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ABSTRACT
The mechanism design problem in economics is about de-
signing rules of interaction for market games so they yield a
globally desirable result in the face of self-interested agents.
This problem, which is of importance for ecommerce since
much ecommerce is carried out through auctions, can be ex-
tremely complex. Traditionally, economists have tried using
game theory and other formal methods to construct suit-
able mechanism rules. However, analytical methods typi-
cally oversimplify the problem and so the resulting rules are
not necessarily robust. In this paper, we report on an alter-
native approach which we hope will eventually yield more
robust solutions. Our methodology views mechanism design
as a multi-objective optimisation problem and addresses the
problem using genetic programming.

1. INTRODUCTION
The growth in ecommerce has been matched by the growth

in the use of auctions as mechanisms for identifying trading
partners and setting transaction prices. This is not just true
of consumer transactions as carried out on, eBay1 but also
of commerical transactions, with increasing numbers of com-
panies choosing to carry out procurement operations and to
set up supply chains by using auctions. This in turn has
increased interest in the problem of mechanism design for
auctions—the business of determining the form that an auc-
tion should take and the rules by which it is conducted.

Economists, and latterly computer scientists, have had
considerable success in applying techniques from game the-
ory to the design of auction-based markets for deregulated
commodity markets, for example California’s deregulated
electricity market [6, 19] and the sale of government as-
sets like electromagnetic spectrum for mobile phones [21,
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20]. Alvin Roth [29] has suggested that this is akin to an
engineering process in which economists design the rules
of a market mechanism in order to meet particular socio-
economic requirements (for example maximising the effi-
ciency of allocating commodities in a market).

The engineering of auction mechanisms—a subfield of com-
putational economics2—is of particular importance to agent-
based electronic commerce and multi-agent systems in gen-
eral. Ecommerce has enabled consumers to act as price-
makers instead of just price-takers in large auction-based
markets and has stimulated the use of personalised bidding
agents to empower those consumers even more. In addi-
tion, auction mechanisms are seen as a promising means
of solving many distributed resource-allocation problems in
multi-agent systems and grid technology.

One approach to computational economics is to use tech-
niques from machine learning to explore the space of pos-
sible ways in which agents might act in particular markets.
For example, reinforcement learning has been used to ex-
plore bidding patterns in auctions [25, 29] and to establish
the ways in which price-setting behaviour can affect con-
sumer markets [32]. Another approach is to use techniques
from evolutionary computing, such as genetic programming
(GP) [18]. Our earlier work has explored the use of co-
evolutionary GP to determine auction mechanism rules au-
tomatically [26, 27].

In that work, mechanism rules and bidding strategies were
encoded and co-evolved in ways that sought to maximise
overall market efficiency and the profits of individual agents.
Here, we focus on the multi-objective optimisation issues
inherent in the mechanism design problem.

The rest of the paper is organised as follows. In Sec-
tion 2, we describe the standard view of n-player games and
introduce the perspective we will take in this paper. Then
in Section 3, we discuss in detail the problem that we have
been experimenting upon. We present two sets of data: first,
an attempt to map the fitness landscape using a standard
class of auction pricing rules—the k-double auction pricing
rule—(see section 4.1); and second, an experiment in which
search the space of possible pricing rules by using genetic
programming (section 4.2). We close with a discussion and
summary.

2
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2. EQUILIBRIA FOR N-PLAYER GAMES
When evaluating a mechanism design, the designer must

take into account the set of trading strategies that are likely
to be played by agents trading according to the mechanism
under consideration. Deriving the set of the strategies likely
to be played for a particular market game, that is “solving”
the game, is a non-trivial problem in the general case. This is
because there is often no clear dominant strategy which con-
stitutes best play; rather the best strategy to play depends
entirely on the strategies played by other agents. Nash [24]
identified a class of solutions in which the strategy adopted
by any given agent is a best-response to the best-response
strategies adopted by all other agents, and proved that all
n-player, non-zero-sum games admitted such solutions. The
situation in which all agents adopt this “best-response to
best-responses” strategy is the famous Nash equilibrium.

Nash equilibrium, and its generalisation—the Bayesian
Nash Equilibrium [15] in which each agent constructs its
best-response based on its belief about whatever informa-
tion it does not have—are widely adopted in theoretical
economics. Thus when evaluating an economic mechanism,
the designer typically computes the (Bayesian) Nash equi-
libria of strategies for the given mechanism; and this forms
the basis of predictions about how people will actually be-
have under the rules of this mechanism. The designer can
then analyse market outcomes in equilibria and quantita-
tively assess, for example, the likely effect on overall market-
efficiency that a given change in the mechanism rules will
yield. Thus the role of the designer is to ensure that the
Nash equilibria correspond to situations in which high mar-
ket efficiency is obtained, and the process of doing this can
be an analytic or a computational one.

However, there are a number of difficulties with establish-
ing Nash equilibria. For a start, obtaining Nash equilibria
analytically is hard. In the case of the k-double-auction,
for example, analytical techniques have yet to yield a so-
lution except for cases with unrealistic simplifying assump-
tions [9]. As a result, economists have turned to computa-
tional approaches, in particular learning techniques, to try
and compute Nash equilibria, as in [12]. These approaches
have their own problems. Jordan [16] shows that there are
simple games in which the strategies learnt do not converge
to Nash equilibria, and, as Dekel et al. [7] point out, the ex-
istence of steady states that are not Nash equilibria is a good
reason to question why only Nash equilibria are considered
important.

These are all practical difficulties, but there are also the-
oretical difficulties. Empirical evidence shows that human
agents often fail to coordinate on Nash-equilibria for very
simple games whose solution is easily derivable under bound-
ed-rationality assumptions [14, 1]. This suggests that it is
not appropriate to center the efficiency of a given mecha-
nism around the assumption that players will adopt Nash
equilibria if some of those players will be human.

These difficulties with the standard theory of games have
led to the development of a field known as cognitive game

theory [8], in which models that capture elements of hu-
man learning play a central role in explaining and predicting
strategic behaviour. Erev and Roth [30] show how simula-
tions of agents equipped with a simple reinforcement learn-
ing algorithm can explain and predict the experimental data
observed when human agents play a diverse range of trad-
ing games. Such multi-agent reinforcement learning models

form the basis of the approach to automated mechanism
design that we explore here. Rather than computing the
theoretical equilibria for a given point in the mechanism
search space, we run a number of multi-agent simulations
using agents equipped with a learning algorithm that deter-
mines their bidding strategies and take the final strategies
as defining the equilibrium.

The approach we have been following makes use of this
cognitive approach and generalises the search for steady
states from that generally used in the literature. It is com-
mon to view mechanism design as the search for a mecha-
nism that optimises a single parameter—market efficiency
for example. We, in contrast, consider mechanism design to
be a multi-objective optimization problem in which we sim-
ulateously maximise several parameters— market efficiency
and trader market power being two we consider in this pa-
per. The difficulty in doing this lies in simultaneously max-
imising as many dimensions as possible.

Note that we are not attempting to find theoretically op-
timal strategies for our agents. Rather, we are attempting
to predict how bounded-rational agents, who have no prior
knowledge of an equilibrium solution nor the means to cal-
culate one, might actually play against the mechanism we
are (automatically) designing. For this reason, we chose to
use the Roth-Erev algorithm [30], since it forms the basis of
a cognitive model of how people actually behave in strategic
environments. In particular it models two important prin-
ciples of learning psychology:

• Thorndike’s law of effect—choices that have led to
good outcomes in the past are more likely to be re-
peated in the future; and

• The power law of practice—learning curves tend to be
steep initially, and then flatten out.

The Roth-Erev algorithm belongs to a class of game-playing
models known as ”stimuli-response” models. These models
have much in common with the replicator dynamics model
of evolutionary game theory [2], and as in evolutionary game
theory, the stable asymtotic behaviour of a multi-agent sim-
ulation using the Roth-Erev learning model can be inter-
preted similarly to the Nash-equilibrium of classical game
theory or the evolutionary-stable-strategy of evolutionary
game theory; stable states constitute strategy sets that are
hard-to-leave and are likely to persist once they are reached,
even when we consider agents who are not using the actual
Roth-Erev learning algorithm to form their strategy”.

In the remainder of this paper, we describe how we have
used these ideas to carry out some experiments in auto-
mated mechanism design in the setting of a particular kind
of commodity market.

3. EXPERIMENTAL SETUP
We can think of the commodity market as an iterated

game between three types of agents: sellers, buyers and
auctioneers. Each iteration of the game involves three steps.
First, the traders (the set of all buyers and sellers) make a
move. These moves collectively indicate how many units
they want to trade and at what price they wish to trade.
The auctioneer then moves, matching traders based on the
last moves that traders made. Finally the traders either
accept or reject the matches suggested by the auctioneer.



This scenario stems from [25] (hereafter referred to as
NPT ). A more detailed description of our interpretation
can be found in [26]. In this scenario, a number of traders
buy and sell electricity in a discriminatory-price3 continu-
ous double auction [10]. Every trader assigns a value for
the electricity that they trade; for buyers this is the price
that they can obtain in a secondary retail market and for
sellers this reflects the costs associated with generating the
electricity. Here this value is considered private; because
traders are always trying to make a profit themselves, sell-
ers are not willing to reveal how little they might accept for
units of electricity and buyers are not willing to reveal how
much they might pay for units of electricity. Trade in elec-
tricity is also affected by capacity constraints; every trader
has a finite maximum capacity of electricity that they can
generate or purchase for resale.

The market proceeds in rounds of trading. In the first
step within a round, sellers have the choice between issuing
an “ask” or a “pass”, and buyers have the choice between
issuing a “bid” or a “pass”.4 In the second step, auctioneers
can either match buyers and sellers (or more accurately the
bids and asks issued by buyers and sellers), match(buyer,
seller, price, quantity), or they can “pass”. Note that
during an auctioneer’s turn, she can make either one or more
matches or a single pass. The market proceeds until a set
number of auction rounds is reached.

The key to the operation of the market is the auctioneer’s
job of matching buyers and sellers, based on their current
bids and asks, and setting the trade price at which units of
capacity are traded. In our work, the matching process is
carried out using the 4-heap algorithm [35]. The rule for
determining the trade price is what we are trying to evolve.

In our experiments, the number of sellers, NS, is the same
as the number of buyers, NB, and there is one auctioneer
(A). All traders have a capacity of 10 units. Traders are
equipped with the modified version of the modified Roth-
Erev (MRE) learning algorithm described in [25]. The MRE
algorithm is calibrated with three parameters: a scaling pa-
rameter s(1), a recency parameter r and an experimentation
parameter e (for a discussion of these parameters see [25]).
The values used here were s(1) = 1, r = 0.1 and e = 0.2.

Our design objective is to increase the efficiency of the
market, whilst simultaneously keeping the market-power,
the degree to which they can control the trade price, of both
buyers and sellers to a minimum—we want to increase global
profit but without giving unfair advantage to either buyers
or sellers. To do this we need to measure efficiency and mar-
ket power and we have adopted the three variables used in
NPT , namely: market efficiency, seller market-power and
buyer market-power. Here we present a brief summary of
these variables (refer to [25] for details). Market efficiency,
EA, is defined as:

EA = 100

„
PBA + PSA

PBE + PSE

«
(1)

PBA and PSA are the profits that the buyers and sellers,
respectively, actually make. PBE and PBE are the profits
theoretically available to buyers and sellers, respectively, in

3
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happen at the same price. In discriminatory price auctions of the
kind we have here, different trades in the same auction round occur
at different prices.
4
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an market where all traders bid truthfully and an optimal
allocation is made. (We can, of course, compute the result
of agents bidding truthfully since we have access to their
private values outside the simulation.)

Buyer market-power, MPB, is defined as the difference
between the actual profits of buyers, PBA, and the potential
equilibrium profits PBE for buyers, expressed as a ratio of
the equilibrium profits.

MPB =
PBA − PBE

PBE
(2)

Seller market-power is computed in the same way:

MPS =
PSA − PSE

PSE
(3)

Market efficiency, EA, tracks how good our mechanism is at
generating global profit, whereas the market-power indices,
MPB and MPS track to what extent each group is better
or worse off compared to the ideal market.

Strategic buyer market power SMPB measures the differ-
ence between the actual profits of the buyers and the profits
they would get if they bid truthfully in the current market
(as opposed to the ideal market assumed when calculating
equilibrium profits), expressed as a fraction of equilibrium
profts:

SMPB =
PBA − PBT

PBE
(4)

Strategic seller market-power is computed in the same way:

SMPS =
PSA − PST

PSE
(5)

Zero strategic market-power values strongly suggest that the
mechanism is strategy proof—that is there is no way for a
given trader to systematically generate profits at the expense
of the other traders.

We normalise each variable by mapping it onto the range
[0, 1], where 1 represents the optimal value of a variable and
0 represents the worst value. Variables are mapped using
the following functions:

dEA =
EA

100
(6)

M̂PB =
1

1 + MPB
(7)

M̂PS =
1

1 + MPS
(8)

ŜMPB =
1

1 + SMPB
(9)

ŜMPS =
1

1 + SMPS
(10)

Given these, our aim is to perform a multi-objective op-
timisation of efficiency and market power. For our initial
experiments we combine our different objectives in a simple
linear sum with fixed weightings and optimise the scalar
fitness value for the particular case where we give equal
weighting to efficiency and market-power. Since we have
two measures of market power we have two values of opti-
mise:

F =
dEA

2
+

M̂PB + M̂PS

4

V =
dEA

2
+

ŜMPB + ŜMPS

4
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Figure 1: Fitness F (with standard deviation) plot-
ted against k for a market with 60 traders.

In future work we will use multi-objective evolutionary algo-
rithms to explore the full pareto frontier of these problems.

For now, we have restricted our search of the mecha-
nism design space to the transaction pricing rule, which sets
the price of any given transaction as a function of the bid

and ask prices submitted by buyers and sellers respectively.
NPT uses a discriminatory-price k-double-auction transac-
tion pricing rule [31], in which a different transaction price is
awarded for each matched bid-ask pair in the current auction
round. The price is set according to the following function:

pt = kpa + (1 − k)pb (11)

where pt is the transaction price, pa is the ask price, pb is
the bid price and k is a parameter that can be adjusted by
the auction designer. In the original NPT experiments k is
taken to be 0.5.

Our aim is to investigate if there are alternatives to the
k-double-auction rule that perform well, not necessarily un-
der equilibrium conditions, but when agents play Roth-Erev
derived strategies; that is, adaptive strategies derived from
a cognitive model of human game playing.

In our experiments, we consider the space of all possible
pricing rules that are functions of pa and pb. We repre-
sent each function as a Lisp s-expression, and we use Koza’s
genetic programming [18] to search this space. Individual
mechanisms are compared according to the criteria repre-
sented by F in order to judge their fitness, thus we are using
genetic programming to solve a multi-objective optimisation
problem. We return to the full details of our GP experiment
in Section 4.2.

One might ask why we are using genetic programming to
search such a vast space, when we could simply restrict at-
tention to the k-double-auction pricing rule, and search for
optimal values of k. The reason we use genetic program-
ming is that we see this as a general method of representing
arbitrary mechanism rules, not just those that can be neatly
parameterised. In this particular case, we have chosen an as-
pect of the auction design that can be simply parameterised,
so that we can compare the performance of the genetic pro-
gramming search against a brute-force search of different
values of k. In the following section we use a brute-force
search of k to get an approximate view of the fitness land-
scape that our genetic programming search will encounter.
In future work, we will use genetic programming to search
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Figure 2: Fitness F (with standard deviation) plot-
ted against k for a market with 6 traders.

for additional rules governing the auction mechanism, for
example rules governing allowable bids and rules governing
the matching mechanism.

4. EXPERIMENTAL RESULTS
In this paper we report on two aspects of the experimental

work we have been carrying out within the electricity market
scenario. First we describe work to map out the fitness
landscape in which the pricing rule is evolving. We do this
by assuming a k-double auction and then calculating the
efficiency of the market for different values of k. Second, we
describe an experiment in which the pricing rule was free to
evolve and show that it converged on the k-double auction
rule with k = 0.5.

4.1 Mapping the landscape
We carried out two mappings of the fitness landscape, and

for both we did this by running auctions with 100 different
values of k at increments of 0.01.

In the first mapping, each auction was run for 100 rounds,
and for each value of k we ran 1000 auctions each with a
different supply and demand schedule. These schedules were
constructed by assigning each agent a random private value
from a uniform distribution in the range [30, 1000]. The
market variables under observation are averaged over these
1000 different schedules. Figure 1 shows the mean fitness
measure F for each value of k when the market consists of
60 traders (30 buyers and 30 sellers) and Figure 2 shows the
mean fitness measure F for each value of k when the market
consists of 6 traders (3 buyers and 3 sellers)

In the second mapping we looked at fitness measure V .
This time, concerned by the size of the standard deviations
in the first mapping, we ran each auction for 1000 rounds
and used 100,000 supply and demand schedules. The results
of this mapping is given in Figures 3 and 4 for 60 traders
(30 buyers and 30 sellers) and 12 traders (6 buyers and 6
sellers) respectively. For the second mapping we also looked
at the measures of strategic buyer and seller market power.
These are shown in Figures 5 and 6 and suggest that over-
all strategic market power (the sum of the buyer and seller
figures) is approximately zero for k = 0.5.

These mappings at different values of k give us an idea
of the fitness landscape for the electricity scenario when us-
ing our measures of fitness. A qualititive interpretation of
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Figure 3: Fitness V (with standard deviation) plot-
ted against k for a market with 60 traders.
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Figure 4: Fitness V (with standard deviation) plot-
ted against k for a market with 12 traders.

this data would suggest that values of k close to 0.5 should
be selected by any technique that is applying the k-double
auction rule and attempting to learn the best value of k
while using our fitness measures. In the classical analysis of
the k-CDA [35] it can be demonstrated that the auction is
strategy proof for buyers for k=0, and is strategy proof for
sellers for k=1, but is not simultaneously strategy proof for
both groups. Our results, however, suggest that the k-CDA
is ”statistically” strategy proof for both buyers and sellers
for k=0.5.

4.2 Evolving pricing rules
Having established the fitness landscape assuming the k-

double auction rule, we then set out to search the entire
space of possible pricing rules using genetic programming.
We represented each rule as a Lisp s-expression, and we
used Koza’s basic genetic programming [18] with the pa-
rameters given in Table 1 to search this space. We made
use of a Java-based evolutionary computation system called
ecj.5 ecj implements a strongly-typed gp [23] version of
Koza’s [18] original system. For the gp experiments in this
paper, the standard Koza parameters were used in combi-
nation with the standard Koza gp operators, with the addi-
tion of a small amount of parsimony pressure (applied with

5
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Figure 5: Strategic buyer market power plotted
against k for a market with 60 traders.
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Figure 6: Strategic seller market power plotted
against k for a market with 60 traders.

probability 0.005) in order to counter the effects of GP code
bloat.

Our function-set consisted of the terminals ASKPRICE
and BIDPRICE, representing pa and pb respectively, to-
gether with the standard arithmetic functions, + - * /,
and a terminal representing a double-precision floating point
ephemeral random constant in the range [0, 1]. Thus all we
assumed about the pricing function is that it was an arith-
metic function of the bid and ask.

Individual mechanisms were compared according to the
criteria represented by F in order to judge their fitness dur-
ing the evolutionary process. As in Section 4.1, market out-
comes for each pricing rule were computed by simulating
agents equipped with the Roth-Erev learning algorithm. We
used the same numbers of buyers, 30, and sellers, 30, and
100 auction rounds, but with only 100 different supply and
demand schedules, constructed by assigning agents different
private values, drawn randomly from a uniform distribu-
tion in the range [30, 1000], to evaluate each generation of
each population of pricing rules. We ran less rounds than
in the landscape experiment because, as is usual for evolu-
tionary methods, we had to use many generations and large
populations—running each of these for 10,000 supply and
demand schedules would have taken a prohibitive amount
of time.
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Figure 7: The transaction price set by the evolved
auction rule.

Figure 10 shows part of the actual pricing rule that was
evolved after 90 generations. This has been algebraically
simplified, but as can be seen it is still far from straightfor-
ward, something that is not surprising given the way that
standard genetic programming approaches handle the evo-
lution of a program. Plotting the surface of the transaction
price as a function of pb and pa, given in Figure 7, and com-
paring it with the surface for:

0.5pa + 0.5pb

(given in Figure 8) shows that these two functions are ap-
proximately equal apart from a slight variation when the ask
price is very small or when the ask price is equal to the bid
price. Thus the experiment effectively evolved a pricing rule
for a discriminatory-price k double auction with k = 0.5
from the space of all arithmetic functions of ask and bid
price.

Although the fitness landscape for this benchmark prob-
lem is very simple, we see this as a means of validating our
design technique before we move on to more complex sce-
narios. Future work will investigate the use of this technique
for more complex market scenarios, and will include other
aspects of the auction design in the search space: for exam-
ple, matching rules, bid validation rules and so on. Future
work will analyse the evolved rules for a number of different
market scenarios, for example where we have many more
buyers than sellers and visa versa.

5. DISCUSSION

Parameter value
Population size 4000

Selection Parsimony Binary
Tournament

Cross-over probability 0.9
Reproduction probability 0.1

Parsimony size probability 0.005
Cross-over maximum tree depth 17

Grow maximum tree depth 5
Grow minimum tree depth 5

Table 1: Koza GP parameters
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Figure 8: The transaction price set by the rule
0.5pa + 0.5pb.
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Figure 9: The difference in transaction prices be-
tween the k = 0.5 rule and the evolved rule

These results suggest that the approach we are adopt-
ing is a reasonable one—we have managed to evolve a rule
which not only provides a high fitness, but also generates
a rule that, in terms of the prices it sets, is close to a well
established rule from the economics literature. The results
also support the existing k-double auction rule since our GP
search through the space of all functions of the bid and ask
price has converged on a version of the k-double auction
rule. This is in contrast to the results obtained by Cliff [3,
4], which discovered a new form of auction between classical
buy-side and sell-side auctions.

Interestingly, this result also sheds some light on a prob-
lem we encountered with the approach we adopted in [26]
when we used genetic programming for both evolving auc-
tion rules and evolving trading strategies. In those experi-
ments we noticed that k-double auction pricing rules were
evolved early on, when the strategies used by the traders
were poor, but did not thrive. It seems it is possible that
k-double auction rules do well provided that they are used
in auctions with fairly good traders—in auctions with poor
traders other rules, which are incompatible with good traders,
do better.

This is consistent with a recent view proposed by Philip
Mirowski [22, pp. 536–545] of economic marketplaces as
complex ecologies. Some markets, such as garage sales, have
relatively simple rules and procedures, while others, such as
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Figure 10: The first few terms of the derived pricing rule.

financial futures markets, are, by comparison, very complex.
Yet all manage to co-exist, with each type of market, appar-
ently, finding its own niche in which to survive and prosper.
Indeed, the oldest markets have survived for hundreds of
years without rules from the newer ones being adopted in
them. The behaviours of the participants in the different
markets are, as one would expect, different. One challenge
for computational economics, says Mirowski, is to explain
this diversity, how it has arisen and how it is maintained.

Finally, we acknowledge that the solution concept we em-
ploy is based on a model of learning, and that this is not
necessarily the most plausible solution concept for the dou-
ble auction, an institution which is well known and in which
traders are more likely to play analytically-derived strate-
gies handed down by experts, rather than learn their strate-
gies from scratch by trial and error. Our future work on
auction mechanism design will employ a similar approach
to that of [34], in which agents learn to converge on mixes
of high-level strategies developed by experts—such as Cliff’s
zip traders [5], Preist and van Tol’s ps traders [28], or traders
using Gjerstad and Dickhaut’s mechanism [13] —rather than
mixes of low-level strategies corresponding to fixed markups,
which we assume in our current work. In such a scenario,
the output from the Roth-Erev learning algorithm would be
used to select which high-level strategy to use, rather than
selecting which markup to use, and the asymtotic outcome
would tell us which mixes of high-level strategies are stable,
and thus likely to be adopted in the long term.

However, our long-term goal is the application of evolu-
tionary mechanism design to design problems such as the
congestion game [11], in which the payoff matrix changes on
each play of the game, making the use of expert high-level
strategies impractical; in the congestion game agents have
no choice apart from to learn their strategies from scratch.
In such a context, , models of game playing based on learn-
ing, such as the Roth-Erev model, will play a vital role.

6. CONCLUSION
In this paper we have reported the results of two experi-

ments in which we have examined the use of different pricing
rules in a discriminatory price double auction. In part of this
work we used adaptive buyers and seller agents to evaluate
the effect of changing the parameter k in the k-double auc-
tion pricing rule. The second part of the work then success-
fully used genetic programming to automatically acquire a
transaction-pricing rule. The method we describe here could
be used to automatically generate a discriminatory pricing
rule for a continuous double auction that meets any specific
socio-economic requirements.

The work described here is part of a larger research ef-
fort aimed at creating techniques and methodologies for
computer-aided auction design. We have thus far identified
two promising techniques that could play a part in such a

technology: co-evolutionary mechanism design [26], and the
optimisation technique described in this paper. These ap-
proaches are not mutually exclusive; we envisage that they
will complement each other, and indeed complement stan-
dard analytic approaches to auction mechanism design.

For example, we could use the optimisation approach to
find a set of promising mechanisms that perform well when
agents play adaptive strategies. The auction designer might
then pick a few of these designs that look as if they meet the
criteria in hand, and then subject them to standard game-
theoretic analysis, thus using the optimisation technique as
a method of reducing the search-space for manual analysis.
Once a mechanism has passed equilibria criteria, it might
then be subjected to co-evolutionary experiments to probe
it for “non-strategic” weaknesses in the protocol.6

When doing this the “prey” population would be pre-
populated with our candidate mechanism, and the “preda-
tor” population would be pre-populated with equilibrium
bidding strategies; the predator population might then find
non-strategic weaknesses in the auction population thus driv-
ing it it to more robust areas of the design space. This whole
process of:

1. identify promising mechanisms through search;

2. pick and solve for equilibrium solutions; and

3. use co-evolutionary learning to identify non-strategic
weaknesses,

might then be iterated through until no further weaknesses
are discovered. At the end of the design process we hope to
have auction mechanisms that: perform well against adap-
tive, possibly non-equilibrium, strategies; that perform well
in equilibrium; and are robust against non-strategic preda-
tory behaviour.
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