
International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 1
ISSN 2250-3153

www.ijsrp.org

Code Bloat Problem in Genetic Programming

Anuradha Purohit*, Narendra S. Choudhari**, ArunaTiwari**

* Computer Technology and Applications Deptt., S.G.S.I.T.S. Indore

** Computer Engineering Deptt., IIT Indore

 Abstract- The concept of “bloat” in Genetic Programming is a

well-established phenomenon characterized by variable-length

genomes gradually increasing in size during evolution [1]. Bloat

hampers the efficiency and ability of genetic programming for

solving problems. A range of explanations have been proposed

for the problem of bloat, including destructive crossover and

mutation operators, selection pressure and individual

representation. Different methods to avoid bloat and to control

bloat have been proposed by researchers. This paper proposes a

theoretical analysis of code bloating problem and the discussion

on the work already done by various authors to handle bloat in

genetic programming.

 Index Terms- Bloat, Double Tournament, Elitism, Genetic

Programming, Spatial Structure.

I. INTRODUCTION

uring the evolution of solutions using Genetic

Programming (GP) there is generally an increase in

average tree size and depth without a corresponding increase in

fitness—a phenomenon commonly referred to as bloat [1]. Bloat

is a well-known phenomenon in Genetic Programming. An

individual program in GP could be of any size. Such flexibility in

representation provides more freedom in searching solutions, but

at the same time it causes the bloat problem, individuals growing

unnecessarily large. Apparently big individuals are

computationally more expensive to evaluate during evolution. If

they are final solutions, then their execution time in applications

would increase accordingly. That would not be desirable for

situations where speed is a requirement such as in real-time

systems. Furthermore bloat makes these evolved programs even

more difficult to comprehend [17].

 Code bloating presents a serious problem in scaling GP to

larger and more difficult problems. First, bloat consumes

computing resources, making the search process slower and

slower, and eventually forcing it to stop when all available

resources have been exhausted. Second, bloated candidate

solutions are often more difficult to modify in meaningful ways,

hampering the ability of GP to breed and discover better

solutions. Third, bloating can slow the grade-assessment process.

In a very real sense, bloating makes genetic programming a race

against time, to find the best solution possible before bloat puts

an effective stop to the search [29].

Three main methods for controlling bloat are commonly

proposed: set an upper bound to the complexity of individuals in

the population; introduce an explicit fitness penalty (parsimony

measure) that biases against larger individuals [10]; and apply

genetic operators designed to target redundant code or the bias

against offspring size increases [12]. Many authors have shown a

number of theoretical advances in understanding bloat [3],

[9]–[12]. Poli [9] reduced bloat by a stochastic approach to

setting the fitness of above average-sized individuals to zero.

Stringer and Wu [10], [11] showed that a shrinking effect on

genome length occurred for a chunking GA once the population

had essentially converged and selection had become random.

Skinner et al. [12] provided a theoretical argument for this

observed tendency of variable length genomes to shrink when

selection is not considered (i.e., under the process of genetic

drift). The paper implied that the presence of a lower absorbing

boundary (a genome size that once reached cannot be reduced

further), combined with no upper bound, results in a reduction of

the average size of a population under drift. Although this

theoretical model contributes to an understanding of individual

size dynamics, the concept has not at present formed the basis for

new bloat control methods. Related to these results other research

[13] has shown that for large, discrete programs, fitness

convergence of the population is possible and has been used to

explain sub quadratic growth of program size.

 In this paper, we have analyzed and presented the problem

of code bloat in GP, its types and variants and the effective

measures taken by various authors to prevent or control bloat.

The rest of the paper is organized as follows: section II contains

the description of the code bloat problem, section III discuss the

work done by various authors to prevent bloat and section IV

presents different methods present in the literature to avoid code

bloating in GP.

II. CODE BLOAT IN GENETIC PROGRAMMING

 “In a very real sense, bloating makes genetic programming a

race against time, to find the best solution possible before bloat

puts an effective stop to the search”. While bloat is well-defined

and can be identified, there are currently no consensual

explanations on why it occurs. Authors have presented different

explanations regarding bloat. Three popular theories can be

found in the literature to explain it [36]:

 – The introns theory states that bloat acts as a protective

mechanism in order to avoid the destructive effects of operator’s

once relevant solutions have been found. Introns are pieces of

code that have no influence on the fitness: either sub-programs

that are never executed, or sub-programs which have no effect;

– The fitness causes bloat theory relies on the assumption that

there is a greater probability to find a bigger program with the

D

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 2

ISSN 2250-3153

www.ijsrp.org

same behavior (i.e. semantically equivalent) than to find a shorter

one. Thus, once a good solution is found, programs naturally

tend to grow because of fitness pressure. This theory states that

code bloat is operator-independent and may happen for any

variable length representation-based algorithm. As a

consequence, code bloat is not to be limited to population-based

stochastic algorithm (such as GP), but may be extended to many

algorithms using variable length representation.

– The removal bias theory states that removing longer sub-

programs is more dangerous to do than removing shorter ones

(because of possible destructive consequence), so there is a

natural bias that benefit to the preservation of longer programs.

While it is now considered that each of these theories somewhat

capture part of the problem there has not been any definitive

global explanation of the bloat phenomenon. At the same time,

no definitive practical solution has been proposed that would

avoid the drawbacks of bloat (i.e. increasing evaluation time of

largetrees) while maintaining the good performances of GP on

difficult problems. Some common solutions rely either on

specific operators e.g. size-fair crossover or different fair

mutation on some parsimony-based penalization of the fitness or

on abrupt limitation of the program size such as the one

originally used by Koza. Also, some multi-objective approaches

have been proposed. Some other more particular solutions have

been proposed but are not widely used yet.

Authors have distinguished bloat into two main types:

structural bloat and functional bloat [32]:

A. Structural Bloat

The structural bloat is defined as the code bloat that

necessarily takes place when no optimal solution can be

approximated by a set of programs with bounded length. In such

a situation, optimal solutions of increasing accuracy will also

exhibit an increasing complexity (larger programs), as larger and

larger code will be generated in order to better approximate the

target function.

B. Functional Bloat

 Another form of bloat is the functional bloat, which takes

place when program length keeps on growing even though an

optimal solution (of known complexity) does lie in the search

space. Most of the works cited earlier are in fact concerned with

functional bloat which is the most surprising, and the most

disappointing kind of bloat. There are various levels of functional

bloat: cases where the length of programs found by GP runs to

infinity as the number of test cases run to infinity whereas a

bounded-length solution exists, and also cases where large

programs are found with high probability by GP where as a small

program is optimal.

III. PREVIOUS WORK DONE

 Liu, Cai, Ying, and Le in [29] stated that GP using a size or

depth limit (LGP) is a common approach to battle bloat, but LGP

is not ideal in size control and searching efficiency. In their

paper, besides extended the concept of bloated individual in

LGP, and the concept of Candidate Crossover Points Set is

presented. A new variants of LGP, named RLGP, which adds

some restrictions in genetic operations (crossover, swap, and

mutation), is proposed. RLGP introduces Candidate Crossover

Points Set (CCPS) into crossover operations. Finally, in even 3,

4, and 5-parity problem, strongly positive results are reported

regarding both size control and searching efficiency.

 Thomas Helmuth, Lee Spector and Brian Martin [30],

introduced a new node selection method that selects nodes based

on a tournament, from which the largest participating sub-tree is

selected. Size-based tournaments differentiate between internal

nodes of different sizes, whereas Koza 90/10 treats all internal

nodes equally. This method of size-based tournaments improves

performance on three standard test problems with no increases in

code bloat as compared to unbiased and Koza 90/10 selection

methods.

 Whigham [1], has presented an implicit model of bloat

control based on a spatially structured population with local

elitism; referred to as SS+E. Regular spatial structures (such as a

ring or torus) maintain diversity and slow bloat by effectively

reducing the population size. In addition, elitism reduces the

growth of introns, especially once the population has largely

converged and cannot easily find fitness improvements. Previous

panmictic models with elitism found that this resulted in

crossover largely becoming a copying operator, resulting in

convergence to non optimal solutions. Most bloat control

methods tradeoff controlling size and fitness, however SS+E

appear to balance this tradeoff without compromising overall

fitness.

 Langdon and Poli [2] have described a way to control bloat

using a fix size or depth limit (LGP) in which the bloat is

controlled by applying the limit to the allowed individual size or

depth simply. Individuals exceeding the limits are removed from

the population. Because individual size or depth is calculated

easily during evaluation, this approach only requires relatively

little additional computation.

 Stringer [4], has handled bloat by explicitly setting an upper

bound on the depth of evolved trees or by incorporating a

parsimony pressure that adjusts the fitness of individuals by a

tradeoff between performance and size.

Bleuler, Brack, Thiele, and Zitzler [15] proposed a

nonparametric method, Double Tournament, this method is

similar to a multi objective approach to bloat, however the

objectives of fitness and size are treated separately. Hence, there

are two tournaments: one based on parsimony, which produces

an initial set of winners, and a subsequent tournament that selects

a subset of those winners based on fitness.

 Sara Silva and Ernesto Costa [31] presented two important

variations on a recently successful bloat control technique,

Dynamic Maximum Tree Depth, intended at further improving

the results and extending the idea to non tree-based GP. Dynamic

Maximum Tree Depth introduces a dynamic limit on the depth of

the trees allowed into the population, initially set with a low

value but increased whenever needed to accommodate a new best

individual that would otherwise break the limit. The first

variation to this idea is the Heavy Dynamic Limit that, unlike the

original one, may fall again to a lower value after it has been

raised, in case the new best individual allows it. The second

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 3

ISSN 2250-3153

www.ijsrp.org

variation is the Dynamic Size Limit, where size is the number of

nodes, instead and regardless of depth. The variations were tested

in two problems, Symbolic Regression and Parity, and the results

show that the heavy limit performs generally better than the

original technique, but the dynamic limit on size fails in the

Parity problem. The possible reasons for success and failure are

discussed.

 Soule and Foster [32], introduced the concept of removal

bias, arguing that neutral branches of code (i.e., introns) are

likely to be small, however their replacement with crossover does

not have this restriction. Hence, the children produced from

neutral crossover events are likely on average to increase in size.

In this paper they described that the initial population are likely

to be small but introns grows on increasing in size after crossover

operation and the size of the individual can be very large so to

restrict the size of the individual two forms of nondestructive

crossover (NDC) were presented: a child would replace a parent

if it was at least as fit as the parent, or in the strict version the

child had to exceed the parent’s fitness. These methods were

tested with a maze navigation problem and a parity problem,

with both examples showing a reduction in bloat and an

improvement in convergence to fit solutions. However, since

crossover is often destructive, strict elitism can reduce the

effectiveness of crossover as a search mechanism, especially

once the population has begun to converge.

 A review and comparison of the most common methods is

given in Luke and Panait [18], while discussion on the causes of

bloat maybe found in Soule and Heckendorn and the Field Guide

to Genetic Programming [25].These previous methods generally

take into account individual size to control bloat. However, a

number of researchers have also considered methods that do not

explicitly consider the size of individuals and therefore bloat

reduction results as a side effect.

Over the years a range of methods have been introduced to

manage bloat [1]-[33] There are two major approaches to dealing

with GP tree bloat. First, by improving breeding, selection, and

tree-generation, GP can be made to search more efficiently to

find better individuals before bloat sets in. Second, various

techniques can help GP put off bloat as long as possible,

lengthening the search interval [4]. Following things are

considered under these two approaches while handling bloat:

• treating fitness and size as a multiobjective optimization;

• using disassortative mating based on two species (one

 selected on fitness, the other on fitness and size);

• explicitly reducing the fitness of above average-sized

 individuals (referred to as the Tarpeian method);

• eliminating programs where the parent and child fitness are

 similar using a modified tournament selection operator that

 uses either fitness, depth or an ordered combination of both

 for selection;

• placing a form of resource constraint on the population so

 that larger individuals are discouraged;

• using a waiting room for individual entry into a population,

 with time proportional to size;

• biasing selection for removal from a population based on

 size;

• explicitly simplifying individuals after each generation;

• dynamically extending an initially low maximum tree depth

 only when a child is produced that is fitter than the best

 individual and larger then this size limit;

• viewing size as a resource constraint, that can only be

 extended by fitness improvements; and

• applying specific genetic operators to reduce the size of

 large individuals or maintain the size of children to parents.

IV. METHODS TO AVOID BLOAT

Different methods have been proposed in the literature to

avoid bloat. Some of them are described as follows:

A. Using a fix size or depth limit (LGP)

The most common way to avoid bloat is to limit the size

(number of nodes) and depth (height of the tree) of the individual

[2]. The limitations on size and depth can be considered during

initialization of population by using suitable algorithm for tree

generation. Individuals exceeding the limits are removed from

the population. Because individual size or depth is calculated

easily during evaluation, this approach only requires relatively

little additional computation. This method efficiently restricted

individual from bloating.

B. Parsimony Pressure

Parsimony Pressure is not only another popular bloat

control technique in GP, but also has been used in a wide variety

of arbitrary-length representations tended to get out of control. It

is the second most common method for controlling bloat. This is

done by adding a tree size penalty as an additional criterion in the

individual’s fitness assessment. Individual having larger tree size

is allotted lower fitness. Many researchers till date have used

parsimony pressure as a method to avoid bloat while using GP

for problem solving. Such usage is divided into two broad

categories: parametric parsimony pressure, where size is directly

defined as a numerical factor in fitness, and pareto parsimony

pressure, where size is considered as a separate objective in a

pareto-optimization procedure.

C. Local Elitism Method

While performing crossover or mutation operation, new

individual or child are generated. The child can only replace the

parent in new generation if its fitness is better than or equal to the

parent fitness otherwise it will be retained with some probability

[34]. In this way better individuals can be taken to the new

generation.

D. Using modified genetic operators

The genetic operators, crossover and mutation can be

modified to avoid the problem of bloat. For example in FEDS

crossover (Fitness, Elitism, Depth limit & Size), the concept of

fitness, elitism, depth limit and tree size for generating the next

generation individuals through crossover operation is proposed to

handle the problem of code bloating in GP [35]. In [37], authors

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 4

ISSN 2250-3153

www.ijsrp.org

have used point mutation operation to avoid increase in tree size

during mutation.

V. CONCLUSION

 In this paper, we have done theoretical study of an important

issue in Genetic Programming known as code bloating. Bloating

hampers the performance of program structures designed using

GP. A lot of research has been done to find the actual cause of

bloat and methods to avoid and reduce the problem of bloat. For

this various strategies including modification in genetic operators

(crossover and mutation) have been presented.

Our contribution in the paper can be summarized as follows:

1) We have presented the theoretical concept of code

bloating in GP.

2) We have identified different types of bloat and their root

causes.

3) We have discussed about different methods to avoid and

control bloat in GP.

REFERENCES

[1] Peter A. Whigham, and Grant Dick, “Implicitly Controlling Bloat in

Genetic Programming,” IEEE Transaction on Evolutionary Computation,
Vol. 14, No. 2, APRIL 2010, pp. 173-190.

[2] W. B. Langdon and R. Poli, “Fitness causes bloat: Mutation” in Proc.
Theory Application Evolutionary Comput. (ET ’97), London, U.K.:

University College London, 1997, pp. 59–77.

[3] W. Banzhaf and W. Langdon, “Some considerations on the reason for

bloat,” Genetic, Programming Evolvable Mach.,vol. 3, no. 1, pp. 81–91,

2002.

[4] S. Luke, “Modification point depth and genome growth in genetic
programming,” Evol. Comput., vol. 11, no. 1, 2003, pp. 67–106.

[5] J. Koza, “Genetic Programming: On the Programming of Computers by

Natural Selection”, Cambridge, MA: MIT Press, 1992.
[6] B.-T. Zhang and H. Muhlenbein, “Evolving optimal neural networks using

genetic algorithms with Occam’s razor,” Complex Syst., vol. 7, pp. 199–

220, 1993.
[7] E. D. Jong, R. Watson, and J. Pollack, “Reducing bloat and promoting

diversity using multiobjective methods,” in Proc. Genet. Evol. Comput.

Conf. (GECCO’01), San Francisco, CA: Morgan Kaufmann, 2001,
pp.11–18.

[8] M. Terrio and M. I. Heywood, “Directing crossover for reduction of bloat

in GP,” in Proc. IEEE Can. Conf. Elect Comput. Eng. (IEEECCECE
2003), Piscataway, NJ: IEEE Press, May 12–15, 2002, pp.1111–1115.

[9] R. Poli, “A simple but theoretically- motivated method to control bloat in

genetic programming,” in Proc. Genet. Programming (EuroGP ’03) vol.

2610. Essex: Springer-Verlag, Apr. 14–16, 2003, pp. 204–217.

[10] H. Stringer and A. Wu, “Bloat is unnatural: An analysis of changes

invariable chromosome length absent selection pressure,” Univ. Central
Florida, Tech. Rep. CS-TR-04-01, 2004.

[11] H. Stringer and A. Wu, “Winnowing wheat from chaff: The chunking
GA,” in Proc. Genet. Evol. Comput. (GECCO ’04) Part II, vol. 3103.

Seattle, WA: Springer-Verlag, June26–30, 2004, pp. 198–209.

[12] C. Skinner, P. J. Riddle, and C. Triggs, “Mathematics prevents bloat,” in
Proc. 2005 IEEE Congr. Evol.Comput., vol. 1. Edinburgh, U.K.: IEEE

Press, Sep.2–5, 2005, pp. 390–395.

[13] W. B. Langdon, “Quadratic bloat in genetic programming,” in Proc. Genet.
Evol. Comput. Conf. (GECCO ’00), Las Vegas, NV: Morganm Kaufmann,

Jul. 10–12, 2000, pp. 451–458.

[14] B.-T. Zhang and H. Muhlenbein, “Balancing accuracy and parsimony in
genetic programming,” Evol. Comput., vol. 3, no. 1, 1995, pp. 17–38.

[15] S. Bleuler, M. Brack, L. Thiele, and E. Zitzler, “Multiobjective Genetic

Programming: Reducing bloat using SPEA2,” in Proc. 2001 Congr. Evol.
Comput. (CEC ’01), Piscataway, NJ: IEEE Press, 2001, pp.536–543.

[16] C. Ryan, “Pygmies and civil servants,” Advances in Genetic

Programming” MIT Press, 1994, ch. 11, pp. 243-263.
Available:http://cognet.mit.edu/library/books/viewfiisbn=0262111888.

[17] M. J. Streeter, “The root causes of code growth in genetic programming,”

in Proc. Genet. Programming (EuroGP ’03), vol. 2610. Essex: Springer-
Verlag, Apr. 14–16, 2003, pp. 443–454.

[18] S. Luke and L. Panait, “A comparison of bloat control methods for genetic

programming,” Evol. Comput., vol. 14, no. 3, 2006, pp. 309–344.
[19] N. Wagner and Z. Michalewicz, “Genetic programming with efficient

population control for financial time series prediction,” in Proc. Genet.

Evol. Comput. Conf. Late Breaking Papers, 2001, pp. 458–462.
[20] P. Wong and M. Zhang, “Algebraic simplification of GP programs during

evolution,” in Proc. 8th Annu. Conf. Genet. Evol. Comput. (GECCO ’06),

Seattle, WA: ACM, pp. 927–934.
[21] S. Silva and J. Almeida, “Dynamic maximum tree depth,” in Proc.Genet.

Evol. Comput. (GECCO ’03), vol. 2724. Chicago, IL: Springer-Verlag,

2003, pp. 1776–1787.
[22] S. Silva and E. Costa, “Resource-limited genetic programming: The

dynamic approach,” in Proc. 2005 Conf. Genet. Evol. Comput. (GECCO

’05), New York: ACM, pp. 1673–1680.
[23] C. J. Kennedy and C. Giraud-Carrier, “A depth controlling strategy for

strongly typed evolutionary programming,” in Proc. Genet. Evol. Comput.

Conf. vol. 1. Orlando, FL: Morgan Kaufmann, nos. 13–17 1999,
pp. 879–885.

[24] S. Luke and L. Panait, “Fighting bloat with nonparametric parsimony
pressure,” in Proc. 7th Int. Conf. Parallel Problem Solving Nature

(PPSNVII), vol. 2439, Granada, Spain: Springer, Sep. 7–11, 2002, pp.

411–421.
[25] R. Poli, W. B. Langdon, and N. F. McPhee, “A Field Guild to Genetic

Programming” Lulu.com, 2008, pp. 102–103.

[26] F. Fernandez, L. Vanneschi, and M.Tomassini, “The effect of plagues in
genetic programming: A study of variable-size populations,” in Proc.

Genet. Programming (EuroGP ’03), vol. 2610. Essex: Springer-Verlag,

2003, pp. 317–326.
[27] D. Rochat, M. Tomassini, and L. Vanneschi, “Dynamic size populations in

distributed genetic programming,” in Proc. 8th Eur. Conf. Genet.

Programming, vol. 3447. Berlin: Springer, 2005, pp. 50–61.
[28] F. Fernandez, G. G. Gil, J. A. Gomez, and J. L. Guisado, “Control of bloat

in genetic programming by means of the island model,” in Proc. Parallel

Problem Solving Nature (PPSN VIII), vol. 3242. Birmingham, U.K.:
Springer-Verlag, 18–22 Sep. 2004, pp. 263–271.

[29] Liangxu Liu, Haibin Cai, Mingyou Ying, and Jiajin Le, “RLGP: An

Efficient Method to Avoid Code Bloating on Genetic Programming”,
Proceedings of the 2007 IEEE International Conference on Mechatronics

and Automation, August 5 - 8, 2007, Harbin, China, pp. 2945-2950.
[30] Helmuth, T., L. Spector, and B. Martin, “Size-Based Tournaments for

Node Selection”, in GECCO'11, Workshops, Genetic and Evolutionary
Computation Conference, 2011, ACM Press. pp. 799-802.

[31] Sara Silva and Ernesto Costa, “Dynamic Limits for Bloat Control

Variations on Size and Depth”, K. Deb et al. (Eds.): GECCO 2004, LNCS
3103, 2004, pp. 666–677.

[32] Soule T., Foster J. A., and Dickinson J., “Code growth in Genetic

Programming,”, Genetic Programming 1996: Proceedings of the First
Annual Conference, Stanford University, CA, USA, MIT Press, 1996, pp.

215-223.

[33] Sylvain Gelly, Olivier Teytaud, Nicolas Bredeche, Marc Schoenauer, “A
Statistical Learning Theory Approach of Bloat”, GECCO’05, June 25–29,

2005, Washington, DC, USA, ACM, pp. 1783-1784.

[34] Anuradha Purohit, Arpit Bhardwaj, Aruna Tiwari, Narendra S. Chaudhari,

“Handling The Problem of Code Bloating To Enhance The Performance

of Classifier Designed Using Genetic Programming”, 5th Indian
International Conference on Artificial Intelligence (IICAI-11), 14-16

December 2011, Tumkur, pp. 333-342.

[35] Anuradha Purohit, Arpit Bhardwaj, Aruna Tiwari, Narendra S. Chaudhari,
“Removing Code Bloating in Crossover Operation in Genetic

Programming”, International Conference on Recent Trends in Information
Technology (ICRTIT-11), June 03-05 2011, pp. 77.

International Journal of Scientific and Research Publications, Volume 3, Issue 4, April 2013 5

ISSN 2250-3153

www.ijsrp.org

[36] Nur Merve Amil, Nicolas Bredeche, and Christian Gagne, “A Statistical

Learning Perspective of Genetic Programming”, October 26, 2007,
pp.1-51.

[37] Durga Prasad Muni, Nikhil R. Pal, and Jyotirmoy Das, “A Novel

Approach to Design Classifiers Using Genetic Programming”, IEEE
Transactions on Evolutionary Computation, Vol. 8, No. 2, April 2004,

pp. 183-196.

AUTHORS

First Author – Anuradha Purohit, M.E. Computer Engg.,

Assistant Professor, Computer Technology and Applications

Deptt., S.G.S.I.T.S. Indore, M.P., India,

anuradhapurohit@rediffmail.com.

Second Author – Narendra S. Chaudhari, Ph.D. Computer

Engineering, Professor and Head, Computer Engineering Deptt.,

IIT Indore, M.P., India, nsc183@gmail.com.

Third Author – Aruna Tiwari, Ph.D. Computer Engineering,

Assistant Professor, Computer Engineering Deptt., IIT Indore,

M.P., India, aruna_tiwari@rediffmail.com.

Correspondence Author – Anuradha Purohit,

anuradhapurohit@rediffmail.com, apurohit@sgsits.ac.in,

9826065208.

