
IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 1

Genetic Programming-Based Discriminative Feature
Learning for Low-Quality Image Classification

Ying Bi, Member, IEEE, Bing Xue, Member, IEEE, and Mengjie Zhang, Fellow, IEEE

Abstract—Being able to learn discriminative features from
low-quality images raises much attention recently due to their
wide applications ranging from autonomous driving to safety
surveillance. However, this task is difficult due to high variations
across images, such as scale, rotation, illumination, and viewpoint,
and distortions in images, such as blur, low contrast and noise.
Image preprocessing could improve the quality of the images,
but it often requires human intervention and domain knowledge.
Genetic programming (GP) with a flexible representation can au-
tomatically perform image preprocessing and feature extraction
without human intervention. Therefore, this study proposes a
new evolutionary learning approach using GP (EFLGP) to learn
discriminative features from images with blur, low contrast, and
noise for classification. In the proposed approach, we develop
a new program structure (individual representation), a new
function set and a new terminal set. With these new designs,
EFLGP can detect small regions from a large input low-quality
image, select image operators to process the regions or detect
features from the small regions, and output a flexible number of
discriminative features. A set of commonly used image prepro-
cessing operators are employed as functions in EFLGP to allow
it to search for solutions that can effectively handle low-quality
image data. The performance of EFLGP is comprehensively
investigated on eight datasets of varying difficulty under the
original (clean), blur, low contrast, and noise scenarios, and
compared with a large number of benchmark methods using
hand-crafted features and deep features. The experimental results
show that EFLGP achieves significantly better or similar results
in most comparisons. The results also reveal that EFLGP is more
invariant than the benchmark methods to blur, low contrast and
noise.

Index Terms—Genetic Programming; Feature Learning; Rep-
resentation; Low-quality Image; Classification.

I. INTRODUCTION

IMAGE classification is an important task in machine learn-
ing and computer vision with a wide range of applications,

e.g., face images, hyperspectral images, medical images, and
vehicle images [1, 2, 3, 4]. Image classification is the task
of assigning class labels to images according to the content
in the images. Low-quality image classification is a task of

This work was supported in part by the Marsden Fund of New Zealand Gov-
ernment under Contracts VUW1509, VUW1615, VUW1913 and VUW1914,
the Science for Technological Innovation Challenge (SfTI) fund under grant
E3603/2903, the University Research Fund at Victoria University of Welling-
ton grant number 223805/3986, MBIE Data Science SSIF Fund under the
contract RTVU1914, and National Natural Science Foundation of China
(NSFC) under Grant 61876169.

The authours are with School of Engineering and Computer
Science, Victoria University of Wellington, Wellington 6140, New
Zealand (e-mail: Ying.Bi@ecs.vuw.ac.nz; Bing.Xue@ecs.vuw.ac.nz;
Mengjie.Zhang@ecs.vuw.ac.nz).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

classifying low-quality images. The quality of images may be
degraded during the processes of image acquiring, storage and
transmission [5]. For example, using an out-of-focus camera
or sensor may lead to obtaining blurring images. Typically,
the images with noise, blur, low brightness/contrast, and low
resolution are known as low-quality images [5]. Low-quality
image classification raises much attention in recent years due
to their wide applications ranging from autonomous driving
to safety surveillance [6]. However, this task is difficult due
to distortions, such as blur, noise and low contrast, and high
variations across images, such as scale, rotation, illumination,
deformation, and viewpoint variations. Many effective meth-
ods, including deep learning methods, have been developed for
image classification and achieved promising results in recent
years [7]. But their performances often degrade on images
with noise, blur or low contrast [5, 6, 8]. It is noted that
deep learning methods can obtain satisfactory results on low-
resolution images, such as on the MNIST dataset, in which
the image size is 28×28 [9]. This study, however, focuses on
the classification of noisy, blurring, or low-contrast images.

Typically, algorithms of image classification can be used
for classifying low-quality images. A traditional image clas-
sification procedure often includes the processes of image
preprocessing, feature extraction and image classification [10].
Image preprocessing, including image denoising/smoothing,
brightness correction or pixel transformation, can be employed
to improve the quality of the image [11]. However, when the
types and the levels of noise, blur or contrast are unknown, it
is difficult to manually perform image preprocessing. Feature
extraction is an essential step for image classification. Com-
monly used feature extraction methods include gray-level co-
occurrence matrix (GLCM) [12], local binary patterns (LBP)
[13], histogram of oriented gradients (HOG) [14], and scale-
invariant feature transform (SIFT) [15]. These image features
are often manually extracted and effective for particular tasks.
For example, LBP features are effective for texture classifica-
tion. Instead of manually extracting features, feature learning
methods can automatically learn informative features from
images for classification [7]. Feature learning methods are
more adaptive for different tasks and often achieve better
classification results than using manually extracted features
[7]. However, many feature learning methods are neural net-
work (NN)-based methods, which often need a large number
of training data and have fixed model complexity [16, 17].
In addition, very few feature learning methods can handle
images with noise, blur or low contrast. Several methods
have been developed for simultaneous image preprocessing
and feature learning, such as in [6, 18]. But these methods

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 2

focus on limited types and levels of quality degradations and
are examined on limited datasets. To this end, this study
develops a new approach based on genetic programming (GP)
for simultaneous image preprocessing and feature learning
from images with various levels of noise, blur or low contrast.

GP [19] is an evolutionary computation (EC) technique
and searches for the best solution using a population of
individuals/solutions via an evolutionary process. GP is able
to automatically evolve computer programs to solve problems
without the assumption of the solution structure [19, 20]. With
powerful search ability, GP has been successfully applied to
many tasks, e.g., symbolic regression, classification, schedul-
ing, and feature learning [16]. GP has a tree-based variable-
length individual representation, which allows it to evolve
solutions of variable depths to solve a problem. In feature
learning, the flexible representation enables GP to employ
image operators for feature extraction in many possible ways
[16, 21, 22]. Specifically, GP may find shallow/simple solu-
tions for easy tasks and deep/complex solutions for difficult
tasks, which is a limitation of many other techniques including
convolutional neural networks (CNNs).

Compared with the CNNs, which are well-developed and
popular techniques [7], GP is an emerging technique for fea-
ture learning. Several GP-based methods have been developed
for feature learning, such as [21, 22, 23, 24]. These methods
have achieved promising results in different image classifi-
cation tasks. However, very few GP-based feature learning
methods have been developed for classifying images with
noise, blur or low contrast. It is possible that the performances
of existing GP-based methods degrade on such low-quality
images, especially without image preprocessing.

Therefore, this study develops a GP-based feature learning
approach for low-quality image classification, specifically on
noisy, blurring or low-contrast images. To achieve this, a set
of image preprocessing operators are employed as functions to
form the internal nodes of GP trees. These operators include
the well-known mean filter, the max filter, the Gaussian-based
filters, and the Laplacian filter. These operators allow the
proposed approach to evolving solutions that can handle the
image distortions by smoothing images, adjusting the contrast
of images or detecting salient features. With these operators,
effective features can be easily learned from the low-quality
images. A new program structure, a new function set and a new
terminal set are developed in the proposed approach, which is
termed as EFLGP in short. The main contributions of this
paper are summarised as follows.

1) A new function set and a new terminal set are developed
for the EFLGP approach. The new function set has a
number of image-related operators, e.g. the mean filter,
the Sobel filter, the Gabor filter, and the Gaussian filter,
which can perform image preprocessing, smoothing or
edge detection. The operators can help preprocess an im-
age and extract important features from the image. Note
that in some operators, the parameters are developed as
ephemeral random constants (terminals), which can be
automatically selected during the evolutionary process.

2) A new program structure (individual representation) is
developed for the EFLGP approach to allow it to evolve

solutions of variable depths. The new representation
allows EFLGP to detect small regions from the large
input image, select image operators to process the re-
gions, and use feature extractors to extract effective
features with variable lengths. The output of an EFLGP
solution is a feature vector, where the dimensionality
of the feature vector is automatically determined by the
learning process.

3) Extensive experiments are conducted to investigate the
effectiveness of the EFLGP approach. The performance
of EFLGP is examined on eight different image datasets
under the original, blur, low contrast, and noise scenar-
ios. The results on the total 32 datasets show that EFLGP
achieves better performance than many hand-crafted
features, CNNs and deep features in most comparisons.
Furthermore, the analysis of the solutions found by
EFLGP shows high interpretability.

II. BACKGROUND AND RELATED WORK

A. Low-Quality Image Classification

Low-quality image classification is the task of classifying
images with low contrast, low resolution, noise, or blur. The
quality of images may be degraded in the processes of image
sampling, storage and transmission [5]. Algorithms of image
classification can be used for classifying low-quality images.
But recent work has shown that the classification performances
of many algorithms degrade on low-quality images. Zhou
et al. [5] reviewed two traditional methods and two CNN-
based methods for face detection on images with noise, blur,
or low contrast. The results showed that the methods using
hand-crafted and deep-learning-based features are sensitive to
these low-quality images. Hosseini et al. [25] investigated the
performance of Cloud Vision API, which was introduced by
Google for classifying images, on noisy images. The results
revealed that adding enough noise to an image, the class label
predicted by API can be completely different. Albukhanajer
et al. [26] addressed feature extraction in the noisy images
by developing a Pareto-based evolutionary multiobjective al-
gorithm to optimise the functionals in the trace transform.

A simple method to improve the classification performance
on low-quality image data is to preprocess images before fea-
ture extraction and classification. Image preprocessing can be
employed to improve the quality of the image. Image prepro-
cessing often includes image denoising/smoothing, brightness
correction or pixel transformation [11]. da Costa et al. [8]
investigated the impact of different types of noise on the
classification performance using LBP and HOG features and
the use of denoising methods for performance improvement.
The results showed that noise has a negative effect on classi-
fication performance and denoising methods can improve the
classification performance when the type of noise in the train-
ing and test images is the same. However, performing image
preprocessing such as denoising needs human intervention and
domain knowledge. In many images, the types and levels of
noise, blur or contrast are often unknown, which makes the
image preprocessing difficult.

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 3

Image preprocessing operations have been automatically
performed by being integrated into the feature learning pro-
cess. Diamond et al. [6] developed differentiable denoising,
deblurring and classification architecture based on CNN for
classifying noisy and blurring images. Cai et al. [18] devel-
oped resolution-aware deep CNN, which have convolutional
super-resolution layers and normal convolutional classifica-
tion layers, for fine-grained classification with low-resolution
images. Although these methods have achieved promising
results in particular types of low-quality images, their perfor-
mances could be further improved. In addition, these methods
addressed limited types and levels of low-quality images,
e.g., one type of low-quality images in [18]. Therefore, it
is necessary to develop a new approach to simultaneously
performing image preprocessing and feature learning for low-
quality image classification that involves various levels of blur,
low contrast or noise.

B. Image Features

Image features are important for solving image classifi-
cation. Well-known hand-crafted features include histogram,
domain-independent feature (DIF) [27], GLCM [12], LBP
[13], Gabor features [28], HOG [14], SIFT [29], and others
[30]. The histogram and DIF features are simple and domain-
independent features by calculating the statistics of the images
or small regions [27]. The GLCM and LBP features are
known for texture analysis. GLCM calculates the occurrences
of adjacent grey levels according to the predefined distance
and orientation and extracts the statistics such as contrast,
correlation and entropy as features [12, 31]. The LBP features
represent local patterns calculated from a binary code and
a predefined weight vector. The binary code is obtained by
comparing a pixel value with its neighbours. Many LBP vari-
ants have been developed, e.g., uniform LBP, to handle image
variations, e.g., rotation [13]. Gabor features are extracted
from the convolve images by a set of Gabor bank (wavelets)
filters with different orientations and scales. The Gabor feature
can capture saliency information [28]. The HOG and SIFT
features [14, 15] are similar by calculating the histogram of
gradient orientations. Different from HOG, SIFT performs
keypoint detection and produces 128 features from a keypoint.
A dense SIFT method has been developed to describe features
without keypoint detection to reduce computational complex-
ity [29]. Other methods such as speeded up robust features
(SURF), binary robust invariant scalable keypoints (BRISK)
and gradient location-orientation histogram (GLOH) have also
been developed for image description [30].

Image features can also be automatically learned from
images. A commonly used method is CNN, which learns deep
features through multiple layers of non-linear transformation
[9]. The typical operations in CNNs are convolution and
pooling. In CNNs, the weights of the convolutional filters
are often optimised using backpropagation to obtain effective
features for classification. In recent years, many variations
of CNNs have been developed to learn features, such as
AlexNet, GoogLeNet, VGGNet, ResNet, and DenseNet [7].
However, to train such a deep model often requires a large

number of computing resources and training instances [32].
To avoid training the deep models from scratch, pre-trained
CNNs with weights are often employed for solving new image
classification tasks. Liang [32] used the pre-trained VGG-16
and proposed a new approach to further optimise the pre-
trained AlexNet. Cen and Wang [33] developed a subspace
decomposition-based estimation using deep features extracted
from ResNet on ImageNet of original occlusion-free images
for classification. However, this may lead to the waste of
computing resources since some tasks do not need such a
deep model to solve. Instead of using NNs with a fixed
representation (model complexity), this study employs GP
with a flexible representation for feature learning.

C. GP-based Feature Learning for Image classification

Besides CNNs, GP has also been applied to learn features
for image classification [16, 34]. A GP solution often includes
a set of functions/operators (typically image operators), which
transform an input image into features. The flexible represen-
tation allows GP to evolve solutions of variable depths in many
possible ways for feature learning in image classification.
Atkins et al. [35] proposed a multi-tier GP method with an
image filtering tier, an aggregation tier and a classification
tier to learn features from the input image for classifica-
tion. Lensen et al. [36] designed a HoG+GP method to
simultaneously detect regions, extract HOG features from the
detected regions and construct a high-level feature for binary
classification. Bi et al. [37] presented a multi-layer GP method
with simultaneous region detection, feature extraction, feature
construction, and image classification. In [38], the use of the
Gaussian-based filters in GP was investigated for image classi-
fication. However, these methods have only been examined on
binary image classification tasks. Shao et al. [22] proposed a
multi-objective GP (MOGP) method to learn holistic features
for multi-class image classification. This method achieved
promising results in four different datasets. But it produced
a high-dimensional feature vector from an input image, which
needs additional dimensionality reduction. Price and Anderson
[39] proposed a GP method (GOOFeD) for image descriptor
learning based on a set of image transform operators, e.g.,
Canny, hough circle and Harris corner detector. Al-Sahaf et al.
[23] proposed a GP-criptorri method to learn rotation-invariant
texture features from pixel statistics for texture classification.
However, GP-criptorri learned a fixed number of features. A
dynamic GP approach [40] was developed to learn a flexible
number of texture features, which was more effective than GP-
criptorri. However, these methods have only been examined
on very limited types of image classification tasks, i.e., texture
image classification. Bi et al. [41] developed a GP approach
based on the current image descriptors to automatically learn
global and local features from images for classification. An
improved method can be found in [24] that learned global and
local features in a more flexible way for binary and multi-class
image classification.

Although GP-based feature learning methods have achieved
promising results in various image classification tasks, very
few of them have been typically developed for classifying

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 4

Initialisation Population

5-fold CV
evaluation

Selection &
Genetic operators Stop? Best individual

Linear SVM
Transformed
training set

Transformed
training set

Transformed
 test set

Linear SVM

Classifier
Classification

accuracy

Best individual

Best individual

Yes

No

Training
process

Test
process

Normalisation

Normalisation

Normalisation

Evaluated
population

Training set

Training set

Test set

Start End

Fig. 1. The overall algorithm.

images with blur, low contrast or noise. It is possible that
the performances of these methods degrade on such low-
quality images. Motivated by this, we develop a new GP-based
approach (i.e., EFLGP) to automatically learning effective
features for classifying images with blur, low contrast or noise.
To achieve this, a new program structure, a new function set
and a new terminal set are developed in the new GP-based
approach, which will be introduced in the following section.

III. PROPOSED APPROACH

In this section, the proposed EFLGP approach is described.
It starts with the description of the overall algorithm, followed
by the new program structure, the new function set and the
new terminal set.

A. Overall Algorithm

The proposed EFLGP approach aims to learn a set of
discriminative features for effective image classification. The
overall algorithm of EFLGP for image classification is shown
in Fig. 1. It has a training process and a testing process,
where the best GP individual/program/tree is learned from a
training set and is then tested on a test set. In the training
process, EFLGP generates a number of individuals/programs,
where each individual is an image descriptor. The training set,
having a number of labelled training images, is transformed
by a GP individual/tree and then normalised using the min-
max normalisation method. The normalised training set is fed
into a linear SVM to perform classification. The reasons of
using the linear SVM method are that it is commonly used
for image classification [42] and it is less expensive compared
with SVM with other kernel functions such as radial basis
function. To increase the generalisation ability, the stratified
5-fold cross-validation (5-fold CV) method is employed to
evaluate each GP tree. The fitness function of EFLGP is
the average classification accuracy of the 5 folds. During the
evolutionary process, the GP system uses genetic operators,
e.g. elitism, mutation and crossover, to update the population
and search for the best solution. When reaching the maximum
number of generations, the evolutionary process terminates and
the best GP tree is returned.

In the test process, the best individual is employed to
transform images of the training and test sets into feature

vectors. Then the transformed training and test sets are nor-
malised using the min-max normalisation method. Note the
normalisation for the test set is based on the training set.
The normalised training set is used to train a linear SVM
classifier, which is tested on the normalised test set. The test
classification accuracy is reported.

B. Program Structure

The proposed EFLGP approach is based on strongly typed
GP (STGP) [43] with a tree-based representation. In STGP,
it is necessary to specify an input type and an output type
for each function and an output type for each terminal. Each
function in STGP only takes the functions or terminals, whose
output type is the same as its input type, as the children nodes.
To integrate different types of functions and terminals into a
single tree, a new program structure is developed in EFLGP.
Fig. 2 shows the new program structure and an example
program that can be evolved by EFLGP.

RegionS

Image SYX

Gabor Mean

RegionR

Image WYX

Max

H

LoG1

RegionS

Image SYX

Gau

MAdd

MaxP MaxP

f θ

Region Detection

Input

Filtering/Preprocessing

Max-Pooling

Concatenation

σ

K1
K2K2

K1
Feature Extraction

Output

Hist Conca

Root

Fig. 2. The program structure and an example program/tree of the EFLGP
approach.

Different from those program structures of existing methods
[22, 38], the new program structure has seven layers, i.e.,
input, region detection, filtering/preprocessing, max-pooling,
feature extraction, concatenation, and output. The input layer
represents the inputs to a GP tree, such as an image and the
parameters for the image operators. The region detection layer
detects small regions from a large input image. The filter-
ing/preprocessing layer uses a number of image preprocessing
operators/filters to process the detected regions to obtain
better regions or features. The max-pooling layer samples

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 5

the input image to contain salient information. The feature
extraction layer extracts features from the processed regions.
The concatenation layer combines two feature vectors into a
vector and the output layer produces the final feature vector for
classification. It is noteworthy that the filtering/preprocessing
layer has many image preprocessing operators/filters, such as
the mean filter, the max filter, the Gaussian-based filters, the
Sobel filters, and the Laplacian filters, that can be used to
process the detected regions to improve the quality of the low-
quality images.

With the new program structure, a GP tree can be con-
structed as that in the left part of Fig. 2. In this example
program, the leaf nodes are constructed using the terminals
in the terminal set of EFLGP. They are Image, X , Y , W ,
H , S, K1, K2, σ, θ, and f , which will be described in
the next subsection. The internal nodes of the example tree
are constructed using the functions from the function set of
EFLGP. Based on the program structure, these functions are
region detection functions, filtering/preprocessing functions,
max-pooling functions, feature extraction functions, and fea-
ture concatenation functions. For example, in Fig. 2, the region
detection functions are RegionR and RegionS, the filter-
ing/preprocessing functions are Mean, Max, Sobel, Gau,
LoG1, Sobel, Gabor, the max-pooling function is MaxP ,
the feature extraction functions are Hist and Conca, and the
feature concatenation function is Root2. More details of these
functions will be described in next subsection.

In the proposed EFLGP approach, the tree depths for the
region detection and feature extraction layers are fixed. The
tree depths of the image filtering/preprocessing, max-pooling
and feature concatenation layers are flexible and automatically
evolved by the mutation and crossover operators during the
evolutionary process. This means that an evolved GP program
tree can be shallow or deep, which depends on the problem
being tackled. One assumption behind it is that when the
problem is easy, a simple program tree is sufficient to represent
the solution and when the problem is difficult, a complex
program tree is expected to be formed to solve it.

C. Function Set

The new function set consists of five different types of func-
tions, i.e., region detection functions, filtering/preprocessing
functions, max-pooling function, feature extraction functions,
and concatenation functions. These functions are summarised
in Tables I and II.

TABLE I
FUNCTION SET OF EFLGP

Function type Functions
Region Detection RegionR, RegionS
Filtering/Preprocessing Gau, GauD, Gabor, Lap, LoG1, LoG2,

Sobel, SobelX , SobelY , Med, Mean, Min,
Max, MAdd, MSub, ReLU , Sqrt, Abs

Max-Pooling MaxP
Feature Extraction Hist, Conca
Concatenation Root

Region Detection Functions: The RegionR function takes
five arguments, i.e, Image, X , Y , W , and H , as inputs and

returns a small rectangle region. The RegionS function takes
four arguments, i.e, Image, X , Y , and S, as inputs and returns
a small square region. The Image argument is the input image,
where the regions are detected from. The width and height of
the image are Imagewidth and Imageheight. The X and Y
arguments indicate the horizontal and vertical coordinates of
the top-left point of the detected region in the input image
(the coordination of the top-left point of the image is (0, 0)).
The W and H (or S) arguments determine the width and the
height (or size) of the detected region. With these arguments,
the RegionR function returns a small region: Image[X :
min(X+W, Imagewidth), Y : min(Y +H, Imageheight)].
The RegionS function returns a small region: Image[X :
min(X+S, Imagewidth), Y : min(Y +S, Imageheight)]. It
is noted that these two functions can reduce the dimensionality
of the produced features by selecting the most effective regions
from a large input image. An example is shown in Fig. 3 to
illustrate region detection. The two region detection functions
form the internal nodes of GP trees. During the evolutionary
learning process, the region detection operators and their
parameter values can be changed or modified via crossover
and mutation in order to detect better regions for feature
description.

Region
detection Detected region

(X, Y)
W

H

Fig. 3. Example to illustrate region detection.

Filtering/Preprocessing Functions: These functions can
change the pixel values of an image by performing filtering,
preprocessing or arithmetic operations. To show the effect
of these filtering/preprocessing functions, an example image
and the images after the corresponding functions are shown
in Fig. 4. The Gau function is widely used for image
smoothing, which performs filtering/preprocessing using a
filter generated by a two-dimensional Gaussian function. The
standard deviation of the Gaussian function σ is a terminal of
EFLGP. The GauD function can find edges in the image by
performing the filtering using the derivatives of the Gaussian
filter. The order of the derivative along the X axis is o1 and
the order of the derivative along the Y axis is o2. The Gabor
function can capture salient visual information, such as spatial
localisation and orientation selectivity [28]. The filter in Gabor
is generated from the product of a Gaussian function with
a complex harmonic function. The Gabor function takes an
image, θ and f as inputs and returns an image. θ is the
orientation in radians of the harmonic function and f is the
spatial frequency of the harmonic function. They are the most
important parameters of Gabor. The Lap function can detect
the flat area or the area with significant edges in an image by
performing Laplacian filtering to the image. The LoG1 and
LoG2 functions perform Laplacian of Gaussian filtering to
the image. The standard deviation of the Gaussian function is
1 in LoG1 and 2 in LoG2. The results produced by LoG1 and
LoG2 are less sensitive to noise compared with that by Lap.
The SobelX and SobelY functions perform edge detection

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 6

along with the horizontal or vertical directions, respectively.
The Sobel function calculates the gradient magnitude of the
results produced by SobelX and SobelY . The Med function
performs non-linear median filtering and the Mean filter
performs linear mean filtering. Both of them can be employed
for denoising/smoothing by replacing the pixel value with the
median/mean value of its neighbours. The Max and Min
functions perform the morphological filtering by replacing the
pixel value with the maximum and minimum value of its
neighbours, respectively.

TABLE II
FUNCTIONS OF EFLGP

Function Input Output Description
Root 2 vectors 1 vector Concatenate two vectors into a vector
Hist 1 image 1 vector Extract histogram features from small win-

dow of the image
Conca 1 image 1 vector Concatenate each rows of the image into a

vector
MaxP 1 image,

K1, K2

1 image Max-pooling with kernel size of K1×K2

Gau 1 image, σ 1 image Gaussian filter with standard deviation σ
GauD 1 image, σ,

o1, o2
1 image Derivatives of Gaussian filter

Gabor 1 image, θ,
f

1 image Gabor filter with θ orientation and f fre-
quency

Lap 1 image 1 image Laplacian filter
LoG1 1 image 1 image Laplacian of Gaussian filter with σ = 1
LoG2 1 image 1 image Laplacian of Gaussian filter with σ = 2
Sobel 1 image 1 image Sobel edge detector
SobelX 1 image 1 image Sobel filter along the X axis
SobelY 1 image 1 image Sobel filter along the Y axis
Med 1 image 1 image Median filter
Mean 1 image 1 image Mean filter
Min 1 image 1 image Min filter
Max 1 image 1 image Max filter
MAdd 2 images 1 image Add two images with different sizes.
MSub 2 images 1 image Subtract two images with different sizes
ReLU 1 image 1 image Return max(0, pixel value) for each

pixel
Sqrt 1 image 1 image Sqrt each pixel value in the image, return

1 if the pixel value is negative or zero.
Abs 1 image 1 image Return |pixel value| for each pixel
RegionR 1 image, X ,

Y , W , H
1 image Return a small region of the image

RegionS 1 image, X ,
Y , S

1 image Return a small square region of the image

The other functions, MAdd, MSub, ReLU , Sqrt, and Abs,
are employed in the image filtering process to rescale the range
of the pixel values of an image or to generate new features.
As region detection is performed before image filtering, the
MAdd and MSub functions are employed to perform the add
and subtract operations on two regions with different sizes.
These two functions find the minimum size of the two input
regions, cut the two regions according to the minimum sizes
and perform Add or Subtract to the two regions. These two
functions may generate informative features by enhancing or
complementing different regions from the same image. The
ReLU , Sqrt and Abs functions are used for rescaling the
input image and transforming the pixel values from negative
to zero or positive, which might enhance the effect of the
filtering operations.

Max-Pooling Function: The max-pooling function is com-
monly used in object recognition and responses robust to the
clutter or multiple stimuli in the receptive filed [22]. The
MaxP function in EFLGP takes an image and two integers
as inputs and returns a smaller image, which can reduce the
dimensionality of the feature vector to avoid producing a

 Original Gau GauD Gabor Lap

 LoG1 LoG2 Sobel Mean Max

Fig. 4. An example image of lotus flower and the output images convolved
by the corresponding filters (the top-left image is the original image).

high-dimensional feature vector. The MaxP function samples
the maximum value from a sliding window in the image
and replaces this window with the maximum value. The two
integers K1 and K2 represent the kernel size of MaxP .

Feature Extraction Functions: The two feature extraction
functions, i.e., Hist and Conca, produce different features
from the input image. The Hist function extracts 10 histogram
features from each 5 × 5 sliding window of the input image.
The final outputs of Hist are a set of histogram features. The
Conca function concatenates each row of the images into a
vector. This function does not perform any feature transfor-
mation but directly uses the pixel values of the image since
the input images for Hist and Conca can be processed by
different filtering/preprocessing and pooling functions. Note
that the children node of the Hist and Conca functions is the
MaxP function.

Concatenation Function: The concatenation function Root
concatenates two vectors into a vector. This function can form
the root node of the GP program by using two of the Hist,
Conca and Root as its children nodes. With this function,
variable numbers of features can be combined to form the
output features for image classification.

D. Terminal Set

Terminals can be used to form the leaf nodes of GP trees.
The details of these terminals are listed in Table III. They
are Image, X , Y , S, W , H , K1, K2, θ, f , σ, o1, and
o2. The Image terminal represents the input image, which is
normalised by dividing 255. The X , Y , S, W , and H terminals
indicate parameters of the RegionR and RegionS functions.
The θ and f terminals indicate parameters of the Gabor
function. The σ terminal indicates the standard deviation of
a Gaussian function, and the o1 and o2 terminals represent
parameters of the GauD function. The value ranges of these
parameters are listed in Table III. The values of these terminals
are randomly initialised according to their ranges and can be
changed by mutation operator during the evolutionary process.

IV. EXPERIMENT DESIGN

A large number of experiments are conducted to evaluate
the performance of the proposed EFLGP approach on dif-
ferent image classification tasks of varying difficulty under
the original, blur, low contrast, and noise scenarios. To show
the effectiveness of the proposed EFLGP approach, a set of
benchmark methods are employed for comparisons.

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 7

FEI_1 FEI_2 FLOWER VGDB JAFFE

EYALEKTHORL

Fig. 5. Example images from the JAFFE, YALE, FEI 1, FEI 2, SCENE, TEXTURE, FLOWER and VGDB datasets.

TABLE III
TERMINAL SET

Terminal Type Description
Image Image The input grey-scale image (2D array containing

pixel values in the range [0, 1])
X , Y Integer The coordinates of the top-left point of a detected

region. They are in the range [0, Imagewidth−20]
or [0, Imageheight − 20]

S Integer The size of a square region detected by the
RegionS function. It is in the range [20, 50]

W , H Integer The width and height of a rectangle region detected
by the RegionR function. They are in the range
[20, 50]

K1,
K2

Integer The kernel size of the MaxP function. They are in
the range [2, 10] with a step of 2

θ Float The orientation of the Gabor filter. It is in the range
[0, 7π/8] with a step of π/8 [28]

f Float The frequency of the Gabor filter. It equals to
π
2√
2
v ,

where v is an integer in the range [0, 4] [28]
σ Integer The standard deviation of the Gaussian filter. It is

in the range [1, 3]
o1, o2 Integer The orders of the Gaussian derivatives. They are in

the range [0, 2]

A. Original Datasets

Eight image classification datasets of varying difficulty are
employed to examine the performance of the proposed EFLGP
approach. They are FEI 1 [44], FEI 1 [44], FLOWER [45],
VGDB [46], JAFFE [47], ORL [48], KTH [49], and EYALE
[50]. These datasets include facial expression classification
(FEI 1, FEI 2, JAFFE), face recognition (ORL, EYALE),
texture classification (KTH), object classification (FLOWER),
and painting classification (VGDB), which are representative
tasks in image classification.

The FEI 1 and FEI 2 datasets contain 200 face images
of Brazilian with different appearances, hairstyle and adorns
in natural and smile expressions [44]. The VGDB dataset is
from the VGDB-2016 dataset for identification of Vincent Van
Gogh’s paintings [46]. This task is very difficult because all the
images are abstract without any particular objects inside. The
FLOWER dataset has the Lotus and Sunflower classes from the
Caltech 101 dataset [45], which is an object classification task.
The JAFFE dataset contains seven different expressions of ten
Japanese women [47]. The ORL dataset [48] is a small dataset
of face recognition, which has 40 different classes of faces
with open or closed eyes, smiling or nonsmiling, and glasses
or nonglasses. The KTH dataset has ten classes of texture
images sampled in nine scales with three poses under four
lighting conditions. The EYALE dataset [50] is a large dataset,

having 2,424 face images of 38 classes. The face images have
high variations in illumination conditions and pose.

The FEI 1, FEI 1, FLOWER, VGDB, and KTH datasets
are split using a commonly used proportion, i.e., 75% images
for training and 25% for testing [51]. The JAFFE dataset uses
20 images per class for training and the remaining images
for testing because it only has about 30 images per class.
The ORL dataset has 7 images per class for training and 3
images per class for testing. The EYALE dataset is a large
dataset so that about 50% images are used for training and
the remaining images are used for testing. The information
about these datasets, including the image size, the number of
classes, the number of images in the training and test sets, are
listed in Table IV. Several example images of these datasets
are shown in Fig. 5.

TABLE IV
DATASET PROPERTIES

Name Image size #Class Training set Test set
FEI 1 180 × 130 2 150 50
FEI 2 180 × 130 2 150 50
VGDB 200 × 200 2 247 83
FLOWER 100 × 100 2 112 38
JAFFE 128 × 128 7 140 73
ORL 92 × 112 40 280 120
KTH 100 × 100 10 600 210
EYALE 100 × 100 38 1,209 1,213

 Blur (σ=1) Blur (σ=2) Blur (σ=4) Blur (σ=6)

 Contrast ([0, 0.8]) Contrast ([0, 0.6]) Contrast ([0, 0.4]) Contrast ([0, 0.2])

 Noise (σ2=0.01) Noise (σ2=0.1) Noise (σ2=0.5) Noise (σ2=1)

Original Image

Fig. 6. An example image (left) and the images after corresponding blurring,
lowering contrast and adding noise.

It is noted that there are many other datasets with a large
number of images that the proposed approach has not been
examined on. Different from the deep learning methods, which
can be sped up by the graphics processing unit (GPU) imple-

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 8

mentation, evolutionary computation techniques including the
GP-based methods are currently implemented on the central
processing unit (CPU). Since the focus of this paper on low-
quality image classification and a large number of experiments
are conducted, we only test the proposed EFLGP approach on
the datasets with a relatively small number of images because
of the high computational cost. It is noteworthy that the ex-
periments on these eight original/clean datasets are conducted
to show the effects of the different levels of blur, contrast and
noise on the classification performance degradation.

B. Low-Quality Datasets

Low-quality datasets are formed based on these eight
datasets and are used in the experiments. For better comparing
and analysing the effects of blur, noise and low contrast, we
add them separately into the datasets. To increase the difficulty,
different levels of blur/low contrast/noise are randomly added
to the training and test sets. It is also worthy to investigate
the performances of the proposed approach and the baseline
methods on classifying images with more than one type of
distortions, i.e., more challenging tasks. Due to the page limit,
we compare the classification performance of the proposed
approach with the baseline methods on two datasets with
multiple types and levels of blur/low contrast/noise in the
supplementary materials.

Blurring Datasets: Blur image datasets are formed by
using Gaussian blur with different standard deviations (σ) to
randomly deal with each image in the original dataset. Based
on [5], four different values, i.e., 1, 2, 4, and 6, are employed
in the Gaussian blur filter. For each image, it has a chance
of 25% to be convolved by one of the four filters. Example
images are shown in the first row of Fig. 6.

Low-Contrast Datasets: Low-contrast images are obtained
by adjusting the contrast/brightness of the image. Four differ-
ent levels of contrast reduction are utilised to lower the range
of the pixel values in an image. The four levels are set as
[0, 0.8], [0, 0.6], [0, 0.4], and [0, 0.2] according to [5]. For
each image, it has 25% proportion to be adjusted by one of
the four levels. Example images are shown in the second row
of Fig. 6, where distinguishing the object and the background
is difficult when the image has the lowest contrast.

Noisy Datasets: Adding Gaussian noise to the original
images forms the noisy datasets. Four types of Gaussian noise
with different variances, i.e., 0.01, 0.1, 0.5, and 1 [5], are
employed and each has a chance of 25% to be added to an
image. As example images shown in the third row of Fig. 6, it
is obvious that high-level noise makes the object in the image
difficult to recognise.

C. Benchmark Methods

To show the effectiveness of EFLGP, 15 effective methods
are used for comparisons. These methods include hand-crafted
features, two CNNs, and deep features.

Hand-Crafted Features: Seven well-known feature extrac-
tion methods are employed to extract features for classifica-
tion. These methods are DIF [27], Histogram, GLCM [12],
Gabor [28], SIFT [15], HOG [14], and LBP [23], which have

been introduced in Section II. For Gabor and HOG, which
produce a large number of features, the mean value of every
small grid is sampled to form the final feature vector [22].
More details of these methods are listed in Table V.

TABLE V
HAND-CRAFTED FEATURES

Method Description
DIF Domain independent features [27]
Histogram 256 histogram features based on the pixel values of the image
GLCM GLCM features [12]. Four different orientations are used and

the contrast, dissimilarity, homogeneity, energy, correlation,
and angular second moment are extracted from each GLCM

Gabor Gabor bank features. Forty Gabor filters with eight different
orientations at five scales are used [28]. The mean value of
each 32× 32 grid is extracted to form the features

SIFT 128 SIFT features. The whole image is used as a keypoint
[29]

HOG A HOG image is generated by using the HOG descriptor with
the same parameter settings in [14]. The mean value of each
20× 10 grid is extracted from the HOG image

LBP 256 LBP histogram features [13]. In LBP, the number of
neighbours is set to 8 and the radius is set to 1.5

CNNs: The first CNN method is the well-known LeNet-5
and its main hyper-parameters are the same as those in [52].
The ReLU activation function is employed and the final layer
uses the commonly used softmax for classification. The second
CNN method has two convolutional layers, one max-pooling
and two fully-connected layers. The first convolutional layer
contains 32 filters with a kernel size of 3× 3 and the second
convolutional layer has 64 filters with a kernel size of 3× 3.
The max-pooling has a kernel size of 4× 4 without padding.
Dropout is added to the pooling layer and the first fully-
connected layer with 0.25 and 0.5 probabilities, respectively,
to avoid overfitting [53]. The activation function is ReLU and
the softmax is used for classification. The loss function is
cross-entropy and the adaptive subgradient method is used to
train CNNs [54]. In LeNet-5 and CNN, the batch size is 128
according to [55] and the number of epochs is 500. Early
stopping is employed to avoid overfitting. The training will be
stopped if the training accuracy reaches 100%.

Deep Features: Five pre-trained deep CNNs are used to ex-
tract features from the dataset and the extracted deep features
are fed into a linear SVM to perform classification [33, 56].
The deep features are from the pre-trained models of VGG,
Xception, InceptionV3, ResNet, and DenseNet, respectively
[57]. These models were trained on the famous large-scale
dataset, ImageNet [58], which is a 1000-class dataset. We
choose these models because they are easily obtained and
are commonly used [33, 56]. The deep features are extracted
by removing the final or final two layers of these models.
Because some datasets in this study are very small, e.g., the
ORL dataset only has 6 images per class for training, it is
impossible to train these deep models using such a small
dataset. Therefore, these pre-trained models are used as feature
extractors. We have also chosen three deep models pre-trained
on a large face dataset, VGG-Face [59] as feature extractors
and compared the performance of the proposed method with
those deep models on the eight datasets. Due to the page limit,
the results of these three deep models are discussed in the
supplementary materials.

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 9

D. Parameter Settings

The implementation of the EFLGP approach is based on the
DEAP (Distributed Evolutionary Algorithm in Python) [60]
package, which is a popular evolutionary algorithm package
in Python. The parameter settings for EFLGP are based on
the commonly used parameter settings of the GP community
[21]. The population size is 500 and the maximum number
of generations is 50. The crossover rate is 0.8, the mutation
rate is 0.19 and the elitism rate is 0.01. The selection method
is Tournament selection with size seven. The tree depth is set
between 2 and 10. The population generation method is the
ramped half-and-half method.

The features learned by EFLGP, the hand-crafted features
and the deep features are fed into the linear SVM to perform
classification, respectively. The linear SVM is implemented
in the scikit-learn [61] package with its default parameter
settings for simplification. Follow the convention of EC, the
experiments of the EFLGP approach run 30 independent times
on each dataset. To achieve a fair comparison, the benchmark
methods also run 30 independent times on each dataset. The
mean test accuracy and the standard deviation obtained by
these methods are reported.

V. RESULTS AND DISCUSSIONS

This section discusses the results obtained by EFLGP and
the baseline methods on the eight datasets of original images
and images with different levels of blur, low contrast and noise.
The mean accuracy and standard deviation obtained by these
methods on the test sets of the eight datasets are listed in
Tables VI and VII. Each block of these two tables shows the
results on one dataset under the four scenarios. To show the
significance of performance improvement, Wilcoxon rank-sum
test with a 5% significance level is conducted to compare
EFLGP with a baseline method. In Tables VI and VII, the
symbols “+”, “=” and “–” denote that EFLGP achieves signif-
icantly better, similar or significantly worse results than/to the
compared method. The final row of each block summaries the
results of the significance test on every dataset. The overall
summary of the significance test is listed in Table VIII.

A. Results on Original Datasets

The second column of Tables VI and VII lists the clas-
sification results of the EFLGP approach and the 14 base-
line methods on the original dataset. Compared with using
the seven types of hand-craft features, using the features
learned by EFLGP achieves significantly better results in 53
comparisons out of the total 56 comparisons on the eight
datasets. Compared with the two CNNs, EFLGP achieves
significantly better results in 11 comparisons and similar
results in 3 comparisons out of the total 16 comparisons.
EFLGP achieves significantly better performance in 36 out of
the 40 comparisons to the methods using five different types
of deep features. Overall, EFLGP achieves significantly better
performance in 100 comparisons and similar performance in
6 comparisons out of the total 112 (14× 8) comparisons. The
results show that EFLGP achieves better classification results
than the 14 baseline methods using hand-crafted features,

TABLE VI
CLASSIFICATION ACCURACY (%) OF EFLGP AND 14 BASELINE METHODS

ON FEI 1, FEI 2, FLOWER, AND VGDB DATASETS UNDER THE FOUR
SCENARIOS

Mean+St.dev Mean+St.dev Mean+St.dev Mean+St.dev
FEI 1 Original Blur Low contrast Noise
DIF 61.13±4.97+ 62.93±5.89+ 59.80±6.46+ 52.33±2.97+
Histogram 48.13±3.44+ 50.07±1.23+ 55.80±5.24+ 47.27±2.80+
GLCM 49.67±0.76+ 51.40±2.47+ 47.60±7.67+ 50.07±2.49+
Gabor 71.60±8.01+ 72.00±6.93+ 74.60±9.38+ 71.20±9.86+
SIFT 82.00±0.00+ 70.00±0.00+ 80.00±0.00+ 60.00±0.00+
HOG 94.00±0.00+ 88.00±0.00+ 92.00±0.00+ 49.47±3.10+
LBP 62.47±3.55+ 62.40±5.97+ 59.33±3.69+ 48.60±3.11+
LeNet-5 94.40±1.99+ 93.40±0.93+ 95.20±1.86– 80.20±10.9+
CNN 96.00±1.58= 91.00±1.36+ 91.20±2.61+ 77.80±14.57+
VGG 50.00±0.00+ 50.00±0.00+ 50.00±0.00+ 50.00±0.00+
Xception 75.73±11.67+ 52.67±3.12+ 61.07±11.42+ 54.00±4.20+
InceptionV3 86.00±3.93+ 70.87±11.16+ 78.87±5.40+ 53.20±3.04+
ResNet 50.00±0.00+ 50.00±0.00+ 50.00±0.00+ 50.00±0.00+
DenseNet 57.53±6.98+ 50.00±0.00+ 50.60±1.59+ 52.60±3.16+
EFLGP 96.0±1.58 95.27±1.7 93.93±2.32 87.20±2.91
Overall 13+, 1= 14+ 13+, 1– 14+

FEI 2 Original Blur Low contrast Noise
DIF 62.80±6.21+ 62.40±7.03+ 65.20±8.04+ 54.67±7.49+
Histogram 50.13±2.57+ 51.80±1.32+ 45.80±4.41+ 46.00±4.98+
GLCM 50.13±0.73+ 50.27±3.27+ 48.20±3.46+ 48.93±4.83+
Gabor 65.67±5.23+ 66.47±5.93+ 68.67±5.42+ 60.60±6.17+
SIFT 78.00±0.00+ 64.00±0.00+ 82.00±0.00+ 48.00±0.00+
HOG 88.00±0.00+ 76.00±0.00+ 92.00±0.00= 47.73±3.31+
LBP 57.60±3.62+ 55.67±3.68+ 53.67±3.28+ 53.07±5.67+
LeNet-5 90.80±1.86+ 86.80±12.64= 86.00±12.34+ 72.20±1.69+
CNN 86.20±2.64+ 85.40±12.07+ 86.80±3.04+ 73.00±3.43+
VGG 50.00±0.00+ 50.00±0.00+ 50.00±0.00+ 50.00±0.00+
Xception 69.60±11.58+ 51.80±2.64+ 53.80±3.17+ 53.53±4.83+
InceptionV3 84.40±5.21+ 68.47±10.22+ 78.53±9.48+ 58.33±2.47+
ResNet 50.00±0.00+ 50.00±0.00+ 50.00±0.00+ 50.00±0.00+
DenseNet 59.13±6.23+ 50.27±0.69+ 51.33±2.80+ 52.67±2.37+
EFLGP 92.60±3.11 91.73±1.95 92.33±2.93 77.73±4.13
Overall 14+ 13+, 1= 13+, 1= 14+

FLOWER Original Blur Low contrast Noise
DIF 80.53±6.05+ 75.79±6.35+ 79.56±6.13+ 68.86±8.18+
Histogram 54.82±2.94+ 56.05±3.18+ 52.37±3.93+ 55.70±4.32+
GLCM 58.16±9.66+ 50.70±5.73+ 54.65±6.17+ 44.47±5.80+
Gabor 66.40±8.92+ 66.58±11.1+ 69.74±8.54+ 68.60±5.21+
SIFT 86.84±0.00= 78.95±0.00= 86.84±0.00– 76.32±0.00+
HOG 70.52±1.27+ 52.02±2.99+ 60.27±1.27+ 52.89±3.27+
LBP 66.58±2.60+ 54.30±2.80+ 71.23±4.68+ 54.38±4.05+
LeNet-5 84.74±1.60+ 81.58±2.39– 83.95±2.79= 80.27±1.79=
CNN 88.15±1.79= 81.05±1.07= 83.68±3.34= 80.26±1.34=
VGG 50.35±5.34+ 49.65±5.34+ 51.40±5.16+ 51.05±5.24+
Xception 82.02±8.61= 72.89±9.28+ 74.74±8.42+ 62.46±8.66+
InceptionV3 81.58±0.00+ 73.77±4.06+ 75.35±3.49+ 65.70±0.48+
ResNet 51.75±5.04+ 51.05±5.24+ 50.35±5.34+ 52.45±4.73+
DenseNet 80.18±3.22+ 70.88±9.57+ 66.05±7.58+ 78.07±4.60=
EFLGP 86.75±3.62 80.35±3.95 83.16±3.36 80.35±3.43
Overall 11+, 3= 11+, 2=, 1– 11+, 2=, 1– 11+, 3=

VGDB Original Blur Low contrast Noise
DIF 55.62±10.42+ 57.75±8.81+ 50.36±10.25+ 50.80±11.92+
Histogram 62.21±0.80+ 62.21±0.59= 62.65±0.00+ 55.18±8.38+
GLCM 53.33±9.97+ 54.82±10.59+ 52.25±7.63+ 54.38±11.86=
Gabor 56.02±8.42+ 54.26±6.80+ 56.67±7.32+ 54.66±11.00=
SIFT 60.24±0.00+ 61.45±0.00+ 61.45±0.00+ 66.27±0.00–
HOG 57.23±0.69+ 60.44±1.10+ 57.03±2.04+ 56.99±6.30+
LBP 80.56±3.28– 62.05±8.24= 80.16±2.60– 60.12±9.71=
LeNet-5 58.07±4.93+ 58.07±2.38+ 47.47±12.61+ 59.52±2.40=
CNN 61.81±2.05+ 63.26±2.07= 58.43±7.93+ 60.84±3.21=
VGG 53.37±12.4+ 54.22±12.13+ 63.53±3.55+ 53.37±12.4=
Xception 61.45±8.86= 56.18±9.68+ 72.29±0.00– 52.93±10.61+
InceptionV3 69.32±1.21– 65.90±8.89– 79.52±0.00– 64.42±0.69–
ResNet 52.53±12.61+ 53.37±12.4+ 56.87±6.30+ 55.06±11.79=
DenseNet 60.48±8.09+ 55.26±11.18+ 72.29±0.00– 58.88±6.39=
EFLGP 66.47±4.52 63.98±3.80 66.63±4.41 60.72±3.92
Overall 11+, 1=, 2– 10+, 3=, 1– 10+, 4– 4+, 8=, 2–

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 10

learned features (by LeNet-5 and CNN), and deep features
in almost all the comparisons on the original image dataset.

In terms of different types of datasets, EFLGP performs
superiorly on facial expression classification and face classifi-
cation datasets, i.e., FEI 1, FEI 2, JAFFE, ORL, and EYALE.
On these five datasets, EFLGP achieves significantly better or
similar performance than any of the baseline methods except
for InceptionV3 on ORL. EFLGP can capture discriminative
information from face images for effective classification. The
new designs of EFLGP in the program structure and the
function set allow it to detect minor differences among dif-
ferent expressions using region detection functions and gener-
ate informative features using image operators. Consistently,
EFLGP performs well on the object dataset, FLOWER, which
has images with high variations in rotation, scale, and illumi-
nation condition. On FLOWER, EFLGP achieves significantly
better or similar performance than any of the baseline methods.
The results indicate that the features learned by EFLGP can
handle image variations in order to obtain good classification
performance. The performance of EFLGP on VGDB is better
than 11 methods and worse than two methods, i.e., LBP and
InceptionV3. VGDB is a challenging task of understanding the
painting style rather than objects. This abstract information
is difficult for EFLGP to learn using the region detection
functions and the image filtering functions. EFLGP performs
worse than LBP, CNN and InceptionV3 and better than the
other 11 baseline methods on the KTH dataset, which is
a texture classification dataset. EFLGP can learn effective
features for classifying texture images, but the features are
not as good as the LBP features, the features learned by
CNN and the deep features of InceptionV3. To sum up, the
detailed analysis indicates that EFLGP is more effective for
learning features for facial expression or object classification
than texture and painting classification. The reason may be that
EFLGP learns local features from the automatically detected
regions, which are often more effective for object classification
than texture classification.

B. Results on Low-Quality Datasets

In the experiments, the low-quality datasets have images
with different levels of blur, low contrast and noise, respec-
tively. The classification results of the eight datasets under the
three scenarios are listed in Tables VI and VII. To better show
the effects of different factors in classification performance,
the mean accuracy (%) of EFLGP and the eight best baseline
methods (i.e., SIFT, HOG, LBP, LeNet-5, CNN, Xception,
InceptionV3, and DenseNet) are drawn in Fig. 7. It is noted
that only eight best baseline methods (three hand-crafted
features, two CNNs and three deep features) are drawn in Fig.
7 for simplification and a clear plot.

On the eight blurred datasets, EFLGP achieves significantly
better or similar results in 106 comparisons out of the total
112 comparisons. EFLGP achieves significantly better results
than any of the baseline methods on the FEI 1, FEI 2, and
JAFFE datasets. EFLGP ranks the second on the VGDB, ORL
and EYALE datasets and ranks the third on the FLOWER
and KTH datasets among all these methods. As a result,

TABLE VII
CLASSIFICATION ACCURACY (%) OF EFLGP AND 14 BASELINE METHODS

ON JAFFE, ORL, KTH, AND EYALE DATASETS UNDER THE FOUR
SCENARIOS

Mean+St.dev Mean+St.dev Mean+St.dev Mean+St.dev
JAFFE Original Blur Low contrast Noise
DIF 28.22±8.57+ 24.61±7.44+ 28.13±1.72+ 16.21±2.25+
Histogram 20.28±1.16+ 12.38±0.57+ 13.93±1.53+ 19.04±2.08+
GLCM 15.02±2.23+ 16.17±2.40+ 14.98±1.29+ 16.85±2.67+
Gabor 26.30±6.16+ 27.31±5.60+ 31.56±1.74+ 21.83±5.31+
SIFT 46.58±0.00+ 27.40±0.00+ 46.58±0.00+ 17.81±0.00+
HOG 69.45±2.55+ 47.63±1.75+ 22.74±0.68+ 25.98±2.51+
LBP 21.97±2.26+ 16.99±2.09+ 19.59±2.13+ 18.18±3.01+
LeNet-5 75.75±2.42+ 57.76±3.58+ 17.99±1.06+ 45.57±3.31+
CNN 79.27±1.89= 56.21±2.98+ 17.99±1.43+ 43.34±4.38+
VGG 14.25±1.17+ 13.38±1.64+ 15.12±1.99+ 13.43±1.81+
Xception 41.37±12.29+ 18.72±4.75+ 16.39±2.20+ 21.19±4.60+
InceptionV3 74.70±2.89+ 28.54±7.49+ 17.54±1.85+ 24.11±1.67+
ResNet 17.44±4.91+ 16.03±3.10+ 14.84±1.53+ 13.75±1.71+
DenseNet 35.94±13.0+ 21.23±5.87+ 15.80±2.09+ 23.52±8.92+
EFLGP 79.82±2.97 66.66±3.42 77.17±3.16 53.88±3.12
Overall 13+, 1= 14+ 14+ 14+

ORL Original Blur Low contrast Noise
DIF 77.28±8.43+ 76.67±6.12+ 41.92±0.66+ 24.64±7.88+
Histogram 93.33±0.00+ 71.78±0.29+ 12.89±0.52+ 15.72±1.36+
GLCM 7.33±3.07+ 8.28±4.69+ 3.03±1.06+ 3.39±1.27+
Gabor 16.25±5.97+ 17.42±7.04+ 34.97±1.6+ 10.11±3.79+
SIFT 95.83±0.00+ 92.50±0.00+ 95.83±0.00– 49.17±0.00+
HOG 92.53±0.15+ 84.94±0.21+ 21.67±0.00+ 23.64±1.11+
LBP 94.75±0.62+ 56.56±1.56+ 92.53±0.56– 10.64±1.57+
LeNet-5 93.36±1.74+ 94.75±1.78+ 9.97±1.30+ 82.19±15.26+
CNN 95.83±0.79+ 96.94±1.12– 10.05±1.07+ 69.06±23.87+
VGG 5.61±2.95+ 3.28±1.37+ 2.64±0.49+ 2.42±0.55+
Xception 49.25±16.94+ 10.42±14.72+ 4.75±3.70+ 8.72±7.68+
InceptionV3 99.86±0.31– 40.22±20.38+ 6.56±4.45+ 36.97±0.71+
ResNet 10.14±8.25+ 5.50±3.41+ 2.58±0.34+ 2.67±0.51+
DenseNet 59.00±21.34+ 15.81±24.62+ 5.64±3.61+ 17.06±9.39+
EFLGP 97.28±1.09 95.86±1.13 90.17±3.45 86.42±2.41
Overall 13+, 1– 13+, 1– 12+, 2– 14+

KTH Original Blur Low contrast Noise
DIF 27.52±7.44+ 25.00±9.20+ 32.79±0.83+ 17.98±6.59+
Histogram 42.41±2.06+ 26.33±3.08+ 13.33±0.92+ 20.43±1.87+
GLCM 22.51±9.68+ 25.08±2.54+ 10.65±1.61+ 14.54±2.10+
Gabor 16.97±7.58+ 15.10±7.12+ 27.30±0.97+ 14.91±5.54+
SIFT 71.43±0.00+ 53.33±0.00+ 75.24±0.00– 26.67±0.00+
HOG 44.68±3.16+ 37.78±0.88+ 13.84±0.72+ 15.57±2.52+
LBP 90.03±1.20– 51.05±2.72+ 90.48±2.08– 36.22±3.23+
LeNet-5 72.97±2.46+ 67.25±3.03– 14.65±0.95+ 43.33±2.52=
CNN 81.62±1.64– 65.17±2.78– 16.73±1.80+ 46.92±2.23–
VGG 15.09±5.01+ 11.38±1.89+ 9.75±0.92+ 12.14±2.89+
Xception 62.19±12.18+ 28.64±10.5+ 19.05±9.43+ 30.73±7.41+
InceptionV3 84.35±3.72– 37.71±11.61+ 19.38±7.13+ 43.62±2.56–
ResNet 15.06±4.89+ 12.33±3.25+ 10.82±1.08+ 10.11±1.18+
DenseNet 45.54±13.97+ 19.60±7.87+ 14.35±2.99+ 27.78±7.12+
EFLGP 80.60±2.30 61.22±2.35 61.22±4.97 42.63±2.76
Overall 11+, 3– 12+, 2– 12+, 2– 11+, 1=, 2–
EYALE Original Blur Low contrast Noise
DIF 8.77±1.74+ 7.27±2.13+ 14.75±0.32+ 4.89±1.74+
Histogram 8.46±0.74+ 5.03±0.45+ 3.70±0.16+ 3.80±0.42+
GLCM 3.55±1.35+ 3.01±0.41+ 2.88±0.18+ 2.84±0.34+
Gabor 4.88±1.28+ 5.15±1.30+ 9.65±0.38+ 3.29±0.70+
SIFT 81.32±0.00+ 69.14±0.00+ 81.15±0.00+ 34.32±0.00+
HOG 78.44±0.24+ 61.92±0.21+ 19.08±0.15+ 15.14±1.45+
LBP 54.49±2.86+ 17.51±4.60+ 53.73±3.25+ 7.89±0.42+
LeNet-5 89.29±2.55+ 81.08±1.82+ 27.02±29.13+ 3.02±0.56+
CNN 98.66±0.27+ 91.04±1.17– 90.25±3.75+ 2.77±0.33+
VGG 3.97±1.76+ 3.51±1.19+ 2.68±0.17+ 2.85±0.39+
Xception 31.77±24.4+ 17.13±17.91+ 5.20±3.69+ 7.35±7.37+
InceptionV3 89.76±0.98+ 46.24±17.44+ 9.20±7.22+ 35.09±2.02+
ResNet 7.10±6.16+ 6.23±5.20+ 2.92±0.51+ 2.57±0.23+
DenseNet 53.34±19.62+ 21.29±22.17+ 7.53±5.18+ 16.7±9.44+
EFLGP 99.70±0.21 89.13±1.84 99.85±0.10 70.21±3.54
Overall 14+ 13+, 1– 14+ 14+

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 11

Original Blur Low contrast Noise

50

60

70

80

90

M
ea

n
Ac

cu
ra

cy
 (1

00
%

)
FEI_1

Original Blur Low contrast Noise

50

60

70

80

90

M
ea

n
Ac

cu
ra

cy
 (1

00
%

)

FEI_2

Original Blur Low contrast Noise50

60

70

80

90

M
ea

n
Ac

cu
ra

cy
 (1

00
%

)

FLOWER

Original Blur Low contrast Noise

50

55

60

65

70

75

80

M
ea

n
Ac

cu
ra

cy
 (1

00
%

)

VGDB

Original Blur Low contrast Noise

20

30

40

50

60

70

80

M
ea

n
Ac

cu
ra

cy
 (1

00
%

)

JAFFE

Original Blur Low contrast Noise
0

20

40

60

80

100
M

ea
n

Ac
cu

ra
cy

 (1
00

%
)

ORL

Original Blur Low contrast Noise10
20
30
40
50
60
70
80
90

M
ea

n
Ac

cu
ra

cy
 (1

00
%

)

KTH

Original Blur Low contrast Noise
0

20

40

60

80

100

M
ea

n
Ac

cu
ra

cy
 (1

00
%

)

EYALE

SIFT
HOG
LBP
LeNet-5
CNN
Xception
InceptionV3
DenseNet
EFLGP

Fig. 7. Mean classification accuracy (%) obtained by the EFLGP approach and eight best baseline methods on the eight datasets under the four scenarios.
Each subfigure represents one dataset. The Y axis represents the accuracy and the X axis represents the four different scenarios.

EFLGP is effective for feature learning on the blurred datasets.
From Fig. 7, it is clear that some methods such as LBP,
HOG, InceptionV3, and SIFT degrade their performances
on the blurred datasets. Compared with these methods, the
performance of EFLGP is less affected by blurring the images.

On the eight low-contrast datasets, EFLGP obtains signif-
icantly better or similar results in 102 comparisons. Specifi-
cally, EFLGP achieves better results than any of the benchmark
methods on FEI 2, JAFFE and EYALE. It is noticeable that the
mean accuracy achieved by EFLGP (77.17%) is much higher
than that by the benchmark methods (46.58%) on JAFFE.
From Fig. 7, it can be found that the LBP and SIFT methods
are less affected by lowering the contrast of images than the
other benchmark methods. The reason is that the LBP and
SIFT features are invariant to illumination changes. Compared
with LBP and SIFT, EFLGP is less affected by adjusting the
contrast on more datasets except for KTH. The features learned
by EFLGP are less effective for KTH compared with LBP
so that adjusting the contrast may increase the difficulty of
EFLGP to learn effective features. As a result, on the low-
contrast datasets, EFLGP can achieve comparable and stable
performance than most benchmark methods.

On the noisy datasets, EFLGP achieves better or similar
results in 108 comparisons out of the total 112 compar-
isons. Specifically, EFLGP achieves better results than any
of the benchmark methods on the FEI 1, FEI 2, FLOWER,
JAFFE, ORL, and EYALE datasets. Adding noise in images
significantly degrades the classification performances of these
methods (including EFLGP). However, EFLGP still achieves
better results than most of these methods, which indicates
that EFLGP is less affected by noise compared with these
benchmark methods. This pattern can be easily found from
Fig. 7. The performances of HOG, SIFT, LBP, Xception, and
Inception degrade significantly on most of the noisy datasets.
Compared with these methods, EFLGP can still achieve better
accuracy on the noisy datasets.

TABLE VIII
SUMMARY OF SIGNIFICANCE TEST

Original Blur Low contrast Noise
Significantly better (+) 100 100 99 96
Similar (=) 6 6 3 12
Significantly worse (–) 6 6 10 4

The comparisons show that EFLGP achieves better results
than most benchmark methods on these (8×3=24) datasets of
different levels of blur, low contrast and noise. From Fig. 7, it
is obvious that the performances of these methods (including
EFLGP) are affected by blurring, decreasing contrast and
adding noise in images. Compared with these benchmark
methods, EFLGP is less affected by blur, low contrast and
noise, which indicates that EFLGP is effective for feature
learning on low-quality image data. It is also noticeable that
some of the deep features achieve very low accuracy on the
datasets. For example, VGG and ResNet achieve less than
10% accuracy on ORL, because the datasets are small and the
numbers of features produced by VGG and ResNet are very
large. The results from supplementary materials show that the
proposed approach can also achieve better performance than
the compared methods when the images have two or three
types of distortions, i.e., blur, low contrast and noise.

To sum up, EFLGP is an effective approach for feature
learning on low-quality image data. Compared with the 14
benchmark methods, EFLGP achieves significantly better or
similar results in 422 comparisons out of the total 448 (14×8)
comparisons. The results demonstrate that the features learned
by EFLGP are more effective for facial expression and face
classification than for painting and texture classification. The
results confirm that classifying images with blur, low contrast
or noise is more difficult than classifying the original (clean)
images. The majority of the methods degrade their perfor-
mances when the images are blurred, or have low contrast or

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 12

noise. The results show that EFLGP is less affected by these
factors, which indicates that the goal of this study has been
successfully achieved.

VI. FURTHER ANALYSIS

In this section, the example trees/programs evolved by
EFLGP are deeply analysed to show the interpretability and
to demonstrate how features are extracted and why EFLGP
achieves good performance.

An Example Tree/Program on the Original FEI 1
Dataset: An example tree found by EFLGP on the original
FEI 1 dataset is shown in Fig. 8. This tree achieves 99.33%
classification accuracy on the training set and 98% accuracy
on the test set. As shown in the figure, this tree detects a square
region and a rectangle region from the input image, employs
operators (i.e., Max, Lap, SobelY , and MaxP) to deal with
these regions, and uses Conca to produce 157 features. The
square region captures the left middle face and the rectangle
region captures the middle area of the face. This is consistent
with the fact that the mouth area is discriminative in the
face with the Happy and Natural expressions. These minor
differences in the face images are captured by the two region
detection functions in the example tree. At the left branch of
the example tree, the Max filter and the MaxP function with
a kernel size of 10× 2 are used to extract the maximum pixel
values/features from the detected region. This branch produces
115 (5 × 23) features. The right branch of the example tree
has operators/filters, such as SobelY and Lap, to extract edge
features from the detected regions. The MaxP function with
a kernel size of 8 × 8 is employed in the tree to sample the
region from 49×43 to 7×6. This branch produces 42 features.
In total, there are 157 features produced by the example tree
from a 180× 130 image.

Root2

MaxPMaxP

RegionS

Image 462390
RegionR

Image 494395 43

Max SobelY
10 2 8

8

157 features

Lap

157 features

Natural Happy

ConcaConca

Fig. 8. An example tree (left) evolved by EFLGP on the original FEI 1
dataset and two examples to show how it extracts features on the Natural
(left) image and the Happy (right) image. Note that the images are rescaled
for better visualisation.

An Example Tree/Program on the Noisy FEI 1 Dataset:
An example tree on the noisy FEI 1 dataset is employed to
deeply analyse the reason why EFLGP obtains good perfor-
mance under different scenarios. The tree is shown in Fig.
9, which achieves 94% accuracy on the training set and 92%
accuracy on the test set. This tree has two branches split from
the top node and has three region detection functions, which
detect three smaller regions from the input 180× 130 image.

The three small regions are different from the two regions
detected by the tree on the original dataset in Fig. 8. As shown
in Fig. 10, the images have different types of noise so that
the discriminative areas, such as the mouth area, might be
significantly affected and become less discriminative. In this
example tree, the Gau and Gabor functions are employed
to deal with the three detected regions. Especially, the Gau
function can denoise the images and the Gabor function can
describe effective features from noisy images. From Fig. 10,
it is clear that the regions after the corresponding operations
become smoother and the patterns are clearer. For example, the
second region after employing Gau with standard deviation
σ = 4 from the Happy class contains less black colour than
that from the Natural class. In total, this tree produces 186
features from an input image, where 138 (23× 6) features are
from the left branch and 48 (4 × 12) features are from the
right branch.

Root2

MaxPMaxP

RegionR

Image 3682103 40

Gau MSub2

4

10

2

Gau

ConcaConca

RegionR

Image 4538116 24

2

RegionR

Image 3538103 23

Gabor

2 0
5

Fig. 9. An example tree evolved by EFLGP on the noisy FEI 1 dataset.

186 features

Natural

186 features

Happy

Fig. 10. Two examples to show how the tree in Fig 9 extracts features on
the Natural (left) images and the Happy (right) images. Note that the images
are rescaled for better visualisation.

To sum up, the analysis shows that the solutions of EFLGP
have high interpretability. The analysis demonstrates that
EFLGP can detect small discriminative regions from the large
input image, employ image filters/operators to deal with the
detected regions and produce a set of effective features. On
the noisy dataset, EFLGP can evolve the operators/filters to
deal with noise to obtain effective features. This is the reason
why EFLGP is more stable and effective for feature learning
on low-quality image data.

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 13

VII. CONCLUSIONS

The goal of this paper was to develop a new GP-based
feature learning approach to learning features for classifying
images with blur, low contrast or noise. This goal has been
successfully achieved by developing the EFLGP approach and
examining it on eight different datasets of original, blurred,
low-contrast, and noisy images. A new program structure,
a new function set including a set of image (preprocessing)
operators and a new terminal set were developed in EFLGP.
With these designs, EFLGP can evolve solutions that perform
image preprocessing and feature extraction in a single tree.
Specifically, it detects small regions from the large input im-
age, evolves image operators/filters to learn features and pro-
duces a feature vector with dynamic length. The performance
of EFLGP was extensively investigated on eight datasets of
varying difficulty under four different scenarios, i.e., original,
blur, low contrast, and noise. The results demonstrated that
the proposed EFLGP approach achieved significantly better
or similar results in most comparisons. The results showed
that EFLGP was less affected by these factors compared with
the 14 benchmark methods. Further analysis showed the high
interpretability of the solutions evolved by EFLGP.

Low-quality image classification can be a challenging task.
In the future, more advanced techniques or operators, such as
image quality assessment method [62] and data argumentation,
can be investigated to improve the performance of low-quality
image classification tasks.

REFERENCES

[1] S. A. Thomas, Y. Jin, J. Bunch, and I. S. Gilmore, “Enhancing classifi-
cation of mass spectrometry imaging data with deep neural networks,”
in Proc. IEEE SSCI, 2017, pp. 1–8.

[2] W. A. Albukhanajer, Y. Jin, and J. A. Briffa, “Neural network ensembles
for image identification using pareto-optimal features,” in Proc. IEEE
CEC, 2014, pp. 89–96.

[3] Z. Zhong, J. Li, D. A. Clausi, and A. Wong, “Generative adversarial
networks and conditional random fields for hyperspectral image classi-
fication,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 3318–3329, 2019.

[4] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of
deep learning applications to autonomous vehicle control,” IEEE Trans.
Intell. Transp. Syst., pp. 1–22, 2020, DOI: 10.1109/TITS.2019.2962338.

[5] Y. Zhou, D. Liu, and T. Huang, “Survey of face detection on low-quality
images,” in Proc. 13th IEEE Inter. Conf. Auto. Face & Gest. Recog.,
2018, pp. 769–773.

[6] S. Diamond, V. Sitzmann, S. Boyd, G. Wetzstein, and F. Heide, “Dirty
pixels: Optimizing image classification architectures for raw sensor
data,” arXiv preprint arXiv:1701.06487, 2017.

[7] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, 2017.

[8] G. B. P. da Costa, W. A. Contato, T. S. Nazare, J. E. Neto, and M. Ponti,
“An empirical study on the effects of different types of noise in image
classification tasks,” arXiv preprint arXiv:1609.02781, 2016.

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Comput., vol. 1, no. 4, pp. 541–551, 1989.

[10] S. B. Park, J. W. Lee, and S. K. Kim, “Content-based image classification
using a neural network,” Pattern Recognit. Lett., vol. 25, no. 3, pp. 287–
300, 2004.

[11] M. Sonka, V. Hlavac, and R. Boyle, Image pre-processing. Boston,
MA: Springer US, 1993, pp. 56–111. [Online]. Available: https:
//doi.org/10.1007/978-1-4899-3216-7 4

[12] R. M. Haralick, K. Shanmugam et al., “Textural features for image
classification,” IEEE Trans. Syst. Man Cybern., no. 6, pp. 610–621,
1973.

[13] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987,
2002.

[14] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE CVPR, vol. 1, 2005, pp. 886–893.

[15] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[16] H. Al-Sahaf, Y. Bi, Q. Chen, A. Lensen, Y. Mei, Y. Sun, B. Tran, B. Xue,
and M. Zhang, “A survey on evolutionary machine learning,” J. Roy. Soc.
New Zeal., vol. 49, no. 2, pp. 205–228, 2019.

[17] Y. Bi, B. Xue, and M. Zhang, “Evolving deep forest with automatic
feature extraction for image classification using genetic programming,”
in Proc. PPSN. Springer, 2020, pp. 3–18.

[18] D. Cai, K. Chen, Y. Qian, and J.-K. Kämäräinen, “Convolutional low-
resolution fine-grained classification,” Pattern Recognit. Lett., vol. 119,
pp. 166–171, 2019.

[19] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT press, Cambridge, 1992.

[20] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic
programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008, (With contri-
butions by J. R. Koza).

[21] Y. Bi, B. Xue, and M. Zhang, “Genetic programming with image-
related operators and a flexible program structure for feature learn-
ing to image classification,” IEEE Trans. Evol. Comput., 2020.
DOI:10.1109/TEVC.2020.3002229.

[22] L. Shao, L. Liu, and X. Li, “Feature learning for image classification via
multiobjective genetic programming,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 25, no. 7, pp. 1359–1371, 2014.

[23] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang,
“Automatically evolving rotation-invariant texture image descriptors by
genetic programming,” IEEE Trans. Evol. Comput., vol. 21, no. 1, pp.
83–101, 2017.

[24] Y. Bi, B. Xue, and M. Zhang, “An effective feature learning approach
using genetic programming with image descriptors for image classifica-
tion [research frontier],” IEEE Comput. Intell. Mag., vol. 15, no. 2, pp.
65–77, 2020.

[25] H. Hosseini, B. Xiao, and R. Poovendran, “Google’s cloud vision api is
not robust to noise,” in Proc. IEEE ICMLA, 2017, pp. 101–105.

[26] W. A. Albukhanajer, J. A. Briffa, and Y. Jin, “Evolutionary multiob-
jective image feature extraction in the presence of noise,” IEEE Trans.
Cybern., vol. 45, no. 9, pp. 1757–1768, 2015.

[27] M. Zhang, V. B. Ciesielski, and P. Andreae, “A domain-independent
window approach to multiclass object detection using genetic program-
ming,” EURASIP J. Adv. Sig. Pr., vol. 2003, no. 8, pp. 841–859, 2003.

[28] D. Tao, X. Li, X. Wu, and S. J. Maybank, “General tensor discriminant
analysis and gabor features for gait recognition,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 10, pp. 1700–1715, 2007.

[29] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable library of
computer vision algorithms,” in Proc. 18th ACM Int. Conf. Multimedia,
2010, pp. 1469–1472.

[30] A. I. Awad and M. Hassaballah, “Image feature detectors and descrip-
tors,” Stud. Comput. Intell., Springer International Publishing, Cham.
2016.

[31] C. Ryan, J. Fitzgerald, K. Krawiec, and D. Medernach, “Image classifi-
cation with genetic programming: Building a stage 1 computer aided
detector for breast cancer,” in Handbook of Genetic Programming
Applications. Springer, 2015, pp. 245–287.

[32] S. D. Liang, “Optimization for deep convolutional neural networks: How
slim can it go?” IEEE Trans. Emerg. Topics Comput., vol. 4, no. 2, pp.
171–179, 2018.

[33] F. Cen and G. Wang, “Boosting occluded image classification via
subspace decomposition-based estimation of deep features,” IEEE Trans.
Cybern., vol. 50, no. 7, pp. 3409 – 3422, 2020.

[34] A. Khan, A. S. Qureshi, M. Hussain, M. Y. Hamza et al., “A recent
survey on the applications of genetic programming in image processing,”
arXiv preprint arXiv:1901.07387, 2019.

[35] D. Atkins, K. Neshatian, and M. Zhang, “A domain independent
genetic programming approach to automatic feature extraction for image
classification,” in Proc. IEEE CEC, 2011, pp. 238–245.

[36] A. Lensen, H. Al-Sahaf, M. Zhang, and B. Xue, “Genetic programming
for region detection, feature extraction, feature construction and classi-
fication in image data,” in Proc. EuroGP. Springer, 2016, pp. 51–67.

[37] Y. Bi, B. Xue, and M. Zhang, “An automatic feature extraction approach
to image classification using genetic programming,” in Proc. Int. Conf.
Appl. Eov. Comput., 2018, pp. 421–438.

[38] ——, “A gaussian filter-based feature learning approach using genetic
programming to image classification,” in Proc. Austra. Joint Conf. Art.

https://doi.org/10.1007/978-1-4899-3216-7_4
https://doi.org/10.1007/978-1-4899-3216-7_4

IEEE TRANSACTIONS ON XX XX, VOL. XX, NO. X, MONTH YEAR 14

Intell. Springer, 2018, pp. 251–257.
[39] S. R. Price and D. T. Anderson, “Genetic programming for image feature

descriptor learning,” in Proc. IEEE CEC, 2017, pp. 854–860.
[40] H. Al-Sahaf, M. Zhang, A. Al-Sahaf, and M. Johnston, “Keypoints de-

tection and feature extraction: A dynamic genetic programming approach
for evolving rotation-invariant texture image descriptors,” IEEE Trans.
Evol. Comput., vol. 21, no. 6, pp. 825 – 844, 2017.

[41] Y. Bi, B. Xue, and M. Zhang, “Genetic programming for automatic
global and local feature extraction to image classification,” in Proc. IEEE
CEC, 2018, pp. 1–8.

[42] D. Tao, X. Tang, X. Li, and X. Wu, “Asymmetric bagging and random
subspace for support vector machines-based relevance feedback in image
retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., no. 7, pp. 1088–1099,
2006.

[43] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, no. 2, pp. 199–230, 1995.

[44] C. E. Thomaz, “Fei face database,” online:
http://fei.edu.br/˜cet/facedatabase.html, Mar 2012.

[45] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” Comput. Vis. Image Und., vol. 106, no. 1, pp.
59–70, 2007.

[46] G. Folego, O. Gomes, and A. Rocha, “From impressionism to expres-
sionism: Automatically identifying van gogh’s paintings,” in Proc. IEEE
Int. Conf. Image Process., 2016, pp. 141–145.

[47] M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial
expressions with gabor wavelets,” in Third IEEE Int. Conf. Auto. Face
Gest. Recog., 1998, pp. 200–205.

[48] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model
for human face identification,” in Proc. Sec. IEEE Workshop Appl.
Comput. Vis., 1994, pp. 138–142.

[49] P. Mallikarjuna, A. T. Targhi, M. Fritz, E. Hayman, B. Caputo, and J.-
O. Eklundh, “The kth-tips2 database,” Computational Vision and Active
Perception Laboratory, Stockholm, Sweden, pp. 1–10, 2006.

[50] K.-C. Lee, J. Ho, and D. J. Kriegman, “Acquiring linear subspaces for
face recognition under variable lighting,” IEEE Trans. Pattern Anal.
Mach. Intell., no. 5, pp. 684–698, 2005.

[51] X. Ji, Y. Cui, H. Wang, L. Teng, L. Wang, and L. Wang, “Semisupervised
hyperspectral image classification using spatial-spectral information and
landscape features,” IEEE Access, vol. 7, pp. 146 675–146 692, 2019.

[52] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

[53] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[54] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Jul 2011.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Adv. Neural Inf. Process
Syst., 2012, pp. 1097–1105.

[56] A. Kumar, J. Kim, D. Lyndon, M. Fulham, and D. Feng, “An ensemble
of fine-tuned convolutional neural networks for medical image classi-
fication,” IEEE J. Biomed. Health Inform., vol. 21, no. 1, pp. 31–40,
2016.

[57] F. Chollet et al., “Keras,” https://keras.io, 2015.
[58] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in Proc. IEEE CVPR, 2009,
pp. 248–255.

[59] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in Proc. BMVC, 2015, pp. 1–6.

[60] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” J. Mach. Learn.
Res., vol. 13, no. Jul, pp. 2171–2175, 2012.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825–2830, Oct 2011.

[62] H. Zhu, L. Li, J. Wu, W. Dong, and S. Guangming, “Metaiqa: Deep
meta-learning for no-reference image quality assessment,” in Proc. IEEE
CVPR, 2020, pp. 14 143–14 152.

Ying Bi (M’17) received the B.Sc.degree in 2013
from Wuhan Polytechnic University, Hubei, China,
the M.Sc. degree in 2016 from Shenzhen University,
Shenzhen, China, and the PhD degree in 2020 from
Victoria University of Wellington, New Zealand.

She is currently a post-doctoral research fellow
with the School of Engineering and Computer Sci-
ence, Victoria University of Wellington. Her current
research interests include evolutionary computation,
computer vision, and machine learning. She has
published over 30 papers in this field, including top

journal and conference papers. She is a member of the IEEE Computational
Intelligence Society and has been severing as reviewers for top international
journals and conferences.

Bing Xue (M’10) received the B.Sc. degree from
the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the PhD degree in computer
science in 2014 at Victoria University of Wellington
(VUW), New Zealand.

She is currently a Professor and Program Director
of Science in School of Engineering and Computer
Science at VUW. She has over 200 papers published
in fully refereed international journals and confer-

ences and her research focuses mainly on evolutionary computation, machine
learning, classification, symbolic regression, feature selection, evolving deep
neural networks, image analysis, transfer learning, multi-objective machine
learning.

Dr Xue is currently the Chair of IEEE Computational Intelligence So-
ciety (CIS) Data Mining and Big Data Analytics Technical Committee,
and Vice-Chair of IEEE Task Force on Evolutionary Feature Selection and
Construction, Vice-Chair of IEEE CIS Task Force on Transfer Learning &
Transfer Optimization, and of IEEE CIS Task Force on Evolutionary Deep
Learning and Applications. She is also served as associate editor of several
international journals, such as IEEE Computational Intelligence Magazine and
IEEE Transactions on Evolutionary Computation.

Mengjie Zhang (M’04-SM’10-F’19) received the
B.E. and M.E. degrees from Artificial Intelligence
Re- search Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively.

He is currently Professor of Computer Science,
Head of the Evolutionary Computation Research
Group, and the Associate Dean (Research and In-
novation) in the Faculty of Engineering. His current
research interests include evolutionary computation,

particularly genetic programming, particle swarm optimization, and learning
classifier systems with application areas of image analysis, multi-objective
optimization, feature selection and reduction, job shop scheduling, and transfer
learning.

He has published over 500 research papers in refereed international journals
and conferences. Prof. Zhang is a Fellow of Royal Society of New Zealand and
has been a Panel Member of the Marsden Fund (New Zealand Government
Funding), a Fellow of IEEE, and a member of ACM. He was the chair of
the IEEE CIS Intelligent Systems and Applications Technical Committee,
and chair for the IEEE CIS Emergent Technologies Technical Committee
and the Evolutionary Computation Technical Committee, and a member of
the IEEE CIS Award Committee. He is a vice-chair of the IEEE CIS Task
Force on Evolutionary Feature Selection and Construction, a vice-chair of
the Task Force on Evolutionary Computer Vision and Image Processing, and
the founding chair of the IEEE Computational Intelligence Chapter in New
Zealand. He is also a committee member of the IEEE NZ Central Section.

https://keras.io

	Introduction
	Background and Related Work
	Low-Quality Image Classification
	Image Features
	GP-based Feature Learning for Image classification

	Proposed Approach
	Overall Algorithm
	Program Structure
	Function Set
	Terminal Set

	Experiment Design
	Original Datasets
	Low-Quality Datasets
	Benchmark Methods
	Parameter Settings

	Results and Discussions
	Results on Original Datasets
	Results on Low-Quality Datasets

	Further Analysis
	Conclusions
	Biographies
	Ying Bi
	Bing Xue
	Mengjie Zhang

