skip to main content
10.1145/3377929.3389876acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Dynamic control parameter choices in evolutionary computation: GECCO 2020 tutorial

Published:08 July 2020Publication History
First page image

References

  1. [ABNS15] Martin Andersson, Sunith Bandaru, Amos Ng, and Anna Syberfeldt, Parameter tuning of MOEAs using a bilevel optimization approach, Evolutionary Multi-Criterion Optimization (Cham) (António Gaspar-Cunha, Carlos Henggeler Antunes, and Carlos Coello Coello, eds.), Springer, Springer International Publishing, 2015, pp. 233--247.Google ScholarGoogle ScholarCross RefCross Ref
  2. [ACBF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning 47 (2002), 235--256.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. [AM16] Aldeida Aleti and Irene Moser, A systematic literature review of adaptive parameter control methods for evolutionary algorithms, ACM Computing Surveys 49 (2016), 56:1--56:35.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [AMS+15] Carlos Ansótegui, Yuri Malitsky, Horst Samulowitz, Meinolf Sellmann, and Kevin Tierney, Model-based genetic algorithms for algorithm configuration, Proc. of International Conference on Artificial Intelligence (IJCAI'15), AAAI Press, 2015, pp. 733--739.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [And18] Martin Andersson, A Bilevel Approach to Parameter Tuning of Optimization Algorithms Using Evolutionary Computing, Ph.D. thesis, University of Skövde, 2018, p. 233.Google ScholarGoogle Scholar
  6. [Aug09] Anne Auger, Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed, Companion Material for Proc. of Genetic and Evolutionary Computation Conference (GECCO'09), ACM, 2009, pp. 2447--2452.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. [AYGL18] Elnaz Asadollahi-Yazdi, Julien Gardan, and Pascal Lafon, Multi-objective optimization of additive manufacturing process, IFAC-PapersOnLine 51 (2018), no. 11, 152 -- 157, 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018.Google ScholarGoogle ScholarCross RefCross Ref
  8. [Bäc92] Thomas Bäck, The interaction of mutation rate, selection, and self-adaptation within a genetic algorithm, Proc. of Parallel Problem Solving from Nature (PPSN'92), Elsevier, 1992, pp. 87--96.Google ScholarGoogle Scholar
  9. [Bäc96] Thomas Bäck Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms, Oxford University Press, 1996.Google ScholarGoogle Scholar
  10. [BAE05] Lam T Bui, Hussein A Abbass, and Daryl Essam, Fitness inheritance for noisy evolutionary multi-objective optimization, Proceedings of the 7th annual conference on Genetic and evolutionary computation, ACM, 2005, pp. 779--785.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [BBFKK10] Thomas Bartz-Beielstein, Oliver Flasch, Patrick Koch, and Wolfgang Konen, SPOT: A toolbox for interactive and in automatic tuning in the R environment, Proc. of the 20. Workshop Computational Intelligence, Universitätsverlag Karlsruhe, 2010, pp. 264--273.Google ScholarGoogle Scholar
  12. [BD19] Nathan Buskulic and Carola Doerr, Maximizing drift is not optimal for solving onemax, Proc. of Genetic and Evolutionary Computation Conference (GECCO'19, Companion), ACM, 2019, Full version available online at http://arxiv.org/abs/1904.07818. See also https://github.com/NathanBuskulic/OneMaxOptimal for more project data.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann, Optimal fixed and adaptive mutation rates for the LeadingOnes problem, Proc. of Parallel Problem Solving from Nature (PPSN'10), Lecture Notes in Computer Science, vol. 6238, Springer, 2010, pp. 1--10.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [BDSS17] Nacim Belkhir, Johann Dréo, Pierre Savéant, and Marc Schoenauer, Per instance algorithm configuration of CMA-ES with limited budget, Proc. of Genetic and Evolutionary Computation (GECCO'17), ACM 2017, pp. 681--688.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [BGB+06] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems, IEEE Transactions on Evolutionary Computation 10 (2006), no. 6, 646--657.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [BGH+ 13] Edmund K. Burke, Michel Gendreau, Matthew R. Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and Rong Qu, Hyper-heuristics: a survey of the state of the art, Journal of the Operational Research Society 64 (2013), 1695--1724.Google ScholarGoogle ScholarCross RefCross Ref
  17. [BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt, Unbiased black-box complexity of parallel search, Proc. of Parallel Problem Solving from Nature (PPSN'14), Lecture Notes in Computer Science, vol. 8672, Springer, 2014, pp. 892--901.Google ScholarGoogle ScholarCross RefCross Ref
  18. [BM08] Janez Brest and Mirjam Sepesy Maučec, Population size reduction for the differential evolution algorithm, Appl. Intell. 29 (2008), no. 3, 228--247.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. [BNE07] Nicola Beume, Boris Naujoks, and Michael Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume, European Journal of Operational Research 181 (2007), no. 3, 1653--1669.Google ScholarGoogle ScholarCross RefCross Ref
  20. [Bra01] Jürgen Branke, Evolutionary approaches to dynamic optimization problems - updated survey, GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems, 2001, pp. 27--30.Google ScholarGoogle Scholar
  21. [BS06] Christopher R. Bessette and David B. Spencer, Optimal space trajectory design: A heuristic-based approach, Spaceflight Mechanics 2006 - Proceedings of the AAS/AIAA Space Flight Mechnaics Meeting, Advances in the Astronautical Sciences, 2006, Spaceflight Mechanics 2006 - AAS/AIAA Space Flight Mechnaics Meeting; Conference date: 22-01-2006 Through 26-01-2006, pp. 1611--1628 (English (US)).Google ScholarGoogle Scholar
  22. [BZB+09] Janez Brest, Aleš Zamuda, Borko Bošković, Mirjam Sepesy Maučec, and Viljem Žumer, Dynamic optimization using self-adaptive differential evolution, IEEE Congress on Evolutionary Computation, 2009. CEC'09, IEEE, 2009, pp. 415--422.Google ScholarGoogle ScholarCross RefCross Ref
  23. [BZM06] J. Brest, V. Zumer, and M. S. Maucec, Self-adaptive differential evolution algorithm in constrained real-parameter optimization, 2006 IEEE International Conference on Evolutionary Computation, 2006, pp. 215--222.Google ScholarGoogle ScholarCross RefCross Ref
  24. [Cab16] Daniel Molina Cabrera, Evolutionary algorithms for large-scale global optimisation: a snapshot, trends and challenges, Progress in Artificial Intelligence 5 (2016), no. 2, 85--89.Google ScholarGoogle ScholarCross RefCross Ref
  25. [CFSS08] Luís Da Costa, Álvaro Fialho, Marc Schoenauer, and Michèle Sebag, Adaptive operator selection with dynamic multi-armed bandits, Proc. of Genetic and Evolutionary Computation Conference (GECCO'08), ACM, 2008, pp. 913--920.Google ScholarGoogle Scholar
  26. [CLW07] Ruifen Cao, Guoli Li, and Yican Wu, A self-adaptive evolutionary algorithm for multi-objective optimization, Advanced Intelligent Computing, Theories and Applications. With Aspects of Artificial Intelligence (Berlin, Heidelberg) (De-Shuang Huang, Laurent Heutte, and Marco Loog, eds.), Springer, 2007, pp. 553--564.Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. [CS09] Jorge Cervantes and Christopher R. Stephens, Limitations of existing mutation rate heuristics and how a rank GA overcomes them, IEEE Transactions on Evolutionary Computation 13 (2009), 369--397.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. [CTR99] Carlos J. Costa, R. Tavares, and A. Rosa, An experimental study on dynamic random variation of population size, Proc. of Systems, Man, and Cybernetics (SMC'99), IEEE, 1999, pp. 607--612.Google ScholarGoogle ScholarCross RefCross Ref
  29. [DAJ02] K. Deb, A. Anand, and D. Joshi, A computationally efficient evolutionary algorithm for real-parameter optimization, Evolutionary Computation 10 (2002), no. 4, 371--395.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [DCGC13] Elena-Niculina Dragoi, Silvia Curteanu, Anca-Irina Galaction, and Dan Cascaval, Optimization methodology based on neural networks and self-adaptive differential evolution algorithm applied to an aerobic fermentation process, Applied Soft Computing 13 (2013), no. 1, 222 -- 238.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [DD18] Benjamin Doerr and Carola Doerr, Optimal static and self-adjusting parameter choices for the (1 + (λ, λ)) genetic algorithm, Algorithmica 80 (2018), 1658--1709.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [DD20], Benjamin Doerr and Carola Doerr, Theory of parameter control for discrete black-box optimization: Provable performance gains through dynamic parameter choices, Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, Springer, 2020, pp. 271--321.Google ScholarGoogle ScholarCross RefCross Ref
  33. [DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel, From black-box complexity to designing new genetic algorithms, Theoretical Computer Science 567 (2015), 87--104.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [DDK18] Benjamin Doerr, Carola Doerr, and Timo Kötzing, Static and self-adjusting mutation strengths for multi-valued decision variables, Algorithmica 80 (2018), 1732--1768.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. [DDY16a] Benjamin Doerr, Carola Doerr, and Jing Yang, k-bit mutation with self-adjusting k outperforms standard bit mutation, Proc. of Parallel Problem Solving from Nature (PPSN'16), Lecture Notes in Computer Science, vol. 9921, Springer, 2016, pp. 824--834.Google ScholarGoogle ScholarCross RefCross Ref
  36. [DDY16b] Benjamin Doerr, Carola Doerr, and Jing Yang, Optimal parameter choices via precise black-box analysis, Proc. of Genetic and Evolutionary Computation Conference (GECCO'16), ACM, 2016, pp. 1123--1130.Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. [Dev72] Luc Devroye, The compound random search, Ph.D. dissertation, Purdue Univ., West Lafayette, IN, 1972.Google ScholarGoogle Scholar
  38. [DGG11] A. Datta, S. Ghosh, and A. Ghosh, Wrapper based feature selection in hyperspectral image data using self-adaptive differential evolution, 2011 International Conference on Image Information Processing, 2011, pp. 1--6.Google ScholarGoogle ScholarCross RefCross Ref
  39. [DJ75] Kenneth Alan De Jong, An analysis of the behavior of a class of genetic adaptive systems, Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA, 1975.Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [DJS+13] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges, Mutation rate matters even when optimizing monotonic functions, Evolutionary Computation 21 (2013), 1--27.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [DL16] Duc-Cuong Dang and Per Kristian Lehre, Self-adaptation of mutation rates in non-elitist populations, Proc. of Parallel Problem Solving from Nature (PPSN'16), LNCS, vol. 9921, Springer, 2016, pp. 803--813.Google ScholarGoogle ScholarCross RefCross Ref
  42. [DL19] Benjamin Doerr and Carola Doerr Johannes Lengler, Self-adjusting mutation rates with provably optimal success rules, Proc. of Genetic and Evolutionary Computation Conference (GECCO'19), ACM, 2019, Full version available online at http://arxiv.org/abs/1902.02588, pp. 1479--1487.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker, On the runtime analysis of selection hyper-heuristics with adaptive learning periods, Proc. of Genetic and Evolutionary Computation Conference (GECCO'18), ACM, 2018, pp. 1015--1022.Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [DMS16] Swagatam Das, Sankha Subhra Mullick, and P.N. Suganthan, Recent advances in differential evolution - an updated survey, Swarm and Evolutionary Computation 27 (2016), 1 -- 30.Google ScholarGoogle ScholarCross RefCross Ref
  45. [DVC19] Viet Hung Dang, Ngo Anh Vien, and Tae Choong Chung, A covariance matrix adaptation evolution strategy in reproducing kernel hilbert space, Genetic Programming and Evolvable Machines (2019), 1--23 (English).Google ScholarGoogle Scholar
  46. [DW18] Carola Doerr and Markus Wagner, On the effectiveness of simple success-based parameter selection mechanisms for two classical discrete black-box optimization benchmark problems, Proc. of Genetic and Evolutionary Computation Conference (GECCO'18), ACM, 2018, pp. 943--950.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. [DWY18] Benjamin Doerr, Carsten Witt, and Jing Yang, Runtime analysis for self-adaptive mutation rates, Proc. of Genetic and Evolutionary Computation Conference (GECCO'18), ACM, 2018, pp. 1475--1482.Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. [EHM99] Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz, Parameter control in evolutionary algorithms, IEEE Transactions on Evolutionary Computation 3 (1999), 124--141.Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. [EMSS07] A. E. Eiben, Zbigniew Michalewicz, Marc Schoenauer, and James E. Smith, Parameter control in evolutionary algorithms, Parameter Setting in Evolutionary Algorithms, Studies in Computational Intelligence, vol. 54, Springer, 2007, pp. 19--46.Google ScholarGoogle ScholarCross RefCross Ref
  50. [FCSS08] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag, Extreme value based adaptive operator selection, Proc. of Parallel Problem Solving from Nature (PPSN'08), Lecture Notes in Computer Science, vol. 5199, Springer, 2008, pp. 175--184.Google ScholarGoogle ScholarCross RefCross Ref
  51. [FCSS10] Álvaro Fialho, Luís Da Costa, Marc Schoenauer, and Michèle Sebag, Analyzing bandit-based adaptive operator selection mechanisms, Annals of Mathematics and Artificial Intelligence 60 (2010), 25--64.Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. [FG88] J Michael Fitzpatrick and John J Grefenstette, Genetic algorithms in noisy environments, Machine learning 3 (1988), no. 2-3, 101--120.Google ScholarGoogle ScholarCross RefCross Ref
  53. [FKH18] Stefan Falkner, Aaron Klein, and Frank Hutter, BOHB: Robust and efficient hyperparameter optimization at scale, ICML, 2018, pp. 1436--1445.Google ScholarGoogle Scholar
  54. [GBX+18] Abhijith M. Gopakumar, Prasanna V. Balachandran, Dezhen Xue, James E. Gubernatis, and Turab Lookman, Multi-objective optimization for materials discovery via adaptive design, Scientific Reports 8 (2018), 3738.Google ScholarGoogle ScholarCross RefCross Ref
  55. [GGK+14] A. Glotić, A. Glotić, P. Kitak, J. Pihler, and I. Tičar, Parallel self-adaptive differential evolution algorithm for solving short-term hydro scheduling problem, IEEE Transactions on Power Systems 29 (2014), no. 5, 2347--2358.Google ScholarGoogle ScholarCross RefCross Ref
  56. [GNB+19] G. Golkarnarenji, M. Naebe, K. Badii, A. S. Milani, A. Jamali, A. Bab-Hadiashar, R. N. Jazar, and H. Khayyam, Multi-objective optimization of manufacturing process in carbon fiber industry using artificial intelligence techniques, IEEE Access 7 (2019), 67576--67588.Google ScholarGoogle ScholarCross RefCross Ref
  57. [Gre86] John J. Grefenstette, Optimization of control parameters for genetic algorithms, IEEE Trans. Systems, Man, and Cybernetics 16 (1986), 122--128.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [Gre96] Horst Greiner, Robust optical coating design with evolutionary strategies, Applied Optics 35 (1996), no. 28, 5477--5483.Google ScholarGoogle ScholarCross RefCross Ref
  59. [GZ15] Arnel Glotić and Aleš Zamuda, Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution, Applied Energy 141 (2015), 42--56.Google ScholarGoogle ScholarCross RefCross Ref
  60. [HHB10] Ting Hu, Simon Harding, and Wolfgang Banzhaf, Variable population size and evolution acceleration: a case study with a parallel evolutionary algorithm, Genetic Programming and Evolvable Machines 11 (2010), 205--225.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. [HHLB11] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown, Sequential model-based optimization for general algorithm configuration, Proc. of Learning and Intelligent Optimization (LION'11), Springer, 2011, pp. 507--523.Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. [HHLBS09] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle, ParamILS: An automatic algorithm configuration framework, Journal of Artificial Intelligence Research 36 (2009), 267--306.Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. [HJS11] Nizar Hachicha, Bassem Jarboui, and Patrick Siarry, A fuzzy logic control using a differential evolution algorithm aimed at modelling the financial market dynamics, Inf. Sci. 181 (2011), no. 1, 79--91.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. [HM90] Jürgen Hesser and Reinhard Männer, Towards an optimal mutation probability for genetic algorithms, Proc. of Parallel Problem Solving from Nature (PPSN'90), Lecture Notes in Computer Science, vol. 496, Springer, 1990, pp. 23--32.Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. [HS06] G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (2006), no. 5786, 504--507.Google ScholarGoogle ScholarCross RefCross Ref
  66. [IHR07] Christian Igel, Nikolaus Hansen, and Stefan Roth, Covariance matrix adaptation for multi-objective optimization, Evolutionary computation 15 (2007), no. 1, 1--28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  67. [JB05] Yaochu Jin and Jürgen Branke, Evolutionary optimization in uncertain environments-a survey, IEEE Transactions on evolutionary computation 9 (2005), no. 3, 303--317.Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. [JW06] Thomas Jansen and Ingo Wegener, On the analysis of a dynamic evolutionary algorithm, Journal of Discrete Algorithms 4 (2006), 181--199.Google ScholarGoogle ScholarCross RefCross Ref
  69. [KBP13] Peter Korošec, Uroš Bole, and Gregor Papa, A multi-objective approach to the application of real-world production scheduling, Expert Systems with Applications 40 (2013), no. 15, 5839--5853.Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. [KHE15] Giorgos Karafotias, Mark Hoogendoorn, and A.E. Eiben, Parameter control in evolutionary algorithms: Trends and challenges, IEEE Transactions on Evolutionary Computation 19 (2015), 167--187.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. [KK06] V. K. Koumousis and C. P. Katsaras, A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance, IEEE Transactions on Evolutionary Computation 10 (2006), 19--28.Google ScholarGoogle ScholarDigital LibraryDigital Library
  72. [KMH+ 04] Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and Petros Koumoutsakos, Learning probability distributions in continuous evolutionary algorithms - a comparative review, Natural Computing 3 (2004), 77--112.Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. [KP13] Peter Korošec and Gregor Papa, Metaheuristic approach to transportation scheduling in emergency situations, Transport 28 (2013), no. 1, 46--59.Google ScholarGoogle ScholarCross RefCross Ref
  74. [KPV10] Peter Korošec, Gregor Papa, and Vida Vukašinović, Application of memetic algorithm in production planning, Proc. Bioinspired Optimization Methods and their Applications, BIOMA 2010, May 2010, pp. 163--175.Google ScholarGoogle Scholar
  75. [Kv05] Peter Korošec and Jurij Šilc, The multilevel ant stigmergy algorithm: An industrial case study, Proceedings of the 8th Joint Conference on Information Sciences (Salt Lake City, UT), July 21-25 2005, pp. 475--478.Google ScholarGoogle Scholar
  76. [KvF12] Peter Korošec, Jurij Silc, and Bogdan Filipič, The differential ant-stigmergy algorithm. Information Sciences 192 (2012), no. 1, 82--97.Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. [LDC+16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas Stützle, The irace package: Iterated racing for automatic algorithm configuration, Operations Research Perspectives 3 (2016), 43--58.Google ScholarGoogle ScholarCross RefCross Ref
  78. [LEC12] T.W. Liao, P.J. Egbelu, and P.C. Chang, Two hybrid differential evolution algorithms for optimal inbound and outbound truck sequencing in cross docking operations, Applied Soft Computing 12 (2012), no. 11, 3683 -- 3697.Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. [Len18] Johannes Lengler, A general dichotomy of evolutionary algorithms on monotone functions, Proc. of Parallel Problem Solving from Nature (PPSN'18), Lecture Notes in Computer Science, vol. 11102, Springer, 2018, pp. 3--15.Google ScholarGoogle ScholarCross RefCross Ref
  80. [LJD+17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar, Hyperband: A novel bandit-based approach to hyperparameter optimization, J. Mach. Learn. Res. 18 (2017), no. 1, 6765--6816.Google ScholarGoogle Scholar
  81. [LLM07] Fernando G. Lobo, Cláudio F. Lima, and Zbigniew Michalewicz (eds.), Parameter setting in evolutionary algorithms, Studies in Computational Intelligence, vol. 54, Springer, 2007.Google ScholarGoogle Scholar
  82. [LMR+18] Laurent Lemarchand, Damien Massé, Pascal Rebreyend, and Johan Håkansson, Multiobjective optimization for multimode transportation problems, Advances in Operations Research (2018), 13.Google ScholarGoogle ScholarCross RefCross Ref
  83. [LOW17] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker, On the runtime analysis of generalised selection hyper-heuristics for pseudo-Boolean optimisation, Proc. of Genetic and Evolutionary Computation Conference (GECCO'17), ACM, 2017, Extended version available at https://arxiv.org/abs/1801.07546, pp. 849--856.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. [LTSY15] X. Li, K Tang, P. N. Suganthan, and Z. Yang, Editorial for the special issue of information sciences journal (ISJ) on 'nature-inspired algorithms for large scale global optimization, Information Science 316 (2015), 437--439.Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. [MA17] Ali Wagdy Mohamed and Abdulaziz S. Almazyad, Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems, Applied Computational Intelligence and Soft Computing 2017 (2017), 1--18.Google ScholarGoogle ScholarCross RefCross Ref
  86. [MiI97] Brad L. Miller, Noise, sampling, and efficient genetic algorithms, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1997.Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. [MPV12] A. Migdalas, Panos M. Pardalos, and Peter Vrbrand, Multilevel optimization: Algorithms and applications, 1st ed., Springer Publishing Company, Incorporated, 2012.Google ScholarGoogle Scholar
  88. [Müh92] Heinz Mühlenbein, How genetic algorithms really work: Mutation and hillclimbing, Proc. of Parallel Problem Solving from Nature (PPSN'92), Elsevier, 1992, pp. 15--26.Google ScholarGoogle Scholar
  89. [NT09] B. Naujoks and H. Trautmann, Online convergence detection for multiobjective aerodynamic applications, 2009 IEEE Congress on Evolutionary Computation, May 2009, pp. 332--339.Google ScholarGoogle ScholarCross RefCross Ref
  90. [NYB12] Trung Thanh Nguyen, Shengxiang Yang, and Juergen Branke, Evolutionary dynamic optimization: A survey of the state of the art, Swarm and Evolutionary Computation 6 (2012), 1--24.Google ScholarGoogle ScholarCross RefCross Ref
  91. [OLML19] Mohammad Nabi Omidvar, Xiaodong Li, Daniel Molina, and Antonio LaTorre, Evolutionary large-scale global optimization, 2019, CEC 2019 Tutorial.Google ScholarGoogle Scholar
  92. [OLN09] Pietro Simone Oliveto, Per Kristian Lehre, and Frank Neumann, Theoretical analysis of rank-based mutation - combining exploration and exploitation, Proc. of Congress on Evolutionary Computation (CEC'09), IEEE, 2009, pp. 1455--1462. [OYM+17] Mohammad Nabi Omidvar, Ming Yang, Yi Mei, Xiaodong Li, and Xin Yao, DG2: A faster and more accurate differential grouping for large-scale black-box optimization, IEEE Transactions on Evolutionary Computation 21 (2017), no. 6, 929--942.Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. [Pap08] Gregor Papa, Parameter-less evolutionary search, Proc. Genetic and Evolutionary Computation Conference (GECCO 2008), 2008, pp. 1133--1134.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. [Pap13] Gregor Papa, Parameter-less algorithm for evolutionary-based optimization, Computational Optimization and Applications 56 (2013), no. 1, 209--229.Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. [PM10] Gregor Papa and Peter Mrak, Optimization of cooling appliance control parameters, Proceedings of the 2nd International Conference on Engineering Optimization, EngOpt2010, 2010.Google ScholarGoogle Scholar
  96. [PVK12] Gregor Papa, Vida Vukašinović, and Peter Korošec, Guided restarting local search for production planning, Engineering Applications of Artificial Intelligence 25 (2012), no. 2, 242--253.Google ScholarGoogle ScholarDigital LibraryDigital Library
  97. [PXL+07] Pan Zhang, Xin Yao, Lei Jia, B. Sendhoff, and T. Schnier, Target shape design optimization by evolving splines, 2007 IEEE Congress on Evolutionary Computation, 2007, pp. 2009--2016.Google ScholarGoogle ScholarCross RefCross Ref
  98. [Rec73] Ingo Rechenberg, Evolutionsstrategie, Friedrich Fromman Verlag (Günther Holzboog KG), Stuttgart, 1973.Google ScholarGoogle Scholar
  99. [RM18] Namhee Ryu and Seungjae Min, Multi-objective optimization with an adaptive weight determination scheme using the concept of hyperplane: Multi-objective optimization with an adaptive weight, International Journal for Numerical Methods in Engineering 118 (2018).Google ScholarGoogle Scholar
  100. [RVLB15] Nery Riquelme, Christian Von Lücken, and Benjamin Baran, Performance metrics in multi-objective optimization, Computing Conference (CLEI), 2015 Latir American, IEEE, 2015, pp. 1--11.Google ScholarGoogle ScholarCross RefCross Ref
  101. [SBD19] David Schmaranzer, Roland Braune, and Karl Franz Dörner, Multi-objective simulation optimization for complex urban mass rapid transit systems, Annals of Operations Research (2019).Google ScholarGoogle ScholarCross RefCross Ref
  102. [SMXD14] Ankur Sinha, Pekka Malo, Peng Xu, and Kalyanmoy Deb, A bilevel optimization approach to automated parameter tuning, Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (New York, NY, USA), GECCO '14, ACM, 2014, pp. 847--854.Google ScholarGoogle ScholarDigital LibraryDigital Library
  103. [SP10] F. Samadzadegan and T. Partovi, Feature selection based on ant colony algorithm for hyperspectral remote sensing images, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2010, pp. 1--4.Google ScholarGoogle ScholarCross RefCross Ref
  104. [SS68] Michael A. Schumer and Kenneth Steiglitz, Adaptive step size random search, IEEE Transactions on Automatic Control 13 (1968), 270--276.Google ScholarGoogle ScholarCross RefCross Ref
  105. [Sud13] Dirk Sudholt, A new method for lower bounds on the running time of evolutionary algorithms, IEEE Transactions on Evolutionary Computation 17 (2013), 418--435.Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. [TCZ+10] Hong-Fei Teng, Yu Chen, Wei Zeng, Yan-Jun Shi, and Qing-Hua Hu, A dual-system variable-grain cooperative coevolutionary algorithm: Satellite-module layout design, IEEE Transactions on Evolutionary Computation 14 (2010), no. 3, 438--455.Google ScholarGoogle Scholar
  107. [Tei01] Jürgen Teich, Pareto-front exploration with uncertain objectives, International Conference on Evolutionary Multi-Criterion Optimization, Springer, 2001, pp. 314--328.Google ScholarGoogle ScholarCross RefCross Ref
  108. [Thi05] Dirk Thierens, An adaptive pursuit strategy for allocating operator probabilities, Proc. of Genetic and Evolutionary Computation Conference (GECCO'05), ACM, 2005, pp. 1539--1546.Google ScholarGoogle ScholarDigital LibraryDigital Library
  109. [TKP+07] Tea Tušar, Peter Korošec, Gregor Papa, Bogdan Filipič, and Jurij Šilc, A comparative study of stochastic optimization methods in electric motor design, Applied Intelligence 27 (2007), no. 2, 101--111.Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. [Van02] G.N. Vanderplaats, Very large scale optimization, Nat. Aeronautics Space Admin., Washington, DC, 2002.Google ScholarGoogle Scholar
  111. [VC16] Marta Vallejo and David W. Corne, Evolutionary algorithms under noise and uncertainty: A location-allocation case study, 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (2016), 1--10.Google ScholarGoogle ScholarCross RefCross Ref
  112. [VML11] M. Vasile, E. Minisci, and M. Locatelli, An inflationary differential evolution algorithm for space trajectory optimization, IEEE Transactions on Evolutionary Computation 15 (2011), no. 2, 267--281.Google ScholarGoogle ScholarDigital LibraryDigital Library
  113. [WG12] C. Wang and J. Gao, High-dimensional waveform inversion with cooperative coevolutionary differential evolution algorithm, IEEE Geoscience and Remote Sensing Letters 9 (2012), no. 2, 297--301.Google ScholarGoogle ScholarCross RefCross Ref
  114. [WHD+13] Yu Wang, Jin Huang, Wei Shan Dong, Jun Chi Yan, Chun Hua Tian, Min Li, and Wen Ting Mo, Two-stage based ensemble optimization framework for large-scale global optimization, European Journal of Operational Research 228 (2013), no. 2, 308--320.Google ScholarGoogle ScholarCross RefCross Ref
  115. [WWY09] Hongfeng Wang, Dingwei Wang, and Shengxiang Yang, A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems, Soft Computing 13 (2009), no. 8-9, 763--780.Google ScholarGoogle ScholarDigital LibraryDigital Library
  116. [WWY10] Yao-Nan Wang, Liang-Hong Wu, and Xiao-Fang Yuan, Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure, Soft Computing 14 (2010), no. 3, 193--209.Google ScholarGoogle ScholarCross RefCross Ref
  117. [YDB19] Furong Ye, Carola Doerr, and Thomas Bäck, Interpolating Local and Global Search by Controlling the Variance of Standard Bit Mutation, Proc. Conference on Evolutionary Computation (CEC'19), IEEE, 2019, pp. 2292--2299.Google ScholarGoogle Scholar
  118. [Yil13] Ali R. Yildiz, A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations, Applied Soft Computing 13 (2013), no. 3, 1561 -- 1566, Hybrid evolutionary systems for manufacturing processes.Google ScholarGoogle Scholar
  119. [YJG09] Dongdong Yang, Licheng Jiao, and Maoguo Gong, Adaptive multi-objective optimization based on nondominated solutions, Computational Intelligence 25 (2009), no. 2, 84--108.Google ScholarGoogle ScholarCross RefCross Ref
  120. [YLLF18] Yan Ye, Jingfeng Li, Kaibin Li, and Hui Fu, Cross-docking truck scheduling with product unloading/loading constraints based on an improved particle swarm optimisation algorithm, International Journal of Production Research 56 (2018), no. 16, 5365--5385.Google ScholarGoogle ScholarCross RefCross Ref
  121. [YSTY16a] Zhenyu Yang, B. Sendhoff, Ke Tang, and Xin Yao, Target shape design optimization by evolving b-splines with cooperative coevolution, Applied Soft Computing 48 (2016), no. C. 672--682.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. [YSTY16b] Zhenyu Yang, B. Sendhoff, Ke Tang, and Xin Yao, Target shape design optimization by evolving b-splines with cooperative coevolution, Applied Soft Computing 48 (2016), 672--682.Google ScholarGoogle ScholarDigital LibraryDigital Library
  123. [YTY08] Zhenyu Yang, Ke Tang, and Xin Yao, Large scale evolutionary optimization using cooperative coevolution, Information Sciences 178 (2008), no. 15, 2985--2999, Nature Inspired Problem-Solving.Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. [ZB14] Ales Zamuda and Janez Brest, Vectorized procedural models for animated trees reconstruction using differential evolution, Inf. Sci. 278 (2014), 1--21.Google ScholarGoogle ScholarCross RefCross Ref
  125. [ZBBv08] A. Zamuda, J. Brest, B. Bošković, and V. Žumer, Large scale global optimization using differential evolution with self-adaptation and cooperative co-evolution, IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), June 2008, pp. 3718--3725.Google ScholarGoogle ScholarCross RefCross Ref
  126. [ZBBZ09] Ales Zamuda, Janez Brest, Borko Boskovic, and Viljem Zumer, Differential evolution with self-adaptation and local search for constrained multiobjective optimization, Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2009, Trondheim, Norway, 18-21 May, 2009, IEEE, 2009, pp. 195--202.Google ScholarGoogle ScholarCross RefCross Ref
  127. [ZCJW14] Z. H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, Big data opportunities and challenges: Discussions from data analytics perspectives [discussion forum], IEEE Computational Intelligence Magazine 9 (2014), no. 4, 62--74.Google ScholarGoogle ScholarDigital LibraryDigital Library
  128. [ZHA16] A. Zamuda, J. Daniel Hernández Sosa, and L. Adler, Improving constrained glider trajectories for ocean eddy border sampling within extended mission planning time, 2016 IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 1727--1734.Google ScholarGoogle ScholarDigital LibraryDigital Library
  129. [ZS14] Aleš Zamuda and José Daniel [Hernández Sosa], Differential evolution and underwater glider path planning applied to the short-term opportunistic sampling of dynamic mesoscale ocean structures, Applied Soft Computing 24 (2014), 95 -- 108.Google ScholarGoogle ScholarDigital LibraryDigital Library
  130. [ZS19] Aleš Zamuda and José Daniel Hernández Sosa, Success history applied to expert system for underwater glider path planning using differential evolution, Expert Systems with Applications 119 (2019), 155 -- 170.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Dynamic control parameter choices in evolutionary computation: GECCO 2020 tutorial
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in
            • Published in

              cover image ACM Conferences
              GECCO '20: Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion
              July 2020
              1982 pages
              ISBN:9781450371278
              DOI:10.1145/3377929

              Copyright © 2020 Owner/Author

              Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 8 July 2020

              Check for updates

              Qualifiers

              • tutorial

              Acceptance Rates

              Overall Acceptance Rate1,669of4,410submissions,38%

              Upcoming Conference

              GECCO '24
              Genetic and Evolutionary Computation Conference
              July 14 - 18, 2024
              Melbourne , VIC , Australia

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader