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Abstract

This paper demonstrates a system that performs multi-

objective sizing across 100,000 analog circuit topologies

simultaneously, with SPICE accuracy. It builds on a previ-

ous system, MOJITO, which searches through 3500 topolo-

gies defined by a hierarchically-organized set of 30 ana-

log blocks. This paper improves MOJITO’s results qual-

ity via three key extensions. First, it enlarges the block li-

brary to enable symmetrical transconductance amplifiers

and more. Second, it improves initial topology diver-

sity via optimization-based constraint satisfaction. Third,

it maintains topology diversity during search via a novel

multi-objective selection mechanism, dubbed TAPAS. MO-

JITO+TAPAS is demonstrated on a problem with 6 objec-

tives, returning a tradeoff holding 17438 nondominated de-

signs. The tradeoff is comprised of 152 unique topolo-

gies that include the newly-introduced topologies. 59 de-

signs across 12 topologies designs outperform an expert-

designed reference circuit.

1. Introduction

Front-end analog circuit design involves determining a

circuit topology and its device sizes. Automating aspects of

front-end design has promise of improved time-to-market,

productivity, and / or quality of designs [1]. While there are

now industrially palatable tools for automated cell-level siz-

ing such as [2], so far no industrial tools give broad support

for topology design. Such a tool needs: to return results that

are trustworthy enough to commit to silicon, consider a suf-

ficiently rich set of topologies so that the designer does not

have to intervene, easily adapt to new technology nodes, be

general enough for a variety of circuit types, have low setup

time for the designer, have low runtime, and have results

with quality comparable to manual design.

There has been much research in cell-level topology de-

sign tools. Open-ended approaches like [3–6] search across

unstructured combinations of transistors, but results are not

trustworthy [7]. [8–13] use rule-based systems or pre-set

behavior-to-structure mappings, which requires excessive

setup effort. DARWIN [14] and MINLP [15] define a

flat combinatorial space of possible topologies which need

just structural information, but the flat approach generalizes

poorly and has only been shown on <100 topologies. In

contrast, MOJITO [16] uses a hierarchically-defined set of

structural blocks to define a space of thousands of topolo-

gies; but it has not yet outperformed manual designs.

Table 1. Topology Synthesis Approaches
Technique # Topo-

logies

(op amp

space)

Trust-

worthy?
Shown

out-

perform

manual?

Open-ended [3–6] >> 1012 NO NO

DARWIN [14] 24 YES NO

MINLP [15] 64 YES NO

MOJITO [16] 3528 YES NO

MOJITO+TAPAS

(this work)

101904 YES YES

This paper’s key contribution enhances MOJITO to gen-

erate designs competitive with manual across the whole per-

formance tradeoff. To do so, the library is extended to in-

clude all expected final Pareto-optimal topologies, leading

to 100,000 possible topologies. Also, search is enhanced

to maintain diversity so that final Pareto-optimal topolo-

gies optimize long enough to reach their full potential, via

Topology Aware Pareto Age-layered Structure (TAPAS).

Table 1 summarizes.

This paper is organized as follows. Section 2 specifies

the problem, and section 3 reviews MOJITO. Section 4 de-

scribes the enlarged library. Sections 5-7 illuminate the

topology diversity issue, propose algorithms to fix it, and

validate the fix, respectively. Section 8 examines final de-

signs’ quality, and section 9 concludes.



2. Problem Specification

The topology design problem is:

minimize fi(φ) i = 1..Nf

s.t. gj(φ) ≤ 0 j = 1..Ng

hk(φ) = 0 k = 1..Nh

φ ∈ Φ

(1)

whereΦ is the space of possible topologies and sizings. The
algorithm traverses Φ to return a Pareto Optimal Set (POS)
Z = {φ∗

1, φ
∗
2, · · · , φ∗

NND
} on Nf objectives, Ng inequal-

ity constraints, and Nh equality constraints. We can min-

imize all objectives, have inequality constraints aim ≤ 0,
and equality constraints aim= 0, without loss of generality.

3. MOJITO Review

MOJITO defines a set of possible topologies via

hierarchically-organized analog blocks, and searches across

the library with NSGA-II [17], a multi-objective evolution-

ary algorithm (MOEA). It exploits the hierarchy to mix

topology sub-blocks [18]. It uses SPICE in-the-loop, and

parallel computing. Table 2 gives the top-level algorithm.

An Age Layered Population Structure (ALPS) [19] ensures

reliable convergence and continual exploration of new re-

gions. Each age layer Pk, k = 1..K, holds NL individuals.

P1 allows individuals with genetic age 0-9, P2 allows age

0-19, and so on. If an individual gets too old for a fitness

layer, it gets removed from that layer. Selection at layer k

uses the individuals from layer k and k − 1 as candidates,
so younger high-fitness individuals can propagate to higher

layers. Every Na generations (line 3), a new age layer may

be added (lines 4-5), and initial individuals enter layer k=0

via random sampling, P0,i ∼ Φ (line 6). Line 8 runs one
generation of NSGA-II. An external archive maintains Z.

Table 2. Procedure MojitoSynthesis()
Inputs: Φ, Na,K, NL

Outputs: Z

1. Ngen = 0; Z = ∅; P = ∅
2. while stop(Ngen, . . . ) 6= True:

3. if (Ngen%Na) = 0:
4. if ‖P‖ < K:

5. P‖P‖+1 = ∅
6. P0,i = InitialCircuit(Φ), i = 1..NL

7. for k = 1 to ‖P‖:
8. (Pk, Z) = OneMOEAGen(Pk, Pk−1, Z)

9. Ngen = Ngen + 1
10. return Z

4. Enlarged Building Block Library

The MOJITO library of [16] included 1- and 2-stage am-

plifiers, PMOS vs. NMOS loads, PMOS vs. NMOS in-

puts, stacked vs. folded cascode vs. non-cascode inputs,

cascode vs. non-cascode vs. resistor loads, level shifting,

several different current mirrors, and single-ended and dif-

ferential inputs. Two of the most frequently used blocks

in CMOS are folded and symmetrical operational transcon-

ductance amplifiers (F/S OTAs), as shown in Figure 1 left

and center. While the original library supported F OTAs, it

did not support S OTAs. So, support was given by adding

current mirror folding blocks. Support was also added for

cascoding of folding transistors, as shown in Figure 1 right.

This increases topology count by 30x, to about 100,000.

Figure 1. Left to right: Folded OTA, symmet­

rical OTA, folded cascoded folder OTA

5. Experiments: Diversity Issues

With the enlarged library, we ran MOJITO using the

setup of Table 3. Having 6 objectives, we expect a large

final Pareto Optimal Set (POS) with high topological di-

versity, including the presence of the new OTAs. Fig-

ure 2 tracks topology count over time. The count in the

population spikes every 10th generation, when randomly-

generated individuals are added. But after each spike, the

count dives as poorly-performing topologies are replaced

by well-performing topologies. The feasible and nondom-

inated topology counts are strikingly low. Once the algo-

rithm finally finds a feasible topology (generation 40), that

topology and variants dominate the population. By gener-

ation 80, the POS has 3000 individuals but only 5 unique

topologies.

Figure 3 shows that the count of F/S OTA topologies in

the top layer dimishes over time, which is surprising be-

cause these topologies should be good enough to survive.

This is because despite being more complex circuit, a 2-

stage amplifier is actually easier to stabilize than a 1-stage

(the 1-stage’s nondominant pole is a function of several par-

asitic capacitances, which are harder to control) [21].

The lack of expected F/S topologies is our “canary in the

mine.” MOJITO needs to generate and protect topologies
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Table 3. Experimental setup parameters
Search Space 101,904 topologies + sizes & biases

Objectives maximize DC gain, max. GBW, mini-

mize power, min. area, max. dynamic

range (DR), max. slew rate (SR)

Constraints Device operating constraints [20], DC

gain > 20 dB, GBW > 10 MHz, power
< 100 mW, 10−14 ≤ area ≤ 10−4m2,

PM > 65◦, DR > 0.1 V, SR > 106 V/s

Tech. & Test

harness

0.18µm CMOS, 1 pF load capacitance,

1.8 V supply voltage, HSPICE simulator

Search Algo-

rithm

K = 10 age layers, 200 individuals per

age layer, Na = 10 generation intervals

0 20 40 60 80 100
0

20

40

60

80

100

120

140

Generation

N
u

m
b

e
r 

o
f 

to
p

o
lo

g
ie

s

 

 
In population

Feasible in population

In non−dominated set

Figure 2. Number of topologies vs. genera­

tion (status quo MOJITO)

long enough for them to optimize to their full potential.

6. Algorithms to Maintain Diversity

This section describes two approaches to maintain topol-

ogy diversity: one for initial generation of individuals, and

one for MOEA selection.

6.1 Maintaining Initial Diversity

The algorithm of Table 4 replaces the random sampling

in step 6 of Table 2. It aims to defer competition among

randomly-generated topologies until each topology is at

least close to feasible. It does so by optimizing sizings &

biasings in a series of constraint-satisfaction “gates” that

are successively more expensive to evaluate: from func-

tion device operating constraints (DOCs) (lines 2-5), to

simulation-based DOCs (lines 6-9), and finally to perfor-

mance constraints (lines 10-13). In all three gates, mutate-

Sizings() applies Gaussian mutation to all sizing & biasing
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Figure 3. Number of unique F/S OTAs in top
age layer, vs. generation

parameters of the design.

Table 4. Procedure InitialCircuit()
Inputs: Φ
Outputs: φ ∈ Φ
1. φ ∼ Φ
2. while meetsFuncDOCs(φ) 6= True:

3. φ′ = mutateSizings(φ)

4. if funcDOCsCost(φ′) < funcDOCsCost(φ):

5. φ = φ′

6. while meetsSimDOCs(φ) 6= True:

7. φ′ = mutateSizings(φ)

8. if simDOCsCost(φ′) < simDOCsCost(φ):

9. φ = φ′

10. while meetsPerfConstraints(φ) 6= True:

11. φ′ = mutateSizings(φ)

12. if perfCost(φ′) < perfCost(φ):

13. φ = φ′

14. Return φ

6.2 Maintaining Diversity During Search

This section first discusses NSGA-II diversity issues, a

promising alternative called MOEA/D and its issues, and

finally a topology-preserving enhancement called TAPAS.

NSGA-II. In a topologically rich search space, NSGA-

II’s “nondominated sort” operation results in a relatively

rapid domination of easy-to-optimize topologies, as we saw

in section 5. To maintain a sufficiently high chance that

difficult topologies are also considered, impractically large

populations have to be used.

MOEA/D is a promising MOEA [22]. Its basic idea

is to run NL single-objective local optimizations simul-
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taneously, where each local optimization i minimizes a

weighted sum across objective costs wi
T f(φ). Each lo-

cal optimization points to a different direction wi, and di-

rections are well-spread W = {w1,w2, . . . ,wNL
}. Se-

lection and crossover for a given direction wi considers

the individuals of neighboring directions j ∈ N(wi). The
MOEA/D version of OneMOEAGen() is in Table 5, and il-

lustrated in Figure 4.

Table 5. Procedure OneMOEA/DGen()
Inputs: Pk, Pk−1, Z,W

Outputs: P ′
k, Z

′

1. P ′
k = Pk

2. for i in {1, 2, . . . , NL}:
3. B = {best ind. according to wi} ∪

{best ind. acc. to wj}∀j, j = N(wi)
4. Psel = {∼ unif(B),∼ unif(B)}
5. φchild = ApplyOperators(Psel)

6. φchild = Evaluate(φchild)

7. Z ′ = NondominatedFilter(Z ∪ φch)

8. for j in N(wi):
9. if φchild is better than P ′

k,j acc. towj :

10. replace ind. P ′
k,j with φchild

11. return (P ′
k, Z ′)

In experiments, we found that MOJITO+MOEA/D could

efficiently generate a smooth Pareto Front without perfor-

mance gaps, but it contained far fewer nondominated in-

dividuals than NSGA-II. In a single-topology space this

may not be a problem, since the retained individuals are

the “best” for one (or more) weights. However, in a

topology-rich search space this is very undesirable, because

MOEA/D’s local-optimization perspective biases towards

easy-to-optimize topologies, and the more difficult topolo-

gies do not survive.
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Figure 4. MOEA/D in action

TAPAS.We designed TAPAS to incorporate a topology-

preservation mechanism. It is like the MOEA/D algorithm

of Table 5, except for line 3’s mechanism to computeB: for

a weight wi or wj , instead of choosing one best individ-

ual according to the weight, the M best unique topologies

are chosen. Figure 5 illustrates (for M = 3). This ensures

a much larger topological diversity by design, and guaran-

tees that at least M topologies will be present in the active

population. If they are not present from the initial popula-

tion, mutation and crossover operators will introduce new

topologies along the way.
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Figure 5. TAPAS in action

7. Experiments: Improved Diversity?

In this section, we validate that MOJITO+TAPAS can

indeed improve diversity. The first experiment investigates

how much constraint satisfaction improves initial individu-

als. 200 individuals were generated with constraint satisfac-

tion (section 6.1), and 200 without. The populations were

merged, then filtered into a Pareto Optimal Set (POS). Table

6 shows that constraint-satisfaction is superior.

Table 6. Comparison of initial generation ap­
proaches

Approach # inds in

merged

POS

% inds in

merged

POS

# unique

topos. in

merged POS

no constraint

satisfaction

0 0% 0

constraint

satisfaction

200 100% 10

The next experiment investigates the effect of NSGA-

II vs. TAPAS selection, by doing one run of MOJITO +

NSGA-II and one of MOJITO + TAPAS. For a fair com-

parison, they had identical problem setup, identical initial

constraint-satisfaction individuals, and settings giving equal

runtime (see Table 7). Figure 6 tracks the total F/S topology

count in the population. TAPAS clearly succeeds in main-

taining more F/S topologies. When looking only at the top
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age layer, shown in Figure 7, the improvement offered by

TAPAS is even more apparent: whereas the NSGA-II top

age layer gradually loses its F/S topologies, TAPAS always

retains them.

These experiments confirm that the new topology diver-

sity mechanisms are indeed performing according to their

design.

Table 7. Experimental parameters
NSGA-II K = 10, Na = 10, NL = 200 inds. per age

layer, 200 inds. in age layer initialization

TAPAS K = 10,Na = 10, 200 weights, 5 neighbours

per weight, M = 20 topologies per weight,

20 inds. in age layer initialization

Runtime 7 days across five 2x 4-core Xeon machines
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Figure 6. Total number of F/S topologies in
population, vs. generation

8. Experimental Results on Quality of Designs

In this section, we investigate the quality of the results

generated by MOJITO. First, we compare the quality of

MOJITO + NSGA-II results with MOJITO + TAPAS re-

sults by doing one run for each as in section 7, then merging

each run’s POS into an overall POS. Table 8 shows that the

TAPAS results cover more of the tradeoff than NSGA-II.

Table 8. Compare designs in final POS
Approach # inds in

merged POS

% inds in

merged POS

MOJITO+NSGAII 3991 39.5%

MOJITO+TAPAS 6092 60.5%

Figure 8 shows a cross section of the MOJITO + TAPAS

Pareto Front in the Gain-GBW plane. It has 17438 designs,
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Figure 7. Number of F/S topologies in top age
layer, vs. generation

comprising 152 unique topologies having 1 or 2 stages. For

comparison, a reference design was extracted from a CMOS

data converter designed by an expert analog designer; it is

also shown. We see that MOJITO designs compete with

the reference design along these axes. In fact, MOJITO re-

sults were highly competitive on all performances, as Table

9 shows. Indeed, MOJITO + TAPAS found 59 designs that

were better than the manual reference design, distributed

over 12 unique topologies.
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Figure 8. Pareto Front cross­section for Gain

vs GBW, showing all results

9. Conclusion

This paper presented MOJITO + TAPAS, a topology

design tool that considers 100,000 possible analog circuit
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Table 9. Comparison to Reference Design
Performance Aim Manual MOJITO MOJITO

Topology - Sym-

metrical

Tele-

scopic

Miller

Gain (dB) max. 55 53.06 56.24

GBW (MHz) max. 330 474 413

DR (V) max. 1.2 1.01 1.53

SR (V/µs) max. 380 389 554
Power (mW) min. 2.26 1.02 7.40

Area (µm
2) min. - 218 3974

PM (◦) ≥ 65 65 67 65.18

DOCs met? YES YES YES

topologies to generate a set of Pareto-Optimal sized topolo-

gies. It has SPICE accuracy, low setup cost, and reasonable

runtime. To maintain high topology diversity, a constraint-

satisfaction mechanism and a novel multi-objective selec-

tion mechanism were introduced. In the results tradeoff

across 6 objectives, there were 17438 designs across 152

unique topologies; and among them, 59 designs across 12

topologies outperformed an expert-designed reference cir-

cuit.
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