-captured insect wing dynamics

Chapter 19

 Introduced a new technique for modeling and inferring a human user's

preference when comparing two artistic drawings

 Demonstrated inferring a user's preference for square and star shaped drawings

Chapter 20

 Introduced a new technique for modeling a human user's strategy when playing

Public Goods Games

 Identified several new qualitative trends in player strategies

Chapter 21

 Introduced a new algorithm for designing optical filters with arbitrary

transmission functions

 Demonstrated tuning optical filters to correct manufacturing errors

Contributions of Others

Chapter 11

 Analyzed a double pendulum provided by Professor Andy Ruina (Cornell

University)

 Used motion tracking system and software provided by Professor John

364

Guckenheimer (Cornell University)

Chapter 13

 Professor Gürol Süel (University of Texas Southwestern Medical Center)

conceived and suggested the stochastic modeling problem

Chapter 15

 Professor Gürol Süel (University of Texas Southwestern Medical Center),

conceived the project, performed biological experiments, analyzed modeling

results, and helped write and edit significant portions of text

 Instructor Tolga Çagatay (University of Texas Southwestern Medical Center)

also performed biological experiments, analyzed results, and helped write and

edited significant portions of text

Chapter 17

 John Wikswo (Vanderbilt University) conceived and designed the project

 John Wikswo (Vanderbilt University), Jonathan Hood (CFD Research

Corporation), and Abhishek Soni (CFD Research Corporation) developed the

forward model

 Ravishankar Vallabhajosyula (CFD Research Corporation) and Jonathan Hood

(CFD Research Corporation) interpreted the invariant results

 Ravishankar Vallabhajosyula (CFD Research Corporation), John Wikswo

(Vanderbilt University), and Jerry Jenkins (HudsonAlpha Institute) helped

write and revise text

Chapter 18

 Professor Giles Hooker (Cornell University) advised the project

 Atilla Bergou and Gordon Berman (Cornell University) performed

365

experiments and provided data

Chapter 20

 Professor Kern Reeve (Cornell University) advised the project

 Jessie Barker (Cornell University) conducted experiments, provided data, and

help analyze results

Chapter 21

 Professor Michal Lipson (Cornell University) advised the project, wrote text,

and analyzed results

 Qianfan Xu (Cornell University) developed the optical device model, helped

design the optimization parameters, wrote text, and analyzed results

366

REFERENCES

Abramson, I. S. (1982). "On bandwidth variation in kernel estimates--a square root

law." Ann. Statist. 10(4): 1217-1223.

Albert, L. A. and D. E. Goldberg (2002). Efficient Discretization Scheduling In

Multiple Dimensions. Proceedings of the Genetic and Evolutionary

Computation Conference, Morgan Kaufmann Publishers Inc.

Almeida, V. R., C. A. Barrios, et al. (2004). "All-optical control of light on a silicon

chip." Nature 431(7012): 1081-1084.

Almeida, V. R., C. A. Barrios, et al. (2004). "All-optical switching on a silicon chip."

Opt. Lett. 29(24): 2867-2869.

Anderson, P. W. (1972). "More Is Different." Science 177(4047): 393-396.

Anderson, P. W. and E. Abrahams (2009). "Machines Fall Short of Revolutionary

Science." Science 324(5934): 1515-1516.

Arnold, D. V. (2001). Evolution strategies in noisy environments- a survey of existing

work. Theoretical aspects of evolutionary computing, Springer-Verlag: 239-

250.

Audet, C., J. J. E. Dennis, et al. (2000). "Surrogate-Model-Based Method For

Constrained Optimization." AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization.

Auger, A. and N. Hansen (2005). "A restart CMA evolution strategy with increasing

population size." Evolutionary Computation, 2005. The 2005 IEEE Congress

on 2: 1769- 1776.

Augusto, D. A. and H. J. C. Barbosa (2000). Symbolic Regression via Genetic

Programming. VI Brazilian Symposium on Neural Networks (SBRN'00), Rio

de Janeiro, RJ, Brazil.

367

Ball, P. (2009). Physics by numbers. Nature News.

Bansal, M., V. Belcastro, et al. (2007). "How to infer gene networks from expression

profiles." Mol Syst Biol 3.

Bansal, M., G. D. Gatta, et al. (2006). "Inference of gene regulatory networks and

compound mode of action from time course gene expression profiles."

Bioinformatics 22(7): 815-822.

Banzhaf, W. and W. B. Langdon (2002). Some considerations on the reason for bloat.

Genetic Programming and Evolvable Machines. 3: 81--91.

Banzhaf, W. and J. Miller (2004). The Challenge of Complexity. Frontiers of

Evolutionary Computation: 243-260.

Bautu, E., A. Bautu, et al. (2005). Symbolic Regression on Noisy Data with Genetic

and Gene Expression Programming. Proceedings of the Seventh International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing,

IEEE Computer Society.

Beard, D. A., H. Qian, et al. (2004). Stioichiometric foundation of large-scale

biochemical system analysis. Modelling in molecular biology. Berlin; New

York, Springer: 1-19.

Bishop, I. D. (1996). "Comparing regression and neural net based approaches to

modelling of scenic beauty." Landscape and Urban Planning 34(2): 125-134.

Bonabeau, E. (2002). "Agent-based modeling: Methods and techniques for simulating

human systems." Proceedings of the National Academy of Sciences of the

United States of America 99(Suppl 3): 7280-7287.

Bongard, J. and H. Lipson (2007). "Automated reverse engineering of nonlinear

dynamical systems." Proceedings of the National Academy of Sciences

104(24): 9943-9948.

Bongard, J., V. Zykov, et al. (2006). "Resilient Machines Through Continuous Self-

368

Modeling." Science 314(5802): 1118-1121.

Bongard, J. C. and H. Lipson (2005). 'Managed challenge' alleviates disengagement in

co-evolutionary system identification. Proceedings of the Genetic and

Evolutionary Computation Conference, Washington DC, USA, ACM.

Bongard, J. C. and H. Lipson (2005). "Nonlinear System Identification Using

Coevolution of Models and Tests." IEEE Transactions on Evolutionary

Computation 9(4): 361-384.

Bonneau, R., D. Reiss, et al. (2006). "The Inferelator: an algorithm for learning

parsimonious regulatory networks from systems-biology data sets de novo."

Genome Biology 7(5): R36.

Booker, A. J., J. E. Dennis, Jr., et al. (1999). "A rigorous framework for optimization

of expensive functions by surrogates." Structural Optimization 17(1): 1-13.

Bucci, A. and J. B. Pollack (2005). On identifying global optima in cooperative

coevolution. Proceedings of the Genetic and Evolutionary Computation

Conference, Washington DC, USA, ACM.

Çagatay, T., M. Turcotte, et al. (2009). "Architecture-Dependent Noise Discriminates

Functionally Analogous Differentiation Circuits." 139(3): 512-522.

Cao, Y., D. T. Gillespie, et al. (2005). "Avoiding negative populations in explicit

Poisson tau-leaping." J Chem Phys 123(5): 054104.

Carl Edward, R. (1997). Evaluation of gaussian processes and other methods for non-

linear regression, University of Toronto: 127.

Casey, S. G., C. W. Bill, et al. (2008). Using expert knowledge in initialization for

genome-wide analysis of epistasis using genetic programming. Proceedings of

the 10th annual conference on Genetic and evolutionary computation. Atlanta,

GA, USA, ACM.

Chen, J.-H., D. E. Goldberg, et al. (2002). Fitness Inheritance In Multi-objective

369

Optimization. Proceedings of the Genetic and Evolutionary Computation

Conference, Morgan Kaufmann Publishers Inc.

Christian, G., P. Marc, et al. (2003). A Robust Master-Slave Distribution Architecture

for Evolutionary Computations. Genetic and Evolutionary Computation

Conference Late Breaking Papers. R. Bart. Chicago, USA: 80--87.

Clery, D. and D. Voss (2005). "All for One and One for All." Science 308(5723): 809.

Cleveland, W. S. and S. J. Devlin (1988). "Locally Weighted Regression: An

Approach to Regression Analysis by Local Fitting." Journal of the American

Statistical Association 83: 596-610.

Cliff, D. and G. F. Miller (1995). Tracking the Red Queen: Measurements of Adaptive

Progress in Co-Evolutionary Simulations. Proceedings of the Third European

Conference on Advances in Artificial Life, Springer-Verlag.

Conor, R. (1996). Reducing Premature Convergence in Evolutionary Algorithms.

Ireland, University College, Cork.

Crampin, E. J., S. Schnell, et al. (2004). "Mathematical and computational techniques

to deduce complex biochemical reaction mechanisms." Progress in Biophysics

& Molecular Biology 86(1): 77-112.

Crow, J. F. and M. Kimura (1979). "Efficiency of truncation selection." Proceedings

of the National Academy of Sciences of the United States of America 76(1):

396-399.

Cybenko, G. (1992). "Approximation by superpositions of a sigmoidal function."

Mathematics of Control, Signals, and Systems (MCSS) 5(4): 455-455.

Cyril, F. and B. Alberto (2007). Symbolic Regression of Discontinuous and

Multivariate Functions by Hyper-Volume Error Separation (HVES). 2007

IEEE Congress on Evolutionary Computation. S. Dipti and W. Lipo.

Singapore, IEEE Press IEEE Computational Intelligence Society.

370

David, H. W. (1997). "On bias plus variance." Neural Comput. 9(6): 1211-1243.

Dawkins, R. (1996). The Blind Watchmaker: Why the Evidence of Evolution Reveals

a Universe without Design, W.W. Norton & Co.

De Falco, I., E. Tarantino, et al. (2002). Unsupervised spectral pattern recognition for

multispectral images by means of a genetic programming approach.

Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress

on.

De Jong, E. D. and J. B. Pollack (2004). "Ideal Evaluation from Coevolution."

Evolutionary Computation 12(2): 159-192.

di Bernardo, D., M. J. Thompson, et al. (2005). "Chemogenomic profiling on a

genome-wide scale using reverse-engineered gene networks." Nat Biotech

23(3): 377-383.

Dolin, B., F. H. B. III, et al. (2002). Co-evolving an effective fitness sample:

experiments in symbolic regression and distributed robot control. Proceedings

of the 2002 ACM symposium on Applied computing, Madrid, Spain, ACM.

Domingos, P. (2000). A unified bias-variance decomposition and its applications. In

Proc. 17th International Conf. on Machine Learning.

Doob, J. L. (1945). "Markoff chains--denumerable case " Trans. Amer. Math. Soc. 58:

455-473.

Duffy, J. and J. Engle-Warnick (2002). "Using Symbolic Regression to Infer

Strategies from Experimental Data." Evolutionary Computation in Economics

and Finance 100(4): 61--84.

Edwin, D. and B. P. Jordan (2003). Multi-Objective Methods for Tree Size Control.

Genetic Programming and Evolvable Machines. 4: 211--233.

Eggermont, J. and J. I. v. Hemert (2000). Stepwise Adaptation of Weights for

Symbolic Regression with Genetic Programming. Proceedings of the Twelveth

371

Belgium/Netherlands Conference on Artificial Intelligence (BNAIC'00), De

Efteling, Kaatsheuvel, Holland, BNVKI, Dutch and the Belgian AI

Association.

Ekárt, A. and S. Z. Németh (2001). "Selection Based on the Pareto Nondomination

Criterion for Controlling Code Growth in Genetic Programming." Genetic

Programming and Evolvable Machines 2(1): 61-73.

Elena, B., B. Andrei, et al. (2005). Symbolic Regression on Noisy Data with Genetic

and Gene Expression Programming. Seventh International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'05):

321--324.

Evans, J. and A. Rzhetsky "Machine Science." Science 329(5990): 399-400.

Fell, D. A. (1992). "Metabolic Control Analysis - A Survey of Its Theoretical and

Experimental Development." Biochem.J. 286: 313-330.

Ferreira, C. (2002). Function Finding and the Creation of Numerical Constants in

Gene Expression Programming. 7th Online World Conference on Soft

Computing in Industrial Applications.

Ficici, S. G. (2004). Solution Concepts in Coevolutionary Algorithms. Computer

Science, Brandeis University.

Ficici, S. G. and J. B. Pollack (2001). Pareto Optimality in Coevolutionary Learning.

Proceedings of the 6th European Conference on Advances in Artificial Life,

Springer-Verlag.

Fogel, L. J., A. J. Owens, et al. (1966). Artificial Intelligence through Simulated

Evolution, John Wiley.

Fonseca, C. and P. Fleming (1993). Genetic Algorithms for Multiobjective

Optimization: Formulation, Discussion and Generalization. Genetic

Algorithms: Proceedings of the Fifth International Conference, Morgan

372

Kaufmann.

Fonseca, C. M. and P. J. Fleming (1995). "An Overview of Evolutionary Algorithms

in Multiobjective Optimization." Evolutionary Computation 3(1): 1-16.

Forrest, S. (1993). "Genetic algorithms: principles of natural selection applied to

computation." Science 261(5123): 872-878.

Francisco, F., S. Giandomenico, et al. (2005). Parallel Genetic Programming. Parallel

Metaheuristics. A. Enrique. Hoboken, New Jersey, USA, Wiley-Interscience:

127--153.

Francisco, F., T. Marco, et al. (2003). An Empirical Study of Multipopulation Genetic

Programming. Genetic Programming and Evolvable Machines. 4: 21--51.

Franz, R. (2006). Representations for genetic and evolutionary algorithms. Springer

Verlag.

Gadkar, K. G., J. Varner, et al. (2005). "Model identification of signal transduction

networks from data using a state regulator problem." Systems Biology 2(1):

17-30.

Gardner, T. S., D. di Bernardo, et al. (2003). "Inferring Genetic Networks and

Identifying Compound Mode of Action via Expression Profiling." Science

301(5629): 102-105.

Gianfelici, F. (2010). "Machine Science: Truly Machine-Aided Science." Science

330(6002): 317.

Gillespie, D. T. (1977). "Exact Stochastic Simulation of Coupled Chemical

Reactions." The Journal of Physical Chemistry 81(25): 2340-2361.

Gillespie, D. T. (2007). "Stochastic simulation of chemical kinetics." Annu Rev Phys

Chem 58: 35-55.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley Longman Publishing Co., Inc.

373

Goldbeter, A. (1996). Biochemical Oscillations and Cellular Rhythms : the Molecular

Bases of Periodic and Chaotic Behaviour. Cambridge, New York, Cambridge

University Press.

Goldbeter, A. and R. Lefever (1972). "Dissipative Structures for an Allosteric Model:

Application to Glycolytic Oscillations." Biophys. J. 12(10): 1302-1315.

Grefenstette, J. J. (1988). "Credit assignment in rule discovery systems based on

genetic algorithms." Machine Learning 3(2): 225-245.

Greg, W. and F. Eric (2002). Motion Tracking: No Silver Bullet, but a Respectable

Arsenal. 22: 24-38.

Gregory, P., R. Denis, et al. (2003). Exploring Overfitting in Genetic Programming.

Evolution Artificielle, 6th International Conference. L. Pierre, C. Pierre, F.

Cyril, L. Evelyne and S. Marc. Marseilles, France, Springer. 2936: 267--277.

Grünwald, P. (2000). "Model selection based on minimum description length." J.

Math. Psychol. 44(1): 133-152.

Hahn, J., A. Luttinger, et al. (1996). "Regulatory inputs for the synthesis of ComK, the

competence transcription factor of Bacillus subtilis." Mol Microbiol 21(4):

763-75.

Hanc, J., S. Tuleja, et al. (2004). "Symmetries and conservation laws: Consequences

of Noether's theorem." American Journal of Physics 72(4): 428-435.

Hardin, G. (1968). "The Tragedy of the Commons." Science 162(3859): 1243-1248.

Haufe, C., K. C. Elliott, et al. (2010). "Machine Science: What's Missing." Science

330(6002): 317-318.

Heinrich, R., S. M. Rapoport, et al. (1977). "Metabolic-Regulation and Mathematical-

Models." Prog. Biophys. Mol. Biol. 32: 1-82.

Hermann, N. (1995). "On the Probabilistic Interpretation of Neural Network

Classifiers and Discriminative Training Criteria." IEEE Trans. Pattern Anal.

374

Mach. Intell. 17(2): 107-119.

Hetland, M. L. and P. Sætrom (2005). "Evolutionary Rule Mining in Time Series

Databases." Machine Learning 58(2): 107-125.

Hideaki, S. and S. Shigeru (2007). "A Method for Selecting the Bin Size of a Time

Histogram." Neural Comput. 19(6): 1503-1527.

Higgins, J. (1964). "A Chemical Mechanism for Oscillation of Glycolytic

Intermediates in Yeast Cells." Proceedings of the National Academy of

Sciences 51(6): 989-994.

Hillis, W. D. (1991). Co-evolving parasites improve simulated evolution as an

optimization procedure. Emergent computation, MIT Press: 228-234.

Hoai, N. X., R. I. McKay, et al. (2002). Solving the Symbolic Regression Problem

with Tree-Adjunct Grammar Guided Genetic Programming: The Comparative

Results. Proceedings of the 2002 Congress on Evolutionary Computation,

IEEE Neural Network Council (NNC), Institution of Electrical Engineers

(IEE), Evolutionary Programming Society (EPS).

Holland, J. (1975). Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence,

University of Michigan Press.

Holland, J. H. (2000). "Building Blocks, Cohort Genetic Algorithms, and Hyperplane-

Defined Functions." Evolutionary Computation 8(4): 373-391.

Hollnagel, E. (1993). Human Reliability Analysis: Context and Control. New York,

NY, Academic Press, Inc.

Hornby, G. S. (2006). ALPS: the age-layered population structure for reducing the

problem of premature convergence. GECCO 2006: Proceedings of the 8th

annual conference on Genetic and evolutionary computation. K. Maarten, C.

Mike, A. Dirket al. Seattle, Washington, USA, ACM Press New York, NY,

375

10286-1405, USA ACM SIGEVO (formerly ISGEC). 1: 815--822.

Hornby, G. S. (2006). ALPS: the age-layered population structure for reducing the

problem of premature convergence. Proceedings of the 8th annual conference

on Genetic and evolutionary computation. Seattle, Washington, USA, ACM.

Hornby, G. S. (2009). Steady-state ALPS for real-valued problems. Proceedings of the

11th Annual conference on Genetic and evolutionary computation. Montreal,

Qu\&\#233;bec, Canada, ACM.

Hornby, G. S. (2009). A Steady-State Version of the Age-Layered Population

Structure EA. Genetic Programming Theory & Practice VII. R. L. Riolo, U.-

M. O'Reilly and T. McConaghy. Ann Arbor, Springer: 87-102.

Ihsan, E., B. Eric, et al. (2005). Interactive estimation of agent-based financial markets

models: modularity and learning. Proceedings of the 2005 conference on

Genetic and evolutionary computation. Washington DC, USA, ACM.

Jaeckel, P. M., T. (1998). "A numerical and experimental study of codimension-2

points in a parametrically excited double pendulum." Royal Society of London

Proceedings Series A 454: 3257-3274.

Jamshidi, N. and B. Palsson (2008). "Formulating genome-scale kinetic models in the

post-genome era." Mol Syst Biol 4.

Jansen, T. (2002). On the Analysis of Dynamic Restart Strategies for Evolutionary

Algorithms. Parallel Problem Solving from Nature — PPSN VII: 33-43.

Jin, Y. (2005). "A comprehensive survey of fitness approximation in evolutionary

computation." Soft Computing Journal 9(1): 3-12.

Jin, Y. and J. Branke (2005). "Evolutionary optimization in uncertain environments-a

survey." IEEE Transactions on Evolutionary Computation 9(3): 303-317.

Jin, Y., M. Olhofer, et al. (2001). Managing approximate models in evolutionary

aerodynamic design optimization. Proceedings of the 2001 Congress on

376

Evolutionary Computation.

Jin, Y., M. Olhofer, et al. (2002). "A framework for evolutionary optimization with

approximate fitness functions." IEEE Transactions on Evolutionary

Computation 6(5): 481-494.

Jin, Y. and B. Sendhoff (2004). Reducing Fitness Evaluations Using Clustering

Techniques and Neural Network Ensembles. Proceedings of the Genetic and

Evolutionary Computation Conference.

Johanson, B. and R. Poli (1998). GP-Music: An Interactive Genetic Programming

System for Music Generation with Automated Fitness Raters. Genetic

Programming 1998: Proceedings of the Third Annual Conference, University

of Wisconsin, Madison, Wisconsin, USA, Morgan Kaufmann San Francisco,

CA, USA.

Kalyanmoy, D. and K. Deb (2001). Multi-Objective Optimization Using Evolutionary

Algorithms, John Wiley \& Sons, Inc.

Kauffman, K. J., J. D. Pajerowski, et al. (2002). "Description and analysis of

metabolic connectivity and dynamics in the human red blood cell."

Biophysical Journal 83(2): 646-662.

Keijzer, M. (2003). Improving Symbolic Regression with Interval Arithmetic and

Linear Scaling. Genetic Programming, Proceedings of EuroGP'2003, Essex,

Springer-Verlag Berlin EvoNet.

Kell, D. B. (2004). "Metabolomics and systems biology: making sense of the soup."

Current Opinion in Microbiology 7(3): 296-307.

Kell, D. B. (2006). "Metabolomics, modelling and machine learning in systems

biology - towards an understanding of the languages of cells. Delivered on 3

July 2005 at the 30th FEBS Congress and 9th IUBMB conference in

Budapest." FEBS Journal 273(5): 873-894.

377

Kenneth Alan De, J. (1975). An analysis of the behavior of a class of genetic adaptive

systems, University of Michigan: 266.

King, R. D., J. Rowland, et al. (2009). "The Automation of Science." Science

324(5923): 85-89.

King, R. D., K. E. Whelan, et al. (2004). "Functional genomic hypothesis generation

and experimentation by a robot scientist." Nature 427(6971): 247-252.

Kleijnen, J. P. C. (2006). White Noise Assumptions Revisited: Regression Models and

Statistical Designs for Simulation Practice: 1-21.

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy

Estimation and Model Selection. IJCAI.

Kotanchek, M., G. Smits, et al. (2008). Trustable symbolic regression models: using

ensembles, interval arithmetic and pareto fronts to develop robust and trust-

aware models. Genetic Programming Theory and Practice V: 201-220.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by

Means of Natural Selection. Cambridge, MA, USA, MIT Press.

Koza, J. R. (2001). Reverse engineering of metabolic pathways from observed data

using genetic programming. Pacific Symposium on Biocomputing

Proceedings. Singapore, River Edge, NJ : World Scientific: 434-445.

Kulkarni, V. G. (1995). Modeling and analysis of stochastic systems, Chapman

\& Hall, Ltd.

Kung, H. T., F. Luccio, et al. (1975). "On Finding the Maxima of a Set of Vectors." J.

ACM 22(4): 469-476.

Larrañaga, P. and J. A. Lozano (2002). Estimation of Distribution Algorithms: A New

Tool for Evolutionary Computation, Kluwer Academic Publishers.

Lawrence, S. and C. L. Giles (2000). Overfitting and neural networks: conjugate

gradient and backpropagation. Neural Networks, 2000. IJCNN 2000,

378

Proceedings of the IEEE-INNS-ENNS International Joint Conference on.

Lehman, J. and K. O. Stanley (2010). "Abandoning Objectives: Evolution through the

Search for Novelty Alone." Evol Comput: 24.

Leonelli, S. (2010). "Machine Science: The Human Side." Science 330(6002): 317.

Levine, A. J., W. Hu, et al. (2007). "Reconstructing signal transduction pathways.

challenges and opportunities." Ann.N.Y.Acad.Sci. 1115(1): 32-50.

Liang, Y. and B. Feeny (2008). "Parametric identification of a chaotic base-excited

double pendulum experiment." Nonlinear Dynamics 52(1): 181-197.

Linden, G., S. Hanks, et al. (1997). Interactive Assessment of User Preference Models:

The Automated Travel Assistant. Sixth International Conference on User

Modeling, Springer: 67--78.

Lipson, H. (2007). "Principles of modularity, regularity, and hierarchy for scalable

systems." The Journal of Biological Physics and Chemistry 7(4): 125-128.

Lotka, A. J. (1925). Elements of physical biology. Baltimore, Williams & Wilkins Co.

Louis, S. J. and G. J. E. Rawlins (1992). Syntactic Analysis of Convergence in

Genetic Algorithms. Foundations of Genetic Algorithms 2, Morgan

Kaufmann: 141--151.

Luke, S. and R. P. Wiegand (2002). When Coevolutionary Algorithms Exhibit

Evolutionary Dynamics. Workshop Proceedings of the 2003 Genetic and

Evolutionary Computation Conference.

Maamar, H. and D. Dubnau (2005). "Bistability in the Bacillus subtilis K-state

(competence) system requires a positive feedback loop." Mol Microbiol 56(3):

615-24.

Mackin, K. J. and E. Tazaki (2000). Unsupervised training of multiobjective agent

communication using genetic programming. Knowledge-Based Intelligent

Engineering Systems and Allied Technologies, 2000. Proceedings. Fourth

379

International Conference on.

Mahadevan, R., J. S. Edwards, et al. (2002). "Dynamic Flux Balance Analysis of

Diauxic Growth in Escherichia coli." Biophysical Journal 83(3): 1331-1340.

Mahfoud, S. W. (1995). Niching methods for genetic algorithms, University of Illinois

at Urbana-Champaign.

Mark, K., S. Guido, et al. (2007). Trustable Symoblic Regression Models. Genetic

Programming Theory and Practice V. L. R. Rick, S. Terence and W. Bill. Ann

Arbor, Springer: 203--222.

Marquet, P. A. (2002). "The search for general principles in ecology." Nature

418(6899): 723-723.

McConaghy, T., P. Palmers, et al. (2009). Automated Extraction of Expert Domain

Knowledge from Genetic Programming Synthesis Results. Genetic

Programming Theory and Practice VI, Springer US: 1-14.

McKay, B., M. J. Willis, et al. (1995). Using a Tree Structured Genetic Algorithm to

Perform Symbolic Regression. First International Conference on Genetic

Algorithms in Engineering Systems: Innovations and Applications, GALESIA.

A. M. S. Zalzala. Sheffield, UK, IEE London, UK. 414: 487--492.

McPhee, N., B. Ohs, et al. (2008). Semantic Building Blocks in Genetic Programming.

Genetic Programming: 134-145.

Mendes, P. and D. B. Kell (1996). "On the analysis of the inverse problem of

metabolic pathways using artificial neural networks." BioSystems 38(1): 15-

28.

Mendes, P. and D. B. Kell (1998). "Non-linear optimization of biochemical pathways:

applications to metabolic engineering and parameter estimation."

Bioinformatics 14(10): 869-883.

Mitchell, T. M. (2009). "Mining Our Reality." Science 326(5960): 1644-1645.

380

Mohammad-Reza, A.-T. and J. Mohammad (1997). Incorporating A-Priori Expert

Knowledge in Genetic Algorithms. Proceedings of the 1997 IEEE International

Symposium on Computational Intelligence in Robotics and Automation, IEEE

Computer Society.

Moles, C. G., P. Mendes, et al. (2003). "Parameter estimation in biochemical

pathways: A comparison of global optimization methods." Genome Res.

13(11): 2467-2474.

Monroy, R., G. Arroyo-Figueroa, et al. (2004). Symbolic Regression Problems by

Genetic Programming with Multi-branches. MICAI 2004: Advances in

Artificial Intelligence, Springer Berlin / Heidelberg. 2972: 717-726.

Moore, J. and B. White (2006). Exploiting Expert Knowledge in Genetic

Programming for Genome-Wide Genetic Analysis. Parallel Problem Solving

from Nature - PPSN IX: 969-977.

Mor M, W. A., Gottlieb O (2007). Nonlinear Model Based Estimation of Rigid-Body

Motion via an Indirect Measurement of An Elastic Appendage. Proceedings of

The 21st ASME Biennial Conference on Mechanical Vibration and Noise. Las

Vegas, Nevada, USA.

Mutoh, A., T. Nakamura, et al. (2003). Reducing execution time on genetic algorithm

in real-world applications using fitness prediction: parameter optimization of

SRM control. Proceedings of the 2003 Congress on Evolutionary

Computation, Canberra, ACT, Australia, IEEE Press.

Nee, S., N. Colegrave, et al. (2005). "The Illusion of Invariant Quantities in Life

Histories." Science 309(5738): 1236-1239.

Nemenman, I., G. S. Escola, et al. (2007). "Reconstruction of metabolic networks

from high-throughput metabolite profiling data. in silico analysis of red blood

cell metabolism." Ann.N.Y.Acad.Sci. 1115(1): 102-115.

381

Nguyen, X. H., R. I. McKay, et al. (2001). Solving the Symbolic Regression Problem

with Tree-Adjunct Grammar Guided Genetic Programming: The Comparative

Results. The Australian Journal of Intelligent Information Processing Systems.

7: 114--121.

Ni, T. C. and M. A. Savageau (1996). "Model assessment and refinement using

strategies from biochemical systems theory: Application to metabolism in

human red blood cells." Journal of Theoretical Biology 179(4): 329-368.

Nielsen, J. and S. Oliver (2005). "The next wave in metabolome analysis." Trends in

Biotechnology 23(11): 544-546.

Noether, E. (1918). "Invariante Variationsprobleme. Nachr. Akad." Phys(1): 235--257.

O'Reilly, U.-M. (1994). The Trouble Aspects of a Building Block Hypothesis for

Genetic Programming, Santa Fe Institute.

Ochoa, A. and M. R. Soto Ortiz (1997). Partial evaluation of genetic algorithms. 1st

Artificial Intelligence Symposium, Havana, Cuba, Inst. Cibernetica,

Matematica y Fisica.

Ong, Y. S., P. B. Nair, et al. (2003). "Evolutionary optimization of computationally

expensive problems via surrogate modeling." AIAA Journal 41(4): 687-96.

Pagie, L. and P. Hogeweg (1997). "Evolutionary Consequences of Coevolving

Targets." Evolutionary Computation 5(4): 401--418.

Parke, G., S. Ryan, et al. (2007). "Algorithms and analyses for maximal vector

computation." The VLDB Journal 16(1): 5-28.

Parzen, E. (1962). "On Estimation of a Probability Density Function and Mode." The

Annals of Mathematical Statistics 33(3): 1065-1076.

Pelikan, M. and K. Sastry (2004). Fitness inheritance in the Bayesian optimization

algorithm. Proceedings of the Genetic and Evolutionary Computation

Conference, Seattle, WA, USA, Springer-Verlag.

382

Poli, R. (1996). Genetic Programming for Image Analysis. Genetic Programming

1996: Proceedings of the First Annual Conference. J. R. Koza, D. E. Goldberg,

D. B. Fogel and R. L. Riolo. Stanford University, CA, USA, MIT Press: 363--

368.

Poli, R. and S. Cagnoni (1997). Genetic Programming with User-Driven Selection:

Experiments on the Evolution of Algorithms for Image Enhancement. Genetic

Programming 1997: Proceedings of the Second Annual Conference, Stanford

University, CA, USA, Morgan Kaufmann San Francisco, CA, USA.

Potter, M. A. and K. A. De Jong (2000). "Cooperative coevolution: an architecture for

evolving coadapted subcomponents." Evolutionary Computation 8(1): 1-29.

Ra, E. V. l, et al. (1999). "Discovery tools for science apps." Commun. ACM 42(11):

37-41.

Regis, R. G. and C. A. Shoemaker (2004). "Local function approximation in

evolutionary algorithms for the optimization of costly functions." IEEE

Transactions on Evolutionary Computation 8(5): 490-505.

Regis, R. G. and C. A. Shoemaker (2005). "Constrained global optimization of

expensive black box functions using radial basis functions." Journal of Global

Optimization 31(1): 153-171.

Richter, O., A. BETZ, et al. (1975). "Response of Oscillating Glycolysis to

Perturbations in Nadh-Nad System - Comparison Between Experiments and A

Computer Model." BioSystems 7: 137-146.

Riolo, R., T. Soule, et al. (2007). Large-Scale, Time-Constrained Symbolic

Regression. Genetic Programming Theory and Practice IV, Springer US: 299-

314.

Rissanen, J. (1978). "Modeling by the shortest data description." Automatica 14: 465-

471.

383

Ristroph, L., G. J. Berman, et al. (2009). "Automated hull reconstruction motion

tracking (HRMT) applied to sideways maneuvers of free-flying insects." J Exp

Biol 212(9): 1324-1335.

Rosca, J. P. (1995). Towards automatic discovery of building blocks in genetic

programming. Working Notes for the AAAI Symposium on Genetic

Programming. E. V. Siegel and J. R. Koza. MIT, Cambridge, MA, USA,

AAAI 445 Burgess Drive, Menlo Park, CA 94025, USA: 78-85.

Rosenblatt, M. (1956). "Remarks on some nonparametric estimates of a density

function." Ann. Math. Statist. 27: 832-837.

Rosin, C. D. (1997). Coevolutionary search among adversaries, University of

California at San Diego.

Rosin, C. D. and R. K. Belew (1997). "New Methods for Competitive Coevolution."

Evolutionary Computation 5(1): 1-29.

Rousseeuw, P. J. and A. M. Leroy (1987). Robust regression and outlier detection,

John Wiley \& Sons, Inc.

Ruoff, P., M. K. Christensen, et al. (2003). "Temperature dependency and temperature

compensation in a model of yeast glycolytic oscillations." Biophysical

Chemistry 106(2): 179-192.

Sano, Y. and H. Kita (2000). Optimization of noisy fitness functions by means of

genetic algorithms using history of search. Proceedings of the 6th International

Conference on Parallel Problem Solving from Nature, Paris, France, Springer-

Verlag.

Sastry, K., D. E. Goldberg, et al. (2001). Don't Evaluate, Inherit. Proceedings of the

Genetic and Evolutionary Computation Conference.

Schaffer, W. M., S. Ellner, et al. (1986). "Effects of noise on some dynamical models

in ecology." Journal of Mathematical Biology 24(5): 479-523.

384

Schmidt, H., M. F. Madsen, et al. (2008). "Complexity reduction of biochemical rate

expressions." Bioinformatics 24(6): 848-854.

Schmidt, M. and H. Lipson Symbolic Regression of Implicit Equations. Genetic

Programming Theory and Practice VII: 73-85.

Schmidt, M. and H. Lipson (2007). Comparison of tree and graph encodings as

function of problem complexity. Proceedings of the Genetic and Evolutionary

Computation Conference, London, ACM Press New York, NY, USA.

Schmidt, M. and H. Lipson (2009). "Distilling Free-Form Natural Laws from

Experimental Data." Science 324(5923): 81-85.

Schmidt, M. and H. Lipson. (2009). "Distilling Free-Form Natural Laws from

Experimental Data - Supporting Online Material." 2010, from

http://www.sciencemag.org/content/324/5923/81/suppl/DC1.

Schmidt, M. D. and H. Lipson (2005). Coevolution of Fitness Maximizers and Fitness

Predictors

Proceedings of the Genetic and Evolutionary Computation Conference, Late Breaking

Paper.

Schmidt, M. D. and H. Lipson (2006). Actively probing and modeling users in

interactive coevolution. Proceedings of the Genetic and Evolutionary

Computation Conference, Seattle, WA, United States, Association for

Computing Machinery, New York, NY 10036-5701, United States.

Schmidt, M. D. and H. Lipson (2006). Co-evolving Fitness Predictors for Accelerating

and Reducing Evaluations. Genetic Programming Theory and Practice IV. L.

R. Rick, S. Terence and W. Bill. Ann Arbor, Springer. 5: 113-130.

Schmidt, M. D. and H. Lipson (2007). Learning noise. GECCO '07: Proceedings of

the 9th annual conference on Genetic and evolutionary computation, London,

ACM Press New York, NY, USA.

385

Schmidt, M. D. and H. Lipson (2008). "Coevolution of Fitness Predictors." IEEE

Transactions on Evolutionary Computation 12(6): 736-749.

Shinbrot, T., C. Grebogi, et al. (1992). "Chaos in a double pendulum." American

Journal of Physics 60(6): 491-499.

Shpitalni, M, et al. (1997). Classification of sketch strokes and corner detection using

conic sections and adaptive clustering. New York, NY, ETATS-UNIS,

American Society of Mechanical Engineers.

Sinderen, D., A. Luttinger, et al. (1995). "comK encodes the competence transcription

factor, the key regulatory protein for competence development in Bacillus

subtilis." Molecular Microbiology 15(3): 455-462.

Smith, R. E., B. A. Dike, et al. (1995). Fitness inheritance in genetic algorithms.

Proceedings of the ACM Symposium on Applied Computing, Nashville, TN,

USA, ACM, New York, NY, USA.

Smits, G. and M. Kotanchek (2004). Pareto-Front Exploitation in Symbolic

Regression. Genetic Programming Theory and Practice {II}. U.-M. O'Reilly,

T. Yu, R. L. R. and and B. Worzel. Ann Arbor, Springer: 283-299.

Smits, W. K., C. C. Eschevins, et al. (2005). "Stripping Bacillus: ComK auto-

stimulation is responsible for the bistable response in competence

development." Mol Microbiol 56(3): 604-14.

Smolen, P. (1995). "A model for glycolytic oscillations based on skeletal muscle

phosphofructokinase kinetics." Journal of Theoretical Biology 174(2): 137-

148.

Soule, T. and R. B. Heckendorn (2001). Function Sets in Genetic Programming.

Proceedings of the Genetic and Evolutionary Computation Conference, San

Francisco, California, USA, Morgan Kaufmann San Francisco, CA 94104,

USA.

386

Stanley, K. O. and R. Miikkulainen (2004). "Competitive coevolution through

evolutionary complexification." Journal of Artificial Intelligence Research 21:

63-100.

Stolovitzky, G. and A. Califano (2007). Reverse engineering biological networks :

opportunities and challenges in computational methods for pathway inference.

Boston, Mass., Blackwell Publishing.

Strogatz, S. H. (1994). Nonlinear dynamics and chaos, Addison-Wesley Reading, MA.

Strogatz, S. H. (2001). "Exploring complex networks." Nature 410(6825): 268-276.

Styczynski, M. P. and G. Stephanopoulos (2005). "Overview of computational

methods for the inference of gene regulatory networks." Computers &

Chemical Engineering 29(3): 519-534.

Süel, G. M., J. Garcia-Ojalvo, et al. (2006). "An excitable gene regulatory circuit

induces transient cellular differentiation." Nature 440(7083): 545-550.

Suel, G. M., R. P. Kulkarni, et al. (2007). "Tunability and Noise Dependence in

Differentiation Dynamics." Science 315(5819): 1716-1719.

Szalay, A. and J. Gray (2006). "2020 Computing: Science in an exponential world."

Nature 440(7083): 413-414.

Takagi, H. (2001). "Interactive Evolutionary Computation: Fusion of the Capabilities

of EC Optimization and Human Evaluation." Proceedings of the IEEE 89(9):

1275--1296.

Tegner, J., M. K. S. Yeung, et al. (2003). "Reverse engineering gene networks:

Integrating genetic perturbations with dynamical modeling." Proceedings of

the National Academy of Sciences 100(10): 5944-5949.

Termonia, Y. and J. Ross (1981). "Oscillations and Control Features in Glycolysis:

Numerical Analysis of a Comprehensive Model." Proceedings of the National

Academy of Sciences 78(5): 2952-2956.

387

Terrell, G. and D. Scott (1992). "Variable kernel density estimation." The Annals of

Statistics 20(3): 1236-1265.

Touretzky, D. S., T. K. Leen, et al. (2007). Learning Local Error Bars for Nonlinear

Regression.

Uday, K. C. and Z. J. Cezary (2003). "An analysis of Gray versus binary encoding in

genetic search." Inf. Sci. 156(3-4): 253-269.

van Someren, E. P., B. L. T. Vaes, et al. (2006). "Least absolute regression network

analysis of the murine osteoblast differentiation network." Bioinformatics

22(4): 477-484.

Varma, A. and B. O. Palsson (1994). "Metabolic Flux Balancing: Basic Concepts,

Scientific and Practical Use." Nat.Biotechnol. 12(10): 994-998.

Volterra, V. (1926). "Variazioni e fluttuazioni del numero d'individui in specie animali

conviventi." Mem. R. Accad. Naz. dei Lincei 2(VI).

Vugrin, K. W., L. P. Swiler, et al. (2007). "Confidence region estimation techniques

for nonlinear regression in groundwater flow: Three case studies." Water

Resour. Res. 43(3): W03423.

Waltz, D. and B. G. Buchanan (2009). "Automating Science." Science 324(5923): 43-

44.

Watson, R. A. and J. B. Pollack (2001). Coevolutionary Dynamics in a Minimal

Substrate. Proceedings of the Genetic and Evolutionary Computation

Conference.

Wolf, J. and R. Heinrich (2000). "Effect of cellular interaction on glycolytic

oscillations in yeast: a theoretical investigation." Biochem. J. 345(2): 321-334.

X. Wen, S. F. R. S. (1999). Linear Modeling Of mRNA Expression Levels During

CNS Development And Injury, unknown.

Xavier, L. and E. G. David (2003). "Bounding the effect of noise in multiobjective

388

learning classifier systems." Evol. Comput. 11(3): 279-298.

Xu, Q. and M. Lipson (2006). "Carrier-induced optical bistability in silicon ring

resonators." Opt. Lett. 31(3): 341-343.

Xu, Q. and M. Lipson (2007). "All-optical logic based on silicon micro-ring

resonators." Opt. Express 15(3): 924-929.

Xu, Q., S. Sandhu, et al. (2006). Experimental Realization of an On-Chip All-Optical

Analogue to Electromagnetically Induced Transparency. Conference on Lasers

and Electro-Optics/Quantum Electronics and Laser Science Conference and

Photonic Applications Systems Technologies, Optical Society of America.

Xu, Q., J. Shakya, et al. (2006). "Direct measurement of tunable optical delays on chip

analogue to electromagnetically induced transparency." Opt. Express 14(14):

6463-6468.

Yang, D. and S. J. Flockton (1995). Evolutionary algorithms with a coarse-to-fine

function smoothing. 1995 IEEE International Conference on Evolutionary

Computation, Perth, WA, Australia, IEEE.

Young, J. D. and D. Ramkrishna (2007). "On the Matching and Proportional Laws of

Cybernetic Models." Biotechnology Progress 23(1): 83-99.

Zhang, Y. and P. Rockett (2007). "A Comparison of three evolutionary strategies for

multiobjective genetic programming." Artif. Intell. Rev. 27(2-3): 149-163.

Zitzler, E., M. Laumanns, et al. (2001). SPEA2: Improving the Strength Pareto

Evolutionary Algorithm.

Zykov, V., J. Bongard, et al. (2005). Co-evolutionary Variance Can Guide Physical

Testing in Evolutionary System Identification. Proceedings of Evolvable

Hardware, IEEE Computer Society.

	BIOGRAPHICAL SKETCH
	For Mary Westlund
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	PREFACE
	SECTION I – INTRODUCTION
	Chapter 1. Goals
	Chapter 2. Motivation
	Chapter 3. Background
	Evolutionary Computation
	Symbolic Regression

	SECTION II – SEARCH METHODS
	Chapter 4. Fitness Prediction
	Summary
	Introduction
	Related Work
	Coevolution
	Fitness Modeling
	Motivation
	Methods
	Challenges

	Fitness Prediction Algorithm
	General Framework
	Algorithm
	Summary
	Evaluating Exact Fitness Values
	Evolving the Populations
	Convergence Test

	Experiments in Symbolic Regression
	Symbolic Regression Overview
	Symbolic Regression Encoding
	Coevolution in Symbolic Regression

	Sub-sample Fitness Predictors
	Fitness Predictor Encoding
	Size and Complexity of the Fitness Predictor
	Fitness Predictor Behavior

	Experimental Settings
	Computational Effort Distribution Among Populations

	Experimental Results
	Examining Behavior on Test Problems
	Comparison to Previously Published Methods
	Testing Scalability on Randomly Generated Test Problems

	Improving Solution Reliability
	Comparing Performance by Generation
	Reducing Bloat

	Conclusions

	Chapter 5. Rank Prediction
	Summary
	Introduction
	Background
	Algorithm
	Fitness and Rank Predictors
	Fitness and Rank Trainers
	Coevolution Algorithm

	Experimental Setup
	Symbolic Regression
	Test Problems
	Measuring Performance
	Algorithm Settings

	Experimental Results
	Fitness and Convergence
	Computational Effort
	Solution Bloat

	Discussion
	Conclusion

	Chapter 6. Meta-Objectives in Evolutionary Search
	Summary
	Introduction
	Heuristics
	Complexity
	Age
	Novelty
	Random Objectives

	Algorithm
	Age-Fitness Algorithm
	Multi-objective Optimization

	Experiments
	Symbolic regression
	Random test problems
	Algorithm Settings

	Results
	Age and Fitness Objectives
	Multi-objective Combinations

	Conclusions

	Chapter 7. Prior models and Seeding
	Summary
	Introduction
	Background
	Symbolic Regression
	Equation Complexity
	Convergence

	Seeding Methods
	No seeding
	Approximate Equation Seed
	Shuffled Equation
	Building block Mutation
	Parameter Constants

	Experiments
	Test Problems
	Expert Knowledge in Random Problems
	Experimental Setup

	Results
	Time to Convergence
	Fitness Over Time
	Convergence Over Time
	Scaling with Complexity
	Scaling with Seed Equation Error
	Solution Bloat Over Time

	Conclusions

	Chapter 8. Identifying a Domain Alphabet
	Summary
	Introduction
	Background
	Genetic Building Blocks
	Domain Alphabet
	Pareto Front
	Symbolic Regression

	Alphabet Algorithm
	Modeling Groups of Systems
	Extracting Building Blocks
	Distilling the Alphabet

	Experiments
	The Mechanical Systems
	Experimental Setup

	Results
	A Mechanical Alphabet
	Utilizing the Alphabet

	Conclusions

	SECTION II – MODEL REPRESENTATIONS
	Chapter 9. Dynamical Systems
	Summary
	Introduction
	Background
	Symbolic Regression
	Fitness prediction

	Inferring Dynamical Systems
	Experimental Data
	Handling Noise
	Estimating Numerical Derivatives

	Results and Discussion
	Conclusions

	Chapter 10. Implicit Equations
	Summary
	Introduction
	The Implicit Equation Problem
	Naive Methods
	The Implicit Derivatives Method
	Handling Unordered Datasets
	Experiments
	Results
	Implicit Pareto Fronts
	Conclusions

	Chapter 11. Natural Laws
	Summary
	Motivation
	Method Overview
	Results
	Performance
	The Justification Problem
	Bootstrapping
	Conclusions
	Materials and Methods
	The Predictive Ability Criterion
	Calculating the Predictive Ability
	Searching the Space of Implicit Equations
	Representing Invariant Equations

	Analysis of Results
	Detecting Laws in Synthetic Systems
	Equation Accuracy and Complexity Tradeoff
	Impact of Noise
	Data Collection and Preprocessing
	Evolutionary Parameters
	Results with Missing Building Blocks

	Chapter 12. Symbolic Noise Source Models
	Summary
	Introduction
	Background
	Distortion from Stochastic Elements
	Regressing Noisy Data
	Modeling Noise and Confidence
	Symbolic Regression

	Learning Noise Algorithm
	Decomposing Stochastic Elements
	The Noise Distribution Objective

	Experiments
	Results
	Conclusions

	Chapter 13. Stochastic Reaction Models
	Summary
	Introduction
	Background
	Stochastic Simulation Algorithms
	Kernel Density Estimation
	Evolutionary computation

	Algorithm
	Encoding
	Likelihood Estimate
	Fitness Function

	Experiments
	Results
	Conclusions

	Chapter 14. Tree and Graph Encodings
	Summary
	Introduction
	The Tree Encoding
	Structure
	Evolutionary Considerations

	The Graph Encoding
	Structure
	Evolutionary Considerations

	Experiments
	Experimental Setup
	Target Complexity
	Random Test Problems
	Convergence Testing

	Results
	Solution Complexity and Bloat
	Convergence Rate
	Convergence Evaluations
	Evolvability
	Computational Performance

	Conclusions

	SECTION III – INTERPRETING RESULTS
	Chapter 15. Parameter Mapping
	Summary
	Introduction
	Current Biological Understanding
	Automated Modeling
	Dynamical Model
	Invariant model and conserved quantities

	Mapping to Current Biological Understanding
	Automated-mapping - using model perturbations as "experiments"

	Conserved Quantity Mapping
	Conclusions
	Methods
	Multi-set Symbolic Regression
	Model Selection
	The Inferred Dynamical Model
	Nonlinear Dynamical Model Mapping
	Conserved Quantity Mapping
	Interpreting a Conserved Quantity
	Normalizing Unknown Conserved Quantities
	Sampling Parameters Values for Automated Mapping
	Real and Simulated Perturbations

	Chapter 16. Parameter Models
	Finding Symbolic Parameters

	SECTION IV – APPLICATIONS
	Chapter 17. Metabolic Networks
	Summary
	Introduction
	Background
	Metabolic Modeling

	Methods
	Searching for Differential Equations
	Model Encoding
	Model Accuracy and Complexity Tradeoff
	Automated Experimental Design
	Distributed Computation
	Noise Effects on Numerical Derivatives
	The Glycolytic Oscillation Models
	Generating Data
	Symbolic Regression Algorithm Settings
	Regression Procedure

	Results and Discussion
	Reverse-engineering Glycolytic Oscillations in Yeast
	Sequence of Solutions
	Predictive Accuracy Compared to Other Methods
	Differentiating Hypothesized Models

	Conclusions

	Chapter 18. Insect Wing Building Block Analysis
	Summary
	Introduction
	The Insect Wing Data
	Data Registration
	Building Block Results
	Conclusions

	Chapter 19. User Preference Modeling
	Summary
	Introduction
	Related Work
	Fitness of Comparisons
	Comparison vs. Fitness
	User Interaction
	Preference Relation Graphs
	The Relation Graph
	Minimizing User Prompts

	Predicting Comparisons
	Basic Comparator
	Neural Network Comparator

	Algorithm
	Experiments Evolving Drawings
	Drawing Encoding
	User Model Encoding
	Evolutionary Settings

	Shape Preference Results
	Square Drawings
	Star Drawings

	Inferring the User's Fitness Landscape
	Discovering a Clock Drawing Preference
	Fitness Landscape of a Comparator
	Landscape Results

	Conclusions

	Chapter 20. Public Goods Games
	Summary
	Introduction
	Background
	Methods
	Results
	Normal Public Goods Game
	Tug-of-War Public Goods Game

	Discussion
	Conclusions

	Chapter 21. Optical Filters
	Summary
	Introduction
	Filter Design Using Evolutionary Computation
	Evolutionary Algorithm Overview
	Fitness Objective
	Experimental Setup

	Filter Design Results
	Error and Damage Recovery Results
	Error and Damage Effects
	Damage Recovery Results

	Inferring Parameters of a Built Device
	Conclusions

	CONTRIBUTIONS
	Primary Contributions
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21

	Contributions of Others
	Chapter 11
	Chapter 13
	Chapter 15
	Chapter 17
	Chapter 18
	Chapter 20
	Chapter 21

	REFERENCES

