Skip to main content

EGSGP: An Ensemble System Based on Geometric Semantic Genetic Programming

  • Conference paper
  • First Online:
  • 214 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1780))

Abstract

This work is inspired by the idea of seeding Genetic Programming (GP) populations with trained models from a pool of different Machine Learning (ML) methods, instead of using randomly generated individuals. If one considers standard GP, tackling this problem is very challenging, because each ML method uses its own representation, typically very different from the others. However, the task becomes easier if we use Geometric Semantic GP (GSGP). In fact, GSGP allows us to abstract from the representation, focusing purely on semantics. Following this idea, we introduce EGSGP, a novel method that can be seen either as a new initialization technique for GSGP, or as an ensemble method, that uses GSGP to combine different Base Learners (BLs). To counteract overfitting, we focused on the study of elitism and Soft Target (ST) regularization, studying several variants of EGSGP. In particular, systems that use or do not use elitism, and that use (with different parameters) or do not use ST were investigated. After an intensive study of the new parameters that characterize EGSGP, those variants were compared with the used BLs and with GSGP on three real-life regression problems. The presented results indicate that EGSGP outperforms the BLs and GSGP on all the studied test problems. While the difference between EGSGP and GSGP is statistically significant on two of the three test problems, EGSGP outperforms all the BLs in a statistically significant way only on one of them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman and Hall/CRC, Boca Raton (2019)

    Google Scholar 

  2. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  3. Thrun, S., Pratt, L.: Learning to learn: introduction and overview. In: Learning to Learn, pp. 3–17. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4615-5529-2_1

  4. Vanschoren, J.: Meta-learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 35–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_2

    Chapter  Google Scholar 

  5. Rokach, L.: Pattern classification using ensemble methods, vol. 75. World Scientific (2010)

    Google Scholar 

  6. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_3

    Chapter  Google Scholar 

  7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT press, Cambridge (1992)

    MATH  Google Scholar 

  8. Bakurov, I., Vanneschi, L., Castelli, M., Fontanella, F.: EDDA-V2 – an improvement of the evolutionary demes despeciation algorithm. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp. 185–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2_15

    Chapter  Google Scholar 

  9. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program. Evol. Mach. 15(2), 195–214 (2014)

    Article  Google Scholar 

  10. Vanneschi, L.: An introduction to geometric semantic genetic programming. In: Schütze, O., Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015. SCI, vol. 663, pp. 3–42. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-44003-3_1

    Chapter  Google Scholar 

  11. Pawlak, T.P., Krawiec, K.: Semantic geometric initialization. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 261–277. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_17

    Chapter  Google Scholar 

  12. Bakurov, I.: An initialization technique for geometric semantic genetic programming based on demes evolution and despeciation: machine learning for rare diseases: a case study. PhD thesis, NOVA IMS (2018)

    Google Scholar 

  13. Fan, D.W., Chan, P.K., Stolfo, S.J.: A comparative evaluation of combiner and stacked generalization. In: Proceedings of AAAI-96 Workshop on Integrating Multiple Learned Models, pp. 40–46 (1996)

    Google Scholar 

  14. Aghajanyan, A.: Soft target regularization: an effective technique to reduce over-fitting in neural networks. In: 2017 3rd IEEE International Conference on Cybernetics (CYBCONF), pp. 1–5. IEEE (2017)

    Google Scholar 

  15. Vanneschi, L., Castelli, M.: Soft target and functional complexity reduction: a hybrid regularization method for genetic programming. Expert Syst. Appl. 177, 114929 (2021)

    Article  Google Scholar 

  16. Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013)

    Article  Google Scholar 

  17. Vanneschi, L.: Improving genetic programming for the prediction of pharmacokinetic parameters. Memetic Comput. 6(4), 255–262 (2014)

    Article  Google Scholar 

  18. Castelli, M., Vanneschi, L., Silva, S.: Prediction of the unified parkinson’s disease rating scale assessment using a genetic programming system with geometric semantic genetic operators. Expert Syst. Appl. 41(10), 4608–4616 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Vanneschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosenfeld, L., Vanneschi, L. (2023). EGSGP: An Ensemble System Based on Geometric Semantic Genetic Programming. In: De Stefano, C., Fontanella, F., Vanneschi, L. (eds) Artificial Life and Evolutionary Computation. WIVACE 2022. Communications in Computer and Information Science, vol 1780. Springer, Cham. https://doi.org/10.1007/978-3-031-31183-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31183-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31182-6

  • Online ISBN: 978-3-031-31183-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics