
EPMAS: EVOLUTIONARY PROGRAMMING MULTI-AGENT SYSTEMS

Ana M. Peleteiro, Juan C. Burguillo
Telematics Engineering Department

University of Vigo
Campus de Lagoas-Marcosende, 36310 Vigo, Spain

Email: {apeleteiro, J.C.Burguillo}@det.uvigo.es

Zuzana Oplatkova, Ivan Zelinka
Faculty of Applied Informatics
Tomas Bata University in Zlin

Nad Stranemi 4511, 76001 Zlin, Czech Republic
Email: {oplatkova, zelinka}@fai.utb.cz

KEYWORDS

Evolutionary Programming, Grammatical Evolution,
Multi-agent Systems

ABSTRACT

Evolutionary Programming (EP) seems a promising
methodology to automatically find programs to solve
new computing challenges. The Evolutionary Program-
ming techniques use classical genetic operators (selection,
crossover and mutation) to automatically generate pro-
grams targeted to solve computing problems or specifica-
tions. Among the methodologies related with Evolution-
ary Programming we can find Genetic Programming, An-
alytic Programming and Grammatical Evolution. In this
paper we present the Evolutionary Programming Multi-
agent Systems (EPMAS) framework based on Grammat-
ical Evolution (GE) to evolutionary generate Multi-agent
systems (MAS) ad-hoc. We also present two case stud-
ies in MAS scenarios for applying our EPMAS frame-
work: the predator-prey problem and the Iterative Pris-
oner’s Dilemma.

INTRODUCTION

In our evolving society, the computing and engineering
problems we have to solve are becoming more difficult and
intractable every day. Future computers and software sys-
tems should be able to automatically deal with these new
challenges. This is a central topic in Artificial Intelligence
discipline (Russell and Norvig, 2003).

Evolutionary algorithms and multiagent systems seem
two promising methodologies to automatically find solu-
tions for these new challenges. These algorithms use the
classical genetic operators (selection, crossover and muta-
tion) to find an optimal solution, and they have been suc-
cessfully applied in the automatic management of isolated
problems, i.e., evolutionary methods can lead to the real-
ization of artificial intelligent systems (Fogel et al., 1966).
Among the methodologies related with Evolutionary Pro-
gramming we can find Genetic Programming (Koza, 1994),
Analytic Programming (Zelinka and Oplatkova, 2003) and
Grammatical Evolution (O’Neill and Ryan, 2003). The
first methodology (GP) is based on the LISP language and

its tree syntax, while the last two ones have the advan-
tage of being language independent. There are several ap-
proaches in the literature applying GP (Haynes and Sen,
1996; Calderoni and Marcenac, 1998) to try to solve prob-
lems in Multi-agent Systems. However, to our knowledge,
this is the first approach using a GE framework for solving
general problems in MAS.

In this paper we present an analysis of the conditions
needed to apply Evolutionary Programming techniques to
create a Multi-agent System able to solve a given problem.
Then we propose the use of Grammatical Evolution (GE)
to provide ’good’ solutions in MAS scenarios. Finally, we
present two case studies based on two typical MAS scenar-
ios. The first one is the well known predator-prey problem,
in which some predators aim at surrounding the prey. The
second one is the Iterative Prisoner’s Dilemma, a classical
Game Theory scenario, where we aim at finding an optimal
solution for several configurations of the famous Axelrod’s
tournament (Axelrod, 1984).

The rest of the paper is organized as follows: in sec-
tion GRAMMATICAL EVOLUTION we give a brief in-
troduction to this evolutionary technique. In section
A FRAMEWORK FOR EVOLUTIONARY PROGRAM-
MING MULTI-AGENT SYSTEMS we present our theo-
retical framework for evolving Multi-agent Systems. Sec-
tion CASE STUDIES presents two experiments where we
test our framework with classical MAS scenarios. Finally,
we present the conclusions and our future work.

GRAMMATICAL EVOLUTION (GE)
Grammatical Evolution (GE) (O’Neill and Ryan, 2003) is
an evolutionary computation technique based on Genetic
Programming (GP) (Koza, 1994). GP provides a system-
atic method to allow computers to automatically solve a
given problem from a high-level statement. The idea is to
use evolutionary or genetic operations (selection, crossover
and mutation) to generate new populations of computer
programs, measuring the performance (i.e., the fitness) for
each one, and obtaining the one with the best fitness as the
result.

One of the main advantages of GE compared to GP is
that it can evolve complete programs in any arbitrary pro-
gramming language (O’Neill and Ryan, 2003), which pro-
vides flexibility to the system under development.

Proceedings 24th European Conference on Modelling and
Simulation ©ECMS Andrzej Bargiela, Sayed Azam Ali
David Crowley, Eugène J.H. Kerckhoffs (Editors)
ISBN: 978-0-9564944-0-5 / ISBN: 978-0-9564944-1-2 (CD)



GE is a grammar-based form of GP, and this means that
we can apply genetic operators to an integer string, subse-
quently mapped to a program, through the use of a gram-
mar. The grammar describes the output language, using the
Backus Naur Form (BNF) (Garshol, 2003), in the form of
production rules, and it governs the creation of the program
itself. Changing the grammar we can radically change the
behavior of the generation strategy.

GE has been applied in many fields, for instance, in tech-
nical trading (predicting corporate bankrupt, bond credit
rating) (Brabazon and Oneill, 2004), to find trigonometric
identities (Ryan et al., 1998), or to solve symbolic regres-
sion problems (Ryan and O’Neill, 1998).

A FRAMEWORK FOR EVOLUTIONARY PRO-
GRAMMING MULTI-AGENT SYSTEMS
In this section we provide a description of our framework
for using Evolutionary Programming to automatically gen-
erate code for Multi-agent Systems (MAS). In order to do
this, we need to guarantee that the properties that character-
ize a MAS are preserved, that we have an iterative process
to successively refine the generated agents and that we are
able to test somehow the behavior of the MAS to evaluate
its performance.

But, first we need to define our concept of agent. Un-
fortunately, there is no general agreement in the research
community about what an agent is. Therefore we cite a
general description (Wooldridge and Jennings, 1995), and
according to it, the term agent refers to a hardware or (more
usually) software-based computer system characterized by
the well-known properties:

• Autonomy: agents operate without the direct inter-
vention of humans or others, and have some kind
of control over their actions and internal state. To
achieve this property, we need to obtain a different
code for the different agents of the MAS and include,
within the code properties, the capability to decide
when and how to act depending on internal states and
external perceptions.

• Social ability: agents interact with other agents
(and possibly humans) via some kind of agent-
communication language. This can be obtained pro-
viding properties for explicit or implicit interaction, or
communication, among the agents of the system.

• Reactivity: agents perceive their environment, and re-
spond in a timely fashion to changes that occur in it.
To do this we need to generate code for the agents able
to react to the different inputs provided by the environ-
ment.

• Pro-activeness: agents do not simply act in response
to their environment; they are able to exhibit goal-
directed behavior by taking the initiative. To achieve

this property, the agent must include code for decid-
ing how to act depending on internal states or external
inputs.

However, there are other desirable, although not manda-
tory, attributes that can be present: benevolence, rationality
and adaptability (or learning) (Wooldridge, 2002). Now
we can define a Multi-agent System as a system consisting
of an interacting group of agents.

The simulation of agents and their interactions, usually
known as agent-based modeling, is the basis for the itera-
tive approach presented in this section in order to succes-
sively refine a MAS and achieve the best possible solution
for a given problem or scenario.

We have described a MAS as a set of multiple au-
tonomous entities (agents) that interact, and the right in-
teraction is the key to achieve the desired MAS behavior.
We need a framework to model distributed problems, and
we must define a procedure to solve them by means of suc-
cessive iterations that shift the MAS behavior to find alter-
native solutions, and eventually the optimum.

We consider that we can get closer to this conceptual
framework by mixing the conceptual modeling of the prob-
lem at one level and its actual performance at another one.
The algorithm in Table 1 describes the basic steps needed
to generate MAS solutions and to evaluate its performance.

Table 1: Generating Evolutionary Solutions for a MAS

1 Generate a new solution for the MAS.
2 Simulate the new solution.
3 Evaluate the results of the simulation, and get the fitness.
4 If a STOP criteria does not hold, go back to (1).

This cycle is an iterative process that successively gen-
erates, and ideally improves, the solutions for the MAS be-
havior. To obtain a final solution we need to describe how
to manage the three phases that compose this iterative pro-
cess:

1. Generate a solution for the MAS: to do this we need
to be able to generate evolutionary code, different for
every agent of the MAS. Thus, we need multiple in-
stances of an Evolutionary Programming tool in order
to generate different code for the different agents.

2. Simulate the MAS behavior: for this we need to
simulate the agents generated in the step 1 within the
MAS environment, being able to produce some final
result (fitness) to be used as input for the evaluation
phase.

3. Evaluate the results of the simulation and get the
fitness: for this we need to define some type of fit-
ness for the different agents as a measure to indicate



how well they have achieved their individual objec-
tives. We may also define a global fitness to describe
if the system as a whole has reached the pursued ob-
jective. This individual and global fitness must act as
a feedback for the whole system in the generation of a
new solution, ideally better than the previous ones.

Now, we propose the use of two open source tools, freely
available on the Internet, to generate solutions by means of
Evolutionary Programming in MAS (EPMAS).

Grammatical Evolution in Java (GEVA)
Grammatical Evolution in Java (GEVA) (O’Neill et al.,
2008) is a free and open source environment for using GE,
developed at the UCD’s Natural Computing Research &
Applications group. This software provides a search en-
gine framework to build the functions, as well as a simple
GUI and the genotype-phenotype mapper of GE.

Netlogo
NetLogo (Wilensky, 2007) is a free Multi-agent modeling
environment for simulating natural and social phenomena.
It is particularly well suited for modeling complex systems
that evolve. Modelers can give instructions to hundreds of
agents operating independently. This makes it possible to
explore the connection between the micro-level behavior of
individuals, and the macro-level patterns that emerge from
the interaction of many individuals.

This environment has been used to carry out simula-
tions in areas such as biology, medicine, physics, chem-
istry, mathematics, computer science, economics and social
psychology.

NetLogo provides a 2-D world made of agents that si-
multaneously carry out their own activity. We can model
the behavior of these agents, individually and also in group.
This makes Netlogo a really useful tool for Multi-agent
simulations. Besides, with its user-friendly graphical inter-
face, a user may interact with the system and obtain real-
time feedback from the simulations.

A Framework for EPMAS
The two previous tools, i.e., GEVA and Netlogo, solve the
needs expressed in Table 1 to create a framework for Evo-
lutionary Programming Multi-agent Systems. GEVA envi-
ronment has been designed to obtain solutions for a partic-
ular function using a pre-defined function population. To
generate different functions for the agents in the system we
need to create multiple instances of GEVA, each one man-
aging the code for every particular agent (or type of agents)
in the MAS. Unfortunately, GEVA has not included the
possibility to run several instances of the tool in a shared
memory, and this means that we need to use external facili-
ties (files at the OS level) to communicate those processes.

Once we have created the code for all the agents in the
system with several GEVA instances, we need to simulate

the actual solution for the MAS, and test its behavior in the
particular problem it is aimed to solve (step 2 in Table 1).
This can be done using the Netlogo simulation tool. In this
case, the connection between GEVA and Netlogo has been
also achieved by means of file interactions. In Fig. 1 we
show a schema of the communication between GEVA and
Netlogo to implement the model described in Table 1.

Figure 1: Communication between GEVA and Netlogo.

Finally, we have to define a fitness measurement, de-
pendent from the problem definition, to provide the fitness
feedback for the different GEVA instances, in order to gen-
erate a new solution for every agent of the MAS.

The algorithm of Table 1 stops when some criterion se-
lected by the system designer has been achieved. This
means that the solution complies with certain criteria, for
instance, that a number of iterations have been performed,
or that a particular set of expected values in the solution has
been accomplished.

CASE STUDIES
In this section we describe two example scenarios for MAS,
and we present the results of the experiments performed us-
ing GE to obtain a solution for each of them. In the follow-
ing two subsections we describe the experiments, as well
as presenting the results obtained.

Predator-prey Scenario
The predator-prey pursuit problem (Benda et al., 1986) is
one of the first and well-known testbed for learning strate-
gies in Multi-agent Systems. It consists of a set of agents,
named predators, that aim at surrounding another agent,
named prey, that must escape from them. This toy prob-
lem has been addressed many times by the Artificial In-
telligence (AI) Community. Initially, Korf (Korf, 1992)
proposed a solution without Multi-agent communication.
Since then, a great number of alternatives have emerged
usually involving reinforcement learning (Tan, 1997) tech-
niques.

We use Netlogo to simulate the scenario where the prey
and the predators perform their chase (Fig. 2). We have



four predators (black arrows) that aim at surrounding and
catching one prey (a red cicle).

The predators can move to the North (N), South (S), East
(E) and West (W), and they can only see the prey if they are
closer than a quarter of the maximum distance of the map
scenario. Our predators may use a communication func-
tion (broadcast();) that allows to communicate the position
of the prey to the rest of the predators. But if any predator
cannot see the prey, then they move randomly. A preda-
tor catches the prey if both are located in the same posi-
tion. The prey behavior is really simple: it randomly moves
to the N, S, E or W all over the map (it is a non-toroidal
world).

Figure 2: Netlogo Scenario where the Chase is Performed.
Predators are Depicted as Black Arrows and the Prey as a
Red Circle.

Our predators’ program should evolve to find the best
function to catch the prey. To do this, we use GE, and we
generate the function (from Eq. 1) with GEVA and pass it to
Netlogo. Then, Netlogo simulates a run of the MAS where
the predators try to catch the prey with the given evolutive
programs.

In this experiment, the parameters used in GEVA are a
population size of 100 programs, 100 generations to run
and a mutation probability equal to 0.01. In Netlogo, we
run every simulation ten times, and each run ends when a
predator catches the prey, or when the maximum time for
catching the prey has finished. After these runs, Netlogo
returns to GEVA an average fitness value which indicates
how well the generated code has worked. GEVA stores this
value with the generated code, and provides a new program
(generated from Eq. 1), repeating these steps until the evo-
lutionary process finishes.

To measure the fitness value in Netlogo, we give a posi-
tive reward every time the predator gets closer to the prey in
the last move it has performed, or we do not give a reward

if the predator gets away (we do this valuation before the
prey moves). We repeat this process until the end of the run,
where we have two possible outcomes: if a predator has
caught the prey, then we divide the reward obtained by the
total distance it has traveled. If not, we assign the smallest
fitness value, and we invert this values (since GEVA finds
minimums). Finally, Netlogo passes this value to GEVA,
which stores it, generates another function and repeats the
whole process again. The algorithm stops when GEVA
does not generate more functions, i.e., the evolutionary pro-
cess stops, and gives as a result the agent program that has
the best performance.

< opbroad >< op >< op >< op >< op >

< op >= ifPreyNorth{< dir >};
ifPreySouth{< dir >};
ifPreyEast{< dir >};
ifPreyWest{< dir >};

< dir >= { N, S, E, W }
< opbroad >= {broadcast();notBroadcast(); } (1)

After executing the chase in our EPMAS framework, we
obtained that the program with best performance is the one
shown in Eq. 2. It is the reasonable result, since first preda-
tors broadcast the prey position to their mates (if they see
the prey), and then move according to the prey’s position.
We can see the evolution of the fitness in Fig. 3.

Figure 3: Representation of the Fitness Evolution in GEVA
for the Predator-prey Model.

broadcast();

ifPreyNorth{N};
ifPreySouth{S};
ifPreyEast{E};
ifPreyWest{W}; (2)



Game Theory Scenario
Game Theory (Binmore, 1994) is a branch of applied math-
ematics that helps to understand the strategies that selfish
individuals may follow when competing or collaborating
in games and real scenarios (Osborne, 2003).

The concept of cooperation evolution has been success-
fully studied using theoretical frameworks like the Pris-
oner’s Dilemma (PD) (Axelrod, 1984), which is one of the
most well-known strategy games. It models a situation in
which two entities have to decide whether cooperate or de-
fect, but without knowing what the other is going to do.

Nowadays, the PD game has been applied to a huge vari-
ety of disciplines: economy, biology, artificial intelligence,
social sciences, e-commerce, etc. Table 2 shows the gen-
eral PD form matrix, which represents the rewards an entity
obtains depending on its action and the opponent’s one. In
this matrix, T means the Temptation to defect, R is the Re-
ward for mutual cooperation, P the Punishment for mutual
defection and S the Sucker’s payoff. To be defined as a PD,
the game must accomplish that:

T > R > P > S

2R > T + S (3)

Table 2: General Prisoner’s Dilemma Matrix.

Player B
Cooperates

Player B
Defects

Player A
Cooperates

R, R S, T

Player A
Defects

T, S P, P

There is a variant of PD, which is the Iterated Prisoner’s
Dilemma (IPD) (Axelrod, 1984), in which the game is
played repeatedly. In it, the players can punish their oppo-
nents for previous non-cooperative behavior, remembering
their opponent previous action and adapting their strategy.
Game Theory shows that the optimal action if both play-
ers know that they are going to play exactly N times is to
defect (it is the Nash equilibrium of the game) (Binmore,
1994). But when the players play an indefinite or random
number of times, cooperation can emerge as a game equi-
librium. The IPD game models transactions between two
persons requiring trust and cooperative behavior, and that
is why this game has fascinated researchers over the years.

Axelrod organized a tournament in the eighties, where
famous game theorists sent their strategies to play the IPD.
The winner was Tit-For-Tat (TFT), a simple strategy where
the player cooperates on the first move, and in the rest of
iterations it reciprocates what the other player did on the
previous move. TFT is considered to be the most robust
basic strategy. Although, for a certain range of parameters,

and in presence of noise, it was found that a strategy, named
Pavlov, that beats all the other strategies by giving preferen-
tial treatment to co-players which resemble Pavlov (Nowak
and Sigmund, 1993).

In our example, we want to emulate Axelrod’s tourna-
ment by means of evolutionary computation. To do that,
we ’organize’ a tournament, where every player individu-
ally plays against all the rest. Within the set of players,
some of them play fixed strategies, and others play as evo-
lutionary agents.

The values we use for the payoff matrix are the classical
ones to play the Prisoner’s Dilemma, i.e., R=3, S=0, P=1
and T=5. The idea here is to perform experiments in a con-
trolled environment, to see if GE provides ’good’ solutions
for several well-known configurations. For that we have
defined some tournaments with concrete players. The main
GEVA parameters we have used are: a population size of
300 programs, 300 generations, and a mutation probability
of 0.05. The players play 1000 rounds against every oppo-
nent. The strategies considered for the fixed players are:

• all-D: the player always defects.

• all-C: the player always cooperates.

• TFT: the player uses Tit-For-Tat that cooperates at the
first iteration and then reciprocates what the opponent
did on the previous move.

• Pavlov (P): the player cooperates at the first iteration,
and whenever the player and co-player did the same
thing at the previous iteration; otherwise, Pavlov de-
fects.

• Random (R): the player cooperates with probability
0.5.

• ITFT: the player uses inverse TFT.

Next, we present the results in tables, where Initial con-
ditions refers to the initial action taken for the first itera-
tion, Type of players are the strategies that the fixed players
play, and finally Results describe the agent program (de-
noted as EA, Evolutionary Agent) obtained with the best
performance for the tournament configuration.

In Table 3, we can observe that the best behavior against
strategies that do not take into account the opponent’s last
action is to defect, since we obtain maximum gain without
being punished.

In Table 4, we present how the evolutionary agent (EA)
behaves against more efficient strategies, in fact, against the
two strategies with best behavior in Axelrod’s tournament.

In the first tournament, we see that TFT is the best strat-
egy if we have players playing all-D, P and TFT, which is
normal since the number of defectors is low, the EA defects
against them, and TFT works well if playing against TFT
and P.



Table 3: Three Tournaments: Players all-D; all-D and all-C
and all-D, all-C and rand.

Tourn. 1 Tourn. 2 Tourn. 3
Initial
conditions

D D, C D, C, R

Type of
players

20 all-D 10 all-D,
10 all-C

7 all-D, 7
all-C, 7
rand

Results all-D all-D all-D

Table 4: Three Tournaments: Players all-D, P, TFT; P, TFT,
all-D, all-C, ITFT and P, TFT.

Tourn. 1 Tourn. 2 Tourn. 3
Initial
conditions

D, C, C C, C, D, C, D C, C

Type of
players

5 all-D,
10 P, 10
TFT

5 P, 5 TFT, 5
all-D, 5 all-C,
5 ITFT

10 P, 10
TFT

Results TFT all-D P, TFT,
all-C

In the second tournament the EA plays against all the
strategies (except for random). The result is that the best
behavior is to always defect. This makes sense since as
we have five all-D, to obtain the maximum gain against
them the player should defect. Besides, against ITFT, if
the player defects the opponent will cooperate the follow-
ing round, thus defector obtains maximum gain. Against
Pavlov, the EA gets the minimum gain in one round, and
the maximum one in the other, since initially the Pavlov
player cooperates, while the evolutionary agent defects,
thus in the following round they both defect, and in the next
Pavlov will cooperate again. With TFT, the player gets the
minimum gain every time, but still is more than zero.

Finally, in the third tournament of Table 4, the EA plays
against the two more efficient strategies, P and TFT, ob-
taining that the best to do in this case is to use one of those
strategies or to be an all-C, i.e., all of them are equivalent.

Table 5 shows the results when two evolutionary agents
play a tournament, with other 25 players that use several
fixed strategies. As stated before, GEVA does not con-
sider multi-threading, thus the evolutionary players have to
communicate via system files, because each of them is an
instance of GEVA, and this takes an important amount of
time. We perform a tournament in a Pentium(R) Dual Core
CPU, E5200 @ 2.50GHz, 3.50GB RAM, lasting two hours
for finishing. In Table 5 we observe that we obtain all-D for
both evolutionary players, which is a coherent result com-
paring it with the second tournament of Table 4.

Table 5: Two Evolutionary Player Playing against P, TFT,
all-D, all-C and ITFT.

Tournament
Initial
conditions

C, C, D, C, D

Type of
players

5 P, 5 TFT, 5 all-D, 5 all-C, 5 ITFT

Results all-D, all-D

CONCLUSIONS AND FUTURE WORK
In this paper we have presented the use of Evolutionary
Programming to evolve Multi-agent problems by means of
Grammatical Evolution. The main contribution of the pa-
per is an evolutionary framework to allow the emergence of
Multi-agent Systems adapted to the particular conditions
and the scenario to model. We present two case studies
with classical MAS scenarios to show that the combination
of GEVA and Netlogo is a good option to evolve Multi-
agent Systems from scratch by combining system genera-
tion and simulation.

While some approaches have considering the use of GP
in MAS, to the best of our knowledge, this is the first frame-
work combining GE with Multi-agent Systems for solv-
ing general scenarios. Among the conclusions obtained
we have found that GE can be a good candidate to auto-
matically solve Multi-agent problems. Nevertheless, due to
the novelty of this approach, we have found the limitations
of the present version of GEVA and Netlogo to simulate
complex MAS scenarios. This happens due to lack of sup-
port for multi-threading operations, and therefore we had to
communicate the different GEVA instances, and the Netl-
ogo simulator, by means of operating system files, which
delays a lot the whole process.

As future work, we plan to find a sound and complete
formal description of our MAS framework, to create our
own evolutionary simulation environment for avoiding the
problems found, and finally to validate such new formal
framework with more complex examples from different
disciplines.

REFERENCES

Axelrod, R. (1984). The Evolution of Cooperation. Basic Books.

Benda, M., Jagannathan, V., and Dodhiawala, R. (1986). On
optimal cooperation of knowledge sources - an empirical in-
vestigation. Technical Report BCS–G2010–28, Boeing Ad-
vanced Technology Center, Boeing Computing Services, Seat-
tle, Washington.

Binmore, K. (1994). Game theory and the social contract volume
i: Playing fair. The MIT Press: Cambridge, MA.

Brabazon, A. and Oneill, M. (2004). Evolving technical trad-
ing rules for spot foreign-exchange markets using grammatical



evolution. Computational Management Science, 1(3-4):311–
327.

Calderoni, S. and Marcenac, P. (1998). Genetic progamming for
automatic design of self-adaptive robots. In EuroGP ’98: Pro-
ceedings of the First European Workshop on Genetic Program-
ming, pages 163–177, London, UK. Springer-Verlag.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial
Intelligence through Simulated Evolution. John Wiley, New
York, USA.

Garshol, M. (2003). BNF and EBNF: What are they and how do
they work?

Haynes, T. and Sen, S. (1996). Evolving Behavioral Strategies in
Predators and Prey. In Adaptation and Learning in Multiagent
Systems, pages 113–126.

Korf, R. (1992). A simple solution to pursuit games. In Proceed-
ings of the 11th International Workshop on Distributed Artifi-
cial Intelligence. Glen Arbor, MI.

Koza, J. R. (1994). Genetic programming II: automatic discovery
of reusable programs. MIT Press, Cambridge, MA, USA.

Nowak, M. and Sigmund, K. (1993). A strategy of win-stay,
lose-shift that outperforms tit-for-tat in the prisoner’s dilemma
game. Nature, 364(6432):56–58.

O’Neill, M., Hemberg, E., Gilligan, C., Bartley, E., McDermott,
J., and Brabazon, A. (2008). Geva: grammatical evolution in
java. SIGEVOlution, 3(2):17–22.

O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evo-
lutionary Automatic Programming in an Arbitrary Language.
Kluwer Academic Publishers, Norwell, MA, USA.

Osborne, M. J. (2003). An Introduction to Game Theory. Oxford
University Press, USA.

Russell, S. J. and Norvig, P. (2003). Articial Intelligence: A Mod-
ern Approach, 2nd Ed. Prentice Hall, Englewoo.

Ryan, C. and O’Neill, M. (1998). Grammatical evolution: A
steady state approach. In In Late Breaking Papers, Genetic
Programming, pages 180–185.

Ryan, C., O’Neill, M., and Collins, J. (1998). Grammatical evo-
lution: Solving trigonometric identities. In Proceedings of
Mendel ’98: 4th International Conference on Genetic Algo-
rithms, Optimization Problems, Fuzzy Logic, Neural Networks
and Rough Sets, pages 111–119.

Tan, M. (1997). Multi-agent reinforcement learning: Independent
vs. cooperative learning. In Huhns, M. N. and Singh, M. P., ed-
itors, Readings in Agents, pages 487–494. Morgan Kaufmann,
San Francisco, CA, USA.

Wilensky, U. (2007). Netlogo: Center for connected learning and
computer-based modeling.

Wooldridge, M. (2002). Introduction to MultiAgent Systems. John
Wiley & Sons.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents:
Theory and practice.

Zelinka, I. and Oplatkova, Z. (2003). Analytic programming
comparative study. In CIRAS03, The second International
Conference on Computational Intelligence, Robotics, and Au-
tonomous Systems.

AUTHOR BIOGRAPHIES

ANA PELETEIRO received the M.Sc.
degree in Telecommunication Engineering
in 2009 (Honor mention) at University
of Vigo. She is currently a PhD student
in the Department of Telematic Engi-

neering at the same university. Her research interests
include intelligent agents and multi-agent systems,
self-organization, evolutionary algorithms and game the-
ory. Her email is apeleteiro@det.uvigo.es
and her personal webpage
http://www-gti.det.uvigo.es/∼apeleteiro

JUAN C. BURGUILLO received the M.Sc.
degree in Telecommunication Engineering
in 1995, and the Ph.D. degree in Telematics
(cum laude) in 2001; both at the University
of Vigo, Spain. He is currently an associate

professor at the Department of Telematic Engineering
in the University of Vigo. His research interests include
intelligent agents and multi-agent systems, evolutionary
algorithms, game theory and telematic services. His email
is J.C.Burguillo@det.uvigo.es and his personal
webpage http://www.det.uvigo.es/∼jrial

ZUZANA OPLATKOVA was born in
Czech Republic, and went to the Tomas
Bata University in Zlin, where she studied
technical cybernetics and obtained her MSc.
degree in 2003 and Ph.D. degree in 2008.

She is a lecturer (Artificial Intelligence) at the same univer-
sity. Her research interests are: evolutionary computing,
neural networks, evolutionary programming, metaevolu-
tion. Her e-mail address is: oplatkova@fai.utb.cz

IVAN ZELINKA was born in Czech Repub-
lic, and went to the Technical University of
Brno, where he studied technical cybernetics
and obtained his degree in 1995. He obtained
his Ph.D. degree in technical cybernetics in

2001 at Tomas Bata University in Zlin. He is now pro-
fessor (artificial intelligence, theory of information) at the
Department of Informatics and Artificial Intelligence. His
e-mail address is: zelinka@fai.utb.cz and his Web-
page can be found at http://www.ivanzelinka.eu


